Работа резистора в цепи электрического тока. Резистор как работает


Что такое резистор? | AUDIO-CXEM.RU

Резистор представляет собой пассивный элемент электрической цепи, то есть не вносит в электрическую цепь энергию, а только потребляет её. В электротехнике резистор, как идеализированный элемент электрической цепи, характеризующийся только сопротивлением электрическому току, называют сопротивлением.

При сопротивлении протеканию электрического тока через резистор, последний нагревается, преобразуя энергию электрического тока в тепловую энергию, рассеивая тепло в окружающую среду.

Если говорить простым языком, то резистор ограничивает ток, текущий по проводнику.

Для полного понимания, сразу приведу аналогию. Представим, что у нас есть трубопровод, по которому течет вода с определенным давлением. В нашей аналогии диаметр трубы и будет резистором (сопротивлением), а количество воды, проходящее через данный диаметр трубы в единицу времени, будет силой тока. Чем меньше диаметр трубы, тем больше сопротивление, следовательно, меньше сила тока. Напряжением в нашей аналогии будет давление воды в трубе.

Одной из основных характеристик резистора является сопротивление. Сопротивление измеряется в Омах.

1 кОм = 1000 Ом

1 Мом = 1000000 ОмСледующая основная характеристика, это рассеиваемая мощность, которая измеряется в Ваттах.

Самые распространенные резисторы с рассеваемой мощностью от 0.125 до 2 Вт и более.

Погрешность тоже бывает различная, в основном 5%. В моем городе других не продают. Есть высокоточные резисторы с погрешностью 1% и менее, но таких компонентов в нашем городе нет.

Есть и другие характеристики, но они не так важны.

Давайте наглядно посмотрим, как резистор ограничивает ток. Соберем простую схему:

Амперметр показывает потребление тока равное 19 мА. Напряжение подаваемое в цепь 3.3 В. Светодиод светит ярко.

 

Теперь добавим в цепь резистор, сопротивлением 1.3 кОм. Схема будет выглядеть так:

Соберем схему на монтажной плате:

Мы видим, что яркость светодиода уменьшилась. Ток, текущий через светодиод и резистор уменьшился с 19 до 0.5 мА.

Похожие статьи

audio-cxem.ru

Применение резисторов в электрических цепях: работа резистора

Резистор – самый простой пассивный элемент. Его функциональная обязанность заключается в ограничении тока в электроцепи. Некогда их называли сопротивлениями, что является их физическим свойством, однако, чтобы не возникало путаницы, было принято решение переименовать их в резисторы. Если рассматривать такое свойство, как сопротивление, то им обладают все проводники. В этой статье ознакомимся с тем, что такое резистор, и каковы его особенности.

Внешний вид

Отличительные черты резистора

Если отталкиваться от вопроса, как образовалось слово, то от английского «resist». Переводя на русский язык, это звучит, как сопротивляться, противостоять. В электроцепи протекает ток, который испытывает внутренние противодействия. Для определения величины сопротивления тока необходимо обращать внимание на разные наружные факторы и свойства проводника.

Компактный элемент

Токовую характеристику измеряют в Омах. Также следует отталкиваться от напряжения и силы тока. Например, если сопротивление проводного элемента 1 Ом, ток также 1 Ампер, то каждый конец проводника будет иметь напряжение в 1 Вольт. Таким образом, вводя и изменяя величину сопротивления, открывается контроль и регулировка всех остальных параметров. Расчет может быть самостоятельным, что немаловажно.

Обратите внимание! Сейчас наблюдается широкое применение резисторов в различных отраслях науки. Кроме того, деталь широко распространена – используется при производстве плат и электросхем.

Теперь разберемся, для чего необходимо их использование. Основная функция резистора – контролировать и ограничивать перемещения тока. В некоторых случаях при помощи этой детали делят напряжение в сети. Математическое представление позволяет разобраться с принципом работы. Здесь любая деталь, находящаяся в цепи, зависит от того, какое в ней сформировалось напряжение. Для описания зависимости используется закон Ома, а деталь рассматривается как резистор.

В нормальных условиях резистор рассеивает тепло. По мнению специалистов, данный элемент актуален для тех электрических цепей, где требуется рассеивание нужной мощности. Однако необходимо быть внимательным, так как повышенная температура прибора может негативно сказываться на близлежащих элементах. Отталкиваясь от теорий, специалисты рассчитывают напряжение, сопротивление и показатель тока.

