Ультразвук и его применение в технике. Использование ультразвука в технике


Ultrasound and its application in engineering

Mechanical waves with a frequency of oscillation, more 20 000 Гц, not perceived by the person as the sound. Of ultrasound called waves or ultrasound. Ultrasound is strongly absorbed by gases and much weaker - solids and liquids. Therefore, the ultrasonic waves can propagate considerable distances only solids and liquids.

Since the energy, which is transmitted waves, proportional to the fluid density and the square of the frequency, the ultrasound can transfer energy, much greater, than sound waves. Another important property of ultrasound is, что relatively simply carried out its direction излучение. All this allows the wide use of ultrasound technology.

The described properties are used in ultrasonic sonar - the device for determining the depth of the sea (rice. 25.11). The ship is provided with a source and receiver of a certain frequency ultrasound. Source sends short ultrasonic pulses, and the receiver picks up reflected pulses. Knowing the time between departure and pulse reception and propagation velocity of ultrasound in water, using the formula (25.3) determine the depth of the sea. Similarly acts ultrasonic locator, which is used to determine the distance to obstacles in the horizontal direction of the ship. In the absence of such constraints ultrasonic pulses do not return to the vehicle.

Interesting, some animals, eg, the bats, have bodies, acting on the principle of ultrasonic locator, that allows them to navigate the darkness. Perfect ultrasonic locator are dolphins.

When passing ultrasound through the fluid liquid particles become large accelerations and strong affect different body, placed in liquid. It is used to accelerate a wide variety of manufacturing processes (eg, preparation of solutions, washing parts, leather tanning, etc.. д.).

When intense ultrasonic vibrations in its liquid particles acquire such large acceleration, that formed in the liquid for a short time breaks (voids), which dramatically slam, creating many small strokes, t. it is. proishodit cavitation. In such circumstances, liquid has strong crushing action, that is used for the preparation of suspensions, consisting of sputtered particles in a liquid of solid body, and emulsions - mists of fine droplets of one liquid in another.

Ultrasound is used to detect flaws in metal parts. In modern technology, the use of ultrasound as extensively, it is difficult even to list all the areas of its use.

Note, The mechanical wave with frequency less vibrations 16 Hz call infrasound waves or infrasonic. They also do not produce sound sensations, Infrasound waves arise at sea during hurricanes and earthquakes. infrasound propagation velocity in the water much more, than the speed of movement of a hurricane or giant tsunami, formed during the earthquake. This allows some marine animals, having the ability to perceive the infrasonic волны, getting in this way the signals of impending danger.

Поделиться ссылкой:

Liked this:

Like Loading...

Похожее

tehnar.net.ua

Ультразвук и его применение в технике – HomeWork.net.ua

Механические волны с частотой колебания, большей 20 000 Гц, не воспринимаются человеком как звук. Из называют ультразвуковыми волнами или ультразвуком. Ультразвук сильно поглощается газами и во много раз слабее — твердыми веществами и жидкостями. Поэтому ультразвуковые волны могут распространяться на значительные расстояния только в твердых телах и жидкостях.

Так как энергия, которую переносят волны, пропорциональна плотности среды и квадрату частоты, то ультразвук может переносить энергию, намного большую, чем звуковые волны. Еще одно важное свойство ультразвука заключается в том, что сравнительно просто осуществляется его направленное излучение. Все это позволяет широко использовать ультразвук в технике.

Описанные свойства ультразвука используются в эхолоте — приборе для определения глубины моря (рис. 25,11). Корабль снабжают источником и приемником ультразвука определенной частоты. Источник отправляет кратковременные ультразвуковые импульсы, а приемник улавливает отраженные импульсы. Зная время между отправлением и приемом импульсов и скорость распространения ультразвука в воде, с помощью формулы l = vt/2 определяют глубину моря. Аналогично действует ультразвуковой локатор, которым пользуются для определения расстояния до препятствия на пути корабля в горизонтальном направлении. При отсутствии таких препятствий ультразвуковые импульсы не возвращаются к кораблю.

Интересно, что некоторые животные, например, летучие мыши, имеют органы, действующие по принципу ультразвукового локатора, что позволяет им хорошо ориентироваться в темноте. Совершенный ультразвуковой локатор имеют дельфины.

При прохождении ультразвука через жидкость частицы жидкости приобретают большие ускорения и сильно воздействуют на различные тела, помещенные в жидкость. Это используют для ускорения самых различных технологических процессов (например, приготовления растворов, отмывки деталей, дубления кож и т. д.).

При интенсивных ультразвуковых колебаниях в жидкости ее частицы приобретают такие большие ускорения, что в жидкости образуются на короткое время разрывы (пустоты), которые резко захлопываются, создавая множество маленьких ударов, т. е. происходит кавитация. В таких условиях жидкость оказывает сильное дробящее действие, что используется для приготовления суспензий, состоящих из распыленных частиц твердого тела в жидкости, и эмульсий — взвесей мелких капелек одной жидкости в другой.

