Измерительные трансформаторы. Измерительные трансформаторы


Измерительные трансформаторы

1.8.17. Измерительные трансформаторы испытываются в объеме, предусмотренном настоящим параграфом.

1. Измерение сопротивления изоляции:

а) первичных обмоток. Производится мегаомметром на напряжение 2500 В. Значение сопротивления изоляции не нормируется.

Для трансформаторов тока напряжением 330 кВ типа ТФКН-330 измерение сопротивления изоляции производится по отдельным зонам; при этом значения сопротивления изоляции должны быть не менее приведенных в табл. 1.8.12.

б) вторичных обмоток. Производится мегаомметром на напряжение 500 или 1000 В.

Сопротивление изоляции вторичных обмоток вместе с подсоединенными к ним цепями должно быть не менее 1 МОм.

2. Измерение тангенса угла диэлектрических потерь изоляции. Производится для трансформаторов тока напряжением 110 кВ и выше.

Таблица 1.8.12. Наименьшее допустимое сопротивление изоляции первичных обмоток трансформаторов тока типа ТФКН-330

Измеряемый участок изоляции

Сопротивление изоляции, МОм

Основная изоляция относительно предпоследней обкладки

5000

Измерительный конденсатор (изоляция между предпоследней и последней обкладками)

3000

Наружный слой первичной обмотки (изоляция последней обкладки относительно корпуса)

1000

Тангенс угла диэлектрических потерь изоляции трансформаторов тока при температуре +20°С не должен превышать значений, приведенных в табл. 1.8.13.

3. Испытание повышенным напряжением промышленной частоты:

а) изоляция первичных обмоток. Испытание является обязательным для трансформаторов тока и трансформаторов напряжения до 35 кВ (кроме трансформаторов напряжения с ослабленной изоляцией одного из выводов).

Таблица 1.8.13. Наибольший допустимый тангенс угла диэлектрических потерь изоляции трансформаторов тока

Наименование испытуемого объекта

Тангенс угла диэлектрических потерь, %, при номинальном напряжении, кВ

110

150-220

330

500

Маслонаполненные трансформаторы тока (основная изоляция)

2,0

1,5

-

1,0

Трансформаторы тока типа ТФКН-300:

основная изоляция относительно предпоследней обкладки

-

-

0,6

-

Измерительный конденсатор (изоляция между предпоследней и последней обкладками)

-

-

0,8

-

Наружный слой первичной обмотки (изоляция последней обкладки относительно корпуса)

-

-

1,2

-

Значения испытательных напряжений для измерительных трансформаторов указаны в табл. 1.8.14.

Таблица 1.8.14. Испытательное напряжение промышленной частоты для измерительных трансформаторов

Исполнение изоляции измерительного

Испытательное напряжение, кВ, при номинальном напряжении, кВ

трансформатора

3

6

10

15

20

35

Нормальная

21,6

28,8

37,8

49,5

58,5

85,5

Ослабленная

9

14

22

33

-

-

Продолжительность приложения нормированного испытательного напряжения: для трансформаторов напряжения 1 мин; для трансформаторов тока с керамической, жидкой или бумажно-масляной изоляцией 1 мин; для трансформаторов тока с изоляцией из твердых органических материалов или кабельных масс 5 мин;

б) изоляции вторичных обмоток. Значение испытательного напряжения для изоляции вторичных обмоток вместе с присоединенными к ним цепями составляет 1 кВ. Продолжительность приложения нормированного испытательного напряжения 1 мин.

4. Измерение тока холостого хода. Производится для каскадных трансформаторов напряжением 110 кВ и выше на вторичной обмотке при номинальном напряжении. Значение тока холостого хода не нормируется.

5. Снятие характеристик намагничивания магнитопровода трансформаторов тока. Следует производить при изменении тока от нуля до номинального, если для этого не требуется напряжение выше 380 В. Для трансформаторов тока, предназначенных для питания устройств релейной защиты, автоматических аварийных осциллографов, фиксирующих приборов и т. п., когда необходимо проведение расчетов погрешностей, токов небаланса и допустимой нагрузки применительно к условиям прохождения токов выше номинального, снятие характеристик производится при изменении тока от нуля до такого значения, при котором начинается насыщение магнитопровода.

