Основные принципы генерирования мощных импульсов тока. Источник импульсов тока


4. Импульсные источники питания.

Источники питания на основе высокочастотного импульсного преобразователя

Достаточно часто при конструировании устройств возникают жесткие требования к размерам источника питания. В этом случае единственным выходом является применение ИП на основе высоковольтных высокочастотных импульсных преобразователей. которые подключаются к сети ~220 В без применения габаритного низкочастотного понижающего трансформатора и могут обеспечить большую мощность при малых размерах и теплоотдаче.

Структурная схема типового импульсного преобразователя с питанием от промышленной сети представлена на рис 34-4.

Входной фильтр предназначен для предотвращения проникновения импульсных помех в сеть. Силовые ключи обеспечивают подачу импульсов высокого напряжения на первичную обмотку высокочастотного трансформатора (могут применяться одно- и

двухтактные схемы). Частота и длительность импульсов задаются управляемым генератором (обычно применяется управление шириной импульсов, реже — частотой). В отличие от трансформаторов синусоидального сигнала низкой частоты, в импульсных ИП применяются широкополосные устройства, обеспечивающие эффективную передачу мощности на сигналах с быстрыми фронтами. Это накладывает существенные требования на тип применяемого магнитопровода и конструкцию трансформатора. С другой стороны, с увеличением частоты требуемые размеры трансформатора (с сохранением передаваемой мощности) уменьшаются (современные материалы позволяют строить мощные трансформаторы с приемлемым КПД на частоты до 100-400 кГц). Особенностью выходного выпрямителя является применение в нем не обычных силовых диодов, а быстродействующих диодов Шоттки, что обусловлено высокой частотой выпрямляемого напряжения. Выходной фильтр сглаживает пульсации выходного напряжения. Напряжение обратной связи сравнивается с опорным напряжением и затем управляет генератором. Обратите внимание на наличие гальванической развязки в цепи обратной связи, что необходимо, если мы хотим обеспечить развязку выходного напряжения с сетью.

При изготовлении таких ИП возникают серьезные требования к применяемым компонентам (что повышает их стоимость по сравнению с традиционными). Во-первых, это касается рабочего напряжения диодов выпрямителя, конденсаторов фильтра и ключевых транзисторов, которое не должно быть менее 350 В во избежание пробоев. Во-вторых, должны применяться высокочастотные ключевые транзисторы (рабочая частота 20-100 кГц) и специальные керамические конденсаторы (обычные оксидные электролиты на высоких частотах будут перегреваться ввиду их высокой индук-

тивности). И. в-третьих, частота насыщения высокочастотного трансформатора, определяемая типом применяемого магнитопро вода (как правило, используются тороидальные сердечники) должна быть значительно выше рабочей частоты преобразователя.

На рис. 3.4-5 приведена принципиальная схема классического ИП на основе высокочастотного преобразователя. Фильтр, состоящий из емкостей С1, С2, СЗ и дросселей L1, L2, служит для зашиты питающей сети от высокочастотных помех со стороны преобразователя. Генератор построен по автоколебательной схеме и совмещен с ключевым каскадом. Ключевые транзисторы VT1 и VT2 работают в противофазе, открываясь и закрываясь по очереди. Запуск генератора и надежную работу обеспечивает транзистор VT3, работающий в режиме лавинного пробоя. При нарастании напряжения на С6 через R3 транзистор открывается и конденсатор разряжается на базу VT2, запуская работу генератора. Напряжение обратной связи снимается с дополнительной (III) обмотки силового трансформатора Tpl.

Транзисторы VT1. VT2 устанавливают на пластинчатые радиаторы не менее 100 см^2. Диоды VD2-VD5 с барьером Шоттки ставятся на небольшой радиатор 5 см^2. Данные дросселей и трансформаторов:L1-1. L2 наматывают на кольцах из феррита 2000НМ К12х8х3 в два провода проводом ПЭЛШО 0,25: 20 витков. ТР1 — на двух кольцах, сложенных вместе, феррит 2000НН КЗ 1х18.5х7;

обмотка 1 — 82 витка проводом ПЭВ-2 0,5: обмотка II — 25+25 витков проводом ПЭВ-2 1,0: обмотка III — 2 витка проводом ПЭВ-2 0.3. ТР2 наматывают на кольце из феррита 2000НН К10х6х5. все обмотки выполнены проводом ПЭВ-2 0.3: обмотка 1 — 10 витков:

обмотки II и III — по 6 витков, обе обмотки (II и III) намотаны так, что занимают на кольце по 50% площади не касаясь и не перекрывая друг друга, обмотка I намотана равномерно по всему кольцу и изолирована слоем лакоткани. Катушки фильтра выпрямителя L3, L4 наматывают на феррите 2000НМ К 12х8х3 проводом ПЭВ-2 1,0 , количество витков — 30. В качестве ключевых транзисторов VT1, VT2 могут применяться КТ809А. КТ812, КТ841.

Номиналы элементов и намоточные данные трансформаторов приведены для выходного напряжения 35 В. В случае, когда требуются иные рабочие значения параметров, следует соответству ющим образом изменить количество витков в обмотке 2 Тр1.

Описанная схема имеет существенные недостатки, обусловленные стремлением предельно уменьшить количество применяемых компонентов Это и низкий "уровень стабилизации выходного напряжения, и нестабильная ненадежная работа, и низкий выходной ток. Однако она вполне пригодна для питания простейших конструкций разной мощности (при применении соответствующих компонентов), таких как: калькуляторы. АОНы. осветительные приборы и т.п.

Еще одна схема ИП на основе высокочастотного импульсного преобразователя приведена на рис. 3.4-6. Основным отличием этой схемы от стандартной структуры, представленной на рис. 3 .4-4 является отсутствие цепи обратной связи. В связи с этим, стабильность напряжения на выходных обмотках ВЧ трансформатора Тр2 достаточно низкая и требуется применение вторичных стабилизаторов (в схеме используются универсальные интегральные стабилизаторы на ИС серии КР142).

 

lib.qrz.ru

3.4 Импульсные источники питания

В отличие от традиционных линейных ИП, предполагающих гашение излишнего нестабилизированного напряжения на проходном линейном элементе, импульсные ИП используют иные методы и физические явления для генерации стабилизированного напряжения, а именно: эффект накопления энергии в катушках индуктивности, а также возможность высокочастотной трансформации и преобразования накопленной энергии в постоянное напряжение. Существует три типовых схемы построения импульсных ИП (см. рис. 3.4-1): повышающая (выходное напряжение выше входного), понижающая (выходное напряжение ниже входного) и инвертирующая (выходное напряжение имеет противоположную по отношению к входному полярность). Как видно из рисунка, отличаются они лишь способом подключения индуктивности, в остальном, принцип работы остается неизменным, а именно.

Ключевой элемент (обычно применяют биполярные или МДП транзисторы), работающий с частотой порядка 20-100 кГц, периодически на короткое время (не более 50% времени) прикла

дывает к катушке индуктивности полное входное нестабилизированное напряжение. Импульсный ток. протекающий при этом через катушку, обеспечивает накопление запаса энергии в её магнитном поле 1/2LI^2 на каждом импульсе. Запасенная таким образом энергия из катушки передастся в нагрузку (либо напрямую, с использованием выпрямляющего диода, либо через вторичную обмотку с последующим выпрямлением), конденсатор выходного сглаживающего фильтра обеспечивает постоянство выходного напряжения и тока. Стабилизация выходного напряжения обеспечивается автоматической регулировкой ширины или частоты следования импульсов на ключевом элементе (для слежения за выходным напряжением предназначена цепь обратной связи).

Такая, хотя и достаточно сложная, схема позволяет существенно повысить КПД всего устройства. Дело в том, что, в данном случае, кроме самой нагрузки в схеме отсутствуют силовые элементы, рассеивающие значительную мощность. Ключевые транзисторы работают в режиме насыщенного ключа (т.е. падение напряжения на них мало) и рассеивают мощность только в достаточно короткие временные интервалы (время подачи импульса). Помимо этого, за счет повышения частоты преобразования можно существенно увеличить мощность и улучшить массогабаритные характеристики.

Важным технологическим преимуществом импульсных ИП является возможность построения на их основе малогабаритных сетевых ИП с гальванической развязкой от сети для питания самой разнообразной аппаратуры. Такие ИП строятся без применения громоздкого низкочастотного силового трансформатора по схеме высокочастотного преобразователя. Это, собственно, типовая схема импульсного ИП с понижением напряжения, где в качестве входного напряжения используется выпрямленное сетевое напряжение, а в качестве накопительного элемента — высокочастотный трансформатор (малогабаритный и с высоким КПД), со вторичной обмотки которого и снимается выходное стабилизированное напряжение (этот трансформатор обеспечивает также гальваническую развязку с сетью).

К недостаткам импульсных ИП можно отнести: наличие высокого уровня импульсных шумов на выходе, высокую, сложность и низкую надежность (особенно при кустарном изготовлении), необходимость применения дорогостоящих высоковольтных высокочастотных компонентов, которые в случае малейшей неисправности легко выходят из строя "всем скопом" (при этом. как правило, можно наблюдать впечатляющие пиротехнические эффекты). Любителям покопаться во внутренностях устройств с отверткой и паяльником при конструировании сетевых импульсных ИП придется быть крайне осторожными, так как многие элементы таких схем находятся под высоким напряжением.

3.4.1 Эффективный импульсный стабилизатор низкого уровня сложности

На элементной базе, аналогичной применявшейся в описанном выше (рис. 3.3-3) линейном стабилизаторе, можно построить импульсный стабилизатор напряжения. При таких же характеристиках он будет обладать значительно меньшими габаритами и лучшим тепловым режимом. Принципиальная схема такого стабилизатора приведена на рис. 3.4-2. Стабилизатор собран по типовой схеме с понижением напряжения (рис. 3.4-1а).

