Заряд электрический — это что такое? Электрический заряд измеряется


Единицы измерения электрического заряда

Одна из базовых физических величин, которая имеет непосредственное отношение к электричеству и в частности к электротехнике — это электрический заряд. Мы привыкли к тому, что в электротехнике заряд измеряется в кулонах, но мало кто знает, что есть и другие единицы измерения электрического заряда. При расчётах электрических схем, при использовании электроизмерительных приборов применяют международную систему единиц СИ. Но знаете ли вы, что есть и другие системы измерения?

Кулон

Эта единица измерения заряда известна многим ещё со школы. Относится она, как вы уже поняли, к системе единиц СИ. Это производная величина, которая не является в системе СИ базовой. Она выводится из других величин и определяется другими величинами.

Единица измерения носит название учёного — Шарля де Огюстена Кулона, открывшего закон взаимодействия зарядов, и соответственно, электрический заряд. Обозначают сокращённо величину заряда буквами Кл, а когда речь идёт о количестве заряда — пишут его с прописными буквами — кулон.

Определение электрического заряда в системе СИ следующее:

Электрический заряд в один кулон — это такой заряд, который проходит через сечение проводника при силе тока в один ампер за время равное одной секунде.

Между зарядом и единицей в ампер-час существует связь. Один кулон электричества равен 1/3600 ампер-часа.

Франклин

Ещё одна единица и измерения заряда, которая названа в честь американского изобретателя и физика — Бенджамина Франклина. Его портрет можно увидеть на стодолларовой купюре США. Эта единица относится к системе величин СГСЭ, в которой базовыми являются такие единицы как сантиметр, грамм и секунда. По другому эту систему единиц называют абсолютной системой физических единиц и она широко использовалась до принятия системы СИ (принята в 1960 году).

Сокращённо единица измерения записывается как Фр (русское) или Fr (английское).

Определение электрического заряда в системе СГСЭ следующее:

Количество электрического заряда в один Франклин — это такое количество заряда, что два разноимённых заряда по одному франклину, находящихся в вакууме на расстоянии одного сантиметра, будут притягиваться друг к другу с силой в один дин.

Как видно из определения, оно отличается от того, что приведено для системы СИ. Разница прежде всего в том, что в системе СИ заряд выражается через силу тока и исходя из этого определяется, а в системе СГСЭ заряд выражен через Закон Кулона.

Система СГСЭ удобна для вычислений и исследований в физике, а система СИ более удобна для практических нужд электротехники.

Закон Кулона, имеющий непосредственное отношение к зарядам, в системе СИ и СГС (СГСЭ), записываются по разному. Единицу заряда в 1 Кл можно перевести в 1 Фр и наоборот.

Планковский заряд

Существует также планковская система естественных единиц измерения и в ней также имеется электрический заряд. Эта система была впервые предложена немецким физиком Максом Планком 1899 году на основе скорости света и гравитационной постоянной и ещё двух введённых им констант.

Планковский заряд обозначается qp. Основная единица измерения, которая определяется в терминах фундаментальных констант. Определяется следующим образом:

Дата: 24.05.2015

© Valentin Grigoryev (Валентин Григорьев)

www.electricity-automation.com

Измерение - электрический заряд - Большая Энциклопедия Нефти и Газа, статья, страница 1

Измерение - электрический заряд

Cтраница 1

Измерение электрического заряда при растяжении образца проводится с помощью цилиндра - датчика. Передвигая цилиндр вдоль растянутой части образца определяют величину заряда на отдельных участках образца.  [2]

Для измерения электрического заряда на малых участках поверхности резца этот резец делают составным из электропроводящих частей с изоляцией между ними и измеряют заряд каждой части.  [3]

Для обнаружения и измерения электрических зарядов применяется электрометр, состоящий из металлического стержня и стрелки, которая может вращаться вокруг горизонтальной оси. Стержень со стрелкой закреплен в плексигласовой втулке и помещен в металлический корпус цилиндрической формы, закрытый стеклянными крышками.  [4]

Анализ дисперсного состава аэрозолей методом измерения электрических зарядов частиц основан на возбуждении заряда вследствие контакта с твердой или жидкой поверхностью ( включая контакт частиц между собой) или адсорбции ионов из газовой среды.  [5]

По существу он аналогичен приборам для измерения электрического заряда частиц ( см. главу 3) и дает довольно полное разделение частиц. Остроумный метод, предложенный Фостером 147 - 148, дает возможность определять средний размер частиц униполярно заряженных аэрозолей по весу осадков на отдельных секциях цилиндрического осадительного электрода.  [6]

По существу он аналогичен приборам для измерения электрического заряда частиц ( см. главу 3) и дает довольно полное разделение частиц. Остроумный метод, предложенный Фостером 147, и8, дает возможность определять средний размер частиц униполярно заряженных аэрозолей по весу осадков иа отдельных секциях цилиндрического осадительиого электрода.  [7]

Переносный гальванометр баллистический магнитоэлектрической системы предназначен для измерения электрического заряда и магнитного потока.  [8]

Электрометр - усовершенствованный и проградуированный электроскоп - служит для измерения электрических зарядов. Стержень А изолирован от металлического корпуса электрометра янтарной пробкой Р, и его наружный конец заканчивается шариком В. Внутри корпуса электрометра закреплена шкала. Передняя стенка электрометра стеклянная.  [9]

На практике встречается необходимость в более крупных единицах для измерения электрического заряда. В качестве такой более крупной единицы принят кулон, который в первом приближении равен 3 - Ю9 эл.  [10]

На рис. 3 - 27 в изображена схема компенсатора для измерения электрических зарядов.  [11]