Мощность резистора с номинальным характером, как правило, указывается в таблице комплектации. Применяется стандартный показатель мощности – 0.25 и 0.125 Ватт. Если схема создается с применением более мощного резистора, это фиксируется в предварительном списке.

Обратите внимание! В составе многих резисторов есть серебро, но для сборки особых элементов могут использоваться золото, платина, палладий, рутений и тантал.

Как классифицируется элемент

Основные различия

То, что такое резистор, понятно, но необходимо знать, что существует несколько технологий их изготовления, как и материалов, используемых для этого. Это напрямую влияет на свойства и то, насколько отклонено их сопротивление от номинала, обозначаемого на корпусе. Резисторы бывают:

  • Проволочными. Для их производства используют высокоомную проволоку из металла (особый сплав, имеющий высокое удельное сопротивление). Особенность подобных резисторов заключается в высокой емкости и показателе индуктивности. При нагревании элемента увеличивается его сопротивление, так как под влиянием температуры резистор становится более длинным и широким. Несмотря на это, проволочными резисторами пользуются редко, в основном в тех ситуациях, когда нужна высокая мощность;
  • Полупроводниковые изделия. По сравнению с металлами, данный вид материалов имеет более высокое удельное сопротивление. Поэтому, чтобы создать элемент, нужно намного меньше полупроводника. Также не требуется делать намотку, так как она имеет вид обычной пластинки с определенным показателем сопротивления.

Есть и прочие параметры, используемые для классификации элемента:

  • Точность маркировки: 10%, 5%, 1% и так далее;
  • Максимально допустимый показатель рассеиваемой мощности: от 0.1 до 2 Вт и более.

Отдельно стоит отметить переменные и подстроечные элементы. Резисторы такого вида – это изделия в виде пластинки полупроводника или обмотка из высокоомного провода, имеющая отводы. Помимо этого, предусматривается особый контакт, прикасающийся к полупроводнику или проводу. Используя специальную ручку, изменяется место соприкосновения. Переменные резисторы применяются для сборки схем, которые позволяют механическим путем регулировать громкость, уровень сигнала, тока или напряжения. Особенность переменных элементов – в высокой надежности при постоянных регулировках. Что касается подстроечных, они работают, когда необходимы редкие регулировки с установленным сопротивлением.

Такой резистивный элемент также принято маркировать цветом. Следует понимать, что резистор выполняется круглой формы, процедура его производства полностью автоматизирована. Поэтому иногда бывает, что элементы устанавливаются на монтажных платах надписью вниз. Для определения номинала в таких ситуациях используется маркировка при помощи цветных полосок:

  • 20% точности – 3 полоски;
  • 10%, 5% – 4 полоски;
  • ниже 5% – 5 или 6 полосок.

Состав резистивного слоя также позволяет классифицировать виды сопротивлений, которые могут быть:

  • Углеродистыми;
  • Металлопленочными;
  • Металлодиэлектрическими;
  • Металлоокисными;
  • Полупроводниковыми.

Чаще всего из этого списка используются первые два типа.

Где находят применение

Некоторое время назад люди задавались вопросом, что такое резистор. Сейчас данный элемент находит все более частое применение, начиная низковольтными карманными устройствами и заканчивая высоковольтными промышленными агрегатами. Речь идет о различных бытовых приборах, техническом и измерительном оборудовании, автоматических системах, высокочастотных линиях, волноводах, радио,- и видеоаппаратуре, цепях питания, робототехнике и многом другом.

Элемент на плате

На данный момент встречаются схемы, где сопротивление используется в единичном порядке, а иногда устанавливается цельная конструкция, в которую входит немалое количество элементов.

Интересно. Резисторы еще долго будут использоваться при построении электрических схем. Это благодаря тому, что данное микроустройство доступное, простое в эксплуатации, малогабаритное и имеет высокий показатель КПД.

Когда начали появляться микроконтроллеры, у современной техники появилось больше функций, и ее начали производить более компактных размеров. Благодаря таким элементам, упрощаются электрические схемы, а устройства потребляют меньше тока, в результате миниатюрной стала сама элементная база.

Резистор – что это такое? С первого взгляда, кажется, что этой простой элемент, просто кусок материала, который сопротивляется электрическому току. Но не все так просто, так как в формировании данного элемента играют роль множество параметров, которые необходимо учитывать при составлении электрической схемы.