При наличии у обмоток ответвлений характеристики следует снимать на рабочем ответвлении.

Снятые характеристики сопоставляются с типовой характеристикой намагничивания или с характеристиками намагничивания других однотипных исправных трансформаторов тока.

6. Проверка полярности выводов (у однофазных) или группы соединения (у трехфазных) измерительных трансформаторов. Производится при монтаже, если отсутствуют паспортные данные или есть сомнения в достоверности этих данных. Полярность и группа соединений должны соответствовать паспортным данным.

7. Измерение коэффициента трансформации на всех ответвлениях. Производится для встроенных трансформаторов тока и трансформаторов, имеющих переключающее устройство (на всех положениях переключателя). Отклонение найденного значения коэффициента от паспортного должно быть в пределах точности измерения.

8. Измерение сопротивления обмоток постоянному току. Производится у первичных обмоток трансформаторов тока напряжением 10 кВ и выше, имеющих переключающее устройство, и у связующих обмоток каскадных трансформаторов напряжения. Отклонение измеренного значения сопротивления обмотки от паспортного или от сопротивления обмоток других фаз не должно превышать 2%.

9. Испытание трансформаторного масла. Производится у измерительных трансформаторов 35 кВ и выше согласно 1.8.33.

Для измерительных трансформаторов, имеющих повышенное значение тангенса угла диэлектрических потерь изоляции, следует произвести испытание масла по п. 12 табл. 1.8.38.

У маслонаполненных каскадных измерительных трансформаторов оценка состояния масла в отдельных ступенях производится по нормам, соответствующим номинальному рабочему напряжению ступени (каскада).

10. Испытание емкостных трансформаторов напряжения типа НДЕ. Производится согласно инструкции завода-изготовителя.

11. Испытание вентильных разрядников трансформаторов напряжения типа НДЕ. Производится в соответствии с 1.8.28.

studfiles.net

Измерительные трансформаторы

Измерительные трансформаторы используют, главным образом, для подключения электроизмерительных приборов к цепи переменного тока высокого напряжения. При этом электроизмерительные приборы оказы ваются изолированными от цепей высокого напряжения, что обеспечивает безопасность работы обслуживающего персонала. Кроме того, измерительные трансформаторы дают возможность расширять пределы измерения приборов, т.е. измерять большие токи и напряжения с помощью сравнительно несложных приборов, рассчитанных для измерения малых токов и напряжений. В ряде случаев измерительные трансформаторы служат для подключения к цепям высокого напряжения обмоток реле, обеспечивающих защиту электроустановок от аварийных режимов.

Измерительные трансформаторы подразделяют на два типа — трансформаторы напряжения и трансформаторы тока. Трансформаторы напряжения служат для включения вольтметров, а также других приборов, реагирующих на значение напряжения (например, катушек напряжения ваттметров, счетчиков, фазометров и различных реле). Вторые служат для включения амперметров и токовых катушек указанных приборов. Измерительные трансформаторы изготовляют мощностью от пяти до нескольких сотен вольт-ампер; они рассчитаны для совместной работы со стандартными приборами (амперметрами на 1; 2; 2,5 и 5 А, вольтметрами на 100 и 100 В).

Трансформатор напряжения выполняют в виде двухобмоточного понижающего трансформатора (рис. 8.18). Для обеспечения безопасности работы обслуживающего персонала вторичную обмотку тщательно изолируют от первичной и заземляют. Условное обозначение трансформатора напряжения такое же, как двухобмоточного трансформатора.

Так как сопротивления обмоток вольтметров и других приборов, подключаемых к трансформатору напряжения, велики, то он практически работает в режиме холостого хода. В этом режиме можно с достаточной степенью точности считать, что

 

 

где К — коэффициент трансформации.