Ультразвук применяется для обнаружения дефектов в металлических деталях. В современной технике применение ультразвука столь обширно, что трудно даже перечислить все области его использования.

Заметим, что механические волны с частотой колебаний меньше 16 Гц называют инфразвуковыми волна ми или инфразвуком. Они также не вызывают звуковых ощущений. Инфразвуковые волны возникают на море во время ураганов и землетрясений. Скорость распространения инфразвука в воде гораздо больше, чем скорость перемещения урагана или гигантских волн цунами, образующихся при землетрясении. Это позволяет некоторым морским животным, обладающим способностью воспринимать инфразвуковые волны, получать таким путем сигналы о приближающейся опасности.

homework.net.ua

Ультразвук и его применение в технике

Опубликовано Апр 26, 2014

Ультразвук – это колебания за пределами слышимости человека в упругих средах, частота таких колебаний превышает 20кГц. Применение ультразвука получило большое распространение во всех технических сферах,  медицине и других областях применения. Большое распространение ультразвук получил в гидрографии, при изучении рельефов дна мировых океанов, рек и морей.

Для целей изучения используются такие приборы как: эхолот и гидролокаторы. Они создают достаточно узкий пучок ультразвука, который может быть отослан в любом направлении в водной среде.

Области применения:

Эхолоты – располагаются и монтируются  на днищах водных судов, они способны направлять ультразвуковое излучение строго в вертикальном направлении вниз, формируют короткоимпульсные волны, имея достаточную высокую частоту импульсов, создают большое число волн. Достигнув дна, волны отражаются в обратном направлении и попадают на приемник, расположенный рядом с излучателем. Приборы регистрации фиксируют на специальных магнитных лентах момент отправки и получения импульса. Замерив, скорость распространения и возврата таких импульсов определяют глубину исследуемого дна, и его рельеф.      Такие приборы могут иметь и реверсные функции, используемые для приема ультразвуковых волн. То есть они могут выполнять роль  передатчиков и приемников одновременно.

По характеру отражения таких волн определяют, какой тип грунта имеет дно. Если возвратная волна отражается не в полном объеме, это свидетельствует, что на дне находится песчаный или глинистый грунт. Потому что звуковые волны проходят сквозь такой грунт, и отражаются обратно только частично.

В случаях, если отражение происходит достаточно быстро, это указывает на наличие скалистого грунта на дне. Так же волна может иметь двойной эффект отражения, если на дне под слоем песчаного грунта залегает каменистый. Поскольку волна, проходя сквозь песчаный или глинистый грунт, снижает свою скорость, попадая на скалистый грунт, она с новой силой отражается от него. Приемник фиксирует такое отражение волны  с двумя скоростями, первой от песчаного грунта и второй от скалистого. Эхолоты широко используются в рыболовной промышленности, для изучения скопления косяков рыб. Также существует множество стройматериалов, проверяемых ультразвуком, такие как отличная лепнина от danel.ru.

Гидролокаторы выполняют те же функции,  что и эхолоты. Но они способны направлять ультразвуковые волны в любом направлении, в том числе и горизонтальном. Гидролокаторы нашли свое применение на морских судах для определения приближающейся опасности, например айсберга.

www.kcnti.ru

Что такое ультразвук? Применение ультразвука в технике и медицине

Образование 15 сентября 2015

21-й век - век радиоэлектроники, атома, покорения космоса и ультразвука. Сравнительно молода в наши дни наука об ультразвуке. В конце 19 века П. Н. Лебедев, русский ученый-физиолог, провел первые его исследования. После этого ультразвуком начали заниматься многие выдающиеся ученые.

Что такое ультразвук?

Ультразвук - это распространяющееся волнообразно колебательное движение, которое совершают частицы среды. Он имеет свои особенности, по которым отличается от звуков слышимого диапазона. Сравнительно легко в ультразвуковом диапазоне получить направленное излучение. К тому же он хорошо фокусируется, и в результате этого повышается интенсивность совершаемых колебаний. При распространении в твердых телах, жидкостях и газах ультразвук рождает интересные явления, нашедшие практическое применение во многих областях техники и науки. Вот что такое ультразвук, роль которого в различных сферах жизни сегодня очень велика.

Роль ультразвука в науке и практике

Ультразвук в последние годы стал играть в научных исследованиях все большую роль. Были успешно проведены экспериментальные и теоретические изыскания в области акустических течений и ультразвуковой кавитации, что позволило ученым разработать технологические процессы, которые протекают при воздействии в жидкой фазе ультразвука. Он является мощным методом исследования разнообразных явлений и в такой области знания, как физика. Ультразвук применяется, например, в физике полупроводников и твердого тела. Сегодня формируется отдельное направление химии, получившее название "ультразвуковая химия". Ее применение позволяет ускорить множество химико-технологических процессов. Зародилась также молекулярная акустика - новый раздел акустики, который изучает молекулярное взаимодействие с веществом звуковых волн. Появились новые сферы применения ультразвука: голография, интроскопия, акустоэлектроника, ультразвуковая фазомерия, квантовая акустика.