Видео

Оцените статью:

elquanta.ru

Из чего состоит резистор и принцип его работы в электрической цепи

Чайники, лампы накаливания, электрооборудование машины и многие другие электроприборы содержат резисторы. Они настолько видоизменились, что без знания отличительных признаков их порой трудно определить. В справочниках дается определение: резистор — это элемент с заданным постоянным или переменным сопротивлением. На практике — это множество элементов, которые используются в самых неожиданных конструкциях. Чтобы понять из чего состоит резистор, необходимо узнать, из какого материала он изготавливается.

Устройство резистора изнутри

Самый простой резистор — это реостат. На каркас наматывается проволока с большим сопротивлением и подключается к источнику питания. Исходя из этого можно сделать вывод: первое требование для этого элемента — высокоомный проводник. Для производства этого элемента используют:

  • проволоку;
  • металлическую пленку, металлическую фольгу;
  • композитный материал;
  • полупроводник.

Проволочные сопротивления просты в изготовлении, способны рассеивать максимальную мощность, но имеют существенный недостаток: у них самая большая индуктивность. Диаметр проволоки колеблется от нескольких микрон до нескольких миллиметров.

Металлическую фольгу из высокоомного материала наматывают на каркас. При необходимости увеличить сопротивление ее разрезают на дорожку, тем самым увеличивая длину, и соответственно, сопротивление. Металлопленочный резистор получают напылением металла на основу.

В качестве композитного материала используют графит с органическими или неорганическими добавками. Резистор может полностью состоять из такого материала или из дорожки, на которую нанесен этот материал.

С началом производства микросхем появились новые резисторы, которые называются интегральные. Производство выполняется на молекулярном уровне. На высоколегированный полупроводник напыляют тонкий слой высокоомного металла, что и выполняет функцию резистора.

Разделение по видам

Поскольку сопротивление — одна из самых используемых форм деталей, то и применение его очень разнообразно. В зависимости от назначения резистора его можно разделить на три категории:

  • постоянные;
  • подстроечные;
  • регулирующие.

Первая категория — постоянные резисторы — имеют заданное сопротивление и больше остальных используются в электрических схемах. Тем не менее сопротивление все равно зависит от внешних факторов. По этому признаку их квалифицируют на следующие виды:

  • линейные;
  • нелинейные.

Линейные названы так, потому что их сопротивление меняется плавно, то есть линейно, в зависимости от внешнего влияния. У нелинейных такой плавности нет. Например, если измерить сопротивление лампы накаливания в холодном состоянии, то оно будет одно, а в горячем — совсем другое, причем в 10—15 раз больше.

Если существует такое многообразие, то возникает закономерный вопрос — как понять где резистор? На самом деле резистор может выглядеть как круг, трубка или квадрат. Они выпускаются различных форм, размеров, окрасок. Порой чтобы определить, что это резистор, необходимо посмотреть электрическую принципиальную схему.

Вторая категория — подстроечные. Имеют регулирующий механизм, который плавно меняет сопротивление. Используется для точной настройки аппаратуры.

Следующая категория — регулировочные. Название здесь говорит само за себя. Они предназначены для регулировок, а значит, должны менять свое сопротивление. В отличие от постоянных, у которых два вывода, у этих имеется три вывода. Два из них подключаются к самому резистору, а третий — к подвижному контакту, который соединен с вращающимся элементом. Если подключить питание к двум выводам, то на подвижном контакте будет другое напряжение, которое будет отличаться от напряжения на выводах этого элемента.

Если подключить регулировочный (переменный) резистор последовательно с батарейкой, соединить лампочку одним выводом с минусовой клеммой батарейки, а другой с выводом подвижного контакта, то при вращении рукоятки переменного резистора будет заметно, как меняется яркость лампочки. Почему такое происходит можно понять, если разобраться что делает резистор.

Использование в электрической схеме

Яркость лампочки зависит от тока, протекающего по нити накаливания — чем больше ток, тем ярче горит лампочка. По закону Ома ток можно высчитать разделив напряжение на сопротивление, значит, чем меньше сопротивление, тем больше ток. На практике работать это будет следующим образом.

Допустим, лампочка рассчитана на напряжение в 9 В, имеет сопротивление 70 Ом (в рабочем, горячем состоянии), батарея на 9 в и переменное сопротивление 100 Ом. Для нормальной работы ток, проходящий через лампочку, должен быть примерно 0,13 А (напряжение батареи 9 В делится на сопротивление лампочки 70 Ом). В эту цепь последовательно подсоединяется переменный резистор в 100 Ом, ток цепи составит примерно 0,05 А (напряжение батареи 9 В делится на общее сопротивление 170 Ом), — это примерно треть от требуемого тока и лампочка, следовательно, не будет гореть.