Поскольку ток холостого хода создает в трансформаторе некоторое падение напряжения, преобразование напряжения происходит с некоторой погрешностью по значению и фазе.

В зависимости от значения допускаемых погрешностей стационарные трансформаторы напряжения подразделяют на три класса точности: 0,5; 1 и 3; а лабораторные — на четыре класса: 0,05; 0,1; 0,2 и 0,5. Обозначение класса соответствует значению относительной погрешности по фазе при номинальном напряжении U1ном.

Трансформатор тока выполняют в виде двухобмоточного повышающего трансформатора (рис. 8.19, а) или в виде проходного трансформатора, у которого первичной обмоткой служит провод, проходящий через окно магнитопровода. В некоторых конструкциях магнитопровод и вторичная обмотка смонтированы на проходном изоляторе, служащем для ввода высокого напряжения в силовой трансформатор или другую электрическую установку. Первичной обмоткой трансформатора служит медный стержень, проходящий внутри изолятора (рис. 8.19, б).

Сопротивления обмоток амперметров и других приборов, подключаемых к трансформатору тока, обычно малы. Поэтому он практически работает в режиме короткого замыкания, при котором ток I1 во много раз больше тока холостого хода I0, и с достаточной степенью точности можно считать, что

 

 

где К – 1/w2.

В действительности из-за наличия тока холостого хода в рассматриваемом трансформаторе между векторами этих токов первичной и вторичной обмоток имеется некоторый угол, отличный от 180° что создает относительную токовую (амплитудную) и угловую погрешность.

В зависимости от значения допускаемых погрешностей трансформаторы тока подразделяют на пять классов точности: стационарные — на классы 0,2; 0,5; 1; 3 и 10; лабораторные — на классы 0,01; 0,02; 0,05; 0,1; 0,2. Приведенные цифры соответствуют допускаемой для данного класса токовой погрешности при номинальном значении тока.

Измерительные ТТ и ТН выполняются взрывобезопасными, встроен­ными, или отдельно стоящими, а также комбинированными (в едином корпусе ТТ и ТН). Наблюдается тенденция применения этих трансформа­торов с внутренним заполнением элегазом SF6 («эс-фтор-шесть») с низ­ким (1,2—1,4 кг/см2) и повышенным (до 2,5 кг/см2 и выше) давлением. Это существенно повышает, как и у силовых трансформаторов, их эколо-гичность и пожаробезопасность.

Большое внимание в настоящее время уделяется и другим перспектив­ным типам измерительных трансформаторов. Нетрадиционные измери­тельные трансформаторы на базе оптических и электронных систем с цифровым методом обработки сигналов отличаются простотой конструк­ции, компактностью, хорошей электромагнитной совместимостью. Име­ются факты успешной разработки и эксплуатации оптических измери­тельных трансформаторов до напряжений 550—1100 кВ.

 

Похожие статьи:

poznayka.org

Измерительные трансформаторы

Измерительные трансформаторы применяют в установках переменного тока для изоляции цепей измерительных приборов и реле от сети высокого напряжения, для расширения пределов измерения измерительных приборов. Непосредственное включение измерительных приборов в цепь высокого напряжения сделало бы опасным прикосновение к ним. Конструкция приборов в этом случае была бы сильно усложнена, так как изоляция токоведущих частей должна была бы быть рассчитана на высокое напряжение, а их сечение — на большие токи.

Измерительные трансформаторы делят па трансформаторы тока и трансформаторы напряжения. Их применение дает возможность пользоваться для измерения самых различных напряжений и токов одними и теми же приборами со стандартными пределами измерения. Трансформаторы тока преобразуют измеряемый ток большой силы е ток малой силы, а трансформаторы напряжения — измеряемое высокое напряжение в низкое

Первичную обмотку трансформатора тока, имеющую малое число витков, включают последовательно в линию, в которой измеряют или контролируют ток Начало и конец этой обмотки обозначают буквой Л (линия) с цифрами соответственно 1 и 2, начало и конец вторичной обмотки — буквой И (измерение) с цифрами 1 и 2.