Электрометр представляет собой усовершенствованный и проградуированный электроскоп и служит для измерения электрических зарядов. Стержень А изолирован от металлического корпуса электрометра янтарной пробкой Р, и его наружный конец заканчивается шариком В. Внутри корпуса электрометра закреплена шкала. Передняя стенка электрометра стеклянная.  [12]

Но положив kl, мы тем самым уже определили и единицу измерения электрического заряда, ибо единицы измерения силы и расстояния заданы.  [13]

Но положив k 1, мы тем самым уже определили и единицу измерения электрического заряда, ибо единицы измерения силы и расстояния заданы.  [14]

Аналогичные опыты, выполненные с различными телами и с применением самых точных приборов для измерения электрических зарядов, показали, что в результате электризации при соприкосновении на телах всегда возникают электрические заряды, равные по модулю и противоположные по знаку.  [15]

Страницы:      1    2

www.ngpedia.ru

электрический заряд - это... Что такое электрический заряд?

величина, определяющая интенсивность электромагнитного взаимодействия заряженных частиц; источник электромагнитного поля. Электрический заряд любых заряженных тел — целое кратное элементарного электрический заряда е. Электрический заряд составляющих адронов — кварков — дробные (кратны 1/3 е). Полный электрический заряд замкнутой системы сохраняется при всех взаимодействиях.

ЭЛЕКТРИ́ЧЕСКИЙ ЗАРЯ́Д, источник электромагнитного поля (см. ЭЛЕКТРОМАГНИТНОЕ ПОЛЕ), связанный с материальным носителем; внутренняя характеристика элементарной частицы, определяющая ее электромагнитные взаимодействия. Электрический заряд является физической величиной, характеризующей свойство тел или частиц вступать в электромагнитные взаимодействия, и определяющей значения сил и энергий при таких взаимодействиях. Электрический заряд — одно из основных понятий учения об электричестве. Вся совокупность электрических явлений есть проявление существования, движения и взаимодействия электрических зарядов. Электрический заряд является неотъемлемым свойством некоторых элементарных частиц (см. ЭЛЕМЕНТАРНЫЕ ЧАСТИЦЫ). Фундаментальными свойствами электрического заряда являются: существование двух видов заряда, его инвариантность (см. ИНВАРИАНТНОСТЬ), дискретность (см. ДИСКРЕТНОСТЬ), аддитивность (см. АДДИТИВНОСТЬ) и подчинение закону сохранение заряда. Имеется два вида электрических зарядов, условно называемых положительными и отрицательными. Заряды одного знака отталкиваются, разных знаков — притягиваются друг к другу. Заряд наэлектризованной стеклянной палочки условно стали считать положительным, а смоляной (в частности, янтарной) — отрицательным. В соответствии с этим условием электрический заряд электрона (см. ЭЛЕКТРОН (частица)) отрицателен (греч. «электрон» — янтарь). Заряд макроскопического тела определяется суммарным зарядом элементарных частиц, из которых состоит это тело. Чтобы зарядить макроскопическое тело нужно изменить число содержащихся в нем заряженных элементарных частиц, т. е. перенести на него или удалить с него некоторое количество зарядов одного знака. В реальных условиях такой процесс обычно связан с перемещением электронов. Тело считают заряженным только в том случае, если на нем находится избыток зарядов одного знака, составляющий заряд тела, обозначаемый обычно буквой q или Q .Если заряды размещены на точечных телах, то сила взаимодействия между ними может быть определена по закону Кулона (см. КУЛОНА ЗАКОН). Единицей заряда в СИ является кулон (см. КУЛОН (единица количества электричества))— Кл. Электрический заряд Q любого тела дискретен, существует минимальный, элементарный электрический заряд (см. ЭЛЕМЕНТАРНЫЙ ЭЛЕКТРИЧЕСКИЙ ЗАРЯД) е, которому кратны все электрические заряды тел: Q = n.е. Простейший прибор для измерения заряда — электроскоп (см. ЭЛЕКТРОСКОП). Минимальный заряд, существующий в природе, — это заряд элементарных частиц. В единицах СИ модуль этого заряда равен: е = 1,6.10-19Кл. Любые электрические заряды в целое число раз больше элементарного. Элементарным электрическим зарядом обладают все заряженные элементарные частицы. В конце 19 в. был открыт электрон — носитель отрицательного электрического заряда, а в начале 20 в, — протон, обладающий таким же по величине положительным зарядом; таким образом, было доказано, что электрические заряды существуют не сами по себе, а связаны с частицами, являются внутренним свойством частиц (позднее были открыты и другие элементарные частицы, несущие положительный или отрицательный заряд той же величины). Заряд всех элементарных частиц (если он не равен нулю) одинаков по абсолютной величине. Элементарные гипотетические частицы — кварки, заряд которых равен 2/3е или +1/3е, не наблюдались, однако в теории элементарных частиц предполагается их существование. Инвариантность электрического заряда установлена экспериментально: величина заряда не зависит от скорости, с которой он движется (т. е. величина заряда инвариантна относительно инерциальных систем отсчета, и не зависит от того, движется он или покоится). Электрический заряд аддитивен, т. е. заряд любой системы тел (частиц) равен сумме зарядов тел (частиц), входящих в систему. Электрический заряд подчиняется закону сохранения, который был установлен после проведения множества опытов. В электрически замкнутой системе полный суммарный заряд сохраняется и остается постоянным при любых физических процессах, происходящих в системе. Этот закон справедлив для изолированных электрических замкнутых систем, в которые заряды не вносятся и из которых они не выносятся. Этот закон действует и для элементарных частиц, которые рождаются и аннигилируют парами, суммарных заряд которых равен нулю. Связь электрического заряда с электромагнитным полем определяется Максвелла уравнениями (см. МАКСВЕЛЛА УРАВНЕНИЯ).

dic.academic.ru

Заряд электрический — это что такое?

