Физика полупроводников. Физика полупроводники
Полупроводник - это... Что такое Полупроводник?
Монокристаллический кремний — полупроводниковый материал, наиболее широко используемый в промышленности на сегодняшний деньПолупроводни́к — материал, который по своей удельной проводимости занимает промежуточное место между проводниками и диэлектриками и отличается от проводников сильной зависимостью удельной проводимости от концентрации примесей, температуры и воздействия различных видов излучения. Основным свойством полупроводника является увеличение электрической проводимости с ростом температуры.[1]
Полупроводниками являются вещества, ширина запрещённой зоны которых составляет порядка нескольких электрон-вольт (эВ). Например, алмаз можно отнести к широкозонным полупроводникам, а арсенид индия — к узкозонным. К числу полупроводников относятся многие химические элементы (германий, кремний, селен, теллур, мышьяк и другие), огромное количество сплавов и химических соединений (арсенид галлия и др.). Почти все неорганические вещества окружающего нас мира — полупроводники. Самым распространённым в природе полупроводником является кремний, составляющий почти 30 % земной коры.
В зависимости от того, отдаёт ли примесной атом электрон или захватывает его, примесные атомы называют донорными или акцепторными. Характер примеси может меняться в зависимости от того, какой атом кристаллической решётки она замещает, в какую кристаллографическую плоскость встраивается.
Проводимость полупроводников сильно зависит от температуры. Вблизи температуры абсолютного нуля полупроводники имеют свойства диэлектриков.
Механизм электрической проводимости
Полупроводники характеризуются как свойствами проводников, так и диэлектриков. В полупроводниковых кристаллах атомы устанавливают ковалентные связи (то есть, один электрон в кристалле кремния, как и алмаза, связан двумя атомами), электронам необходим уровень внутренней энергии для высвобождения из атома (1,76·10−19 Дж против 11,2·10−19 Дж, чем и характеризуется отличие между полупроводниками и диэлектриками). Эта энергия появляется в них при повышении температуры (например, при комнатной температуре уровень энергии теплового движения атомов равняется 0,4·10−19 Дж), и отдельные атомы получают энергию для отрыва электрона от атома. С ростом температуры число свободных электронов и дырок увеличивается, поэтому в полупроводнике, не содержащем примесей, удельное сопротивление уменьшается. Условно принято считать полупроводниками элементы с энергией связи электронов меньшей чем 1,5—2 эВ. Электронно-дырочный механизм проводимости проявляется у собственных (то есть без примесей) полупроводников. Он называется собственной электрической проводимостью полупроводников.
Дырка
Во время разрыва связи между электроном и ядром появляется свободное место в электронной оболочке атома. Это обуславливает переход электрона с другого атома на атом со свободным местом. На атом, откуда перешёл электрон, входит другой электрон из другого атома и т. д. Это обуславливается ковалентными связями атомов. Таким образом, происходит перемещение положительного заряда без перемещения самого атома. Этот условный положительный заряд называют дыркой.
Обычно подвижность дырок в полупроводнике ниже подвижности электронов.
Энергетические зоны
Между зоной проводимости Еп и валентной зоной Ев расположена зона запрещённых значений энергии электронов Ез. Разность Еп−Ев равна ширине запрещенной зоны Ез. С ростом ширины Ез число электронно-дырочных пар и проводимость собственного полупроводника уменьшается, а удельное сопротивление возрастает.
Подвижность
Подвижность электронов (верхняя кривая) и дырок (нижняя кривая) в кремнии в зависимости от концентрации атомов примесиПодвижностью называют коэффициент пропорциональности между дрейфовой скоростью носителей тока и величиной приложенного электрического поля
При этом, вообще говоря, подвижность является тензором:
Подвижность электронов и дырок зависит от их концентрации в полупроводнике (см. рисунок). При большой концентрации носителей заряда, вероятность столкновения между ними вырастает, что приводит к уменьшению подвижности и проводимости.
Размерность подвижности — м²/(В·с).
Собственная плотность
При термодинамическом равновесии, плотность электронов полупроводника связана с температурой следующим соотношением:
где:
— Постоянная Планка — масса электрона — температура; — уровень проводимой зоны - уровень Ферми;Также, плотность дырок полупроводника связана с температурой следующим соотношением:
где:
— Постоянная Планка; — масса дырки; — температура; — уровень Ферми; — уровень валентной зоны.Собственная плотность связана с и следующим соотношением:
Виды полупроводников
По характеру проводимости
Собственная проводимость
Полупроводники, в которых свободные электроны и «дырки» появляются в процессе ионизации атомов, из которых построен весь кристалл, называют полупроводниками с собственной проводимостью. В полупроводниках с собственной проводимостью концентрация свободных электронов равняется концентрации «дырок».
Проводимость связана с подвижностью частиц следующим соотношением:
где — удельное сопротивление, — подвижность электронов, — подвижность дырок, — их концентрация, q — элементарный электрический заряд (1,602·10−19 Кл).
Для собственного полупроводника концентрации носителей совпадают и формула принимает вид:
Примесная проводимость
Для создания полупроводниковых приборов часто используют кристаллы с примесной проводимостью. Такие кристаллы изготавливаются с помощью внесения примесей с атомами трехвалентного или пятивалентного химического элемента.
По виду проводимости
Электронные полупроводники (n-типа)
Полупроводник n-типаТермин «n-тип» происходит от слова «negative», обозначающего отрицательный заряд основных носителей. Этот вид полупроводников имеет примесную природу. В четырёхвалентный полупроводник (например, кремний) добавляют примесь пятивалентного полупроводника (например, мышьяка). В процессе взаимодействия каждый атом примеси вступает в ковалентную связь с атомами кремния. Однако для пятого электрона атома мышьяка нет места в насыщенных валентных связях, и он переходит на дальнюю электронную оболочку. Там для отрыва электрона от атома нужно меньшее количество энергии. Электрон отрывается и превращается в свободный. В данном случае перенос заряда осуществляется электроном, а не дыркой, то есть данный вид полупроводников проводит электрический ток подобно металлам. Примеси, которые добавляют в полупроводники, вследствие чего они превращаются в полупроводники n-типа, называются донорными.
Проводимость N-полупроводников приблизительно равна:
Дырочные полупроводники (р-типа)
Полупроводник p-типаТермин «p-тип» происходит от слова «positive», обозначающего положительный заряд основных носителей. Этот вид полупроводников, кроме примесной основы, характеризуется дырочной природой проводимости. В четырёхвалентный полупроводник (например, в кремний) добавляют небольшое количество атомов трехвалентного элемента (например, индия). Каждый атом примеси устанавливает ковалентную связь с тремя соседними атомами кремния. Для установки связи с четвёртым атомом кремния у атома индия нет валентного электрона, поэтому он захватывает валентный электрон из ковалентной связи между соседними атомами кремния и становится отрицательно заряженным ионом, вследствие чего образуется дырка. Примеси, которые добавляют в этом случае, называются акцепторными.