При первом включении, когда конденсатор С4 разряжен и к выходу подключена достаточно мощная нагрузка, ток протекает через ИС линейного стабилизатора DA1. Вызванное этим током падение напряжения на R1 отпирает ключевой транзистор VT1, который тут-же входит в режим насыщения, так как индуктивное сопротивление L1 велико и через транзистор протекает достаточно большой ток. Падение напряжения на R5 открывает основной ключевой элемент — транзистор VT2. Ток. нарастающий в L1, заряжает С4, при этом через обратную связь на R8 происходит запи-

рание стабилизатора и ключевого транзистора. Энергия , запасенная в катушке, питает нагрузку. Когда напряжение на С4 падает ниже напряжения стабилизации, открывается DA1 и ключевой транзистор. Цикл повторяется с частотой 20-30 кГц.

Цепь R3. R4, С2 задаст уровень выходного напряжения. Его можно плавно регулировать в небольших пределах, от Ucт DA1 до Uвх. Однако если Uвых поднять близко к Uвх, появляется некото рая нестабильность при максимальной нагрузке и повышенный уровень пульсации. Для подавления высокочастотных пульсации на выходе стабилизатора включен фильтр L2, С5.

Схема достаточно проста и максимально эффективна для данного уровня сложности. Все силовые элементы VT1, VT2, VD1, DA1 снабжаются небольшими радиаторами. Входное напряжение нс должно превышать 30 В. что является максимальным для стабилизаторов КР142ЕН8. Выпрямительные диоды применять на ток не менее 3 А.

3.4.2 Устройство бесперебойного питания на основе импульсного стабилизатора

На рис. 3.4-3 предлагается к рассмотрению устройство для бесперебойного питания систем охраны и видеонаблюдения на основе импульсного стабилизатора, совмещенного с зарядным устройством. В стабилизатор введены системы защиты от перегрузки, перегрева, бросков напряжения на выходе, короткого замыкания.

Стабилизатор имеет следующие параметры:

• Входное напряжение, Uвx — 20-30 В:

• Выходное стабилизированное напряжение, Uвыx-12B:

• Номинальный ток нагрузки, Iнагр ном —5А;

• Ток срабатывания системы защиты от перегрузки, Iзащ — 7А;.

• Напряжение срабатывания системы защиты от перенапряжения, Uвых защ — 13 В;

• Максимальный ток зарядки АКБ, Iзар акб макс — 0,7 А;

• Уровень пульсации. Uпульс — 100 мВ,

• Температура срабатывания системы защиты от перегрева, Тзащ — 120 С;

• Скорость переключения на питание от АКБ, tперекл — 10мс (реле РЭС-б РФО.452.112).

Принцип работы импульсного стабилизатора в описываемом устройстве такой же, как и у стабилизатора, представленного выше.

Устройство дополнено зарядным устройством, выполненным на элементах DA2,R7, R8, R9, R10, VD2, С7. ИС стабилизатора напряжения DA2 с делителем тока на R7. R8 ограничивает максимальный начальный ток заряда, делитель R9, R10 задает выходное напряжение заряда, диод VD2 защищает АКБ от саморазряда при отсутствии напряжения питания.

Защита от перегрева использует в качестве датчика температуры терморезистор R16. При срабатывании защиты включается звуковой сигнализатор, собранный на ИС DD 1 и, одновременно, нагрузка отключается от стабилизатора, переходя на питание от АКБ. Терморезистор монтируют на радиаторе транзистора VT1. Точная подстройка уровня срабатывания температурной защиты осуществляется сопротивлением R18.

Датчик напряжения собран на делителе R13,R15. сопротивлением R15 устанавливают точный уровень срабатывания защиты от перенапряжения (13 В). При превышении напряжения на выходе стабилизатора (в случае выхода последнего из строя) реле S1 отключает нагрузку от стабилизатора и подключает ее к АКБ. В случае отключения питающего напряжения, реле S1 переходит в состояние "по умолчанию"- т.е. подключает нагрузку на АКБ.

Приведенная здесь схема не имеет электронной защиты от короткого замыкания для АКБ. эту роль выполняет плавкий предохранитель в цепи питания нагрузки, рассчитанный на максимальный потребляемый ток.

3.4.3 Источники питания на основе высокочастотного импульсного преобразователя

Достаточно часто при конструировании устройств возникают жесткие требования к размерам источника питания. В этом случае единственным выходом является применение ИП на основе высоковольтных высокочастотных импульсных преобразователей. которые подключаются к сети ~220 В без применения габаритного низкочастотного понижающего трансформатора и могут обеспечить большую мощность при малых размерах и теплоотдаче.

Структурная схема типового импульсного преобразователя с питанием от промышленной сети представлена на рис 34-4.

Входной фильтр предназначен для предотвращения проникновения импульсных помех в сеть. Силовые ключи обеспечивают подачу импульсов высокого напряжения на первичную обмотку высокочастотного трансформатора (могут применяться одно- и

двухтактные схемы). Частота и длительность импульсов задаются управляемым генератором (обычно применяется управление шириной импульсов, реже — частотой). В отличие от трансформаторов синусоидального сигнала низкой частоты, в импульсных ИП применяются широкополосные устройства, обеспечивающие эффективную передачу мощности на сигналах с быстрыми фронтами. Это накладывает существенные требования на тип применяемого магнитопровода и конструкцию трансформатора. С другой стороны, с увеличением частоты требуемые размеры трансформатора (с сохранением передаваемой мощности) уменьшаются (современные материалы позволяют строить мощные трансформаторы с приемлемым КПД на частоты до 100-400 кГц). Особенностью выходного выпрямителя является применение в нем не обычных силовых диодов, а быстродействующих диодов Шоттки, что обусловлено высокой частотой выпрямляемого напряжения. Выходной фильтр сглаживает пульсации выходного напряжения. Напряжение обратной связи сравнивается с опорным напряжением и затем управляет генератором. Обратите внимание на наличие гальванической развязки в цепи обратной связи, что необходимо, если мы хотим обеспечить развязку выходного напряжения с сетью.

При изготовлении таких ИП возникают серьезные требования к применяемым компонентам (что повышает их стоимость по сравнению с традиционными). Во-первых, это касается рабочего напряжения диодов выпрямителя, конденсаторов фильтра и ключевых транзисторов, которое не должно быть менее 350 В во избежание пробоев. Во-вторых, должны применяться высокочастотные ключевые транзисторы (рабочая частота 20-100 кГц) и специальные керамические конденсаторы (обычные оксидные электролиты на высоких частотах будут перегреваться ввиду их высокой индук-

тивности). И. в-третьих, частота насыщения высокочастотного трансформатора, определяемая типом применяемого магнитопро вода (как правило, используются тороидальные сердечники) должна быть значительно выше рабочей частоты преобразователя.

На рис. 3.4-5 приведена принципиальная схема классического ИП на основе высокочастотного преобразователя. Фильтр, состоящий из емкостей С1, С2, СЗ и дросселей L1, L2, служит для зашиты питающей сети от высокочастотных помех со стороны преобразователя. Генератор построен по автоколебательной схеме и совмещен с ключевым каскадом. Ключевые транзисторы VT1 и VT2 работают в противофазе, открываясь и закрываясь по очереди. Запуск генератора и надежную работу обеспечивает транзистор VT3, работающий в режиме лавинного пробоя. При нарастании напряжения на С6 через R3 транзистор открывается и конденсатор разряжается на базу VT2, запуская работу генератора. Напряжение обратной связи снимается с дополнительной (III) обмотки силового трансформатора Tpl.

Транзисторы VT1. VT2 устанавливают на пластинчатые радиаторы не менее 100 см^2. Диоды VD2-VD5 с барьером Шоттки ставятся на небольшой радиатор 5 см^2. Данные дросселей и трансформаторов:L1-1. L2 наматывают на кольцах из феррита 2000НМ К12х8х3 в два провода проводом ПЭЛШО 0,25: 20 витков. ТР1 — на двух кольцах, сложенных вместе, феррит 2000НН КЗ 1х18.5х7;

обмотка 1 — 82 витка проводом ПЭВ-2 0,5: обмотка II — 25+25 витков проводом ПЭВ-2 1,0: обмотка III — 2 витка проводом ПЭВ-2 0.3. ТР2 наматывают на кольце из феррита 2000НН К10х6х5. все обмотки выполнены проводом ПЭВ-2 0.3: обмотка 1 — 10 витков:

обмотки II и III — по 6 витков, обе обмотки (II и III) намотаны так, что занимают на кольце по 50% площади не касаясь и не перекрывая друг друга, обмотка I намотана равномерно по всему кольцу и изолирована слоем лакоткани. Катушки фильтра выпрямителя L3, L4 наматывают на феррите 2000НМ К 12х8х3 проводом ПЭВ-2 1,0 , количество витков — 30. В качестве ключевых транзисторов VT1, VT2 могут применяться КТ809А. КТ812, КТ841.

Номиналы элементов и намоточные данные трансформаторов приведены для выходного напряжения 35 В. В случае, когда требуются иные рабочие значения параметров, следует соответству ющим образом изменить количество витков в обмотке 2 Тр1.

Описанная схема имеет существенные недостатки, обусловленные стремлением предельно уменьшить количество применяемых компонентов Это и низкий "уровень стабилизации выходного напряжения, и нестабильная ненадежная работа, и низкий выходной ток. Однако она вполне пригодна для питания простейших конструкций разной мощности (при применении соответствующих компонентов), таких как: калькуляторы. АОНы. осветительные приборы и т.п.