Знакомьтесь – электрический заряд

Каждый человек знаком с ситуацией, когда, касаясь предмета рукой, он ощущает лёгкое покалывание, иногда ему даже слышится слабый треск. Часто говорят, что предмет «бьёт током», он наэлектризован. Всему виной электрический заряд.

Заряд — что же это такое

Электрический заряд представляет собой физическую величину. Электрически заряженное тело способно генерировать электромагнитное поле для взаимодействия с другими телами (предметами).

Этот термин был применен автором закона Кулона — французом Шарлем Кулоном в 1785. Заряд измеряется в кулонах (Кл) и обозначается как q (или Q).

Q= 1 Кл подразумевает электрический заряд, путешествующий через поперечное сечение проводника за одну секунду при силе тока в 1 Ампер.

Из истории

  • Древние греки обратили внимание на странное поведение янтаря: при трении о шерсть он вдруг начинал притягивать нетяжёлые предметы.
  • Англичанин Уильям Гильберт дал телами, притягивающим предметы, название «наэлектризованных». Свои опыты с магнитами и электромагнитными свойствами тел он подробно описал в книге «О магните, магнитных телах и большом магните—Земле» («De magnete, magneticisque corparibus et magne magnete tellure», 1600 г.).
  • Французский ученый-физик Ш. Дюфе (1698 – 1739) наблюдал различия зарядов, сообщаемых стеклу, натираемому о шёлк, и смоле при трении её о шерсть, и классифицировал их как «стеклянный» и «смоляной». Позже применительно к зарядам стали употребляться термины «положительный» и «отрицательный» соответственно. В процессе опытов Дюфе открыл любопытное свойство заряженных тел: предметы с одноименными зарядами расходятся в пространстве (отталкивают друг друга), заряженные разноимённо — притягиваются.

Немного физики

В 1843 году англичанин Майкл Фарадей провёл серию экспериментов, в результате которых опытным путем был подтверждён закон сохранения электрического заряда.

Согласно этому положению положительные и отрицательные заряды суммируются, при этом данная алгебраическая сумма остается неизменной при условии замкнутости системы.

В состоянии покоя тело электрически нейтрально. Для него характерно наличие взаимно компенсирующих разноимённых зарядов одинаковой величины. Взаимная электризация тел вызывает обмен зарядами, суммарное же их значение при этом не меняется.

Электрический заряд – одно из базовых понятий физики, а закон его сохранения является основополагающим законом современного мироздания.

Интересный факт

Слово «электричество» имеет древнегреческое происхождение (др.-греч. ἤλεκτρον – «янтарь»).Свойство янтаря электризовать предметы было замечено греками ещё в древности.

На Руси янтарь называли «илектр», а собственно слово «янтарь» пришло в русский язык, предположительно, из литовского (gintaras), ведь именно Литва считает эти «застывшие слезы сосны» своим символом.

Здесь упоминание янтаря можно встретить повсюду: от названия гостиницы до пивной этикетки.

Прокомментируйте, пожалуйста, вопрос:

Какие опыты с электричеством Вы помните еще из школы? → Ответить

ctoetotakoe.ru

Электрический заряд — Википедия

Материал из Википедии — свободной энциклопедии

Шаблон:Физическая величина

Электри́ческий заря́д (коли́чество электри́чества) — это физическая скалярная величина, определяющая способность тел быть источником электромагнитных полей и принимать участие в электромагнитном взаимодействии. Впервые электрический заряд был введён в законе Кулона в 1785 году.

Единица измерения заряда в Международной системе единиц (СИ) — кулон — электрический заряд, проходящий через поперечное сечение проводника при силе тока 1 А за время 1 с. Заряд в один кулон очень велик. Если бы два носителя заряда (Шаблон:Math2 = Шаблон:Math3 = 1 Кл) расположили в вакууме на расстоянии 1 м, то они взаимодействовали бы с силой 9{{ #if:| |·}}109H, то есть с силой, с которой гравитация Земли притягивала бы предмет с массой порядка 1 миллиона тонн.

История

Бенджамин Франклин проводит свой знаменитый опыт с летающим змеем, в котором доказывает, что молния — это электричество.

Ещё в глубокой древности было известно, что янтарь (др.-греч. ἤλεκτρον{{#if: |, {{{2}}}}}{{#if:| — {{{3}}}}}{{#if: |, {{{2}}}}}{{#if:| — {{{3}}}}} — электрон), потёртый о шерсть, притягивает лёгкие предметы. А уже в конце XVI века английский врач Уильям Гильберт назвал тела, способные после натирания притягивать лёгкие предметы, наэлектризованными.

В 1729 году Шарль Дюфе установил, что существует два рода зарядов. Один образуется при трении стекла о шёлк, а другой — смолы о шерсть. Поэтому Дюфе назвал заряды «стеклянным» и «смоляным» соответственно. Понятие о положительном и отрицательном заряде ввёл Бенджамин Франклин.

В начале XX века американский физик Роберт Милликен опытным путём показал, что электрический заряд дискретен, то есть заряд любого тела составляет целое кратное от элементарного электрического заряда

Электростатика

Основная статья: Электростатика

Электростатикой называют раздел учения об электричестве, в котором изучаются взаимодействия и свойства систем электрических зарядов, неподвижных относительно выбранной инерциальной системы отсчета.