Помимо экспериментальных и теоретических работ в этой области, сегодня было выполнено множество практических. Разработаны специальные и универсальные ультразвуковые станки, установки, которые работают под повышенным статическим давлением и др. Внедрены в производство ультразвуковые автоматические установки, включенные в поточные линии, что позволяет существенно повысить производительность труда.

Видео по теме

Подробнее об ультразвуке

Расскажем подробнее о том, что такое ультразвук. Мы уже говорили о том, что это упругие волны и колебания. Частота ультразвука составляет более 15-20 кГц. Субъективными свойствами нашего слуха определяется нижняя граница ультразвуковых частот, которая отделяет ее от частоты слышимого звука. Эта граница, таким образом, является условной, и каждый из нас по-разному определяет, что такое ультразвук. Верхняя граница обозначена упругими волнами, их физической природой. Они распространяются только в материальной среде, то есть длина волны должна быть существенно больше, чем длина свободного пробега имеющихся в газе молекул или же межатомных расстояний в твердых телах и жидкостях. При нормальном давлении в газах верхняя граница частот УЗ - 109 Гц, а твердых телах и жидкостях - 1012-1013 Гц.

Источники ультразвука

Ультразвук в природе встречается и как компонент множества естественных шумов (водопада, ветра, дождя, гальки, перекатываемой прибоем, а также в сопровождающих разряды грозы звуках и т. д.), и как неотъемлемая часть животного мира. Им некоторые виды животных пользуются для ориентировки в пространстве, обнаружения препятствий. Известно, кроме того, что ультразвук в природе используют дельфины (в основном частоты от 80 до 100 кГц). Очень большой при этом может быть мощность излучаемых ими локационных сигналов. Известно, что дельфины способны обнаруживать косяки рыб, находящиеся на расстоянии до километра от них.

Излучатели (источники) ультразвука делятся на 2 большие группы. Первая - это генераторы, в которых колебания возбуждаются из-за наличия в них препятствий, установленных на пути движения постоянного потока - струи жидкости или газа. Вторая группа, в которую можно объединить источники ультразвука, - электроакустические преобразователи, которые превращают заданные колебания тока или электрического напряжения в механическое колебание, совершаемое твердым телом, излучающее акустические волны в окружающую среду.

Приемники ультразвука

На средних и низких частотах приемниками ультразвука выступают чаще всего пьезоэлектрического типа электроакустические преобразователи. Они могут воспроизводить форму полученного акустического сигнала, представленную как временная зависимость звукового давления. Приборы могут быть либо широкополосными, либо резонансными - в зависимости от того, для каких условий применения они предназначены. Термические приемники используют для получения характеристик звукового поля, усредненных по времени. Они представляют собой покрытые звукопоглощающим веществом термисторы или термопары. Звуковое давление и интенсивность можно оценивать также оптическими методами, такими как дифракция света на УЗ.

Где применяется ультразвук?

Существует множество сфер его применения, при этом используются различные особенности ультразвука. Эти сферы можно разбить условно на три направления. Первое из них связано с получением посредством УЗ-волн различной информации. Второе направление - активное воздействие его на вещество. А третье связано с передачей и обработкой сигналов. УЗ определенного диапазона частот используется в каждом конкретном случае. Мы расскажем только о некоторых из множества областей, в которых он нашел свое применение.

Очистка с помощью ультразвука

Качество такой очистки нельзя сравнить с другими способами. При полоскании деталей, к примеру, на поверхности их сохраняется до 80% загрязнений, около 55 % - при вибрационной очистке, около 20 % - при ручной, а при ультразвуковой остается не более 0,5 % загрязнений. Детали, которые имеют сложную форму, возможно хорошо очистить лишь с помощью ультразвука. Важным преимуществом его использования является высокая производительность, а также малые затраты физического труда. Более того, можно заменить дорогостоящие и огнеопасные органические растворители дешевыми и безопасными водными растворами, применять жидкий фреон и др.

Серьезная проблема - загрязнение воздуха копотью, дымом, пылью, окислами металлов и т. д. Можно использовать ультразвуковой способ очистки воздуха и газа в газоотводах независимо от влажности среды и температуры. Если УЗ-излучатель поместить в пылеосадочную камеру, в сотни раз увеличится эффективность ее действия. В чем же заключается сущность такой очистки? Беспорядочно движущиеся в воздухе пылинки сильнее и чаще ударяются друг о друга под действием ультразвуковых колебаний. При этом размер их увеличивается за счет того, что они сливаются. Коагуляцией называется процесс укрупнения частиц. Специальными фильтрами улавливаются утяжеленные и укрупненные их скопления.