Еще одна схема ИП на основе высокочастотного импульсного преобразователя приведена на рис. 3.4-6. Основным отличием этой схемы от стандартной структуры, представленной на рис. 3 .4-4 является отсутствие цепи обратной связи. В связи с этим, стабильность напряжения на выходных обмотках ВЧ трансформатора Тр2 достаточно низкая и требуется применение вторичных стабилизаторов (в схеме используются универсальные интегральные стабилизаторы на ИС серии КР142).

3.4.4 Импульсным стабилизатор с ключевым МДП-транзистором со считыванием тока.

Миниатюризации и повышению КПД при разработке и конструировании импульсных источников питания способствует применение нового класса полупроводниковых инверторов — МДП-транзисторов, а также: мощных диодов с быстрым обратным восстановлением, диодов Шоттки, сверхбыстродействующих диодов, полевых транзисторов с изолированным затвором, интегральных схем управления ключевыми элементами. Все эти элементы доступны на отечественном рынке и могут использоваться в конструировании высокоэффективных источников питания, преобразователей, систем зажигания двигателей внутреннего сгорания (ДВС), систем запуска ламп дневного света (ЛДС). Большой интерес у разработчиков также может вызвать класс силовых приборов под названием HEXSense — МДП-транзисторы со считыванием тока. Они являются идеальными переключающими элементами для импульсных источников питания с готовым управлением. Возможность считывать ток ключевого транзистора может быть использована в импульсных ИП для обратной связи по току, требуемой для контроллера широтно-импульсной модуляции. Этим достигается упрощение конструкции источника питания — исключение из него токовых резисторов и трансформаторов.

На рис. 3.4-7 приведена схема импульсного источника питания мощностью 230 Вт. Его основные рабочие характеристики следующие:

• Входное напряжение:-110 В 60Гц:

• Выходное напряжение: 48 В постоянное:

• Ток нагрузки: 4.8 А:

• Частота переключения: 110 кГц:

• КПДпри полной нагрузке: 78%;

• КПД при нагрузке 1/3: 83%.

Схема построена на базе широтно-импульсного модулятора (ШИМ) с высокочастотным преобразователем на выходе. Принцип работы состоит в следующем.

Сигнал управления ключевым транзистором поступает с выхода 6 ШИМ контроллера DA1, коэффициент заполнения ограничивается 50% резистором R4, R4 и СЗ являются времязадающи ми элементами генератора. Питание DA1 обеспечивается цепочкой VD5, С5, С6, R6. Резистор R6 предназначен для подачи питающего напряжения во время запуска генератора, в последующем задей ствуется обратная связь по напряжению через LI, VD5. Эта обратная связь получается от дополнительной обмотки выходного дросселя, которая работает в режиме обратного хода. Помимо питания генератора, напряжение обратной связи через цепочку VD4, Cl, Rl, R2 подается на вход обратной связи по напряжению DA1 (выв.2). Через R3 и С2 обеспечивается компенсация, которая гарантирует стабильность петли обратной связи.

В качестве ключевого элемента VT2 используется МДП-транзистор со считыванием тока IRC830 фирмы International Rectifier. Сигнал считывания тока подается от VT2 на вывод 3 DA1. Уровень напряжения на выводе считывания тока задается резистором R7 и пропорционален току стока, С9 подавляет выбросы на переднем фронте импульса тока стока, которые могут вызвать преждевременное срабатывание контроллера. VT1 и R5 используются для задания необходимого закона управления. Обратите внимание, что ток считывания возвращается в кристалл на вывод истока. Это делается для того. чтобы избежать ошибки считывания тока, которая может возникнуть из-за падения напряжения на паразитном сопротивлении вывода истока.

На базе данной схемы возможно построение импульсных стабилизаторов и с другими выходными параметрами.

riostat.ru

Резистивный источник малого импульсного тока

 

ОП И САНИЕ

ИЗОБРЕТЕН ИЯ

К АВТОРСКОМУ .СВИДЕТЕЛЬСТВУ

Сеез Севетскмк

Сецмвямстмческмк

Рес убямк (61) Дополнительное к авт. свнд-ву (22) Заявлено 240980 (21) 2983947/18" 21 (5l)M. Кл.

G 01 R 19/00 с присоединением заявки М (23) Приоритет

«ЬсудврстикйьИ1 ммктэт

СССР,Io uur иэобретекк11 н вткрытвЯ

Опубликовано 15. 07. 82. SIQJIJlcTcHb ¹ 26

Дата опубликования описання15.07.82 (5З) УД К621 ° 317 ° 7 (088.8) (72) Автор изобретения

М.Х. Ансо ! 1

Тартуский ордена Трудового Красного 3наме государственный университет (71) Заявитель (54) РЕЗИСТИВНЫЙ ИСТОЧНИК МАЛОГО ИМПУЛЬСНОГО

ТОКА

Изобретение относится к измерительной технике и может быть использовано для электрометрических измерений и поверки измерителей малых тоКоВ по их динамическюм характеристикам.

Известен источник малого импульсного тока, содержащий генератор импульсного напряжения и высокоомный резистор, один вывод которого соединен с выходом генератора, а другой присоединен к выходу источника (1).

Недостатком известного источника является малая точность формирования импульсов тока, обусловленная влиянием на форму импульсов значительной реакти вной сост а вляющей сопроти вле" ния высокоомного резистора.

Наиболее близким по технической 20 сущности к предлагаемому является резистивный источник малого импульсного тока, содержащий генератор импульсного напряжения, высокоомный

2 . резистор, первый выход которого соединен с выходом генератора, а второй присоединен к выходу источника, и элемент компенсации реактивной составляющей полного сопротивления высокоомного резистора, выполненный в виде металлического экрана, через отверстие в котором пропущен указанный резистор (2 ).

Известный источник имеет недостаточную точность формирования импульсов тока иэ-эа неполной компенсации экраном реактивной составляющей полного сопротивления высокоомного резистора.

Цель изобретения — повышение точности формирования импульсов тока.

Поставленная цель достигается тем, что в резистивном источнике малого импульсного тока, содержащем генератор импульсного напряжения, высокоомный резистор, первый вывод которого связан с выходом генератора, а второй соединен с выходом

9" 3589

Z R@Z Z+R R-2

1 — U

R о

Формула изобретения

Резистивный источник малого импульсного тока, содержащий генератор импульсного напряжения, высокоом30 ный резистор, первый вывод которого связан с выходом генератора, а второй соединен с выходом источника, и элемент компенсации реактивной составляющей полного сопротивления высокоомного резистора, о т л ич а ю шийся тем, что, с целью повышения точности Формирования импульсов тока, элемент компенсации реактивной составляющей полного

4О сопротивления высокоомного резистора выполнен в виде частотно-зависимого делителя напряжения, вход которого соединен с выходом генератора импульсного напряжения, а выход присоединен к первому выводу высокоомного резистора.

Источники информации, принятые во внимание при экспертизе

1. Praa)in Т,, Nichofs M., High

Speed Electrometers for Rocket and

Satellite Ехрегiments, Proc. TRE, 50

1960, V. 48, и 4, р. 771-779.

2. Brookshier M. Electrometer с i гсы i t des i qn for extended band

Widths ."Nuclear instruments and methods", 1964 М 25, р. 317-327 (пров тотип).

i источника, и элемент компенсации реактивной составляющей полного сопротивления высокоомного резистора. элемент компенсации реактивной составляющей полного сопротивления высокоомного резистора выполнен в виде частотно-зависимого делителя напряжения, вход которого соединен с выходом генератора импульсного напряжения, а выход присоединен к первому выводу высокоомного резистора.

На чертеже изображена блок-схема источника малого импульсного тока.

Резистивный источник малого импульсного тока содержит генератор

1 импульсного напряжения, частотнозависимый делитель ? напряжения, соединенный своим входом с выходом генератора 1 импульсного напряжения, и высокоомный резистор 3, один вывод которого соединен с выходам делителя 2 напряжения, а другой присоединен к выходу источника. Резистор 3 имеет омическую составляющую сопротивления, равную R, и реактивную, паразитную составляющую сопротивления, равную Z . Частотно-зависимый делитель 2 напряжения содержит два последовательно соединенных звена: звено с омическим сопротивлением, равным R k, и звено с реактивной составляющей сопротивления„ равной

Z-k, где k - коэффициент пропорциональнссти. Звено делителя с реактивной составляющей сопротивления Z ° k может быть выполнено с помоцью конденсаторов и катушек индуктивности„

Устройство работает следующим образом.

Выходное напряжение 0о генератора импульсного напряжения поступает на высокоомный резистор 3 через частотнозависимый делитель 2 напряжения.

При этом на тех частотах, на которых полное сопротивление високоомного ре зистора 3 снимается из-за шунтирующе го датчика паразитной реактивной составляющей сопротивления Z, частотно-зависимый делитель 2 напряжения формирует на своем выходе меньшее значение напряжения 0„, поступаю щего на высокоомный резистор, и тем самым компенсирует возможное изменеwe выходного тока источника при снижении значения полного сопротивления высокоомного резистора 3. При выборе значений сопротивлений звенье частотно-зависимого делителя 2 напряжения соответственно равными R k и 2 k достигается практически полная компенсация неблагоприятного влия5 ния реактивной параэитной составляющей полного сопротивления высокоом" ного резистора 3 и максимально повышается точность формирования импульсов тока, так как при этом условии значение выходного импульсного тока источника, равное

15 не зависит от частоты

Использование предлагаемого источника малого импульсного тока позволяет повысить точность поверки злектрометрических измерителей малых токов и точность электрометрических измерений.