Проводимость p-полупроводников приблизительно равна:
Использование в радиотехнике
Полупроводниковый диод
Полупроводниковый диод состоит из двух типов полупроводников — дырочного и электронного. В процессе контакта между этими областями из области с полупроводником n-типа в область с полупроводником p-типа проходят электроны, которые затем рекомбинируют с дырками. Вследствие этого возникает электрическое поле между двумя областями, что устанавливает предел деления полупроводников — так называемый p-n переход. В результате в области с полупроводником p-типа возникает некомпенсированный заряд из отрицательных ионов, а в области с полупроводником n-типа возникает некомпенсированный заряд из положительных ионов. Разница между потенциалами достигает 0,3-0,6 В.
Связь между разницей потенциалов и концентрацией примесей выражается следующей формулой:
где — термодинамическое напряжение, — концентрация электронов, — концентрация дырок, — собственная концентрация[2].
В процессе подачи напряжения плюсом на p-полупроводник и минусом на n-полупроводник внешнее электрическое поле будет направлено против внутреннего электрического поля p-n перехода и при достаточном напряжении электроны преодолеют p-n переход, и в цепи диода появится электрический ток (прямая проводимость). При подаче напряжения минусом на область с полупроводником p-типа и плюсом на область с полупроводником n-типа между двумя областями возникает область, которая не имеет свободных носителей электрического тока (обратная проводимость). Обратный ток полупроводникового диода не равен нулю, так как в обоих областях всегда есть неосновные носители заряда. Для этих носителей p-n переход будет открыт.
Таким образом, p-n переход проявляет свойства односторонней проводимости, что обуславливается подачей напряжения с различной полярностью. Это свойство используют для выпрямления переменного тока.
Транзистор
Транзистор — полупроводниковое устройство, которое состоит из двух областей с полупроводниками p- или n-типа, между которыми находится область с полупроводником n- или p-типа. Таким образом, в транзисторе есть две области p-n перехода. Область кристалла между двумя переходами называют базой, а внешние области называют эмиттером и коллектором. Самой употребляемой схемой включения транзистора является схема включения с общим эмиттером, при которой через базу и эмиттер ток распространяется на коллектор.
Биполярный транзистор используют для усиления электрического тока.
Типы полупроводников в периодической системе элементов
В нижеследующей таблице представлена информация о большом количестве полупроводниковых элементов и их соединений, разделённых на несколько типов:
- одноэлементные полупроводники IV группы периодической системы элементов,
- сложные: двухэлементные AIIIBV и AIIBVI из третьей и пятой группы и из второй и шестой группы элементов соответственно.
Все типы полупроводников обладают интересной зависимостью ширины запрещённой зоны от периода, а именно — с увеличением периода ширина запрещённой зоны уменьшается.
Группа | IIB | IIIA | IVA | VA | VIA |
Период | |||||
2 | 5 B | 6 C | 7 N | ||
3 | 13 Al | 14 Si | 15 P | 16 S | |
4 | 30 Zn | 31 Ga | 32 Ge | 33 As | 34 Se |
5 | 48 Cd | 49 In | 50 Sn | 51 Sb | 52 Te |
6 | 80 Hg |
Физические свойства и применение
Прежде всего, следует сказать, что физические свойства полупроводников наиболее изучены по сравнению с металлами и диэлектриками. В немалой степени этому способствует огромное количество эффектов, которые не могут быть наблюдаемы ни в тех ни в других веществах, прежде всего связанные с устройством зонной структуры полупроводников, и наличием достаточно узкой запрещённой зоны. Конечно же, основным стимулом для изучения полупроводников является производство полупроводниковых приборов и интегральных микросхем — это в первую очередь относится к кремнию, но затрагивает и другие соединения (Ge, GaAs, InP, InSb).
Кремний — непрямозонный полупроводник, оптические свойства которого широко используются для создания фотодиодов и солнечных батарей, однако его очень трудно заставить работать в качестве источника света, и здесь вне конкуренции прямозонные полупроводники — соединения типа AIIIBV, среди которых можно выделить GaAs, GaN, которые используются для создания светодиодов и полупроводниковых лазеров.
Собственный полупроводник при температуре абсолютного нуля не имеет свободных носителей в зоне проводимости в отличие от проводников и ведёт себя как диэлектрик. При легировании ситуация может поменяться (см. вырожденные полупроводники).
В связи с тем, что технологи могут получать очень чистые вещества, встаёт вопрос о новом эталоне для числа Авогадро.
Легирование
Объёмные свойства полупроводника могут сильно зависеть от наличия дефектов в кристаллической структуре. И поэтому стремятся выращивать очень чистые вещества, в основном для электронной промышленности. Легирующие примеси вводят для управления величиной и типом проводимости полупроводника. Например, широко распространённый кремний можно легировать элементом V подгруппы периодической системы элементов — фосфором, который является донором, и создать n-Si. Для получения кремния с дырочным типом проводимости (p-Si) используют бор (акцептор). Также создают компенсированные полупроводники с тем чтобы зафиксировать уровень Ферми в середине запрещённой зоны.
Методы получения
Свойства полупроводников зависят от способа получения, так как различные примеси в процессе роста могут изменить их. Наиболее дешёвый способ промышленного получения монокристаллического технологического кремния — метод Чохральского. Для очистки технологического кремния используют также метод зонной плавки.
Для получения монокристаллов полупроводников используют различные методы физического и химического осаждения. Наиболее прецизионный и дорогой инструмент в руках технологов для роста монокристаллических плёнок — установки молекулярно-лучевой эпитаксии, позволяющей выращивать кристалл с точностью до монослоя.
Оптика полупроводников
Поглощение света полупроводниками обусловлено переходами между энергетическими состояниями зонной структуры. Учитывая принцип запрета Паули, электроны могут переходить только из заполненного энергетического уровня на незаполненный. В собственном полупроводнике все состояния валентной зоны заполнены, а все состояния зоны проводимости незаполненные, поэтому переходы возможны лишь из валентной зоны в зону проводимости. Для осуществления такого перехода электрон должен получить от света энергию, превышающую ширину запрещённой зоны. Фотоны с меньшей энергией не вызывают переходов между электронными состояниями полупроводника, поэтому такие полупроводники прозрачны в области частот , где — ширина запрещённой зоны, — постоянная Планка. Эта частота определяет фундаментальный край поглощения для полупроводника. Для полупроводников, которые зачастую применяются в электронике (кремний, германий, арсенид галлия) она лежит в инфракрасной области спектра.