Величина электрического заряда (иначе, просто электрический заряд) — численная характеристика носителей заряда и заряженных тел, которая может принимать положительные и отрицательные значения. Эта величина определяется таким образом, что силовое взаимодействие, переносимое полем между зарядами, прямо пропорционально величине зарядов, взаимодействующих между собой частиц или тел, а направления сил, действующих на них со стороны электромагнитного поля, зависят от знака зарядов.

Электрический заряд любой системы тел состоит из целого числа элементарных зарядов, равных примерно 1,6{{ #if:| |·}}10−19Кл<ref>Или, более точно, 1,602176487(40){{ #if:| |·}}10−19 Кл.</ref> в системе СИ или 4,8{{ #if:| |·}}10−10ед. СГСЭ<ref>Или, более точно, 4,803250(21){{ #if:| |·}}10−10 ед СГСЭ.</ref>. Носителями электрического заряда являются электрически заряженные элементарные частицы. Наименьшей по массе устойчивой в свободном состоянии частицей, имеющей один отрицательный элементарный электрический заряд, является электрон (его масса равна 9,11{{ #if:| |·}}10−31 кг). Наименьшая по массе устойчивая в свободном состоянии античастица с положительным элементарным зарядом — позитрон, имеющая такую же массу, как и электрон<ref>Обычная для позитрона неустойчивость, связанная с аннигиляцией электрон-позитронной пары, при этом не рассматривается</ref>. Также существует устойчивая частица с одним положительным элементарным зарядом — протон (масса равна 1,67{{ #if:| |·}}10−27 кг) и другие, менее распространённые частицы. Выдвинута гипотеза (1964 г.), что существуют также частицы с меньшим зарядом (±Шаблон:1/3 и ±Шаблон:2/3 элементарного заряда) — кварки; однако они не выделены в свободном состоянии (и, по-видимому, могут существовать лишь в составе других частиц — адронов), в результате любая свободная частица несёт лишь целое число элементарных зарядов.

Электрический заряд любой элементарной частицы — величина релятивистски инвариантная. Он не зависит от системы отсчёта, а значит, не зависит от того, движется этот заряд или покоится, он присущ этой частице в течение всего времени её жизни, поэтому элементарные заряженные частицы зачастую отождествляют с их электрическими зарядами. В целом, в природе отрицательных зарядов столько же, сколько положительных. Электрические заряды атомов и молекул равны нулю, а заряды положительных и отрицательных ионов в каждой ячейке кристаллических решеток твёрдых тел скомпенсированы.

Взаимодействие зарядов

Взаимодействие зарядов: одноименно заряженные тела отталкиваются, разноименно — притягиваются друг к другу

Самое простое и повседневное явление, в котором обнаруживается факт существования в природе электрических зарядов, — это электризация тел при соприкосновении<ref>Но это далеко не единственный способ электризации тел. Электрические заряды могут возникнуть, например, под действием света</ref>. Способность электрических зарядов как к взаимному притяжению, так и к взаимному отталкиванию объясняется существованием двух различных видов зарядов<ref>{{#if:Сивухин Д. В.|{{#ifeq:{{#invoke:String|sub|Сивухин Д. В.|-1}}| |Сивухин Д. В.|{{#ifeq:{{#invoke:String|sub|Сивухин Д. В.|-6|-2}}|&nbsp|Сивухин Д. В.|{{#ifeq:{{#invoke:String|sub|Сивухин Д. В.|-6|-2}}|/span|Шаблон:±.</span>|Шаблон:±.}}}}}} }}{{#if: |{{#if: |[{{{ссылка часть}}} {{{часть}}}]| {{{часть}}}}} // }}{{#if:|[[:s:{{{викитека}}}|Общий курс физики]]|{{#if: |Общий курс физики |{{#if:|[ Общий курс физики]|Общий курс физики}}}}}}{{#if:| = {{{оригинал}}} }}{{#if:| / .|{{#if:||.}}}}{{#if:Общий курс физики|{{#if:| {{#if:| = {{{оригинал2}}} }}{{#if:| / {{{ответственный2}}}.|{{#if:||.}}}}}}}}{{#if:| — {{{издание}}}.}}{{#switch:{{#if:М.|м}}{{#if:Физматлит; Изд-во МФТИ|и}}{{#if:2004|г}}

|миг= — Шаблон:Указание места в библиоссылке: Физматлит; Изд-во МФТИ, 2004. |ми= — Шаблон:Указание места в библиоссылке: Физматлит; Изд-во МФТИ. |мг= — Шаблон:Указание места в библиоссылке, 2004. |иг= — Физматлит; Изд-во МФТИ, 2004. |м= — Шаблон:Указание места в библиоссылке |и= — Физматлит; Изд-во МФТИ. |г= — 2004.