Механическая обработка хрупких и сверхтвердых материалов

Если ввести между обрабатываемой деталью и рабочей поверхностью инструмента, использующего ультразвук, абразивный материал, то частицы абразива при работе излучателя станут воздействовать на поверхность этой детали. При этом разрушается материал и удаляется, подвергаясь обработке под действием множества направленных микроударов. Кинематика обработки складывается из основного движения - резания, то есть совершаемых инструментом продольных колебаний, и вспомогательного - движения подачи, которые осуществляет аппарат.

Ультразвук может проделывать различные работы. Для абразивных зерен источником энергии являются продольные колебания. Они и разрушают обрабатываемый материал. Движение подачи (вспомогательное) может быть круговым, поперечным и продольным. Обработка с помощью ультразвука имеет большую точность. В зависимости от того, какую зернистость имеет абразив, она составляет от 50 до 1 мк. Используя инструменты разной формы, можно делать не только отверстия, но также и сложные вырезы, криволинейные оси, гравировать, шлифовать, изготовлять матрицы и даже сверлить алмаз. Используемые как абразив материалы - корунд, алмаз, кварцевый песок, кремень.

Ультразвук в радиоэлектронике

Ультразвук в технике часто используется в области радиоэлектроники. В этой сфере часто появляется необходимость задержать электрический сигнал относительно какого-то другого. Ученые нашли удачное решение, предложив использовать ультразвуковые линии задержки (сокращенно - ЛЗ). Их действие основано на том, что электрические импульсы преобразуются в ультразвуковые механические колебания. Как же это происходит? Дело в том, что скорость ультразвука существенно меньше, чем та, которую развивают электромагнитные колебания. Импульс напряжения после обратного преобразования в электрические механических колебаний будет задержан на выходе линии относительно импульса входного.

Пьезоэлектрические и магнитострикционные преобразователи используют для преобразования колебаний электрических в механические и обратно. ЛЗ соответственно этому делятся на пьезоэлектрические и магнитострикционные.

Ультразвук в медицине

Различные виды ультразвука применяются для воздействия на живые организмы. В медицинской практике его использование сейчас очень популярно. Оно основывается на эффектах, которые возникают в биологических тканях тогда, когда через них проходит ультразвук. Волны вызывают колебания частиц среды, что создает своеобразный микромассаж тканей. А поглощение ультразвука ведет к их локальному нагреванию. Вместе с тем в биологических средах происходят определенные физико-химические превращения. Эти явления в случае умеренной интенсивности звука необратимых повреждений не вызывают. Они только улучшают обмен веществ, а значит и способствуют жизнедеятельности подверженного им организма. Такие явления применяются в УЗ-вой терапии.

Ультразвук в хирургии

Кавитация и сильное нагревание при больших интенсивностях приводят к разрушению тканей. Данный эффект применяется сегодня в хирургии. Фокусный ультразвук используют для хирургических операций, что позволяет осуществлять локальные разрушения в самых глубинных структурах (к примеру, мозга), не повреждая при этом окружающие. В хирургии также используются ультразвуковые инструменты, в которых рабочий конец имеет вид пилки, скальпеля, иглы. Колебания, накладываемые на них, придают новые качества этим приборам. Требуемое усилие значительно снижается, следовательно, уменьшается травматизм операции. К тому же проявляется обезболивающий и кровоостанавливающий эффект. Воздействие тупым инструментом с применением ультразвука используется для разрушения появившихся в организме некоторых видов новообразований.

Воздействие на биологические ткани осуществляется для разрушения микроорганизмов и используется в процессах стерилизации лекарственных средств и медицинских инструментов.

Исследование внутренних органов

В основном речь идет об исследовании брюшной полости. Для этой цели используется специальный аппарат. Ультразвук может применяться для нахождения и распознавания различных аномалий тканей и анатомических структур. Задача зачастую такова: существует подозрение на наличие злокачественного образования и требуется отличить его от образования доброкачественного или инфекционного.

Ультразвук полезен при исследовании печени и для решения других задач, к которым относится обнаружение непроходимости и заболеваний желчных протоков, а также исследование желчного пузыря для выявления наличия в нем камней и других патологий. Кроме того, может применяться исследование цирроза и других диффузных доброкачественных заболеваний печени.

В области гинекологии, главным образом при анализе яичников и матки, применение ультразвука является в течение длительного времени главным направлением, в котором оно осуществляется особенно успешно. Зачастую здесь также нужна дифференциация доброкачественных и злокачественных образований, что требует обычно наилучшего контрастного и пространственного разрешения. Подобные заключения могут быть полезны и при исследовании множества других внутренних органов.

Применение ультразвука в стоматологии

Ультразвук также нашел свое применение и в стоматологии, где он используется для удаления зубного камня. Он позволяет быстро, бескровно и безболезненно снять налет и камень. При этом слизистая полость рта не травмируется, а "карманы" полости обеззараживаются. Вместо боли пациент испытывает ощущение теплоты.

Источник: fb.ru Образование Что такое франшиза? - ответ кроется в брендах и страховании

 Сейчас много иностранных слов все больше входят в наш лексикон. Одно из них –  франшиза. Всего несколько лет назад с этим термином работали только  «продвинутые» бизнесмены, но теперь...