Дополнительные ограничения на поглощение света полупроводников накладывают правила отбора, в частности закон сохранения импульса. Закон сохранения импульса требует, чтобы квазиимпульс конечного состояния отличался от квазиимпульса начального состояния на величину импульса поглощённого фотона. Волновое число фотона , где — длина волны, очень мало по сравнению с волновым вектором обратной решётки полупроводника, или, что то же самое, длина волны фотона в видимой области намного больше характерного межатомного расстояния в полупроводнике, что приводит к требованию того, чтобы квазиимпульс конечного состояния при электронном переходе практически равнялся квазиимпульсу начального состояния. При частотах, близких к фундаментальному краю поглощения, это возможно только для прямозонных полупроводников. Оптические переходы в полупроводниках, при которых импульс электрона почти не меняется называются прямыми или вертикальными. Импульс конечного состояния может значительно отличаться от импульса начального состояния, если в процессе поглощения фотона участвует ещё одна, третья частица, например, фонон. Такие переходы тоже возможны, хотя и менее вероятны. Они называются непрямыми переходами.
Таким образом, прямозонные полупроводники, такие как арсенид галлия, начинают сильно поглощать свет, когда энергия кванта превышает ширину запрещённой зоны. Такие полупроводники очень удобны для использования в оптоэлектронике.
Непрямозонные полупроводники, например, кремний, поглощают в области частот света с энергией кванта чуть больше ширины запрещённой зоны значительно слабее, только благодаря непрямым переходам, интенсивность которых зависит от присутствия фононов, и следовательно, от температуры. Граничная частота прямых переходов кремния больше 3 эВ, то есть лежит в ультрафиолетовой области спектра.
При переходе электрона из валентной зоны в зону проводимости в полупроводнике возникают свободные носители заряда, а следовательно фотопроводимость.
При частотах ниже края фундаментального поглощения также возможно поглощение света, которое связано с возбуждением экситонов, электронными переходами между уровнями примесей и разрешенными зонами, а также с поглощением света на колебаниях решётки и свободных носителях. Экситонные зоны расположены в полупроводнике несколько ниже дна зоны проводимости благодаря энергии связи экситона. Экситонные спектры поглощения имеют водородоподобную структуру энергетических уровней. Аналогичным образом примеси, акцепторы или доноры, создают акцепторные или донорные уровни, лежащие в запрещённой зоне. Они значительно модифицируют спектр поглощения легированного полупроводника. Если при непрямозонном переходе одновременно с квантом света поглощается фонон, то энергия поглощенного светового кванта может быть меньше на величину энергии фонона, что приводит к поглощению на частотах несколько ниже по энергии от фундаментального края поглощения.
Список полупроводников
Полупроводниковые соединения делят на несколько типов:
- простые полупроводниковые материалы — собственно химические элементы: бор B, углерод C, германий Ge, кремний Si, селен Se, сера S, сурьма Sb, теллур Te и йод I. Самостоятельное применение широко нашли германий, кремний и селен. Остальные чаще всего применяются в качестве легирующих добавок или в качестве компонентов сложных полупроводниковых материалов;
- в группу сложных полупроводниковых материалов входят химические соединения, обладающие полупроводниковыми свойствами и включающие в себя два, три и более химических элементов. Полупроводниковые материалы этой группы, состоящие из двух элементов, называют бинарными, и так же, как это принято в химии, имеют наименование того компонента, металлические свойства которого выражены слабее. Так, бинарные соединения, содержащие мышьяк, называют арсенидами, серу — сульфидами, теллур — теллуридами, углерод — карбидами. Сложные полупроводниковые материалы объединяют по номеру группы Периодической системы элементов Д. И. Менделеева, к которой принадлежат компоненты соединения, и обозначают буквами латинского алфавита (A — первый элемент, B — второй и т. д.). Например, бинарное соединение фосфид индия InP имеет обозначение AIIIBV
Широкое применние получили следующие соединения:
AIIIBV- InSb, InAs, InP, GaSb, GaP, AlSb, GaN, InN
- ZnS, ZnSe, ZnTe, CdS, CdTe, HgSe, HgTe, HgS
- PbS, PbSe, PbTe, SnTe, SnS, SnSe, GeS, GeSe
а также некоторые окислы свинца, олова, германия, кремния а также феррит, аморфные стёкла и многие другие соединения (AIBIIIC2VI, AIBVC2VI, AIIBIVC2V, AIIB2IIC4VI, AIIBIVC3VI).
На основе большинства из приведённых бинарных соединений возможно получение их твёрдых растворов: (CdTe)x(HgTe)1-x, (HgTe)x(HgSe)1-x, (PbTe)x(SnTe)1-x, (PbSe)x(SnSe)1-x и других.
Соединения AIIIBV, в основном, применяются для изделий электронной техники, работающих на сверхвысоких частотах
Соединения AIIBV используют в качестве люминофоров видимой области, светодиодов, датчиков Холла, модуляторов.
Соединения AIIIBV, AIIBVI и AIVBVI применяют при изготовлении источников и приёмников света, индикаторов и модуляторов излучений.
Окисные полупроводниковые соединения применяют для изготовления фотоэлементов, выпрямителей и сердечников высокочастотных индуктивностей.