943589

Составитель С.Вейский

Редактор Л.Авраменко Техред M. Рейвес Корректор А. Гриценко

Заказ 5098/49 Тираж 717 Подписное

ВНИИПИ Государственного комитета СССР по делам изобретений и открытий

113035, Москва, й-35, Раушская наб., д. 4/5

Филиал ППП "Патент", г. Ужгород, ул. Проектная, 4

   

www.findpatent.ru

Источник питания импульсным током

 

Использование: изобретение (ИЗ) относится к преобразовательной технике и может быть использовано в качестве источника питания электрофлотокоагулятора. Сущность изобретения: ИЗ обеспечивает снижение затрат электроэнергии на проведение технологического процесса. ИЗ содержит подключенный анодом (АН) к положительному входному выводу (ВЫ) первый тиристор (ТИ), катод (КА) которого соединен с АН второго ТИ, КА второго ТИ соединен с первым выходным ВЫ, первую последовательную цепь (ПЦ) из дросселя (ДР) и конденсатора (КН), свободный ВЫ ДР подключен к отрицательному входному ВЫ, диод (ДИ), вторую ПЦ из n КН свободная обкладка (ОБ) первого КН второй ПЦ соединена со свободной ОБ КН первой ПЦ, а свободная ОБ КН второй ПЦ, подключена к общей точке (ОТ) соединения первого и второго ТИ, n ТИ, причем m ТИ соединены АН, а n-m ТИ соединены КА, ОТ соединения n и n-m - групп (ГР) ТИ подключены к первому выходному ВЫ, КА каждого из m ГР ТИ подключен соответственно к ОТ соединения К и ДР первой ПЦ, КН первой ПЦ и первого КН второй ПЦ, 1... m-1 КН второй ПЦ, ОТ соединения m - 1 и m конденсатора второй ПЦ подключена к второму выходному ВЫ, а АН каждого из n-m-ГР ТИ подключен к ОТ соединения m... n конденсаторов второй ПЦ,n - 2 дополнительных ДИ, причем ДИ шунтируют встречно 1... n - 1 КН второй ПЦ. 1 ил.

Изобретение относится к преобразовательной технике и может быть использовано в качестве источника питания электрофлотокоагулятора.

Известен источник питания импульсным током, содержащий подключенный анодной группой к положительному входному выводу однофазный мост на тиристорах с конденсатором в диагонали переменного тока, а катодной группой к первому выходному выводу, второй выходной вывод которого соединен с отрицательным входным выводом (Булатов О.Г. Царенко А.И, Поляков В.В. Тиристорно-конденсаторные источники питания для электротехнологии. М. Энергоатомиздат, 1989. с. 23). Недостатком источника питания является повышенные затраты электроэнергии на проведение процесса при работе в составе установки электрофлотокоагулирования из-за пассивации электродов. Известен источник питания импульсным током, содержащий подключенный анодом к положительному входному выводу тиристор, зашунтированный встречным диодом и последовательной цепью из конденсатора и дросселя, а катодом -к первому выходному выводу, второй выходной вывод которого соединен с отрицательным входным выводом, выходные выводы зашунтированы встречным диодом (Булатов О.Г. Царенко А.И. Поляков В.Д. Тиристорно-конденсаторные источники питания для электротехнологии. М. Энергоатомиздат, 1989. с. 26). Недостатком источника питания является повышенные затраты электроэнергии на проведение процесса при работе в составе установки электрофтолокоагулирования из-за пассивации электродов. Наиболее близким по технической сущности к изобретению является источник питания импульсным током (Булатов О.Г. Царенко А.И. Поляков В.Д. Тиристорно-конденсаторные источники питания для электротехнологии. М. Энергоатомиздат, 1989. с. 28), который и рассматривается в качестве прототипа. Прототип содержит, подключенный анодом к положительному входному выводу первый тиристор, катод которого соединен с анодом второго тиристора, катод второго тиристора соединен с первым выходным выводом, последовательную цепь из дросселя и конденсатора, общая точка соединения конденсатора и дросселя соединена с вторым выходным выводом, свободный вывод дросселя подключен к отрицательному входному выводу, свободная обкладка конденсатора подключена к общей точке соединения первого и второго тиристоров, диод, анод которого соединен с вторым выходным выводом, а катод с катодом второго тиристора. Недостатком прототипа является повышенные затраты электроэнергии на проведение процесса при работе в составе установки электрофтолокоагулирования из-за пассивации электродов. Изобретение направлено на решение задачи улучшения условий согласования источника питания с нагрузкой в составе установки электрофлотокоагулирования, а также повышение энергетических характеристик за счет снижения расхода электроэнергии на проведение процесса, что является целью изобретения. Указанная цель достигается тем, что источник питания импульсным током, содержащий подключенный анодом к положительному входному выводу первый тиристор, катод которого соединен с анодом второго тиристора, катод второго тиристора соединен с первым выходным выводом, первую последовательную цепь из дросселя и конденсатора, свободный вывод дросселя подключен к отрицательному входному выводу, диод, снабжен второй последовательной цепью из n конденсаторов, свободная обкладка первого конденсатора второй последовательной цепи соединена со свободной обкладкой конденсатора первой последовательной цепи, а свободная обкладка n конденсатора второй последовательной цепи подключена к общей точке соединения первого и второго тиристоров, n тиристорами, причем m тиристоров соединены анодами, а n-m тиристоров соединены катодами, общий точки соединения m и n-m групп тиристоров подключены к первому выходному выводу, катод каждого из m группы тиристоров подключен соответственно к общим точкам соединения конденсатора и дросселя первой последовательной цепи, конденсатора первой последовательной цепи и первого конденсатора второй последовательной цепи, 1. m-1 конденсаторов второй последовательной цепи, общая точка соединения m-1 и m конденсатора второй последовательной цепи подключена к второму выходному выводу, а анод каждого из n-m-группы тиристоров подключен к общим точкам соединения m.n конденсаторов второй последовательной цепи, n-2 диодами, причем диоды шунтируют встречно 1. n-1 конденсаторы второй последовательной цепи. Существенным отличием, характеризующим изобретение, является снижение затрат электроэнергии на проведение процесса электрофлотокоагуляция. Это обеспечивается за счет исключения явления пассивации электродов, а также более широкими возможностями по согласованию источника питания с нагрузкой в составе установки электрофлотокоагулирования. Снижение затрат электроэнергии на проведение процесса электрофлотокоагулирования является достигнутым техническим результатом, обусловленным введением новых элементов и связей, т.е. отличительными признаками. Таким образом, отличительные признаки источника питания импульсным током являются существенными. На чертеже приведена принципиальная схема источника питания импульсным током (n=m=3). Источник питания содержит, подключенный анодом к положительному входному выводу первый тиристор 1, подключенный к отрицательному входному выводу дроссель 2, последовательную цепь из четырех конденсаторов 3-6, подключенную между катодом первого тиристора и свободным выводом дросселя, диоды 7, 8, шунтирующие встречно 4, 5 конденсаторы, тиристор 9, анод которого подключен к катоду первого тиристора, а катод к первому выходному выводу, тиристоры 10-12, общая точка соединения анодов которых подключена к первому выходному выводу, а катоды каждого из тиристоров соответственно к общим точкам, соединения конденсаторов 4, 5, конденсаторов 5,6, конденсатора 6 и дросселя, общая точка соединения конденсаторов 3, 4 подключена к второму выходному выводу. Выводы нагрузки 13 подключены к первому и второму выходным выводам устройства. Источник питания 14 подключен к входным выводам устройства. Источник питания импульсным током работает следующим образом. Импульсы управления на тиристоры 1, 9-12 подаются поочередно в последовательности: 1, 9, 10, 11, 12. При включении тиристора 1 происходит заряд конденсаторов 3-6 по цепи: 1-3-1-5-6-2-14-1. Емкости конденсаторов 3-6 в общем случае могут быть выбраны как равными, так и различными. В частном случае (равенства емкостей конденсаторов 3-6) конденсаторы заряжаются до равных напряжений, составляющих при малых значения индуктивности дросселя 2 приблизительно 0,25 от выходного напряжения источника питания устройства 14. Дроссель 2 обеспечивает нормальные условия для коммутации тиристора 1. Очередной тиристор 9 включается по окончании интервала паузы, необходимой для восстановления тиристором 1 управляющих свойств. При включении тиристора 9 конденсатор 3 разряжается через нагрузку 13 по цепи 3-9-13-3. Энергия, накопленная в электрическом поле конденсатора 3 на интервале работы тиристора 1, полностью расходуется в нагрузке 13. Через нагрузку 13 при работе тиристора 9 протекает импульс тока положительной полярности. Далее осуществляется включение тиристора 10. Через нагрузку 13 при работе тиристора 10 протекает импульс тока отрицательной полярности (цепь: 4-13-10-4). При работе тиристоров 11 (цепь: 5-7-13-11-5) и 12 (цепь: 6-8-7-13-12-6) через нагрузку также протекают импульсы тока отрицательной полярности. Далее электромагнитные процессы в устройстве повторяются. Каждый цикл работы устройства заканчивается при очередном выключении тиристора 1. Рассмотренный источник питания импульсным током соответствует частному варианту реализации схемы для n=m=3. Если емкости конденсаторов 3-6 различны, то конденсаторы заряжаются до величины напряжений обратно-пропорциональных величинам емкостей. Величина индуктивности дросселя 2 выбирается из требования обеспечения нормальных условий для выключения тиристора 1. Для снижения коммутационных потерь в тиристорах 9-12 последовательно с ними (или с соответствующими конденсаторами 3-6) могут быть включены небольшие дроссели насыщения. Работа устройства при этом происходит аналогично. Значения n и m выбираются в зависимости от напряжения источника питания устройства, качества воды, подвергаемой электрофлотокоагулированию, требуемого напряжения питания электродов, допустимых затрат электроэнергии и временных характеристик технологического процесса. Заявляемый источник питания импульсным током обеспечивает возможность эффективного согласования с нагрузкой по уровню напряжения и мощности. Изменение полярности импульсов тока нагрузки позволяет исключить явление пассивации пластин, снизить затраты электроэнергии на процесс электрофлотокоагулирвоания. Согласно экспериментальным данным затраты электроэнергии на проведение процесса могут быть уменьшены на 30-250% в зависимости от качества воды, подвергаемой электрофлотокоагулированию.