Образование Что такое генотипы? Значение генотипа в научной и образовательной сферах

Генетика не раз поражала нас своими достижениями в области изучения генома человека и других живых организмов. Простейшие манипуляции и вычисления не обходятся без общепринятых понятий и знаков, которыми не обделена и...

Искусство и развлечения Что такое па-де-де в балете и в цирке, на плацу и в концертном зале

Что такое па-де-де? В балете существует такой термин для обозначения парного танца. В цирке это конный номер на двух лошадях. В конном спорте – парное выступление наездников под музыку.Происхождение терм...

Образование Что такое орех? Древесный плод в твердой, крепкой скорлупе. Виды орехов, их свойства и применение

Плоды некоторых деревьев или кустарников, имеющие съедобное ядро и твердую скорлупу принято называть орехами. Но далеко не все плоды с твердой скорлупой являются таковыми – это зависит от того, с какой точки зре...

Здоровье Что такое чага? Гриб чага в народной медицине: полезные свойства, применение и противопоказания

Наша красивая живописная планета – это что-то необъяснимое и невероятное. На всей ее территории растет много уникальных растений, большая часть из которых приносит пользу для здоровья человека. Вот, например, вс...

Бизнес Что такое физическая охрана? Как она функционирует и в чем ее задача?

Несмотря на то, что везде вокруг нас физическая охрана заменяется видеокамерами и автономными системами наблюдениями, актуальность присутствия «надежных парней», контролирующих порядок где угодно, не утрач...

Бизнес Что такое каленое стекло: особенности производства, обработки и области применения

В оформлении интерьера помещений и фасадов зданий стекло нашло самое широкое применение. Без него невозможно представить ни одну оконную конструкцию, а изготовление прозрачной мебели давно стало перспективным видом би...

Бизнес Что такое напалм? Применение и состав напалма

О том, что такое напалм, многие советские люди узнали лишь в шестидесятые годы, смотря телерепортажи из воюющего Вьетнама. Страшные ожоги, пострадавшие и погибшие дети, горящие города и деревни вызывали справедливое в...

Закон Что такое соцпакет при устройстве на работу и что в него входит?

Всем нам необходимо работать, чтобы обеспечивать свою жизнь. Для этого современном мире большую важность имеет социальный пакет. Правда, что такое соцпакет, и что в него входит, немногие могут сказать сразу. Исправлен...

Здоровье Что такое бузина? Бузина черная: лечебные свойства и применение

Бузина черная — это листопадный кустарник, относящийся к семейству Адоксовые. В народе его называют бузиновый цвет, бузовник, пусторосль, самбук, пищальник. Есть мнение, что латинское наименование растения &laqu...

monateka.com

Применение ультразвука

Приготовление смесей с помощью ультразвука

Широко применяется ультразвук для приготовления однородных смесей (гомогенизации). Еще в 1927 году американские ученые Лимус и Вуд обнаружили, что если две несмешивающиеся жидкости (например, масло и воду) слить в одну мензурку и подвергнуть облучению ультразвуком, то в мензурке образуется эмульсия, то есть мелкая взвесь масла в воде. Подобные эмульсии играют большую роль в промышленности: это лаки, краски, фармацевтические изделия, косметика. Широкое внедрение такого метода приготовления эмульсий в промышленность началось после изобретения жидкостного свистка.

Применение ультразвука в биологии.

Способность ультразвука разрывать оболочки клеток нашла применение в биологических исследованиях, например, при необходимости отделить клетку от ферментов. Ультразвук используется также для разрушения таких внутриклеточных структур, как митохондрии и хлоропласты с целью изучения взаимосвязи между их структурой и функциями (аналитическая цитология). Другое применение ультразвука в биологии связано с его способностью вызывать мутации. Исследования, проведенные в Оксфорде, показали, что ультразвук даже малой интенсивности может повредить молекулу ДНК. Искусственное целенаправленное создание мутаций играет большую роль в селекции растений. Главное преимущество ультразвука перед другими мутагенами (рентгеновские лучи, ультрафиолетовые лучи) заключается в том, что с ним чрезвычайно легко работать.

Применение ультразвука для диагностики.

Ультразвуковые колебания при распространении подчиняются законам геометрической оптики. В однородной среде они распространяются прямолинейно и с постоянной скоростью. На границе различных сред с неодинаковой акустической плотностью часть лучей отражается, а часть преломляется, продолжая прямолинейное распространение. Чем выше градиент перепада акустической плотности граничных сред, тем большая часть ультразвуковых колебаний отражается. Так как на границе перехода ультразвука из воздуха на кожу происходит отражение 99,99 % колебаний, то при ультразвуковом сканировании больного необходимо смазывание поверхности кожи водным желе, которое выполняет роль переходной среды. Отражение зависит от угла падения луча (наибольшее при перпендикулярном направлении) и частоты ультразвуковых колебаний (при более высокой частоте большая часть отражается).