}}{{#if:| — {{{том как есть}}}.}}{{#if:III. Электричество|{{#if: | [{{{ссылка том}}} — Т. III. Электричество.]| — Т. III. Электричество.}}}}{{#if:| — Vol. {{{volume}}}.}}{{#if:| — Bd. {{{band}}}.}}{{#if:| — {{{страницы как есть}}}.}}{{#if:16| — С. {{#if:|[16] (стб. {{{столбцы}}}).|16.}}}}{{#if:| — {{{страниц как есть}}}.}}{{#if:656| — 656 с.}}{{#if:| — P. {{#if:|[{{{pages}}}] (col. {{{columns}}}).|{{{pages}}}.}}}}{{#if:| — S. {{#if:|[{{{seite}}}] (Kol. {{{kolonnen}}}).|{{{seite}}}.}}}}{{#if:| —  p.}}{{#if:| —  S.}}{{#if:| — ({{{серия}}}).}}{{#if:| — {{{тираж}}} экз.}}{{#if:5-9221-0227-3| — ISBN 5-9221-0227-3.}}{{#if:| — ISBN {{{isbn2}}}.}}{{#if:| — ISBN {{{isbn3}}}.}}{{#if:| — ISBN {{{isbn4}}}.}}{{#if:| — ISBN {{{isbn5}}}.}}{{#if:| — DOI:{{{doi}}}{{#ifeq:Шаблон:Str left|10.||[Ошибка: Неверный DOI!]{{#if:||}}}}}}</ref>. Один вид электрического заряда называют положительным, а другой — отрицательным. Разноимённо заряженные тела притягиваются, а одноимённо заряженные — отталкиваются друг от друга.

При соприкосновении двух электрически нейтральных тел в результате трения заряды переходят от одного тела к другому. В каждом из них нарушается равенство суммы положительных и отрицательных зарядов, и тела заряжаются разноимённо.

При электризации тела через влияние в нём нарушается равномерное распределение зарядов. Они перераспределяются так, что в одной части тела возникает избыток положительных зарядов, а в другой — отрицательных. Если две эти части разъединить, то они будут заряжены разноимённо.

Закон сохранения электрического заряда

Основная статья: Закон сохранения электрического заряда

Электрический заряд замкнутой системы<ref>Электрически замкнутая система — это система, у которой через ограничивающую её поверхность не могут проникать электрически заряженные частицы (система, не обменивающаяся зарядами с внешними телами).</ref> сохраняется во времени и квантуется — изменяется порциями, кратными элементарному электрическому заряду, то есть, другими словами, алгебраическая сумма электрических зарядов тел или частиц, образующих электрически изолированную систему, не изменяется при любых процессах, происходящих в этой системе.

В рассматриваемой системе могут образовываться новые электрически заряженные частицы, например, электроны — вследствие явления ионизации атомов или молекул, ионы — за счёт явления электролитической диссоциации и др. Однако, если система электрически изолирована, то алгебраическая сумма зарядов всех частиц, в том числе и вновь появившихся в такой системе, всегда равна нулю.

Закон сохранения электрического заряда — один из основополагающих законов физики. Он был впервые экспериментально подтверждён в 1843 году английским учёным Майклом Фарадеем и считается на настоящее время одним из фундаментальных законов сохранения в физике (подобно законам сохранения импульса и энергии). Всё более чувствительные экспериментальные проверки закона сохранения заряда, продолжающиеся и поныне, пока не выявили отклонений от этого закона.

Свободные заряды

В зависимости от концентрации свободных зарядов тела делятся на проводники, диэлектрики и полупроводники.

  • Проводники — это тела, в которых электрический заряд может перемещаться по всему его объёму. Проводники делятся на две группы: 1) проводники первого рода (металлы), в которых перенос зарядов (свободных электронов) не сопровождается химическими превращениями; 2) проводники второго рода (например, расплавленные соли, растворы кислот), в которых перенос зарядов (положительных и отрицательных ионов) ведёт к химическим изменениям.
  • Диэлектрики (например стекло, пластмасса) — тела, в которых практически отсутствуют свободные заряды.
  • Полупроводники (например, германий, кремний) занимают промежуточное положение между проводниками и диэлектриками.

Измерение

Простейший электроскоп

Для обнаружения и измерения электрических зарядов применяется электроскоп, который состоит из металлического стержня — электрода и подвешенных к нему двух листочков фольги. При прикосновении к электроду заряженным предметом заряды стекают через электрод на листочки фольги, листочки оказываются одноимённо заряженными и поэтому отклоняются друг от друга.

Также может применяться электрометр, в простейшем случае состоящий из металлического стержня и стрелки, которая может вращаться вокруг горизонтальной оси. При соприкосновении заряженного тела со стержнем электрометра электрические заряды распределяются по стержню и стрелке, и силы отталкивания, действующие между одноимёнными зарядами на стержне и стрелке, вызывают её поворот. Для измерения малых зарядов используются более чувствительные электронные электрометры.

См. также

Литература

Примечания

ensiklopedya.ru

Электрический заряд

Реферат по электротехнике

Выполнил: Агафонов Роман

Лужский агропромышленный колледж

Электрический заряд

Дать краткое, удовлетворительное во всех отношениях определение заряда невозможно. Мы привыкли находить понятные нам объяснения весьма сложных образований и процессов вроде атома, жидких кристаллов, распределения молекул по скоростям и т.д. А вот самые основные, фундаментальные понятия, нерасчленимые на более простые, лишенные, по данным науки на сегодняшний день, какого-либо внутреннего механизма, кратко удовлетворительным образом уже не пояснить. Особенно если объекты непосредственно не воспринимаются нашими органами чувств. Именно к таким фундаментальным понятиям относится электрический заряд.

Попытаемся вначале выяснить не что такое электрический заряд, а что скрывается за утверждением данное тело или частица имеют электрический заряд.

Вы знаете, что все тела построены из мельчайших, неделимых на более простые (насколько сейчас науке известно) частиц, которые поэтому называют элементарными. Все элементарные частицы имеют массу и благодаря этому притягиваются друг к другу. Согласно закону всемирного тяготения сила притяжения сравнительно медленно убывает по мере увеличения расстояния между ними: обратно пропорционально квадрату расстояния. Кроме того, большинство элементарных частиц, хотя и не все, обладают способностью взаимодействовать друг с другом с силой, которая также убывает обратно пропорционально квадрату расстояния, но эта сила в огромное число, раз превосходит силу тяготения. Так, в атоме водорода, схематически изображенном на рисунке 1, электрон притягивается к ядру (протону) с силой, в 1039 раз превышающей силу гравитационного притяжения.