Формула изобретения

Источник питания импульсным током, содержащий подключенный анодом к положительному входному выводу первый тиристор, катод которого соединен с анодом второго тиристора, катод второго тиристора соединен с первым выходным выводом, первую последовательную цепь из дросселя и конденсатора, свободный вывод дросселя подключен к отрицательному выводу, диод, отличающийся тем, что источник питания снабжен второй последовательной цепью из n конденсаторов, свободная обкладка первого конденсатора второй последовательной цепи соединена со свободной обкладкой конденсатора первой последовательной цепи, а свободная обкладка конденсатора второй последовательной цепи подключена к общей точке соединения первого и второго тиристоров, n тиристорами, причем m тиристоров соединены анодами, а n m тиристоров соединены катодами, общие точки соединения m и n m групп тиристоров подключены к первому выходному выводу, катод каждого из m группы тиристоров подключен соответственно к общим точкам соединения конденсатора и дросселя первой последовательной цепи, конденсатор первой последовательной цепи и первого конденсатора второй последовательной цепи, 1 m 1 конденсаторов второй последовательной цепи, общая точка соединения m 1 и m конденсатора второй последовательной цепи подключена к второму выходному выводу, а анод каждого из n m группы тиристоров подключен к общим точкам соединения m n конденсаторов второй последовательной цепи, n 2 диодами, причем диоды шунтируют встречно 1 n 1 конденсаторы второй последовательной цепи.

РИСУНКИ

Рисунок 1

www.findpatent.ru

Способ управления источником питания импульсным током

 

Использование: изобретение относится к преобразовательной технике и может быть использовано в источниках питания электрофлотокоагуляторов. Сущность изобретения: повышается надежность работы источника питания. Способ управления источником питания, содержащим последовательную цепь из накопительных конденсаторов, зарядный и разрядные тиристоры, заключается в формировании и последовательной подаче импульсов управления на тиристоры. Формируют сигналы задания уровней минимального и максимального тока в выходной цепи и интервал задержки, импульсы управления на зарядный тиристор формируют по истечении интервала задержки с момента выключения последнего разрядного тиристора. Измеряют интервал проводимости. Формируют второй интервал задержки. Формируют и подают импульс управления на первый разрядный тиристор. Измеряют ток первого разрядного тиристора. Формируют сигнал разрешения подачи импульсов управления на следующие разрядные тиристоры или запрета подачи. При разрешающем сигнале формируют третий интервал задержки. По истечении третьего интервала задержки подают импульс управления на второй разрядный тиристор. Далее формируют и подают импульс управления и на каждый следующий разрядный тиристор по истечении интервала задержки. 2 ил.

Изобретение относится к преобразовательной технике и может быть использовано в источниках питания электрофлотокоагуляторов.