В этом случае резистор помогает плавно гасить свет. Подобный принцип используется, например, в кинотеатрах. Если батарея на 9 В, а лампочка рассчитана на 2,5 В, то для ее нормальной работы необходим делитель или гаситель напряжения. В чем суть? В цепи необходимо создать нормальный для лампочки ток.

Если используется гаситель, то к источнику тока последовательно подключаются 2 или более резистора и лампочка. Общее сопротивление выбирается с таким расчетом, чтобы ток, протекающий по цепи, соответствовал номинальному току лампочки. Допустим, имеются: источник постоянного тока 9 В, лампочка напряжением 2,5 В и номинальным током 0,12 А.

Рассчитывается сопротивление лампочки, для этого напряжение делится на ток и получается примерно 20,8 Ом. Чтобы по цепи шел ток в 0,12 А, рассчитывается общее сопротивление: 9 В делённое на 0,12 А дает 75 Ом. Вычитается сопротивление лампочки и получится 54,2 Ом — такое сопротивление необходимо добавить к лампочке.

Если используется делитель, то тогда берутся два и более резистора и подключаются последовательно источнику питания. Параллельно какой-то части делителя подключается нагрузка, получается схема со смешанным подключением: источник — часть делителя — параллельно подключенные часть делителя и нагрузка — источник тока. Это только один вариант, на самом деле схем подключения множество, но всегда идет смешанное подключение.

Далее делается расчет нужного сопротивления. При параллельном подключении ток идет по двум цепям, значит, на нагрузке его будет меньше (подключенный последовательно резистор ограничивает ток). Для нормальной работы нагрузки высчитываются все токи, проходящие по делителю, а затем подбирается ограничивающий.

При последовательном подключении, чтобы отключить лампочку — нужно отключить питание, а при использовании делителя достаточно отключить цепь лампочки. Если необходимо к источнику подключить несколько нагрузок с разным напряжением, то без делителя (его еще называют делитель напряжения) не обойтись.

Области применения

Кроме своего обычного назначения — оказывать влияние на ток и напряжение, резисторы при использовании различных материалов приобретают совершенно другие свойства и название. Зачем они нужны, видно из следующего списка:

  • зависит от напряжения, — это варистор;
  • от температуры — терморезистор, термистор;
  • от освещенности — фоторезистор;
  • от деформации — тензорезистор;
  • от действия магнитного поля — магниторезистор;
  • разрабатывается новый, называется мемристор, сопротивление зависит от количества, проходящего через него заряда.

Варисторы чаще всего используют в качестве защиты от перенапряжения. В виде датчиков температуры используют терморезисторы. Если необходимо автоматизировать включение уличного освещения, то без фоторезистора это будет сделать сложно. Остальные указанные приборы используются в узкой специализации.

Обозначение на схеме

На электрической принципиальной схеме все резисторы обозначаются прямоугольником. Рядом ставится буква R и число, указывающее сопротивление. Если это постоянный, то внутри прямоугольника могут стоять римские цифры, соответствующие мощности этого элемента в ваттах. При мощности менее 1 Вт применяются следующие условные обозначения:

  • одна продольная линия внутри прямоугольника указывает на мощность в 0,5 Вт;
  • одна косая линия говорит о мощности в 0,25 Вт;
  • две косых — 0,125 Вт;
  • три косых — 0,05 Вт.

Для того чтобы можно было отличать один прибор от другого, например, варистор от термистора также используются условные обозначения:

  • постоянный резистор обозначается только прямоугольником;
  • регулировочный — стрелка перечеркивает прямоугольник, центральный вывод подключается к одному из выводов резистора;
  • переменный — к прямоугольнику сверху под прямым углом подходит стрелка, к ней подключаются другие приборы;
  • подстроечный — на прямоугольник сверху ложится буква «т», к этому выводу подключаются другие приборы;
  • подстроечный, как реостат, центральный вывод соединен с одним из выводов прибора — прямоугольник перечеркивает косая буква «т»;
  • термистор (терморезистор) — на прямоугольник под наклоном ложится хоккейная клюшка;
  • варистор — обозначается как термистор, но над рабочей поверхностью клюшки ставится буква U;
  • фоторезистор — сверху к прямоугольнику подходят две наклонные стрелки.