Рис. 1

Если частицы взаимодействуют друг с другом с силами, которые медленно уменьшаются с увеличением расстояния и во много раз превышают силы всемирного тяготения, то говорят, что эти частицы имеют электрический заряд. Сами частицы называются заряженными. Бывают частицы без электрического заряда, но не существует электрического заряда без частицы.

Взаимодействия между заряженными частицами носят название электромагнитных. Когда мы говорим, что электроны и протоны электрически заряжены, то это означает, что они способны к взаимодействиям определенного типа (электромагнитным), и ничего более. Отсутствие заряда у частиц означает, что подобных взаимодействий она не обнаруживает. Электрический заряд определяет интенсивность электромагнитных взаимодействий, подобно тому как масса определяет интенсивность гравитационных взаимодействий. Электрический заряд – вторая (после массы) важнейшая характеристика элементарных частиц, определяющая их поведение в окружающем мире.

Таким образом

Электрический заряд – это физическая скалярная величина, характеризующая свойство частиц или тел вступать в электромагнитные силовые взаимодействия.

Электрический заряд обозначается буквами q или Q.

Подобно тому, как в механике часто используется понятие материальной точки, позволяющее значительно упростить решение многих задач, при изучении взаимодействия зарядов эффективным оказывается представление о точечном заряде. Точечный заряд – это такое заряженное тело, размеры которого значительно меньше расстояния от этого тела до точки наблюдения и других заряженных тел. В частности, если говорят о взаимодействии двух точечных зарядов, то тем самым предполагают, что расстояние между двумя рассматриваемыми заряженными телами значительно больше их линейных размеров.

Электрический заряд элементарной частицы

Электрический заряд элементарной частицы – это не особый «механизм» в частице, который можно было бы снять с нее, разложить на составные части и снова собрать. Наличие электрического заряда у электрона и других частиц означает лишь существование определенных взаимодействий между ними.

В природе имеются частицы с зарядами противоположных знаков. Заряд протона называется положительным, а электрона – отрицательным. Положительный знак заряда у частицы не означает, конечно, наличия у нее особых достоинств. Введение зарядов двух знаков просто выражает тот факт, что заряженные частицы могут как притягиваться, так и отталкиваться. При одинаковых знаках заряда частицы отталкиваются, а при разных – притягиваются.

Никакого объяснения причин существования двух видов электрических зарядов сейчас нет. Во всяком случае, никаких принципиальных различий между положительными и отрицательными зарядами не обнаруживается. Если бы знаки электрических зарядов частиц изменились на противоположные, то характер электромагнитных взаимодействий в природе не изменился бы.

Положительные и отрицательные заряды очень хорошо скомпенсированы во Вселенной. И если Вселенная конечна, то ее полный электрический заряд, по всей вероятности, равен нулю.

Наиболее замечательным является то, что электрический заряд всех элементарных частиц строго одинаков по модулю. Существует минимальный заряд, называемый элементарным, которым обладают все заряженные элементарные частицы. Заряд может быть положительным, как у протона, или отрицательным, как у электрона, но модуль заряда во всех случаях один и тот же.

Отделить часть заряда, например, у электрона невозможно. Это, пожалуй, самое удивительное. Никакая современная теория не может объяснить, почему заряды всех частиц одинаковы, и не в состоянии вычислить значение минимального электрического заряда. Оно определяется экспериментально с помощью различных опытов.

В 60-е гг., после того как число вновь открытых элементарных частиц стало угрожающе расти, была выдвинута гипотеза о том, что все сильно взаимодействующие частицы являются составными. Более фундаментальные частицы были названы кварками. Поразительным оказалось то, что кварки должны иметь дробный электрический заряд: 1/3 и 2/3 элементарного заряда. Для построения протонов и нейтронов достаточно двух сортов кварков. А максимальное их число, по-видимому, не превышает шести.

Единица измерения электрического заряда

Создать макроскопический эталон единицы электрического заряда, подобный эталону длины – метру, невозможно из-за неизбежной утечки заряда. Естественно было бы за единицу принять заряд электрона (это сейчас и сделано в атомной физике). Но во времена Кулона еще не было известно о существовании в природе электрона. Кроме того, заряд электрона слишком мал, и поэтому его трудно использовать в качестве эталона.

В Международной системе единиц (СИ) единицу заряда – кулон устанавливают с помощью единицы силы тока:

1 кулон (Кл) – это заряд, проходящий за 1 с через поперечное сечение проводника при силе тока в 1 А.

Заряд в 1 Кл очень велик. Два таких заряда на расстоянии 1 км отталкивались бы друг от друга с силой, чуть меньшей силы, с которой земной шар притягивает груз массой в 1 т. Поэтому сообщить небольшому телу (размером порядка нескольких метров) заряд в 1 Кл невозможно. Отталкиваясь друг от друга, заряженные частицы не смогли бы удерживаться на таком теле. Никаких других сил, которые были бы способны в данных условиях компенсировать кулоновское отталкивание, в природе не существует. Но в проводнике, который в целом нейтрален, привести в движение заряд в 1 Кл не составляет большого труда. Ведь в обычной электрической лампочке мощностью 100 Вт при напряжении 127 В устанавливается ток, немного меньший 1 А. При этом за 1 с через поперечное сечение проводника проходит заряд, почти равный 1 Кл.