Для исследования органов брюшной полости и забрюшинного пространства, а также полости малого таза используется частота 2,5 - 3,5 МГц, для исследования щитовидной железы используется частота 7,5 МГц.

Генератором ультразвуковых волн является пьезодатчик, который одновременно играет роль приемника отраженных эхосигналов. Генератор работает в импульсном режиме, посылая около 1000 импульсов в секунду. В промежутках между генерированием ультразвуковых волн пьезодатчик фиксирует отраженные сигналы.

В качестве детектора или трансдюсора применяется сложный датчик, состоящий из нескольких сотен мелких пьезокристаллов, работающих в одинаковом режиме. В датчик вмонтирована фокусирующая линза, что дает возможность создать фокус на определенной глубине.

Используются три типа ультразвукового сканирования: линейное (параллельное), конвексное и секторное. Соответственно датчики или трансдюсоры ультразвуковых аппаратов называются линейные, конвексные и секторные. Выбор датчика для каждого исследования проводится с учетом глубины и характера положения органа. Для щитовидной железы используются конвексные трансдюсоры на 7,5 МГц, для исследования почек и печени в равной степени пригодны как линейные, так и конвексные датчики.

Преимуществом линейного датчика является полное соответствие исследуемого органа положению самого трансдюсора на поверхности тела. Недостатком линейных датчиков является сложность обеспечения во всех случаях равномерного прилегания поверхности трансдюсора к коже пациента, что приводит к искажениям получаемого изображения по краям.

Конвексный датчик имеет меньшую длину, поэтому добиться равномерности его прилегания к коже пациента более просто. Однако при использовании конвексных датчиков получаемое изображение по ширине на несколько сантиметров больше размеров самого датчика. Для уточнения анатомических ориентиров врач обязан учитывать это несоответствие.

Секторный датчик имеет еще большее несоответствие между размерами трансдюсора и получаемым изображением, поэтому используется преимущественно в тех случаях, когда необходимо с маленького участка тела получить большой обзор на глубине. Наиболее целесообразно использование секторного сканирования при исследовании, например, через межреберные промежутки.

mirznanii.com

Применение ультразвука в науке и технике

Применение ультразвука

Многообразные применения ультразвука можно условно разделить на три направления:

1. Получение информации посредством ультразвука

2. Воздействие на вещество

3. Обработка и передача сигналов

Зависимость скорости распространения и затухания акустических волн от свойств вещества и процессов в них происходящих, используется для:

- контроля протекания химических реакций, фазовых переходов, полимеризации и др.

- определения прочностных характеристик и состава материалов,

- определения наличия примесей,

- определения скорости  течения жидкости и газа,

Точность определения состава веществ и наличия примесей высока и составляет доли процента.

Большая группа методов основана на отражении и рассеянии УЗ волн на границах между средами. Эти методы позволяют проводить определять локацию инородных тел и используются в таких сферах как:

-        гидролокация,

-        неразрушающий контроль и дефектоскопия,

-        медицинская диагностика,

-        определения уровней жидкостей и сыпучих тел в закрытых ёмкостях,

-        определения размеров изделий,

-        визуализация звуковых полей – звуковидение и акустическая голография.

 Воздействие ультразвука на вещество, приводящее к необратимым изменениям в нём, широко используется в промышленности. При этом механизмы воздействия различны для разных сред. В газах основным фактором являются акустические течения ускоряющие процессы тепломассообмена. Причём эффективность УЗ перемешивания значительно выше обычного гидродинамического, т.к. пограничный слой имеет меньшую толщину. Это используется в следющих процессах:

-        ультразвуковая сушка,

-        горение в ультразвуковом поле,

-        коагуляция аэрозолей,

В жидкостях основную роль играет кавитация. На кавитации основаны следующие технологические процессы:

-        ультразвуковая очистка,

-        металлизация и пайка,

-        так называемый звукокапиллярный эффект - проникновение жидкостей в мельчайшие поры и трещины. Применяется для пропитки пористых материалов и любой обработки твёрдых тел в жидкостях.

-        диспергирование твёрдых тел в жидкостях,

-        дегазация (деаэрирование) жидкостей,

-        кристаллизация,

-        интенсификация электрохимических процессов,

-        получение аэрозолей.

-        уничтожения микроорганизмов и стерилизация инструментов в медицине.

Механическая обработка твёрдых тел с применением ультразвука основана на следующих эффектах: уменьшение трения между поверхностями при УЗ колебаниях одной из них, снижение предела текучести или пластическая деформация под действием УЗ. Ударное воздействие инструмента с УЗ частотой на металлы вызывает из упрочнение и снижение остаточных напряжений. Комбинированное  воздействие статического сжатия и ультразвуковых колебаний используется в ультразвуковой сварке.