Температура плавления, К | 1333 | 998 | 798 | 1873 | 1553 | 1218 |
Постоянная решётки, Å | 6,14 | 6,09 | 6,47 | 5,66 | 5,69 | 6,06 |
Ширина запрещённой зоны ΔE, эВ | 0,52 | 0,7 | 0,18 | 2,2 | 1,32 | 0,35 |
Диэлектрическая проницаемость ε | 8,4 | 14,0 | 15,9 | — | — | — |
Подвижность, см²/(В·с): | ||||||
электронов | 50 | 5000 | 60 000 | — | 4000 | 3400[3] |
дырок | 150 | 1000 | 4000 | — | 400 | 460[3] |
Показатель преломления света, n | 3,0 | 3,7 | 4,1 | — | 3,2 | 3,2 |
Линейный коэффициент тепловогорасширения, K-1 | — | 6,9·10-6 | 5,5·10-6 | 5,7·10-6 | 5,3·10-6 | — |
Группа IV
- собственные полупроводники
- составной полупроводник
Группа III-V
- 2-х компонентные полупроводники
- Антимонид алюминия, AlSb
- Арсенид алюминия, AlAs
- Нитрид алюминия, AlN
- Фосфид алюминия, AlP
- Нитрид бора, BN
- Фосфид бора, BP
- Арсенид бора, BAs
- Антимонид галлия, GaSb
- Арсенид галлия, GaAs
- Нитрид галлия, GaN
- Фосфид галлия, GaP
- Антимонид индия, InSb
- Арсенид индия, InAs
- Нитрид индия, InN
- фосфид индия, InP
- 3-х компонентные полупроводники
- AlxGa1-xAs
- InGaAs, InxGa1-xAs
- InGaP
- AlInAs
- AlInSb
- GaAsN
- GaAsP
- AlGaN
- AlGaP
- InGaN
- InAsSb
- InGaSb
- 4-х компонентные полупроводники
- AlGaInP, InAlGaP, InGaAlP, AlInGaP
- AlGaAsP
- InGaAsP
- AlInAsP
- AlGaAsN
- InGaAsN
- InAlAsN
- GaAsSbN
- 5-ти компонентные полупроводники
Группа II-VI
- 2-х компонентные полупроводники
- 3-х компонентные полупроводники
- CdZnTe, CZT
- HgCdTe
- HgZnTe
- HgZnSe
Группа I-VII
- 2-х компонентные полупроводники
Группа IV-VI
- 2-х компонентные полупроводники
- 3-х компонентные полупроводники
Группа V-VI
- 2-х компонентные полупроводники
Группа II—V
- 2-х компонентные полупроводники
Другие
- Разные оксиды
Органические полупроводники
Магнитные полупроводники
См. также
Примечания
- ↑ Н. С. Зефиров (гл. ред.). Химическая энциклопедия. — Москва: Большая Российская Энциклопедия, 1995. — Т. 4. — С. 55. — 639 с. — 20 000 экз. — ISBN 5-85270-092-4
- ↑ Физические величины: справочник/ А. П. Бабичев Н. А. Бабушкина, А. М. Бартковский и др. под ред. И. С. Григорьева, Е. З. Мейлихова. — М.; Энергоатомиздат, 1991. — 1232 с — ISBN 5-283-04013-5
- ↑ 1 2 Индия арсенид // Химическая энциклопедия
Литература
- Тауц Я. Фото- и термоэлектрические явления в полупроводниках. М.: Издательство иностранной литературы, 1962, 256 с.
- Тауц Я. Оптические свойства полупроводников. М.: Мир, 1967, 74 с.
Ссылки
dic.academic.ru
Автор(ы): | Бонч-Бруевич В. Л., Калашников С. Г. 19.08.2015 |
Год изд.: | 1977 |
Описание: | Эта книга написана на основе лекций, в течение ряда лет читавшихся авторами для студентов физического факультета Московского университета и факультета физической и квантовой электроники Московского физико-технического Института. Вместе с тем, она не является конспектом лекций, а задумана как учебное пособие и поэтому содержит дополнительный материал для желающих изучить предмет более подробно. Книга рассчитана на лиц, владеющих материалом общефизических и математических курсов в объеме программ, принятых на физических факультетах университетов и в физико-технических институтах. |
Оглавление: | Предисловие [10]Глава I. НЕКОТОРЫЕ СВОЙСТВА ПОЛУПРОВОДНИКОВ. § 1. Кинетические явления в полупроводниках [13] § 2. Время релаксации [23] § 3. Элементарная теория гальваномагнитных явлений [25] § 4. Сметанная проводимость [32] § 5. Некоторые экспериментальные результаты [35]Глава II. ХИМИЧЕСКИЕ СВЯЗИ В ПОЛУПРОВОДНИКАХ. § 1. Кристаллические решетки [50] § 2. Электронная конфигурация атомов [53] § 3. Типы химической связи [56] § 4. Строение некоторых полупроводниковых кристаллов [60] § 5. Некристаллические полупроводники [64] § 6. Запрещенная зона энергий [69] § 7. Полупроводниковые свойства и химическая связь [70] § 8. Полупроводники с малой подвижностью [71] § 9. Примесные атомы [73] § 10. Вакансии и междоузельные атомы [78] § 11. Дислокации [81]Глава III. ЭЛЕМЕНТЫ ЗОННОЙ ТЕОРИИ ТВЕРДОГО ТЕЛА.I. ИДЕАЛЬНАЯ РЕШЕТКА. § 1. Основные предположения [87] § 2. Волновая функция электрона в периодическом поле [89] § 3. Зоны Бриллюэна [94] § 4. Энергетические зоны [100] § 5. Метод сильно связанных электронов [103] § 6. Закон дисперсии. Изоэнергетические поверхности [112] § 7. Металлы и полупроводники [114] § 8. Эффективная масса [116] § 9. Зонная структура некоторых полупроводников [122]Глава IV. ЭЛЕМЕНТЫ ЗОННОЙ ТЕОРИИ ТВЕРДОГО ТЕЛА.II. КРИСТАЛЛЫ ВО ВНЕШНИХ ПОЛЯХ. НЕИДЕАЛЬНЫЕ КРИСТАЛЛЫ. § 1. Средние значения скорости и ускорения электрона в кристаллической решетке [129] § 2. Электроны и дырки [133] § 3. Движение носителей заряда в постоянном и однородном магнитном поле (классическая теория). Диамагнитный резонанс [137] § 4. Метод эффективной массы [145] § 5. Энергетический спектр носителя заряда в постоянном и однородном магнитном поле (квантовая теория) [149] § 6. Движение и энергетический спектр носителей заряда в постоянном электрическом поле [154] § 7. Мелкие примесные уровни в гомеополярном кристалле [160]Глава V. СТАТИСТИКА ЭЛЕКТРОНОВ И ДЫРОК В ПОЛУПРОВОДНИКАХ. § 1. Введение [167] § 2. Распределение квантовых состояний в зонах [168] § 3. Распределение Ферми—Дирака [169] § 4. Концентрации электронов и дырок в зонах [170] § 5. Невырожденные полупроводники [172] § 6. Случай сильного вырождения [174] § 7. Эффективная масса плотности состояний [175] § 8. Плотность состояний в квантующем магнитном поле [179] § 9. Концентрации электронов и дырок на локальных уровнях. Простые центры [181] § 10. Многозарядные центры [185] § 11. Распределение. Гиббса [186] § 12. Частные случаи [189] § 13. Определение положения уровня Ферми [191] § 14. Уровень Ферми в собственном полупроводнике [193] § 15. Полупроводник с примесью одного типа [194] § 16. Взаимная компенсация доноров и акцепторов [195] § 17. Компенсированные полупроводники [197] § 18. Определение энергетических уровней примесных атомов [199]Глава VI. ЯВЛЕНИЯ В КОНТАКТАХ (МОНОПОЛЯРНАЯ ПРОВОДИМОСТЬ). § 1. Потенциальные барьеры [205] § 2. Плотность тока. Соотношение