Электрометр

Для обнаружения и измерения электрических зарядов применяется электрометр. Электрометр состоит из металлического стержня и стрелки, которая может вращаться вокруг горизонтальной оси (рис. 2). Стержень со стрелкой закреплен в плексигласовой втулке и помещен в металлический корпус цилиндрической формы, закрытый стеклянными крышками.

Принцип работы электрометра. Прикоснемся положительно заряженной палочкой к стержню электрометра. Мы увидим, что стрелка электрометра отклоняется на некоторый угол (см. рис. 2). Поворот стрелки объясняется тем, что при соприкосновении заряженного тела со стержнем электрометра электрические заряды распределяются по стрелке и стержню. Силы отталкивания, действующие между одноименными электрическими зарядами на стержне и стрелке, вызывают поворот стрелки. Наэлектризуем эбонитовую палочку еще раз и вновь коснемся ею стержня электрометра. Опыт, показывает, что при увеличении электрического заряда на стержне угол отклонения стрелки от вертикального положения увеличивается. Следовательно, по углу отклонения стрелки электрометра можно судить о значении электрического заряда, переданного стержню электрометра.

Рис. 2

Свойства электрического заряда

Совокупность всех известных экспериментальных фактов позволяет выделить следующие свойства заряда:

Существует два рода электрических зарядов, условно названных положительными и отрицательными. Положительно заряженными называют тела, которые действуют на другие заряженные тела так же, как стекло, наэлектризованное трением о шелк. Отрицательно заряженными называют тела, которые действуют так же, как эбонит, наэлектризованный трением о шерсть. Выбор названия «положительный» для зарядов, возникающих на стекле, и «отрицательный» для зарядов на эбоните совершенно случаен.

Заряды могут передаваться (например, при непосредственном контакте) от одного тела к другому. В отличие от массы тела электрический заряд не является неотъемлемой характеристикой данного тела. Одно и то же тело в разных условиях может иметь разный заряд.

mirznanii.com

Электрический заряд — Википедия РУ

История

  Бенджамин Франклин проводит свой знаменитый опыт с летающим змеем, в котором доказывает, что молния — это электричество.

Ещё в глубокой древности было известно, что янтарь (др.-греч. ἤλεκτρον — электрон), потёртый о шерсть, притягивает лёгкие предметы. А уже в конце XVI века английский врач Уильям Гильберт назвал тела, способные после натирания притягивать лёгкие предметы, наэлектризованными.

В 1729 году Шарль Дюфе установил, что существует два рода зарядов. Один образуется при трении стекла о шёлк, а другой — смолы о шерсть. Поэтому Дюфе назвал заряды «стеклянным» и «смоляным» соответственно. Понятие о положительном и отрицательном заряде ввёл Бенджамин Франклин.

В начале XX века американский физик Роберт Милликен опытным путём показал, что электрический заряд дискретен, то есть заряд любого тела составляет целое кратное от элементарного электрического заряда.

Электростатика

Электростатикой называют раздел учения об электричестве, в котором изучаются взаимодействия и свойства систем электрических зарядов, неподвижных относительно выбранной инерциальной системы отсчета.

Величина электрического заряда (иначе, просто электрический заряд) может принимать и положительные, и отрицательные значения; она является численной характеристикой носителей заряда и заряженных тел. Эта величина определяется таким образом, что силовое взаимодействие, переносимое полем между зарядами, прямо пропорционально величине зарядов, взаимодействующих между собой частиц или тел, а направления сил, действующих на них со стороны электромагнитного поля, зависят от знака зарядов.

Электрический заряд любой системы тел состоит из целого числа элементарных зарядов, равных примерно 1,6·10−19Кл[1] в системе СИ или 4,8·10−10ед. СГСЭ[2]. Носителями электрического заряда являются электрически заряженные элементарные частицы. Наименьшей по массе устойчивой в свободном состоянии частицей, имеющей один отрицательный элементарный электрический заряд, является электрон (его масса равна 9,11·10−31 кг). Наименьшая по массе устойчивая в свободном состоянии античастица с положительным элементарным зарядом — позитрон, имеющая такую же массу, как и электрон[3]. Также существует устойчивая частица с одним положительным элементарным зарядом — протон (масса равна 1,67·10−27 кг) и другие, менее распространённые частицы. Выдвинута гипотеза (1964 г.), что существуют также частицы с меньшим зарядом (±⅓ и ±⅔ элементарного заряда) — кварки; однако они не выделены в свободном состоянии (и, по-видимому, могут существовать лишь в составе других частиц — адронов), в результате любая свободная частица несёт лишь целое число элементарных зарядов.

Электрический заряд любой элементарной частицы — величина релятивистски инвариантная. Он не зависит от системы отсчёта, а значит, не зависит от того, движется этот заряд или покоится, он присущ этой частице в течение всего времени её жизни, поэтому элементарные заряженные частицы зачастую отождествляют с их электрическими зарядами. В целом, в природе отрицательных зарядов столько же, сколько положительных. Электрические заряды атомов и молекул равны нулю, а заряды положительных и отрицательных ионов в каждой ячейке кристаллических решеток твёрдых тел скомпенсированы.

Взаимодействие зарядов

  Взаимодействие зарядов: одноимённо заряженные тела отталкиваются, разноимённо — притягиваются друг к другу

Самое простое и повседневное явление, в котором обнаруживается факт существования в природе электрических зарядов, — это электризация тел при соприкосновении[4]. Способность электрических зарядов как к взаимному притяжению, так и к взаимному отталкиванию объясняется существованием двух различных видов зарядов[5]. Один вид электрического заряда называют положительным, а другой — отрицательным. Разноимённо заряженные тела притягиваются, а одноимённо заряженные — отталкиваются друг от друга.