Виды маркировок

На больших постоянных резисторах в сокращенной форме пишутся мощность, сопротивление и допуск (на сколько процентов может отклоняться указанная величина). Детали малого размера имеют цветовую, буквенную или цифровую маркировку, причем буквы и цифры могут дополнять друг друга. Каждый производитель сам выбирает способ маркировки.

220v.guru

КАК РАБОТАЕТ РЕЗИСТОР, Резисторы, ток и напряжение

Если полосок 4, последняя указывает точность резистора. Металлоплёночные и композитные резисторы. V1-V2) является разностью напряжений до и после резистора. На самом деле резисторов может быть и больше. Цитата: «А тебе, думаю, проще будет считать ток через реактивное сопротивление конденсатора Хс которое зависит от частоты и емкости. Резисторы нужны, чтобы не оставить вход в «подвешенном» состоянии.

Для расчёта таких цепей из резисторов, которые нельзя разбить на блоки последовательно или параллельно соединённые между собой, применяют правила Кирхгофа. Резисторы являются элементами электронной аппаратуры и могут применяться как дискретные компоненты или как составные части интегральных микросхем.

Такие резисторы имеют большую нелинейность вольт-амперной характеристики. В основном используются в составе интегральных монокристаллических микросхем, где применить другие типы резисторов принципиально невозможно.

Значение возможного разброса определяется точностью резистора. Резисторы, в особенности малой мощности — мелкие детали, резистор мощностью 0,125Вт имеет длину несколько миллиметров и диаметр порядка миллиметра. Следует отметить, что иногда встречаются резисторы с 5 полосами, но стандартной (5 или 10 %) точностью. Запомнить цветную кодировку резисторов нетрудно: после чёрной 0 и коричневой 1 идёт последовательность цветов радуги.

Для облегчения различные разработчики программного обеспечения создают программы, которые определяют сопротивление резистора. Особый случай использования цветовой маркировки резисторов — перемычки нулевого сопротивления.

Такая зависимость сопротивления от температуры позволяет использовать резисторы в качестве термометров. Шумы резисторов возникают за счет прохождения в них тока. В переменных резисторах имеются так называемые «механические» шумы, возникающие при работе подвижных контактов. Применяются резисторы чаще, чем любые другие элементы электроники.

Мощность резисторов

Кроме того, в какую сторону должен быть наклон линий, обозначающих мощность 0,125 и 0,25 ваттных резисторов, в правую или левую, «знает» только ГОСТ (государственный стандарт — бумага). Рассеиваемая мощность (или Мощность рассеивания) – это, по своей сути энергия, образованная двумя составляющими – током и напряжением, которая поглощается этим резистором. Поглощение энергии, а не её сохранение с целью дальнейшей отдачи и характеризует резистор как пассивный элемент.

Исключение этому могут быть проволочные резисторы, обладающие индуктивностью. Мощность устанавливаемого на схему резистора, всегда должна быть в полтора – два раза больше расчетной.

Самая распространенная серия Е24 содержит 24 базовых значений сопротивлений резисторов с точностью ±5%. На самом деле, распространение получили не 24, а 21 значение. Ярким представителем переменных резисторов является регулятор громкости на твоих компьютерных звуковых колонках.

Соединение резисторов

Устанавливаются подстроечные резисторы, как правило, на печатных платах радиосхем. Терморезистор — резистор, предназначенный для измерения температуры внешней среды, а так же для использования в цепях термостабилизации транзисторных каскадов.

Общее сопротивление резисторов при параллельном соединении равно сумме величин, обратно пропорциональных сопротивлению. При превышении допустимой нагрузки, резистор будет греться и его срок службы может сильно сократиться. При сильном превышении — резистор может начать плавиться и вызвать воспламенение. В этой статье мы рассмотрим резистор и его взаимодействие с напряжением и током, проходящим через него. Вы узнаете, как рассчитать резистор с помощью специальных формул.

Токоограничивающий резистор

В этой простой аналогии воды с электрическим током, клапан аналогичен токоограничительному резистору. Важно также отметить, что резисторы используются не только для ограничения тока, они также могут быть использованы в качестве делителя напряжения для получения низкого напряжения из большего.

Самая основная роль токоограничивающих резисторов — это контроль тока, который будет протекать через устройство или проводник. Теперь обратите внимание на рисунок выше, где добавлен токоограничительный резистор. При покупке резистора вам могут задать вопрос: «Резисторы какой мощности вы хотите?» или могут просто дать 0.25Вт резисторы, поскольку они являются наиболее популярными.