Эйнштейна [207] § 3. Условия равновесия контактирующих тел [209] § 4. Термоэлектронная работа выхода [210] § 5. Контактная разность потенциалов [213] § 6. Распределение концентрации электронов и потенциала в слое объемного заряда [216] § 7. Длина экранирования [218] § 8. Обогащенный контактный слой в отсутствие тока [220] § 9. Истощенный контактный слой [222] § 10. Токи, ограниченные пространственным зарядом [226] § 11. Выпрямление в контакте металл—полупроводник [232] § 12. Диффузионная теория [236] § 13. Сравнение с экспериментом [239]Глава VII. НЕРАВНОВЕСНЫЕ ЭЛЕКТРОНЫ И ДЫРКИ. § 1. Неравновесные носители заряда [243] § 2. Время жизни неравновесных носителей заряда [244] § 3. Уравнения непрерывности [247] § 4. Фотопроводимость [250] § 5. Квазиуровни Ферми [255] § 6. Электронно-дырочные переходы [258] § 7. Обнаружение неравновесных носителей заряда [261] § 8. Амбиполярная диффузия и амбиполярный дрейф [264] § 9. Длины диффузии и дрейфа [268] § 10. n*—n* и р*—р* переходы [271]Глава VIII. ВЫПРЯМЛЕНИЕ И УСИЛЕНИЕ ПЕРЕМЕННЫХ ТОКОВ С ПОМОЩЬЮ р-n-ПЕРЕХОДОВ. § 1. Статическая вольтамперная характеристика р—n-перехода [274] § 2. р—n-переход при переменном напряжении [277] § 3. Туннельный эффект в р—n-переходах. Туннельные диоды [282] § 4. Биполярный полупроводниковый триод [285] § 5. Гетеропереходы [289]Глава IX. СТАТИСТИКА РЕКОМБИНАЦИИ ЭЛЕКТРОНОВ И ДЫРОК. § 1. Различные типы процессов рекомбинации [294] § 2. Темп рекомбинации зона—зона [295] § 3. Время жизни при излучательной рекомбинации [298] § 4. Рекомбинация через примеси и дефекты [303] § 5. Нестационарные процессы [307] § 6. Стационарные состояния [310] § 7. Многозарядные ловушки [314]Глава Х. ПОВЕРХНОСТНЫЕ ЭЛЕКТРОННЫЕ СОСТОЯНИЯ. § 1. Происхождение поверхностных состояний [317] § 2. Влияние поверхностного потенциала на электропроводность [322] § 3. Эффект поля [325] § 4. Некоторые эффекты, связанные с поверхностными состояниями [332] § 5. Скорость поверхностной рекомбинации [335] § 6. Влияние поверхностной рекомбинации на фотопроводимость [338] § 7. Затухание фотопроводимости в тонких пластинках и нитевидных образцах [341] § 8. Зависимость поверхностной рекомбинации от поверхностного потенциала [343] § 9. Ток насыщения диодов [345]Глава XI. ФОТОЭЛЕКТРОДВИЖУЩИЕ СИЛЫ. § 1. Роль неосновных носителей [347] § 2. Фотоэдс в однородных полупроводниках [350] § 3. Объемная фотоэдс [351] § 4. Вентильная фотоэдс [355] § 5. Вентильные фотоэлементы [359] § 6. Поверхностная фотоэдс [365] § 7. Фотоэлектромагнитный эффект [366]Глава XII. КОЛЕБАНИЯ КРИСТАЛЛИЧЕСКОЙ РЕШЕТКИ. § 1. Малые колебания [374] § 2. Нормальные координаты [376] § 3. Частоты нормальных колебаний. Акустические и оптические ветви [384] § 4. Вектор смещения [389] § 5. Квантовомеханическое рассмотрение колебаний решетки [391] § 6. Фононы [394]Глава ХIII. ЭЛЕМЕНТЫ КИНЕТИЧЕСКОЙ ТЕОРИИ ЯВЛЕНИЙ ПЕРЕНОСА. § 1. Феноменологические соотношения [399] § 2. Кинетические коэффициенты и функция распределения [406] § 3. Кинетическое уравнение [408] § 4. Термодинамическое равновесие. Принцип детального равновесия [413] § 5. Малые отклонения от равновесия [416] § 6. Интеграл столкновений в случае упругого рассеяния и изотропных изоэнергетических поверхностей. Время релаксации импульса [418] § 7. Элементарные стационарные решения кинетического уравнения в случае малых отклонений от равновесия [424] § 8. Носители заряда в слабом переменном электрическом поле [439] § 9. Плазменные волны [444]Глава XIV. РАССЕЯНИЕ НОСИТЕЛЕЙ ЗАРЯДА В НЕИДЕАЛЬНОЙ КРИСТАЛЛИЧЕСКОЙ РЕШЕТКЕ. § 1. Постановка задачи. Теория возмущений [447] § 2. Вероятность перехода. Условие применимости кинетического уравнения [448] § 3. Энергия взаимодействия носителей заряда с фононами [453] § 4. Рассеяние носителей заряда фононами [465] § 5. Рассеяние носителей заряда примесными атомами [474] § 6. Подвижность, холл-фактор и термоэдс при различных механизмах рассеяния [481] § 7. Одновременное действие нескольких механизмов рассеяния [484]Глава XV. АКУСТО-ЭЛЕКТРОННЫЕ ЯВЛЕНИЯ. § 1. Предварительные замечания [488] § 2. Взаимодействие упругих волн с электронами проводимости [490] § 3. Упругие волны в пьезодиэлектриках [493] § 4. Упругие волны в пьезоэлектрических полупроводниках [494] § 5. Электронное поглощение и усиление ультразвуковых волн [500] § 6. Акусто-электрический эффект [502] § 7. Случай ql>> 1 [505] § 8. Усиление тепловых флуктуаций [508] § 9. Заключительные замечания [511]Глава XVI. ГОРЯЧИЕ ЭЛЕКТРОНЫ. § 1. Нагрев электронного газа [513] § 2. Симметричная и антисимметричная части функции распределения [518] § 3. Уравнения баланса [520] § 4. Электронная температура [521] § 5. Роль неупругости рассеяния [527] § 6. Зависимость подвижности и концентрации носителей заряда от напряженности поля [529] § 7. Дифференциальная проводимость [537] § 8. Флуктуационная неустойчивость [540] § 9. Электрические домены и токовые шнуры [542] § 10. Движущиеся и статические домены [545]Глава XVII. ПРОБЛЕМЫ ОБОСНОВАНИЯ ЗОННОЙ ТЕОРИИ И ЗАДАЧИ, ВЫХОДЯЩИЕ ЗА ЕЕ РАМКИ. § 1. Три вопроса к зонной теории [547] § 2. Адиабатическое приближение [548] § 3. Приближение малых колебаний [552] § 4. Роль колебаний решетки. Полярон [553] § 5. Метод самосогласованного поля [556] § 6. Электроны и дырки как элементарные возбуждения многоэлектронной системы в полупроводнике [560] § 7. Экситон [563] § 8. Мелкие локальные уровни при учете экранирования примесных центров [567] § 9. Механизмы рекомбинации [569]Глава XVIII. ОПТИКА ПОЛУПРОВОДНИКОВ. § 1. Поглощение и испускание света полупроводниками. Феноменологические соотношения [576] § 2. Механизмы поглощения [581] § 3. Поглощение и отражение электромагнитных волн газом свободных носителей заряда [583] § 4. Коэффициенты поглощения и излучения при оптических переходах зона—зона [587] § 5. Прямые и непрямые переходы [591] § 6. Полупроводниковые лазеры [594] § 7. Коэффициенты поглощения при прямых переходах. Комбинированная плотность состояний [599] § 8. Критические точки [604] § 9. Непрямые