Известен способ управления источником питания импульсным током, содержащим последовательную цепь из накопительных конденсаторов, разрядные тиристоры, заключающийся в формировании и последовательной подаче импульсов управления на разрядные тиристоры (Булатов О.Г. Царенко А.И. Поляков В.Д. Тиристорно-конденсаторные источники питания для электротехнологии. М. Энергоатомиздат, 1989. с. 31). Недостатком способа управления является низкая надежность работы источника питания импульсным током из-за возможных срывов коммутации тиристоры в условиях изменяющейся технологической нагрузки. Известен способ управления источником питания импульсным током, содержащим последовательную цепь из конденсатора и дросселя, тиристор, заключающийся в формировании и подаче импульса управления на тиристор (Булатов О.Г. Царенко А. И. Поляков В.Д. Тиристорно-конденсаторные источники питания для электротехнологии. М. Энергоатомиздат, 1989. с. 25). Недостатком способа управления является низкая надежность работы источника питания импульсным током из-за возможных срывов коммутации тиристора в условиях изменяющейся технологической нагрузки. Наиболее близким по технологической сущности и изобретению является способ управления источником питания импульсным током, содержащим накопительные конденсаторы, зарядные и разрядные тиристоры (Булатов О.Г. Царенко А.И. Поляков В. Д. Тиристорно-конденсаторные источники питания для электротехнологии. М. Энергоатомиздат, 1989. с. 28), который и рассматривается в качестве прототипа. Способ управления источником питания импульсным током заключается в формировании и последовательной подаче импульсов управления на зарядные и разрядные тиристоры. Недостатком прототипа является низкая надежность работы источника питания из-за возможных срывов коммутации тиристоров и закорачивания питающей сети в условиях изменяющейся технологической нагрузки. Изобретение направлено на решение задачи повышения надежности работы источника питания импульсным током, что является целью изобретения. Повышение надежности работы источника питания импульсным током, содержащего последовательную цепь из накопительных конденсаторов, зарядного и разрядных тиристоров, достигается тем, что в способе управления, заключающемся в формировании и последовательной подаче импульсов управления на зарядный и разрядные тиристоры, формируют сигналы задания уровней минимального и максимального тока в выходной цепи источника питания и интервал задержки, формируют и подают импульс управления на зарядный тиристор по истечении интервала задержки с момента выключения последнего разрядного тиристора, измеряют интервал проводимости зарядного тиристора, формируют второй интервал задержки, формируют и подают импульс управления на первый разрядный тиристор по истечении второго интервала задержки с момента выключения зарядного тиристора, измеряют ток в выходной цепи источника и интервал проводимости первого разрядного тиристора, сравнивают сигнал пропорциональный току в выходной цепи источника с сигналами задания минимального и максимального тока, формируют сигнал разрешения подачи импульсов управления на следующие разрядные тиристоры, если ток в выходной цепи превышает минимальный ток и меньше максимального тока, формируют третий интервал задержки, по истечении третьего интервала задержки с момента выключения первого разрядного тиристора формируют и подают импульс управления на второй разрядный тиристор, формируют и подают импульсы управления на каждый следующий разрядный тиристор по истечении интервала задержки с момента выключения предыдущего разрядного тиристора, если ток в выходной цепи меньше минимального или больше максимального тока, формируют сигнал запрета подачи импульсов управления на зарядный и разрядный тиристоры. Существенным отличием, характеризующим изобретение, является повышение надежности работы источника питания импульсным током в составе технологической установки электрофлотокоагулирования. Подача импульсов управления на очередной тиристор осуществляется после гарантированного запирания предыдущего тиристора, благодаря чему исключается одновременная проводимость тиристоров при любой нагрузке. Контролируются величины максимального и минимального тока в нагрузке, благодаря чему исключаются перегрузки элементов, а также режимы работы на нагрузку с большим сопротивлением, обуславливающим длительный разряд накопительных конденсаторов. Повышение надежности работы источника питания импульсным током в условиях изменяющейся технологической нагрузки является полученным техническим результатом, обусловленным новыми действиями и порядком их выполнения в способе управления, т.е. отличительными признаками. Таким образом, отличительные признаки заявляемого способа управления источником питания импульсным током являются существенными. На фиг. 1 приведена схема источника питания импульсным током, на фиг. 2 схема устройства для реализации способа управления. Способ управления источником питания импульсным током, содержащим последовательную цепь из накопительных конденсаторов, зарядный и разрядный тиристоры, реализуется следующими действиями. Формируют сигналы задания уровней минимального и максимального тока в выходной цепи источника и интервал задержки. Импульсы управления на зарядный и разрядные тиристоры подаются последовательно. Импульс управления на зарядный тиристор формируют и подают по истечении интервала задержки с момента выключения последнего разрядного тиристора или при запуске источника питания. Измеряют интервал проводимости зарядного тиристора. Формируют второй интервал задержки. Формируют и подают импульс управления на первый разрядный тиристор по истечении второго интервала задержки с момента выключения зарядного тиристора. Измеряют ток в выходной цепи источника питания и интервал проводимости первого разрядного тиристора. Сравнивают сигнал пропорциональный току в выходной цепи источника с сигналами задания минимального и максимального тока. Формируют сигнал разрешения подачи импульсов управления на следующие разрядные тиристоры, если ток в выходной цепи превышает минимальный ток и меньше максимального тока, или запрета подачи импульсов управления на зарядный и разрядные тиристоры, если ток в выходной цепи меньше минимального или больше максимального тока. При разрешающем сигнале формируют третий интервал задержки. По истечении третьего интервала задержки с момента выключения первого разрядного тиристора формируют и подают импульс управления на второй разрядный тиристор. Далее формируют и подают импульсы управления на каждый следующий разрядный тиристор по истечении интервала задержки с момента выключения предыдущего разрядного тиристора. Источник питания импульсным током содержит, подключенную к выводам питающей сети постоянного напряжения последовательную цепь из зарядного тиристора 1, пяти накопительных конденсаторов 2 6 и коммутирующего дросселя 7, накопительные конденсаторы, кроме первого и последнего, зашунтированы встречными диодами 8 10, выводы накопительных конденсаторов, кроме общей точки соединения второго и третьего накопительных конденсаторов, соединены с выводами пятилучевой звезды из тиристоров 11 15, нагрузка 16 подключена к общей точке соединения тиристоров звезды и общей точке соединения второго и третьего накопительных конденсаторов. Часть тиристоров 11-15 соединена с общей точкой пятилучевой звезды катодами (11, 12), а вторая часть анодами (13-15). Такое соединение обеспечивает протекание через нагрузку разнополярных импульсов тока разряда накопительных конденсаторов, что необходимо для эффективного проведения процесса электрофлотокоагулирования. Источник питания импульсным током работает следующим образом. При подаче импульса управления на зарядный тиристор 1, последний включается. Происходит заряд накопительных конденсаторов 2-6 по цепи: "+" 1 2 3 4 5 6 7 "-". Коммутирующий дроссель 7 обеспечивает условия для нормального выключения зарядного тиристора 1. По истечении интервала времени, необходимого для восстановления управляющих свойства тиристора 1, подается управляющий импульс на тиристор 12. Тиристор 12 включается и происходит разряд накопительного конденсатора 3 по цепи: 3 12 16 -3. В нагрузке 16 формируется импульс тока положительной полярности. По истечении интервала задержки последовательно включаются тиристоры 13-15 и 11. Через нагрузку 16 протекает три импульса тока отрицательной полярности и один импульс тока положительной полярности. Диоды 8-10 шунтируют конденсаторы 3-5 и предотвращают их отрицательный заряд. Очередной тиристор включается по истечении интервала задержки с момента выключения предыдущего тиристора. Устройство для реализации способа управления содержит последовательную цепь из задающего генератора 1, первого десятичного счетчика делителя 2 с входом обнуления, второго десятичного счетчика делителя 3, выходы которого подключены к первым входам шести последовательных цепей, состоящих из трехвходовых схем И 4-9, формирователей импульсов 10-15 и выходных каскадов 16-21, последовательную цепь из первого датчика тока 22, первого компаратора 23 и двухвходовой схемы ИЛИ 24, выход которой соединен с входом обнуления первого счетчика последовательной цепи из второго датчика тока 25 и второго компаратора 26, выход которого соединен с вторым входом схемы ИЛИ, последовательную цепь из источника сигнала задания минимального тока 27, третьего компаратора 28, второй вход которого соединен с выходом второго датчика тока, и первого RS-триггера 29, выход которого соединен с вторыми входами четырех схем И, последовательную цепь из источника сигнала задания максимального тока 30, четвертого компаратора 31, второй вход которого соединен с выходом второго датчика тока, и второго RS-триггера 32, выход которого соединен с третьими входами шести схем И, а второй вход с выходом первого формирователя импульсов, третий RS-триггер 33, первый вход которого соединен с выходом первого формирователя импульсов, второй вход соединен с выходом третьего формирователя импульсов, а выход подключен к третьему входу первой схемы И. Первый выходной каскад 16 соединен с управляющим электродом зарядного тиристора 1, второй выходной каскад 17 соединен с управляющим электродом первого разрядного тиристора 12, третий выходной каскад 18 соединен с управляющим электродом второго разрядного тиристора 13. Остальные выходные каскады 19-21 соединены с управляющими электродами соответственно разрядных тиристоров 14, 15 и 11. RS-триггеры 29,32,33 имеют входы установки. Вторые входы компараторов 23, 26 соединены с нулевым проводом устройства управления. Первый датчик 22 измеряет ток в цепи зарядного тиристора 1, а второй датчик тока 25 в выходной цепи источника питания. Устройство управления работает следующим образом. В исходном состоянии на выходе первого RS-триггера 29 присутствует сигнал запрета подачи импульсов управления на управляющие электроды четырех разрядных тиристоров 13-15, 11, соответствующих сигналам на выходах старших разрядов второго счетчика - делителя 3, на выходе второго RS-триггера 32 сигнал разрешения подачи импульсов управления на управляющие электроды тиристоров 11-15 источника питания, на выходе третьего RS-триггера 33 сигнал разрежения подачи импульса управления на управляющий электрод заданного тиристора 1, на входе обнуления первого счетчика делителя 2 сигнал разрешения счета. Задающий генератор 1 формирует импульсы высокой частоты, которые поступают на счетный вход первого счетчика-делителя 2, выход старшего разряда которого соединен со счетным входом второго счетчика-делителя 3. Частота задающего генератора 1 выбирается таким образом, чтобы при появлении импульса на выходе старшего разряда первого счетчика делителя 2 был сформирован требуемый интервал задержки. На первом выходе второго счетчика делителя 2 при этом формируется первый импульс, который проходит через первую схему И 4, формирователь 10 и выходной каскад 16 на управляющий электрод зарядного тиристора 1. При появлении тока через зарядный тиристор 1 на выходе первого датчика тока 22 появляется сигнал, переводящий первый компаратор 23 в состояние, обеспечивающее обнуление первого счетчика делителя 2. Одновременно сигнал на выходе формирователя импульсов 10 переводит третий RS-триггер 33 в состояние запрета подачи импульсов управления на зарядный тиристор 1 и подтверждает сигнал запрета на выходе второго RS-триггера 29. После выключения зарядного тиристора 1 первый компаратор 23 возвращается в исходное состояние, а счетчик делитель 2 переходит в режим счета. По истечении интервала задержки формируется и подается с выходного каскада 17 импульс управления на первый разрядный тиристор 12. Второй датчик тока 2 измеряет ток в выходной цепи источника питания. Если ток в цепи нагрузки меньше минимального тока, второй RS триггера 29 остается в исходном состоянии запрета подачи импульсов управления на остальные разрядные тиристоры. Если ток в цепи нагрузки больше максимального тока, третий RS триггер 32 переходит в состояние запрета подачи импульсов управления на тиристоры 11-15 источника питания и его дальнейшая работа прекращается. Если ток в цепи нагрузки больше минимального тока и меньше максимального тока, второй RS триггера 29 переходит в состояние разрешения подачи импульсов управления на остальные разрядные тиристоры 11, 13-15. При протекании тока через любой из разрядных тиристоров 11-15 по сигналу второго компаратора 26 первый счетчик делитель 2 обнуляется и переходит в состояние запрета счета. При подаче импульса управления на второй разрядный тиристор 13 сигнал с выхода третьего формирователя импульсов 12 переводит третий RS-триггер 33 в состояние разрешения подачи импульса управления на зарядный тиристор 1. Выходные каскады 16-21 обеспечивают усиление импульсов управления по мощности, а формирователи импульсов 10-15 формирование импульса требуемой длительности. Выходные каскады 16-21 и формирователи импульсов 10-15 могут быть выполнены по любой из известных схем. Датчик тока 22, 25 реализуются на основе трансформаторов тока. Система управления может быть выполнена на любое число каналов. По сравнению с прототипом использование заявляемого способа позволяет существенно увеличить надежность работы источника питания импульсным током. Это обеспечивается за счет исключения срывов коммутации тиристоров, перекрытия интервалов проводимости и опасности закорачивания питающей сети через проводящие тиристоры. Включение очередного тиристора может производится после гарантированного выключения предыдущего тиристора, что обеспечивается введением интервалов задержки на включение очередного тиристора.

Формула изобретения

Способ управления источником питания импульсным током, содержащий последовательную цепь из накопительных конденсаторов, зарядный и разрядные тиристоры, заключающийся в формировании и последовательной подаче импульсов управления на зарядный и разрядные тиристоры, отличающийся тем, что формируют сигналы задания уровней минимального и максимального токов в выходной цепи источника и интервал задержки, формируют и подают импульс управления на зарядный тиристор по истечении интервала задержки с момента выключения последнего разрядного тиристора, измеряют интервал проводимости зарядного тиристора, формируют второй интервал задержки, формируют и подают импульс управления на первый разрядный тиристор по истечении второго интервала задержки с момента выключения зарядного тиристора, измеряют ток в выходной цепи источника и интервал проводимости первого разрядного тиристора, сравнивают сигнал, пропорциональный току в выходной цепи источника, с сигналами задания минимального и максимального токов, формируют сигнал разрешения подачи импульсов управления на следующие разрядные тиристоры, если ток в выходной цепи превышает минимальный ток и меньше максимального тока, формируют третий интервал задержки, по истечении третьего интервала задержки с момента выключения первого разрядного тиристора формируют и подают импульс управления на второй разрядный тиристор, формируют и подают импульсы управления на каждый следующий разрядный тиристор по истечении интервала задержки с момента выключения предыдущего разрядного тиристора, если ток в выходной цепи меньше минимального или больше максимального тока, формируют сигнал запрета подачи импульсов управления на зарядный и разрядные тиристоры.

РИСУНКИ

Рисунок 1, Рисунок 2

www.findpatent.ru

Основные принципы генерирования мощных импульсов тока — Мегаобучалка

Мгновенные значения мощности импульсных генераторов достигают огромных значений порядка сотен и тысяч киловатт. Для генерирования столь мощных импульсов тока или напряжения широкое применение нашли как сосредоточенные емкостные накопители, так и линейные ФД, состоящие из чисто реактивных элементов с минимальными потерями, способных запасать энергию в электрических полях конденсаторов или в магнитных полях катушек индуктивностей. При этом ФД выполняет две функ­ции – накопителя энергии и формирователя импульса [1], [4], [5], [7]. Генераторы, использующие сосредоточенные емкостные накопители, могут работать в режиме как полного, так и частичного разрядов. При полном разряде накопителя форма импульса определяется параметрами разрядного контура и в качестве коммутаторов могут использоваться полууправляемые коммутирующие приборы, такие, как тиратроны, игнитроны, вакуумные разрядники или тиристоры [9].