Действия ультразвука на биологические объекты вызывает разнообразные эффекты и реакции в тканях организма, что широко используется в ультразвуковой терапии и хирургии. При повышении пороговой интенсивности УЗ, соответствующей возникновению кавитации, происходит разрушение бактерий и вирусов и стерилизация лекарственных веществ.

УЗ устройства применяются для преобразования и аналоговой обработки эл.сигналов и для управления световыми сигналами в оптике и оптоэлектронике. Малая скорость ультразвука используется в линиях задержки. Управление оптическими сигналами основывается на дифракции света на ультразвуке. Один из видов такой дифракции – т.н.брегговская дифракция зависит от длины волны ультразвука. Акустооптические устройства позволяют выделить из широкого спектра светового излучения узкий частотный интервал, т.е. осуществлять фильтрацию света.

Ультразвук чрезвычайно интересная вещь и возможности его практического применения не поддаются  никакому исчислению. И хотя наше предприятие, ООО "Кольцо-энерго", специализируется на ультразвуковых противонакипных устройствах, мы любим ультразвук во всех его проявлениях и будем рады обсудить любые идеи, с ним связанные.

koltso-energo.livejournal.com

Область применения ультразвука



Обратная связь

ПОЗНАВАТЕЛЬНОЕ

Сила воли ведет к действию, а позитивные действия формируют позитивное отношение

Как определить диапазон голоса - ваш вокал

Как цель узнает о ваших желаниях прежде, чем вы начнете действовать. Как компании прогнозируют привычки и манипулируют ими

Целительная привычка

Как самому избавиться от обидчивости

Противоречивые взгляды на качества, присущие мужчинам

Тренинг уверенности в себе

Вкуснейший "Салат из свеклы с чесноком"

Натюрморт и его изобразительные возможности

Применение, как принимать мумие? Мумие для волос, лица, при переломах, при кровотечении и т.д.

Как научиться брать на себя ответственность

Зачем нужны границы в отношениях с детьми?

Световозвращающие элементы на детской одежде

Как победить свой возраст? Восемь уникальных способов, которые помогут достичь долголетия

Как слышать голос Бога

Классификация ожирения по ИМТ (ВОЗ)

Глава 3. Завет мужчины с женщиной

Оси и плоскости тела человека - Тело человека состоит из определенных топографических частей и участков, в которых расположены органы, мышцы, сосуды, нервы и т.д.

Отёска стен и прирубка косяков - Когда на доме не достаёт окон и дверей, красивое высокое крыльцо ещё только в воображении, приходится подниматься с улицы в дом по трапу.

Дифференциальные уравнения второго порядка (модель рынка с прогнозируемыми ценами) - В простых моделях рынка спрос и предложение обычно полагают зависящими только от текущей цены на товар.

МИНИСТЕРСТВО ОБРАЗОВАНИЯ РЯЗАНСКОЙ ОБЛАСТИ

Областное Государственное Бюджетное

Профессиональное образовательное учреждение

«Рязанский педагогический колледж»

ИНДИВИДУАЛЬНЫЙ УЧЕБНЫЙ ПРОЕКТ

По учебной дисциплине «Физика»

Тема: «Ультразвук и инфразвук в жизни человека»

Выполнила: Васильева

Алёна Николаевна

Специальность: 44.02.02 Преподавание

В начальных классах

Группа: 11ш

Руководитель: Галкина

Наталья Евгеньевна

Введение.

Я выбрала тему «Ультразвук и инфразвук в жизни человека», потому что считаю ее очень интересной и полезной.

Инфразвуки и ультразвуки находятся за пределами диапазона частот, вызывающих звуковые ощущения.

Инфразвуки, или упругие волны с частотами 16 Гц и ниже, возникают при самых различных условиях - при обдувании ветром различных предметов, вибрировании с достаточной амплитудой станков, корпуса движущегося автомобиля, работающего двигателя самолёта и т.д. Инфразвуки не воспринимаются органами слуха человека, но на них реагирует организм в целом, поэтому понятна необходимость детального изучения таких колебаний. Исследования инфразвука начались относительно недавно и в настоящее время стройной теории для указанного диапазона упругих волн не существует. Задача изучения инфразвука осложняется особенностями их воздействия на приборы и живые организмы. Так, внутренние органы человека имеют собственные частоты колебаний (резонансные частоты) в пределах от б до 8 Гц, поэтому воздействие инфразвуковьгх колебаний доста­точной амплитуды может вызвать неприятные и даже болевые ощущения. Поэтому одна из задач исследования инфразвука связана с определением степени влияния низкочастотных колебаний на нервную, сердечно-сосудистую системы человека, на его работоспособность.

С помощью ультразвука производится эффективная очистка поверхностей, деталей, узлов механизмов от различных загрязнений, следов коррозии и т.д. Так, с помощью ультразвуковых установок производится очистка деталей от масла, следов окалины, очистка днища корабля, более того, защитная ультразвуковая установка предотвращает обрастание днища морского судна различными морскими живыми и растительными организмами, тем самым сохраняя эксплуатационные качества корабля. С помощью ультразвука производят очистку воздуха от загрязнений, осаждая частицы примесей, используют ультразвук для борьбы с туманами и т.д.