В цепь вторичной обмотки трансформатора тока включают прибор с малым сопротивлением. Таким прибором может быть амперметр, токовая катушка ваттметра, счетчика, какого-либо иного измерительного прибора или реле. Приборы во вторичную цепь включают так, чтобы положительное направление тока в приборе совпадало то направлению с положительным направлением тока в контролируемой цепи. Это очень важно для включения ваттметров и счетчиков при измерении мощности и энергии.

Первичные номинальные токи трансформаторов тока стандартизованы в пределах 5—15000 а. Для вторичных номинальных токов установлены стандартные значения 5 а и в специальных случаях 1 а.

В цепь вторичной обмотки трансформатора тока можно включить несколько приборов, соединив их последовательно, чтобы че рез них проходил один и тот же ток. Однако включать в цепь вторичной обмотки большое число измерительных приборов нежелательно, так как это увеличивает сопротивление нагрузки трансформаторов и снижает точность измерения. Сопротивление нагрузки, цключаемой в цепь вторичной обмотки трансформатора тока при номинальном токе 5 а, должно быть не более 0,2—2 ом.

Условия работы трансформатора тока близки к короткому замыканию вторичной обмотки силового трансформатора. Так как сопротивление нагрузки очень мало, напряжениена зажимах вторичной обмотки трансформатора тока также мало. Следовательно, малы э, д. с. вторичной обмотки и магнитный поток в магнитопроводе трансформатора, необходимый для индуктирования этой э. д. с. Поэтому намагничивающий ток относительно мал и намагничивающие силы первичной и вторичной обмоток практически взаимно уравновешены, т.е I1w1=I2w2

Зная коэффициент трансформации трансформатора тока т. е. отношение чисел витков вторичной и первичной обмоток, по показанию амперметра во вторичной цепи легко определить ток в первичной контролируемой цепи.

При увеличении сопротивления внешней нагрузки напряжение на зажимах вторичной обмотки трансформатора тока также увеличивается. Это увеличит э. д. с. во вторичной обмотке и магнитный поток в магнитопроводе. Для создания большого магнитного потока требуется больший намагничивающий ток, что приводит к большим погрешностям при измерении, так как нарушается равновесие намагничивающих сил первичной и вторичной, обмоток

Соответствующая неточность в передаче значения измеряемого тока называется токовой погрешностью (fi) Допустимое значение токовой погрешности для трансформаторов тока классов точности 0,2; 0,5; 1; 3; 10 составляет соответственно 0,2; 0,5; 1; 3; 10% при номинальном первичном токе.

Кроме того, возникает неточность в показаниях ваттметра и счетчиков из-за угловой погрешности б,-, которая определяется у­глом между векторами намагничивающих сил I1W1 и — I2W2 в минутах). Если вектор —I2W2 опережает вектор I1W1 угловая погрешность считается положительной. Для трансформаторов тока классов точности 0,2; 0,5 и 1 угловая погрешность при номинальном токе не должна превышать соответственно 10; 40 и 80’. Для трансформаторов тока классов точности 3 и 10 угловая погрешность не нормирована. С увеличением намагничивающего тока увеличиваются как токовая, так и угловая погрешности

У точных трансформаторов тока намагничивающая сила первичной обмотки при номинальном токе должна быть не менее 500 а. Число витков первичной обмотки выбирают в зависимости от номинального первичного тока и требуемой точности Трансформаторы тока могут быть одновитковыми (первичная обмотка имеет один виток), шинными (первичной обмоткой служит шина распределительного устройства) и многовитковымм (первичная обмотка имеет два и более витков).

Трансформаторы тока изготовляют сухими с изоляцией из бакелизированной бумаги, с керамической изоляцией, с эпоксидной изоляцией. При весьма высоких напряжениях применяют масляные трансформаторы тока.