Делитель напряжения

Но если напряжение более 10В или значение сопротивления менее 220 Ом, вы должны рассчитать мощность резистора, или он может сгореть и испортить прибор. На фото предоставлены резисторы различной мощности, в основном они отличаются размером.

Блог о электронике

На рисунке выше показано схематическое изображение переменного резистора. Кроме того, переменный резистор может быть использован как тока ограничивающий путем соединения выводов Vout и Vb, как на рисунке выше (справа).

Большинство из них включаются как часть делителя напряжения, которое изменяется в зависимости от сопротивления резисторов, изменяющегося под воздействием внешних факторов. Как вы можете видеть на рисунке 11A, фоторезисторы различаются по размеру, но все они являются резисторами, сопротивление которых уменьшается под воздействием света и увеличивается в темноте. К пассивным относятся такие детали, как резисторы, конденсаторы, катушки индуктивности, диоды и т.п.

Раньше резисторы назывались сопротивлениями, это как раз их физическое свойство. Чтобы не путать деталь с ее свойством сопротивления переименовали в резисторы. Дело в том, что при прохождении тока через проводник на нем выделяется тепловая мощность P = I2 * R. Здесь P, I, R соответственно мощность, ток и сопротивление.

Применеие на практике

Черточки внутри УГО обозначают мощность рассеяния резистора. Сразу следует сказать, что если мощность будет меньше требуемой, то резистор будет греться, и, в конце концов, сгорит. На рисунке 4 показаны резисторы для поверхностного монтажа SMD, которые также называют «чип — резистор».

На этом же рисунке указано, что максимальным напряжением для чип резисторов является 200В. Такой же максимум имеют и резисторы для обычного монтажа. Поэтому, когда предвидится напряжение, например 500В лучше поставить два резистора, соединенных последовательно.

Но это все резисторы общего применения. Существуют резисторы с допуском в один процент и меньше, поэтому среди них возможно найти любой номинал. Несмотря на то, что номиналов резисторов достаточно много, иногда приходится их соединять, чтобы получить требуемую величину. Если это будут 1КОм и 10Ом, то общее сопротивление получится 1,01КОм.

Если оба резистора имеют одинаковый номинал, то общее их сопротивление будет равно половине этого номинала. Можно так соединить и десяток резисторов, тогда общее сопротивление будет как раз десятая часть от номинала. Следует отметить, что ток при параллельном соединении согласно закону Кирхгофа разделится на десять резисторов. Поэтому мощность каждого из них потребуется в десять раз ниже, чем для одного резистора. Правильно – поставить последовательно ему резистор, чтобы он ограничил ток, не пустив излишнюю мощу на хилый диодик.

В основном используется две схемы соединения резисторов: последовательное и параллельное. Сопротивление металлических и проволочных резисторов немного зависит от температуры. Резисторы помимо сопротивления обладают ещё характеристикой мощности. Резисторы бывают постоянные, переменные и подстроечные. При параллельном соединении все как раз наоборот: общее сопротивление двух (и более резисторов) будет меньше меньшего.

Предлагаю также ознакомиться:

kakbypridaser.ru

Использование резисторов в электронике. » Хабстаб

Резистор можно охарактеризовать тремя параметрами:
  • сопротивление
  • допуск
  • мощность

Для того чтобы понять, что такое сопротивление, давайте представим себе трубу, по которой течёт вода. Так как движению воды в трубе ничего не мешает, напор на выходе трубы будет равен напору на входе трубы. Теперь давайте мысленно разрежем трубу на две части и поместим между ними сетку, такую же, как у ситечка, которым мы сеем муку. Желательно ещё представить, что эта сетка обладает некоторой толщиной, но это необязательно. Теперь напор на выходе трубы будет отличаться от напора на входе трубы, а насколько он будет отличаться будет зависеть от размера ячейки сетки.

Если провести аналогию с электрической цепью, то ток — это вода, а резистор — сетка, а размер ячейки — сопротивление. Функция сетки — ограничение потока воды, а основное назначение резистора в электрических цепях — ограничение тока.

Допуск показывает насколько реальное сопротивление резистора, может отличается от заявленного. Резистор 100 ом с допуском в 5%, в действительности может обладать сопротивлением от 95 до 105 ом.

Известно что при протекании тока через проводник, последний нагревается, то есть электрическая энергия превращается в тепловую. Мощность резистора определяет какое количество тепла он способен рассеивать. С другой стороны, если записать формулу мощности следующим образом

P = U²/R

P = I²*R

Становится понятно, что мощность определяет максимальный ток, протекающий через резистор или максимальное напряжение, которое может быть к нему приложено. Как правило, более мощные резисторы обладают большими размерами.