переходы [610] § 10. Электрооптика [613] § 11. Модуляционная спектроскопия [614] § 12. Магнетооптика [615]Глава XIX. СИЛЬНО ЛЕГИРОВАННЫЕ ПОЛУПРОВОДНИКИ. § 1. Примесные уровни и примесные зоны [617] § 2. Особенности сильно легированных полупроводников [620] § 3. Иерархия энергий [626] § 4. Плотность состояний [628] § 5. Хвост плотности состояний [632] § 6. Междузонные оптические переходы в сильно легированных полупроводниках [635] § 7. Некристаллические полупроводники [639]ПРИЛОЖЕНИЯ. I. К доказательству теоремы Блоха [643] II. Интегралы с функциями Блоха [644] III. Таблица значений интеграла Ф* [646] IV. Дельта-функция [647] V. Рекомбинация через многозарядные ловушки [648] VI. Интеграл поверхностной проводимости [650] VII. Диффузия неравновесных носителей заряда в магнитном поле [652] VIII. Вычисление суммы (ХII.2.6) [655] IX. Вывод условия ортогональности (ХII.2.11) [655] X. Переход от суммирования по дискретным компонентам квазиимпульса к интегрированию [656] XI. Гамильтониан взаимодействия электронов с акустическими фононами [657] XII. Потенциал заряженного центра при учете экранирования свободными носителями заряда [659] ХIII. Усреднение по координатам примесных атомов [661] XIV. Теорема об интеграле от периодической функции [664] XV. Интегралы с функцией Ферми в условиях сильного вырождения [664]Литература [666]Основные обозначения [670] |
Формат: | djvu |
Размер: | 9640668 байт |
Язык: | РУС |
Рейтинг: | 2 |
Открыть: | Ссылка (RU) Ссылка (FR) |
www.nehudlit.ru
Полупроводники в современной физике и технике
Реферат
по физике
на тему:
«Полупроводники в физике и технике»
Еще совсем недавно электротехника применяла, а физика изучала лишь предельные по своим электрическим свойствам материалы: хорошо проводящие металлы или непроводящие ток изоляторы.
В начале XX в. удалось установить, что в металле ток переносится электронами, а ничтожный ток, наблюдаемый в изоляторах, имеет электролитический характер. Однако после первых успехов электронной теории металлов и ионной теории диэлектриков исследование натолкнулось на ряд трудностей, которые удалось разрешить только с помощью новой квантовой механики на протяжении последнего десятилетия.
Главнейшей трудностью в теории металлов были их тепловые свойства. С одной стороны, электроны свободно перемещаются в металле, перенося электрический ток, выравнивая температуру, создавая термоэлектродвижущие силы. Это значит, что в тепловом движении электроны участвуют как самостоятельные частицы, движущиеся среди атомов металла. Нагревая металл, нужно сообщить энергию не только его атомам, по и свободным электронам. Число их, судя по оптическим свойствам металлов, равно числу атомов. Электроны должны получить столько же тепловой энергии, сколько получил бы газ, состоящий из такого же числа молекул.
На нагревание одного грамм-атома твердого тела на 1 °С требуется около 6 кал; па нагревание грамм-атома газа — 3 кал. Естественно было бы ожидать, что на нагревание грамм-атома металла на 1 °С потребуется 9 кал в отличие от непроводящих тел, теплоемкость грамм-атома которых составляет 6 кал. В действительности, однако, теплоемкость металлов существенно не отличается от теплоемкости диэлектриков.
Выход из этих противоречий, как и из ряда других трудностей, был найден благодаря квантовой механике. Как в отдельном атоме электроны могут занимать только строго определенные квантовые состояния (чем и объясняется, например, появление в спектре газов резких спектральных линий), так и в целом кристалле существуют строго ограниченные квантовые состояния, в которых могут находиться электроны. Как в атоме, так и в кристалле не может быть двух электронов в одном и том же квантовом состоянии. Естественно, что прежде всего электронами заполняются состояния с наименьшей энергией. Подсчет показывает, что при обычных температурах, когда средняя энергия теплового движения атомов составляет около 0.03 эВ (1 эВ — это энергия, которую приобретает электрон, пройдя в электрическом поле разность потенциалов в 1 В), электроны занимают все квантовые состояния с энергиями от нуля до 5—10 В. Поэтому энергия теплового движения 0.03 эВ мало влияет на среднюю энергию электронов, хотя последние и находятся в тепловом равновесии с атомами металла.
Квантовая теория установила также, чем обусловлена разница между проводниками и изоляторами. В металлах число возможных квантовых состояний значительно больше, чем число электронов. Поэтому, когда в металле создается электрическое поле, электроны имеют возможность изменять направление своего движения, переходя в те квантовые состояния, в которых их скорость направлена в сторону действующей на них электрической силы. Электроны могут также получать от электрического поля работу, переходя в состояния с более высокой энергией и отдавая потом избыточную энергию металлу, — так происходит нагревание металла при прохождении тока.
Диэлектрики отличаются от металлов не меньшим числом электронов — их столько же, если не больше. Они не проводят ток только потому, что число квантовых уровней в них равно числу электронов и свободных уровней нет. В диэлектрике в электрическом поле электрон не может изменить направление своего теплового движения, не может увеличить свою скорость, так как при этом он должен был бы перейти в новое квантовое состояние, которое уже занято другим электроном. Поэтому поле не может изменить тепловое движение электронов и, следовательно, не может создать электронный ток. Такова физическая картина идеального изолятора.
Те состояния, которые мы рассматривали, были нормальные состояния электронов. В отдельном атоме мы знаем и другие, так называемые возбужденные состояния. Поглотив определенную энергию падающего на атом света или встречного электрона, электрон может перейти в атоме на одно из квантовых состояний повышенной энергии. Возвращаясь обратно в нормальное состояние, электрон отдает избыток своей энергии другому атому или испускает его в виде электромагнитной световой волны (фотона).