При соприкосновении двух электрически нейтральных тел в результате трения заряды переходят от одного тела к другому. В каждом из них нарушается равенство суммы положительных и отрицательных зарядов, и тела заряжаются разноимённо.

При электризации тела через влияние в нём нарушается равномерное распределение зарядов. Они перераспределяются так, что в одной части тела возникает избыток положительных зарядов, а в другой — отрицательных. Если две эти части разъединить, то они будут заряжены разноимённо.

Закон сохранения электрического заряда

Электрический заряд замкнутой системы[6] сохраняется во времени и квантуется — изменяется порциями, кратными элементарному электрическому заряду, то есть, другими словами, алгебраическая сумма электрических зарядов тел или частиц, образующих электрически изолированную систему, не изменяется при любых процессах, происходящих в этой системе.

В рассматриваемой системе могут образовываться новые электрически заряженные частицы, например, электроны — вследствие явления ионизации атомов или молекул, ионы — за счёт явления электролитической диссоциации и др. Однако, если система электрически изолирована, то алгебраическая сумма зарядов всех частиц, в том числе и вновь появившихся в такой системе, всегда сохраняется.

Закон сохранения электрического заряда — один из основополагающих законов физики. Он был впервые экспериментально подтверждён в 1843 году английским учёным Майклом Фарадеем и считается на настоящее время одним из фундаментальных законов сохранения в физике (подобно законам сохранения импульса и энергии). Всё более чувствительные экспериментальные проверки закона сохранения заряда, продолжающиеся и поныне, пока не выявили отклонений от этого закона.

Свободные заряды

В зависимости от концентрации свободных зарядов тела делятся на проводники, диэлектрики и полупроводники.

  • Проводники — это тела, в которых электрический заряд может перемещаться по всему его объёму. Проводники делятся на две группы: 1) проводники первого рода (металлы), в которых перенос зарядов (свободных электронов) не сопровождается химическими превращениями; 2) проводники второго рода (например, расплавленные соли, растворы кислот), в которых перенос зарядов (положительных и отрицательных ионов) ведёт к химическим изменениям.
  • Диэлектрики (например стекло, пластмасса) — тела, в которых практически отсутствуют свободные заряды.
  • Полупроводники (например, германий, кремний) занимают промежуточное положение между проводниками и диэлектриками.

Измерение

  Простейший электроскоп

Для обнаружения и измерения электрических зарядов применяется электроскоп, который состоит из металлического стержня — электрода и подвешенных к нему двух листочков фольги. При прикосновении к электроду заряженным предметом заряды стекают через электрод на листочки фольги, листочки оказываются одноимённо заряженными и поэтому отклоняются друг от друга.

Также может применяться электрометр, в простейшем случае состоящий из металлического стержня и стрелки, которая способна вращаться вокруг горизонтальной оси. При соприкосновении заряженного тела со стержнем электрометра электрические заряды распределяются по стержню и стрелке, и силы отталкивания, действующие между одноимёнными зарядами на стержне и стрелке, вызывают её поворот. Для измерения малых зарядов используются более чувствительные электронные электрометры.

См. также

Литература

Примечания

  1. ↑ Или, более точно, 1,602176487(40)·10−19 Кл.
  2. ↑ Или, более точно, 4,803250(21)·10−10 ед СГСЭ.
  3. ↑ Обычная для позитрона неустойчивость, связанная с аннигиляцией электрон-позитронной пары, при этом не рассматривается
  4. ↑ Но это далеко не единственный способ электризации тел. Электрические заряды могут возникнуть, например, под действием света
  5. ↑ Сивухин Д. В. Общий курс физики. — М.: Физматлит; Изд-во МФТИ, 2004. — Т. III. Электричество. — С. 16. — 656 с. — ISBN 5-9221-0227-3.
  6. ↑ Электрически замкнутая система — это система, у которой через ограничивающую её поверхность не могут проникать электрически заряженные частицы (система, не обменивающаяся зарядами с внешними телами).

http-wikipediya.ru


Видеоматериалы

24.10.2018

Опыт пилотных регионов, где соцнормы на электроэнергию уже введены, показывает: граждане платить стали меньше

Подробнее...
23.10.2018

Соответствует ли вода и воздух установленным нормативам?

Подробнее...
22.10.2018

С начала года из ветхого и аварийного жилья в республике были переселены десятки семей

Подробнее...
22.10.2018

Столичный Водоканал готовится к зиме

Подробнее...
17.10.2018

Более 10-ти миллионов рублей направлено на капитальный ремонт многоквартирных домов в Лескенском районе

Подробнее...

Актуальные темы

13.05.2018

Формирование энергосберегающего поведения граждан

 

Подробнее...
29.03.2018

ОТЧЕТ о деятельности министерства энергетики, ЖКХ и тарифной политики Кабардино-Балкарской Республики в сфере государственного регулирования и контроля цен и тарифов в 2012 году и об основных задачах на 2013 год

Подробнее...
13.03.2018

Предложения организаций, осуществляющих регулируемую деятельность о размере подлежащих государственному регулированию цен (тарифов) на 2013 год

Подробнее...
11.03.2018

НАУЧИМСЯ ЭКОНОМИТЬ В БЫТУ

 
Подробнее...

inetpriem


<< < Ноябрь 2013 > >>
Пн Вт Ср Чт Пт Сб Вс
        1 2 3
4 5 6 7 8 9 10
11 12 13 14 15 16 17
18 19 20 21 22 23 24
25 26 27 28 29 30  

calc

banner-calc

.