Широкое применение находит ультразвук и при ускорении ряда технологических процессов, там, где применение других методов затруднительно. Например, при сварке или пайке тонких фольг или проволок именно ультразвук позволяет получать качественные со­единения. Подробнее обо всем этом я расскажу в основной части проекта.

 

Цель проекта:

Познакомиться с понятиями ультразвук и инфразвук. Вспомнить где они используются. Узнать влияние ультра и инфра звука на организм человека.

Задачи проекта:

1. Изучить материал по теме «Влияние ультразвука и инфразвука на организм человека»

2. Уметь применять изученный материал в жизни.

 

Ультразвук и инфразвук в жизни человека.

Влияние ультразвука.

Ультразвук — звуковые волны, имеющие частоту выше воспринимаемых человеческим ухом, обычно, под ультразвуком понимают частоты выше 20 000 Герц.

Специфическое ощущение, воспринимаемое нами как звук, является результатом воздействия на слуховой аппарат человека колебательного движения упругой среды - чаще всего воздуха. Однако не все колебания среды, доходя до уха, вызывают ощущение звука. Нижней границей слышимого звука являются колебания с частотой 20 колебаний в секунду (20 Гц), верхняя граница лежит между 16 000 и 20 000 Гц. Положение этих границ подвержено индивидуальным изменениям.

 

Область применения ультразвука

Вне указанного диапазона частот также существуют колебательные процессы, физически не отличающиеся от звуковых колебаний и волн, но не воспринимаемые ухом как звуки. Колебания среды с частотами выше верхней границы слуха, порядка десятков и сотен тысяч герц, принято называть ультразвуками.

 

Ультразвук за последние годы нашел широкое применение в народном хозяйстве, биологии и медицине. В США, например, в настоящее время насчитываются миллионы ультразвуковых установок.

 

В промышленности применяются ультразвуки, частота которых в миллиарды раз превышает интенсивность окружающих нас слышимых звуков. Ультразвуки могут быть фокусированы и создают при этом очень высокое местное давление. Ультразвуком можно дробить вещество и ускорять химические реакции. Ультразвук способен вводить в коллоиды воду. При помощи ультразвука значительно ускоряются процессы дубления кожи, крашения, отбелки и мытья тканей, получения синтетического волокна, заменителей кожи и пластмасс. Ультразвук применяется для дефектоскопии, позволяющей определять внутренние дефекты в деталях, для очистки котлов от накипи, подводных поверхностей кораблей, для лужения алюминием, серебрения и т. д. Ультразвук нашел применение в доменном производстве, на водном транспорте, в рыболовном деле и геологии.

 

Ультразвук используется в медицине для диагностических целей (выявление инородных тел), в стоматологии (бормашины), для изготовления эмульсий лекарственных веществ и т. д.

В настоящее время ультразвук малой интенсивности широко используется для терапевтических целей.

 

Ультразвук оказывает сложное и выраженное биологическое действие, сущность которого еще недостаточно выяснена. Это действие, по-видимому, в основном зависит от создаваемых в тканях огромных местных давлений и от местного теплового эффекта, связанного с поглощением энергии при глушении вибрации. Жидкие среды и газы поглощают ультразвук, а твердые тела хорошо его проводят. Кости также являются хорошими проводниками ультразвука.

megapredmet.ru


Видеоматериалы

24.10.2018

Опыт пилотных регионов, где соцнормы на электроэнергию уже введены, показывает: граждане платить стали меньше

Подробнее...
23.10.2018

Соответствует ли вода и воздух установленным нормативам?

Подробнее...
22.10.2018

С начала года из ветхого и аварийного жилья в республике были переселены десятки семей

Подробнее...
22.10.2018

Столичный Водоканал готовится к зиме

Подробнее...
17.10.2018

Более 10-ти миллионов рублей направлено на капитальный ремонт многоквартирных домов в Лескенском районе

Подробнее...

Актуальные темы

13.05.2018

Формирование энергосберегающего поведения граждан

 

Подробнее...
29.03.2018

ОТЧЕТ о деятельности министерства энергетики, ЖКХ и тарифной политики Кабардино-Балкарской Республики в сфере государственного регулирования и контроля цен и тарифов в 2012 году и об основных задачах на 2013 год

Подробнее...
13.03.2018

Предложения организаций, осуществляющих регулируемую деятельность о размере подлежащих государственному регулированию цен (тарифов) на 2013 год

Подробнее...
11.03.2018

НАУЧИМСЯ ЭКОНОМИТЬ В БЫТУ

 
Подробнее...

inetpriem


<< < Ноябрь 2013 > >>
Пн Вт Ср Чт Пт Сб Вс
        1 2 3
4 5 6 7 8 9 10
11 12 13 14 15 16 17
18 19 20 21 22 23 24
25 26 27 28 29 30  

calc

banner-calc

.