Разновидностью шинных трансформаторов тока являются измерительные клещи, которые служат для ориентировочных измерений токов от 20 до 1000 а при рабочем напряжении до 10 кв. Магнитопровод клещей, изготовленный из листовой электротехнической стали, состоит из двух половин, стягиваемых сильной пружиной. Клещи раскрывают для введения провода, в котором нужно измерить ток. Этот провод является первичной обмоткой трансформатора тока. Вторичная обмотка расположена на магнитопроводе и замкнута на амперметр, установленный на клещах. Рукоятки отделены от высокого напряжения фарфоровыми изоляторами и для безопасности обслуживания заземлены.

В случае пробоя изоляции между обмотками трансформатора тока его вторичная обмотка окажется под высоким напряжением; в случае пробоя обмотки высокого напряжения на корпус магнитопровод окажется под высоким напряжением. Для безопасности обслуживания трансформаторов тока их вторичные обмотки и магнитопроводы заземляют.

Особенностью трансформаторов тока является то, что при их работе нельзя размыкать вторичную цепь. При размыкании цепи вторичной обмотки ток в ней становится равным нулю, тогда как в первичной обмотке ток остается неизменным. Намагничивающая сила первичной обмотки трансформатора тока, не встречая противоположно направленной намагничивающей силы вторичной обмотки, создает в магнитопроводс очень большой магнитный поток, который индуктирует во вторичной обмотке очень большую э. д. с. (до нескольких киловольт). Такая э. д. с. опасна для жизни человека и может вызвать пробой изоляции вторичной обмотки. Кроме того, большой магнитный поток в магнитопроводе значительно увеличивает потери в стали, что вызывает нагрев магнитопровода, опасный для целости изоляции.

Трансформаторы напряжения по устройству подобны силовым трансформаторам небольшой мощности. Первичную обмотку трансформатора напряжения с большим числом витков включают в сеть, напряжение в которой измеряют или контролируют

Начало и конец первичной обмотки обозначают буквами А и X. Вторичная обмотка с меньшим числом витков замыкается на прибор с большим сопротивлением. Таким прибором может быть вольтметр, параллельная обмотка ваттметра, счетчика или какого-либо иного измерительного прибора или реле. Начало и конец вторичной обмотки обозначают буквами а и х. По отношению к измерительному прибору вторичное напряжение должно совпадать по фазе с первичным, что достигается соответствующим соединением вторичной обмотки с прибором. Это необходимо при измерении мощности и энергии Сопротивление вольтметров, параллельных обмоток ваттметров, счетчиков и других измерительных приборов и реле сравнительно велико (тысячи ом). Поэтому ток в цепи вторичной обмотки трансформатора напряжения весьма мал и режим работы его близок к режиму холостого хода силового трансформатора.

Так как при малых токах в обмотках трансформатора падения напряжения в сопротивлениях этих обмоток также малы, напряжения на зажимах первичной и вторичной обмоток практически равна э. д. с, а отношение этих напряжений равно коэффициенту трансформации

Для трансформаторов напряжения различных классов точности установлена следующая допустимая погрешность напряжения: класс 0,5— ±0,5%; класс 1 — ±1%; класс 3— ±3%.

Кроме того, за счет падения напряжения в сопротивлениях обмоток трансформатора возникает неточность в передаче фазы напряжения, называемая угловой погрешностью. Падение напряжения в сопротивлениях обмоток трансформатора AU приводит к тому, что векторы напряжений первичной обмотки U1 и приведенного напряжения вторичной обмотки с обратным знаком не сов­падают. Угол между этими векторами определяет угловую погрешность, которая измеряется в угловых минутах и влияет на показания ваттметров, счетчиков и фазометров. Угловая погрешность считается положительной, если вектор —U2 опережает вектор U1.

Для трансформаторов напряжения классов точности 0,5 и 1 допускается угловая погрешность соответственно ±20 и ±40. Для трансформаторов напряжения класса точности 3 угловая погрешность не нормирована.

В цепи вторичной обмотки трансформатора напряжения могут быть включены помимо вольтметра параллельные обмотки ваттметра, счетчика и т. д. Все эти приборы соединяют параллельно, чтобы на них воздействовало одно и то же напряжение.