Аналогичными свойствами обладают электроны в твердом кристаллическом теле. Кроме системы нормальных уровней, которые в изоляторе заняты электронами, всегда существуют системы возбужденных уровней со значительно большей энергией. Только электроны, которые получают достаточную энергию, могут перейти в эти состояния. Источником этой добавочной энергии может быть тепловая энергия или поглощенный свет (фотон с энергиейhv,где н — частота световых колебаний, a h— постоянная Планка, равная 6.61 · 10~27 эрг-с). Чем больше разность энергий возбужденных и нормальных уровней, тем меньшее число электронов при данной температуре получает возможность перейти в новые квантовые состояния. При комнатной температуре средняя энергия теплового движения равна 0.03 эВ. Если наименьшая энергия, необходимая для перехода в новые состояния, составляет, например, 1 эВ, то лишь ничтожная часть электронов может получить такую энергию. При 2 эВ их еще меньше. Можно утверждать, что во всех диэлектриках, в которых разность энергии между нормальными и возбужденными состояниями больше 0.02 эВ, все электроны остаются в нормальных состояниях. Следовательно, все такие диэлектрики не обладают электронной проводимостью. Но поглощение света достаточной частоты (2 эВ соответствуют желтому свету л~ 600 ммк) может все же перевести нормальные электроны на свободные уровни, где они будут участвовать в прохождении электрического тока. Это явление называется внутренним фотоэффектом, а созданный под влиянием света ток — фотоэлектрическим током. Определив наименьшую частоту света фотоэффекта, мы можем узнать энергию, необходимую для перехода из нормальных условий в возбужденные.
Помимо теплового движения и света, электронная проводимость диэлектрика может быть вызвана и химическими примесями. В кристаллической решетке, состоящей из одинаковых ионов или атомов, часто наблюдаются нарушения правильной структуры. Иногда отсутствуют отдельные ионы; иногда ионы решетки оказываются замещенными ионами других элементов или другой валентности; в кристаллах могут размещаться и добавочные атомы, включенные в нормальную решетку.
Во всех этих случаях, кроме нормальных квантовых уровней кристалла, появляются добавочные уровни примесей с энергией, отличной от энергии электронов решетки.
Часто энергия электронов примеси, занимая промежуточное положение между энергией нормальных и возбужденных уровней, оказывается ближе к свободным состояниям, чем энергия нормальных электронов. Если тепловое движение не дает нормальным электронам достаточной энергии для перехода в свободные состояния, то для примесей тепловой энергии может оказаться достаточно, чтобы перевести часть электронов на свободные уровни и вызвать проводимость кристалла.
Примеси могут повлиять на электронное равновесие и в другом направлении: часть нормальных электронов кристалла может перейти на уровни энергии, создаваемые примесями, освободив соответственное число нормальных состояний.
Это обстоятельство также сообщает диэлектрику способность проводить электрический ток. Рассмотрим подробнее, как совершается в этом случае движение электронов. Когда электрон, находившийся прежде в нормальном состоянии, переходит в одно из состояний, внесенных примесями, и закрепляется там, то не только появляются свободные состояния с определенной энергией и скоростью, но в то же время в кристалле с уходом отрицательно заряженного электрона в определенном месте остается избыток положительного заряда. Этот заряд может потом привлечь один из соседних электронов, на месте которого окажется тогда избыток положительного заряда. Такие переходы совершаются под влиянием теплового движения в самых разнообразных направлениях. Участок кристалла, где имеется недочет электрона, или, что то же, избыток положительного заряда, перемещается самым хаотическим образом, подобно электрону, участвующему в тепловом движении. Мы получаем впечатление, как будто положительный заряд движется в кристалле, тогда как на самом деле движутся электроны, замещающие свободные места. Когда в диэлектрике создано электрическое поле, то замещение свободного места происходит преимущественно при помощи тех электронов, которые направляются к положительному заряду электрического поля, т. е. в направлении от отрицательного полюса к положительному, а свободное место перемещается при этом на место ушедшего электрона, т. е. от положительного полюса к отрицательному, по направлению, в котором двигался бы положительный заряд, если бы он мог перемещаться. Таким образом, свободное место, оставленное электроном, перешедшим на атомы примеси или в свободные возбужденные состояния, мы можем уподобить свободному положительному заряду.
Движение электронов в диэлектрике может иметь двоякий характер.
1. Те электроны, которые перешли под влиянием тепла или света в свободные возбужденные состояния, получают возможность перемещаться внутри диэлектрика, перенося ток и тепло.
2. Оставшиеся после удаления электронов свободные места среди нормальных квантовых состояний замещаются соседними электронами так, как будто движется свободное место со своим положительным зарядом. Часто этот второй механизм тока называют током замещения. Мы будем его называть позитронным током (хотя свободные места имеют лишь частичное сходство с позитронами) в отличие от электронной проводимости первого рода.
mirznanii.com
ФИЗИКА ПОЛУПРОВОДНИКОВ. 50 лет советской физики
ФИЗИКА ПОЛУПРОВОДНИКОВ
Другой областью физики, в которую академик А. Ф. Иоффе также внес вместе со своими учениками огромный общепризнанный вклад, является физика полупроводников. Сегодня нам трудно представить себе физику без этой весьма актуальной области, но тридцать с лишним лет назад, когда А. Ф. Иоффе занялся систематическим исследованием свойств полупроводников, многие физики весьма критически отнеслись к этому начинанию. В то время казалось, что только металлы и диэлектрики являются материалами, достойными серьезных физических исследований. Проводники и изоляторы — это важно и нужно технике, а полупроводники, хотя к ним относится большинство природных соединений, — бесполезный и бесперспективный материал. Но академик А. Ф. Иоффе гениально предвидел ту огромную революционизирующую роль, которую уже сегодня полупроводники играют в технике.
На первых порах многое приходилось создавать — прежде всего методы получения достаточно чистых полупроводников и способы экспериментального определения их основных физических свойств: концентрации носителей тока, типа проводимости (электронный или дырочный), подвижности носителей и т. п. Многие из этих методов, впервые созданные А. Ф. Иоффе и его учениками, стали впоследствии классическими.
«Школа» Иоффе выполнила целую серию пионерских исследований электрических, гальваномагнитных, термоэлектрическях и фотоэлектрических свойств полупроводников различных типов.