Рис. 1.3 Рис. 1.4

На рис. 1.3 показано, что емкостный накопитель С, заряжаемый от зарядного устройства ЗУ, подключается к нагрузке R c помощью ключа К.В случае частичного разряда емкостного накопителя должен быть использован полностью управляемый коммутатор, способный подключать нагрузку к накопителю на короткий отрезок времени, равный длительности импульсов, а затем отключать ее. Этот режим позволяет получать прямоугольные импульсы тока регулируемой длительности, причем параметры импульсов определяются как параметрами контура нагрузки, так и свойствами коммутатора. В качестве полностью управляемых ключей используются модуляторные лампы, силовые транзисторы или ключи постоянного тока, созданные на полууправляемых коммутирующих приборах. Работа генератора импульсов на основе ФД (рис. 1.4) подразделяется на две стадии, резко различающиеся по своей длительности. В течение сравнительно длительного времени осуществляется накопление энергии в ФД, для чего он посредством ключа К подключается к источнику питания Е через токоограничивающий резистор Rи. Затем ключ переключается из положения 1 в положение 2 и в течение кратковременной рабочей стадии t << запасенная энергия передается в нагрузку R. При этом благодаря формирующим свойствам ФД в нагрузке возникает прямоугольный импульс тока длительностью t.

В качестве ФД применяются отрезки однородных длинных линий с распределенными параметрами (ЛРП) или эквивалентные им цепи с сосредоточенными параметрами [2]–[4]. Простейшим примером однородной ЛРП являются два отрезка проводника, расположенных в одной плоскости параллельно друг другу (например, линия электропередачи или отрезок коаксиального кабеля). Поскольку любой проводник обладает собственной распределенной индуктивностью, а диэлектрик, находящийся между этими проводниками, являющимися одновременно обкладками, создает распределенную емкость, то система в целом приобретает свойства ЛРП и электромагнитные процессы в ней имеют волновой характер.

Существенным отличием ЛРП от реактивных формирующих цепей 1-го и 2-го видов является не только то, что ЛРП обладает свойствами ФД, но и то, что она в силу своей симметрии может быть представлена также четырехполюсником. Униполярность токов и напряжений в элементах ЛРП на отрезке времени 0…t дает возможность создавать на основе ОИЛ, эквивалентных ЛРП, принципиально новые формирующие устройства – линии с квазираспределенным диодом (ЛРД) и линии с квазираспределенным ключом (ЛРК) или с управляемым вентилем, обладающие и новыми формирующими свойствами [10]–[13]. Такие устройства, достаточно просто реализуемые на практике, позволяют решить целый ряд новых задач, определяемых потребностями импульсных электротехнологий и требующих регулируемого во времени импульсного энерговклада как в линейные, так и в нелинейные нагрузки.

1.4. Принципы построения зарядных устройств емкостных накопителей

При работе генераторов импульсов различают две основные стадии – стадию заряда накопителя и стадию его разряда на нагрузку. В генераторах импульсов накопление энергии обычно происходит в электрическом поле конденсаторов, иногда – в магнитном поле индуктивностей. Следует отметить, что процесс хранения электромагнитной энергии в электрическом поле происходит практически без потерь, а хранение энергии в магнитном поле индуктивных элементов постоянно сопровождается протеканием тока и, соответственно, потерями, существенно снижающими КПД генераторов. В связи с этим на практике нашли применение в основном емкостные накопители энергии и процессы заряда рассматриваются в данной работе при­менительно только к ним. Поскольку процессы заряда во времени длятся существенно дольше процессов разряда, то даже в случае заряда ФД с расщепленным емкостным накопителем (РЕН), т. е. ФД 1-го рода и ОИЛ, сам ФД можно рассматривать как сосредоточенную емкость , значение которой определяется суммой емкостей ячеек. В ФД 2-го рода накопителем, как будет показано далее, является только одна емкость . В силу этого процесс заряда ФД всегда можно рассматривать как процесс заряда сосредоточенной емкости и проблемы заряда являются общими для цепей любого вида. Поскольку в большинстве случаев ФД за время генерирования импульсов разряжается полностью (согласованный режим разряда), начало процесса заряда происходит при нулевых начальных условиях. Так как в качестве источников питания в основном используются источники ЭДС, возникает проблема ограничения тока заряда, которая решается различными способами, а их выбор определяется в первую очередь рабочими частотами генераторов.

Наиболее простым и надежным является резистивный заряд емкостных накопителей от источника постоянного напряжения Е (рис. 1.5), который может быть использован при любых рабочих частотах. Этот вид заряда нашел широкое применение в генераторах с частичным разрядом емкостных накопителей, поскольку при этом удается получать приемлемые значения КПД процесса заряда [7]. Однако в случае работы генератора в режиме полного разряда ФД или емкостного накопителя КПД процесса заряда не превышает 50 %. Это существенно ограничивает область применения данного вида заряда, который может быть использован только в маломощных установках.

В тех случаях, когда рабочая частота генератора меньше частоты питающей сети ( < ), могут быть применены сетевые выпрямители с реактивными ограничителями тока заряда, включенными в фазные провода питающей сети. На рис. 1.6 в качестве примера приведена схема однофазного зарядного устройства, у которого ограничивающим зарядный ток элементом является индуктивный реактор , но может быть использован и емкостный балласт, когда вместо индуктивного реактора ставится конденсатор, способный работать на частоте питающей сети. Если рабочая частота генератора выше частоты питающей сети ( > ), используют выпрямители и промежуточные емкостные накопители , значение которых должно существенно превышать значение статической емкости ФД, т. е. >> , что позволяет рассматривать такой вид заряда как заряд от источника напряжения Е. Если при этом в качестве токоограничивающего устройства используется зарядная индуктивность , заряд называется индуктивным, а в присутствии диода VD (рис. 1.7) сам процесс заряда называется резонансно-диодным. Длительность процесса заряда, определяющаяся параметрами резонансного контура – , равна а наличие вентиля VD обеспечивает сохранение зарядного напряжения на уровне >E, причем в режиме полного разряда ФД = 2Е. Кроме этого, существуют еще два вида индуктивного заряда – резонансный, когда и линейный, когда .

Резонансно-диодный заряд представляет наибольший интерес, поскольку обеспечивает двойное напряжение заряда по сравнению с напряжением источника питания, позволяет в широких пределах регулировать выходную частоту генератора, избегая промежуточных переходных процессов, и имеет высокий КПД [9]. Некоторым недостатком этого вида заряда является сложность регулирования уровня зарядного напряжения, для чего обычно используются регулируемые источники питания, например управляемые выпрямители. Как будет показано далее, существуют схемные решения, позволяющие регулировать напряжение заряда при питании от источника неизменного напряжения.

Существенный интерес представляет собой заряд емкостных накопителей от источников тока. В качестве таких источников обычно используют индуктивно-емкостные преобразователи (ИЕП), которые преобразуют источники гармонического напряжения в источники гармонического тока и после выпрямления обеспечивают заряд емкостных накопителей постоянным и неизменным током.

Более сложной задачей является заряд расщепленных емкостных накопителей (РЕН), представляющих собой n конденсаторов, имеющих общую шину и n раздельных зажимов, которые обеспечивают подключение каждого накопителя к зарядным и разрядным цепям. Основной проблемой здесь является необходимость получения регулируемых в широких пределах уровней зарядных напряжений каждой из отдельных ячеек РЕН. Наиболее интересным представляется использование в качестве зарядного устройства одного общего нерегулируемого источника питания и коммутатора зарядного тока (КЗТ), обеспечивающего переключение общей цепи заряда с одной ячейки РЕН на другую без прерывания тока заряда.

2. Генераторы прямоугольных импульсов тока на основе реактивныхформирующих двухполюсников

megaobuchalka.ru

Источник тока: типы, принцип работы, особенности

Источник тока – элемент питания электрической цепи, обеспечивающий постоянное потребление, измеренное амперами, либо заданную форму закона изменения параметра. Так работают сварочные аппараты, каждой толщине металла соответствует номер (диаметр) электрода. Процесс обеспечен постоянным током. В противном случае начинается срыв дуги, происходят другие неприятные эффекты.

Отличие реального источника от идеального

Известно, мощность источника питания электрической цепи ограничена. В результате увеличение нагрузки вызывает изменение параметров. Общеизвестны скачки напряжения гаражных кооперативов, дач, прочих специфичных объектов. Подстанция выделяет ограниченный ресурс, потребление бывает немаленьким. В первую очередь, подразумеваются нагревательные приборы (воды), сварочные аппараты.

Таким образом, розетка выступает источником напряжения. Вольтаж сильно зависит от поведения потребителей. Замечено, утренние часы подстанции перегружают, соответствующим образом учитывается областями при тарификации. Что касается идеальных источников, подразумевается, параметры постоянные. До некоторых пор встретить подобное оборудование представлялось невозможным, современные технологии рамки ограничений сильно расширили.

Инвертор сварочный

Сварочный инвертор IWM 220 сохраняет работоспособность в диапазоне питающих напряжений 180 — 250 вольт, выдавая постоянное действующее значение тока на зажимы. Электронные блоки питания достигают столь высоких показателей путем гибкого регулирования режимов работы. Брать инверторы, принцип действия основан на выпрямлении, фильтрации напряжения 220 вольт, последующей нарезкой пачками импульсов. Варьированием скважности посылок, длиной достигается изменение тока.