Применение резистора.

Токоограничивающий резистор.Как Вы думаете можно ли подключить светодиод, падение напряжения на котором 2V, к кроне на клеммах которой напряжение 9V?Конечно можно, надо только ограничить ток текущий через светодиод и в этом нам поможет резистор.

Такой резистор называют токоограничивающим, потому что в данной схеме он предназначен для ограничения тока через светодиод. Его сопротивление легко рассчитать воспользовавшись законом Ома.

I = (Uкроны — Uдиода)/R

А ток через светодиод не должен превышать 20mA, тогда у нас получится следующее

R = (Uкроны — Uдиода)/I

R = (9 –2)/0.02 = 350 ом

Сопротивление можно взять большего номинала, например 470 ом, при этом диод будет не так ярко светиться.

Подтягивающий резистор.На картинке ниже изображены 4 микросхемы, к двум верхним кнопка подключена без подтягивающего резистора, а к двум нижним с подтягивающим резистором.

Давайте рассмотрим две верхние микросхемы, когда кнопка нажата, на первом выводе левой микросхемы будет 0V или логический ноль, а на первом выводе правой микросхемы будет напряжение питания или логическая единица. Определить в каком состоянии находится вывод микросхемы когда кнопка не нажата нельзя, вывод просто болтается в воздухе и ловит наводки, которые являются источником ложных срабатываний. Состояние первого вывода нижних микросхем всегда определено, у левой микросхемы, на первом выводе когда кнопка не нажата — логическая единица, когда кнопка нажата — логический ноль, у правой наоборот. Если заменить подтягивающий резистор куском провода, то при нажатии кнопки плюс подключался бы к минусу и ток стремился бы к бесконечности.Подведём итоги, подтягивающий резистор позволяет избежать состояния неопределённости и ограничивает ток.

Делитель напряжения.С помощью двух последовательно соединённых резисторов можно разделить напряжение кроны на несколько частей, причём чем больше сопротивление резистора, тем больше на нём падение напряжения.

Рассчитать падение напряжения на каждом из резисторов очень просто, для этого надо по закону Ома вычислить ток, протекающий через них и умножить его на сопротивление каждого из резисторов.

Задание коэффициента усиления операционного усилителя(ОУ)В данной схеме с помощью резисторов задаётся коэффициент усиления ОУ, но если присмотреться становится понятно, что резисторы на схеме образуют обычный делитель.

Времязадающие цепи.Резистор совместно с конденсатором образует RC цепочку, с помощью которой можно измерять временный промежутки. Подробнее об этом можно прочитать тут.

Фильтры.Та же RC цепочка может быть использована как фильтр, высоких или низких частот.

Такие фильтры называют пассивными, в зависимости от номинала резистора и конденсатора они могут без изменения пропускать одни частоты и ослаблять другие.

Кроме обычного резистора о котором писалось выше, существуют резисторы способные изменять своё сопротивление в зависимости от внешних условий. Например, термистор, который изменяет своё сопротивление в зависимости от температуры, или фоторезистор, сопротивление которого зависит от освещения.

hubstub.ru

Работа резистора в цепи электрического тока

Подробности Категория: Начинающим

Резистор – это структурный (пассивный) элемент электрических цепей, функциональным значением служит создание сопротивления электрическому току для регулировки напряжения и тока. В устройствах радиоэлектроники наличие резисторов составляет более 50% всех элементов. Иногда их применяют для измерений температуры или сопротивления, а также в качестве нагревательного элемента.

Резисторы это элементы электронной аппаратуры и вполне могут применяться как составные части либо дискретные компоненты интегральных микросхем. Все выпускаемые резисторы отличаются между собой по величине сопротивлений, допустимым отклонениям от номинального значения сопротивления. Параметры указываются непосредственно на корпусе, иногда в виде нескольких цветных полосок. Размер элемента часто зависит от его мощности.

Работа резистора основана на создании дополнительного сопротивления потоку электронов в кристаллическое решетке металла с высоким сопротивлением.

Сопротивление резисторов

Определяются размером и физическими свойствами их токопроводящей части. В зависимости от материалов, из которых состоит токопроводящая часть, резисторы могут быть разделены на полупроводниковые, металлические, жидкостные, углеродистые и керамические типы.