Одним из важнейших результатов, полученных А. Ф. Иоффе и его сотрудниками, было обнаружение огромного влияния примесей на электрические свойства полупроводников. А. Ф. Иоффе показал, что примеси не только меняют в широких пределах проводимость полупроводников, но могут изменять даже знак носителей тока, превращать электронный полупроводник в дырочный и наоборот. Причем роль примеси могут играть не только чужеродные атомы, но и собственные атомы полупроводника при их избытке или недостатке. Например, избыток (против стехиометрического соотношения) атомов свинца в полупроводнике PbS делает этот полупроводник электронным, а избыток серы — дырочным полупроводником.
А. Ф. Иоффе первым сформулировал и экспериментально обосновал современные представления о механизме выпрямляющего действия полупроводников. Он показал, что запирающий слой образуется в результате контакта двух полупроводников с различными носителями тока — электронным и дырочным (по современной терминологии «p—n-переход»). При этом ток может свободно проходить только в том направлении, при котором электроны и дырки движутся навстречу друг другу по направлению к контакту, где они встречаются и рекомбинируют. В противоположном случае электроны и дырки расходятся друг от друга и проводимость контактного слоя резко падает, так как в нем остается крайне мало носителей тока. Эти работы открыли путь к созданию полупроводниковых выпрямителей (диодов).
Изучая полупроводниковые свойства ряда интерметаллических сплавов, принадлежащих так называемым «дальтонидам» (ZnSb, Mg3Sb2, Mg2Sn и т. п.) — типичным циклическим соединениям с валентной связью, А. Ф. Иоффе создал метод получения полупроводников с изменяющимися в широких пределах свойствами.
Особенно большое внимание А. Ф. Иоффе уделял исследованиям термоэлектрических и фотоэлектрических свойств полупроводников. Используя эти свойства, можно создать новые методы прямого преобразования энергии тепла и света в электрическую энергию, более надежные и экономичные.
А. Ф. Иоффе разработал теорию термоэлектрогенераторов и термоэлектрических холодильников (использующих эффект Пельте), открыв для современной техники новую обширную область — полупроводниковую энергетику. Под его руководством были сконструированы десятки новых типов полупроводниковых приборов и энергетических устройств, получивших разнообразные практические применения.
Поделитесь на страничкеСледующая глава >
fis.wikireading.ru
Физика полупроводников
Количество просмотров публикации Физика полупроводников - 71
Реферат по дисциплине: Физика
По теме:
Полупроводники
Выполнил:
студент гр. Размещено на реф.рфЗАС-510
Соболевский Д.В.
Проверил:
пр. Размещено на реф.рфСуриков В.И.
Сургут 2015
Содержание:
Введение…………………………………………………………………………………..3
1. Физика полупроводников…………………………………….......................................4
1.1 Зонная структура полупроводников…………………………. …………...4
1.2 Терминология и основные понятия………………………….. …………..5
1.3 Статистика электронов и дырок в полупроводниках…………………..6
1.4 Кон-ция Эл-в и дырок в примесном полупроводнике……………….....11
1.5 Определение положения уровня Ферми…………………………………12
1.6 Проводимость полупроводников………………………..............................13
1.7 Токи в полупроводниках………………………………………………….14
1.8 Неравновесные носители………………………………………………….15
1.9 Уравнение непрерывности………………………………………………..17
2. Полупроводниковые диоды…………………………………………………………….18
2.1. Характеристики идеального диода на базе p-n перехода……………..18
2.2. Выпрямление в диоде…………………………………………………………19
2.3. Характеристическое сопротивление………………………………………..19
2.4. Влияние температуры на характеристики диодов………………………..20
3.Транзисторы……………………………………………………………………………..21
3.1. Принцип работы транзистора…………………………………………………22
3.2.Параметры транзистора как элемента цепи…………………………………23
3.3.Типы транзисторов………………………………………………………………25
3.4.Технологические разновидности биполярных транзисторов……………...26
4.Программа расчета параметров диода и транзистора……………………………..27
Заключение………………………………………………………………………………...32
Список использованной литературы…………………………………………………..33
Введение
Электроника представляет собой бурно развивающуюся отрасль науки и техники. Она изучает физические основы и практическое применение различных электронных приборов. К физической электронике относят: электронные и ионные процессы в газах и проводниках. На поверхности раздела между вакуумом и газом, твердыми и жидкими телами. К технической электронике относят изучение устройства электронных приборов и их применение. Область, посвященная применению электронных приборов в промышленности, принято называть Промышленной Электроникой. Одним из фундаментальных понятий электроники и радиотехники вообще является понятие “полупроводник”. По этой причине в данной работе мы будем рассматривать именно сферу этого понятия.
ПОЛУПРОВОДНИКИ, вещества, электропроводность которых при комнатной температуре имеет промежуточное значение между электропроводностью металлов (106-104 Ом-1 см-1) и диэлектриков (10-8-10-12 Ом-1). Характерная особенность полупроводников - возрастание электропроводности с ростом температуры; при низких температурах электропроводность полупроводников мала; на нее влияют свет, сильное электрическое поле, потоки быстрых частиц и т.д. Высокая чувствительность электропроводности к содержанию примесей и дефектов в кристаллах также характерна для полупроводников. К полупроводникам относится большая группа веществ (Ge, Si и др.). Носителями заряда в полупроводниках являются электроны проводимости и дырки. В идеальных кристаллах они появляются всегда парами, так что их концентрации равны. В реальных кристаллах, содержащих примеси и дефекты структуры, равенство концентраций электронов и дырок может нарушаться и проводимость осуществляется практически только одним типом носителей (смотри также Зонная теория, Твердое тело). Особенности полупроводников определяют их применение (смотри Полупроводниковые приборы).Все эти свойства позволили проводникам стать одними из самых важных материалов в радиотехнике.
Физика полупроводников
referatwork.ru
Видеоматериалы
Опыт пилотных регионов, где соцнормы на электроэнергию уже введены, показывает: граждане платить стали меньше
Подробнее...С начала года из ветхого и аварийного жилья в республике были переселены десятки семей
Подробнее...Более 10-ти миллионов рублей направлено на капитальный ремонт многоквартирных домов в Лескенском районе
Подробнее...Актуальные темы
ОТЧЕТ о деятельности министерства энергетики, ЖКХ и тарифной политики Кабардино-Балкарской Республики в сфере государственного регулирования и контроля цен и тарифов в 2012 году и об основных задачах на 2013 год
Подробнее...Предложения организаций, осуществляющих регулируемую деятельность о размере подлежащих государственному регулированию цен (тарифов) на 2013 год
Подробнее...
КОНТАКТЫ
360051, КБР, г. Нальчик
ул. Горького, 4
тел: 8 (8662) 40-93-82
факс: 8 (8662) 47-31-81
e-mail:
Этот адрес электронной почты защищен от спам-ботов. У вас должен быть включен JavaScript для просмотра.