Измерительный датчик Холла влияет, напрямую или опосредованно, на напряжение смещения силового ключа. Возможны другие, процессорные, схемы управления выходными параметрами приборов. В последнем случае заботы забирает процессор, несущий соответствующую программу, заложенную в память цифровым кодом.

Для сварки используются переменный и постоянный токи, для черных и цветных металлов. Важно понимать: источник способен поддерживать любой закон изменения параметров. Это признаётся отличительной особенностью, предназначением. Обеспечивает правильное функционирование потребителей.

Работа источника тока

Требования к факторам питания

В учебниках физики приводятся в качестве примеров источников тока:

  1. Батарейки.
  2. Аккумуляторы.

Несложно заметить, сплошь гальванические источники питания химического принципа действия. Автоводитель знает: аккумулятор бессилен выдать постоянный ток, напряжение. Мощность ограничена скоростью протекания химических реакций на пластинах, обкладках. В результате параметры не остаются постоянными.

Лучший пример источника питания тока, напряжения — инвертор. Электроника гибко изменяет параметры устройства, добиваясь достижения нужного эффекта. На выходе переменные, постоянные напряжения, токи. В зависимости от возникающих потребностей. В персональном компьютере уйма питающих напряжений: для жестких дисков, процессора, DVD-приводов. 5, 12, 3,3 В. У каждого предназначение, несколько предназначений.

Протекание тока в цепи

Таким образом, потребитель определяет, нужен постоянный ток, либо требуется напряжение, сформированное по определенному закону. Если брать сварку, скорость протекания через плазму зарядов определяет рабочую температуру процесса, напрямую предопределяет условия существования дуги, глубину плавления металла. Технологи давно просчитали условия, определили экспериментально, руководство сварочного аппарата пишет следующее:

  • толщина листа — 3 мм;
  • диаметр электрода — 3,2 мм;
  • рабочий ток процесса 100 — 140 А.

Сварщик молниеносно выставляет указанные параметры на корпусе IWM 220, берет электрод нужного диаметра, обжимает ухватом, заводит второй выход на землю. Потом надевает маску, начинает легонько постукивать детали, получая искру. Не слишком обеспокоен результатами труда, отраслевое пособие промышленности сообщает, с какой скоростью двигаться вдоль шва, под каким углом наблюдать результат процесса. Сварщик твердо знает, чего делать не нужно. Чтобы удостовериться, специальная комиссия по результатам тестов (выполнение определенных швов) присваивает рабочему разряд (ощутимо влияет на спектр полномочий, заработную плату).

Итак, род тока определяют потребности идущего процесса. В большинстве случаев требуется напряжение, часто приборы первоначально требовали постоянства тока. Прежде это обогреватели различного толка, основывающие принцип действия законом Джоуля-Ленца. Мощность, преобразующаяся в тепло, определяется размером сопротивления, протекающим током.

В бытовых целях удобнее поддерживать напряжение. Помимо обогревателей имеется множество других приборов. Прежде всего электроника. Напряжение на активном сопротивлении проводника линейно зависит от тока. Нет разницы, что поддерживать постоянным. Отчего тогда при сварочном процессе приходится стабилизировать.

Рука сварщика неспособна двигаться с достаточной твердостью, флуктуации воздуха постоянно меняют длину дуги. Имеются другие помехи. Напряжение на участке непостоянно. Следовательно, ток менялся бы (согласно закону Ома). Недопустимо по причинам описанным выше: изменится температура, технологический процесс пойдет неправильным путем. Приходится поддерживать постоянным ток, не напряжение.

Как практики получают ток заданной формы

Исторически первыми открыты гальванические источники тока. Произошло в 1800 году. Гением, подарившим человечеству первый источник питания, является Алессандро Вольта. Последовала плеяда открытий. Первым измерителем стал гальванометр – прибор, регистрирующий силу электрического тока. Принцип действия новинки, представленной миру Швейггером, основывался на взаимодействии магнитных полей проводника, стрелки компаса.

Вопрос важен по простой причине, для поддержания нужного закона тока нужно измерить физическую величину. Первые гальванометры оценивали параметр по силе магнитного поля, создаваемого проводником. В дальнейшем заложило основу действия первых тестеров. Как работает современное оборудование?

В зарядных устройствах поддерживается постоянным напряжение. Ток измеряется с целью оценки полноты наполненности батареи. Благодаря продуманному подходу, телефон способен сигнализировать мнемонически о ходе процесса. Когда батарея полна, полоса зарядки полностью закрашивается (первые сотовые телефоны), либо исчезает (на многих смартфонах в выключенном состоянии). Ход процесса регистрируется датчиком Холла: только исчезают импульсы, считается, устройство не нуждается в дальнейшей подзарядке.

На основе указанного эффекта первое время было возможным регистрировать наличие/отсутствие тока. С развитием науки, техники появились преобразователи на основе соединений индия, отличающиеся неплохими метрологическими качествами. По величине выходного напряжения способные оценивать параметры тока. Современные аналого-цифровые преобразователи измерения позволят перевести разницу потенциалов в цифры, понятные процессору. Последний выполняет необходимые операции по управлению устройством, способствуя получению тока заданной формы.

Инвертор действует схожим образом. Последовательности импульсов, нарезаемые ключом, проходят малогабаритный параметр в неизменном виде (форма графика), с измененными характеристиками. Остается только измерить нужные величины, произвести интегрирование на некотором участке. В результате современный сварочный аппарат по определению защищен против залипания: при резком возрастании тока питания отключается. Имеются у инверторов некоторые другие полезные качества, обеспечиваемые электроникой. Вот почему сварщикам нравятся аппараты.

В мощных цепях ток контролируется трансформаторами. Датчики Холла с десятками, сотнями амперов не работают напрямую. Типичный лимит составляет десятки мА. Используется принцип, схожий с имеющим место быть в цифровых мультиметрах: из потока движущихся по электрической цепи зарядов вычленяется некоторая малая часть. Далее пропорцией оценивается полная величина. Трансформаторы тока действуют аналогичным образом. Не имея первичной обмотки, путем электромагнитной индукции передают малую часть энергии поля измерительному средству (например, счетчику, аппаратуре контроля).

Отличительные особенности

Из сказанного понимаем следующее:

  1. Физика под источником тока понимает агрегат, формирующий на выходе постоянный параметр. Практика часто предъявляет иные требования. Хотя чаще ток требуется постоянный.
  2. На схемах источник тока обозначают по-другому, нежели источник ЭДС. Круг с двумя галками. Иногда рядом стоит латинская литера I. Сие помогает решать согласно уравнениям Кирхгофа задачи нахождения условий элементов электрической цепи.
  3. Форма закона генерируемого тока определяется нуждами потребителя. Большинство бытовых приборов питается напряжением. Постоянство тока, особая форма не нужны, даже приносят вред. Мясорубка при заклинивании вала костью требует больше энергии. На это настроена регулирующая и защитная электроника.
  4. Мощность, отдаваемая идеальным источником, растет пропорционально активному сопротивлению нагрузки. В реальности видим некий лимит, выше которого параметры начнут отличаться от заданных.

Проще говоря, исторически с точки зрения практики удобнее постоянным поддерживать напряжение, не ток. Термин, рассматриваемый разделом, вызывает много затруднений у людей посторонних, далеких электронике, вполне сведущих в технике. Итак, источник тока – отвечает за поддержание нужной формы тока. Чаще требуется постоянный.

Величина тока послужит целям регулирования. Искрение коллекторного двигателя сопровождается возрастанием нагрузки. Растет потребляемый ток, цепи контроля повышают напряжение на обмотках с целью преодолеть возникший «кризис». Приводит к необходимости контроля величины тока. В мясорубках задачу решает цепь обратной связи, формирующая угол отсечки ключом входного напряжения.

Пытаясь сохранить постоянной разность потенциалов, приборы варьируют потребление тока. В результате запрашиваемая от подстанции мощность меняется, эффект приводит к проседанию вольтажа. Визуально наблюдаем медленным миганием лампочек накала (энергосберегающие несут в цоколе драйвер для поддержания постоянства напряжения). Аналогичным образом устройства показали бы проседание тока при неизменном напряжении.

vashtehnik.ru


Видеоматериалы

24.10.2018

Опыт пилотных регионов, где соцнормы на электроэнергию уже введены, показывает: граждане платить стали меньше

Подробнее...
23.10.2018

Соответствует ли вода и воздух установленным нормативам?

Подробнее...
22.10.2018

С начала года из ветхого и аварийного жилья в республике были переселены десятки семей

Подробнее...
22.10.2018

Столичный Водоканал готовится к зиме

Подробнее...
17.10.2018

Более 10-ти миллионов рублей направлено на капитальный ремонт многоквартирных домов в Лескенском районе

Подробнее...

Актуальные темы

13.05.2018

Формирование энергосберегающего поведения граждан

 

Подробнее...
29.03.2018

ОТЧЕТ о деятельности министерства энергетики, ЖКХ и тарифной политики Кабардино-Балкарской Республики в сфере государственного регулирования и контроля цен и тарифов в 2012 году и об основных задачах на 2013 год

Подробнее...
13.03.2018

Предложения организаций, осуществляющих регулируемую деятельность о размере подлежащих государственному регулированию цен (тарифов) на 2013 год

Подробнее...
11.03.2018

НАУЧИМСЯ ЭКОНОМИТЬ В БЫТУ

 
Подробнее...

inetpriem


<< < Ноябрь 2013 > >>
Пн Вт Ср Чт Пт Сб Вс
        1 2 3
4 5 6 7 8 9 10
11 12 13 14 15 16 17
18 19 20 21 22 23 24
25 26 27 28 29 30  

calc

banner-calc

.