По конструктивному исполнению токопроводящая часть резисторов может быть из пластины, ленты, проволоки или в виде пленки. Для защиты от пыли, механических воздействий или пыли она покрывается стеклоэмалью, которая может служить и изоляцией между отдельных витков токопроводящей части. Существуют резисторы, как с переменным сопротивлением, так и с постоянным. Величина переменного сопротивления может изменяться путем перемещений реостата, либо из-за нелинейной зависимости между напряжением и током.

Сопротивление проволочных и металлических резисторов иногда может зависеть и от температуры. При этом зависимость от температуры является практически линейная. Даже идеальный резистор при высоких температурах способен становиться источником шума. Каждый резистор имеет свою мощность, по сути это та работа резистора которую он совершает за единицу времени.

  • < Назад
  • Вперёд >
Добавить комментарий

www.radio-magic.ru

Для чего нужен резистор?

В любой электрической схеме используется резистор, который, несмотря на свой небольшой размер, играет важную роль в работе электрического прибора. Именно в этом и нужно разобраться, поскольку многие не знают, зачем нужен резистор в электрической цепи. Этот пассивный элемент обладает переменным или определенным значением сопротивления, которое и используется в электрических и электронных устройствах. Есть разные варианты резисторов, например, по назначению выделяются элементы общего и специального назначения. Ко второй группе относятся высокоомные, высоковольтные, высокочастотные и прецизионные резисторы.

Для чего нужен резистор?

Резистор предназначен для линейного преобразования силы тока в напряжение и наоборот. Еще он может поглощать электрическую энергию, удерживая ток, а также он способен делить и уменьшать напряжение. Выясняя, для чего нужен резистор в электрической цепи, можно подвести некую черту, то есть используют этот элемент для того, чтобы получить желаемые параметры тока.

Теперь поговорим о том, где именно используется резистор. На самом деле сферы его применения постоянно расширяются, например, он есть в низковольтных приборах, а также в мощных промышленных установках.

Многих также интересует, для чего нужен резистор в свече зажигания. Чаще всего этот элемент используется для того, чтобы уменьшить радиопомехи. Есть также свечи, в которых резистор направлен на ограничение тока, учитывайте закон Ома, благодаря чему снижается риск сгорания высоковольтной обмотки при замыкании электрода свечи на массу.

В том, зачем нужен резистор, разобрались, теперь рассмотрим еще некоторую полезную информацию, например, способы подключения резисторов в электрической цепи. Эти элементы могут подключаться последовательно от других деталей, включенных в сеть. Следующий вариант соединения – параллельное, и в таком случае сопротивление является обратной величиной номинальному значению. Есть смешанное соединение.

Часто электрические цепи выходят из строя именно из-за неисправности резисторов. Именно поэтому важно знать, как именно можно проверить работоспособность этого элемента. Для проведения процедуры необходимо иметь мультиметр, который устанавливают на измерение сопротивления. Данные, полученные в результате измерения, сравниваются с показателями, указанными на корпусе резистора. Если они не совпадают, значит, элементы необходимо заменять.

kak-bog.ru


Видеоматериалы

24.10.2018

Опыт пилотных регионов, где соцнормы на электроэнергию уже введены, показывает: граждане платить стали меньше

Подробнее...
23.10.2018

Соответствует ли вода и воздух установленным нормативам?

Подробнее...
22.10.2018

С начала года из ветхого и аварийного жилья в республике были переселены десятки семей

Подробнее...
22.10.2018

Столичный Водоканал готовится к зиме

Подробнее...
17.10.2018

Более 10-ти миллионов рублей направлено на капитальный ремонт многоквартирных домов в Лескенском районе

Подробнее...

Актуальные темы

13.05.2018

Формирование энергосберегающего поведения граждан

 

Подробнее...
29.03.2018

ОТЧЕТ о деятельности министерства энергетики, ЖКХ и тарифной политики Кабардино-Балкарской Республики в сфере государственного регулирования и контроля цен и тарифов в 2012 году и об основных задачах на 2013 год

Подробнее...
13.03.2018

Предложения организаций, осуществляющих регулируемую деятельность о размере подлежащих государственному регулированию цен (тарифов) на 2013 год

Подробнее...
11.03.2018

НАУЧИМСЯ ЭКОНОМИТЬ В БЫТУ

 
Подробнее...

inetpriem


<< < Ноябрь 2013 > >>
Пн Вт Ср Чт Пт Сб Вс
        1 2 3
4 5 6 7 8 9 10
11 12 13 14 15 16 17
18 19 20 21 22 23 24
25 26 27 28 29 30  

calc

banner-calc

.