Включение большого числа приборов в цепь вторичной обмотки трансформатора напряжения увеличивает токи в обмотках и погрешность при измерении. Поэтому общая полная мощность присоединенных ко вторичной обмотке приборов не должна превышать измерительную мощность трансформатора напряжения, на щитке которого указана наибольшая допустимая мощность нагрузки в вольт-амперах.

Для напряжений до 6 кв трансформаторы напряжения изготовляют сухими, т. е. с естественным воздушным охлаждением. Для напряжений выше 6 кв применяют масляные трансформаторы напряжения. Трансформаторы напряжения могут быть трехфазными. Зажимы таких трансформаторов обозначают так же, как и зажимы обычных силовых трансформаторов. Для безопасности обслуживания и большей надежности работы аппаратуры магнитопровод трансформатора напряжения и один зажим вторичной обмотки заземляют.

voasw.ru

Измерительные трансформаторы

 Измерительные трансформаторы предназначены для изоляции измерительных приборов и аппаратов автоматической защиты от цепи высокого напряжения, расширения пределов измерения измерительных приборов.

Применение этих приборов, которые обладают различными пределами, дает возможность использовать одни и те же приборы со стандартными пределами измерения (100 В и 5 А) для проведения измерений в различных цепях посредством данных приборов через измерительные трансформаторы с различными коэффициентами трансформации.

Различают измерительные трансформаторы напряжения, применяемые для включения вольтметров, частотомеров, цепей напряжения измерительных приборов (ваттметров, счетчиков, фазометров) и реле, а также трансформаторы тока, предназначенные для включения амперметров, цепей тока измерительных приборов и реле.

Устройство трансформатора напряжения и его условное обозначение показаны на рисунках 46 и 47. Первичная обмотка таких трансформаторов, которая является и обмоткой высшего напряжения, имеет большое число витков и включается как вольтметр под измеряемое напряжение U1; вторичная же обмотка является обмоткой низшего напряжения, имеет меньшее количество витков и замыкается на вольтметр и цепи напряжения других приборов.

Измерительный прибор относительно вторичной обмотки соединяется параллельно, что обеспечивает действие одного и того же вторичного напряжения. Трансформатор напряжения в условиях работы находится в условиях холостого хода, так как сопротивление вольтметра и цепей напряжения измерительных приборов велико. Поэтому внутренние падения напряжения в обмотках измерительного трансформатора не принимают больших значении, поэтому U1 = E1 и U2 = E2. Итак, с помощью измерительного трансформатора во вторичную цепь передается пропорционально измененное значение первичного трансформатора.

Напряжения первичного высокого напряжения. Определяя низкое напряжение, можно определить первичное высокое напряжение. Фаза вторичного напряжения противоположна фазе первичного.

Первичное и вторичное напряжения строго пропорциональны, если внутренние падения напряжения измерительного трансформатора равны нулю. В реальных ситуациях присутствие падений внутренних напряжений приводит к неточностям при передаче напряжения. Данные неточности приводят к появлению погрешностей напряжения, а неточности в передаче фаз способствует появлению угловой погрешности.

Погрешностью напряжения называется выражаемая в процентах погрешность в измерениях первичного напряжения, которая относится к действительному значению этого напряжения. Угловая погрешность — это угол ?u, который образуется между вектором первичного напряжения и смещенным на 180° вектором вторичного напряжения. Ее измеряют в минутах и считают положительной, если повернутый на 180° вектор вторичной величины опережает вектор первичной величины.

Трансформатор тока включают в линию так же, как амперметр, последовательно с измеряемым объектом, а вторичную обмотку замыкают на амперметр и цепи тока других измерительных приборов.

Трансформаторы напряжения позволяют определять большую силу тока на основании измерения небольшой силы тока в условиях полной безопасности. Также трансформаторы тока используют для измерения больших токов в установках с напряжением ниже 1000 В.

worldofscience.ru


Видеоматериалы

24.10.2018

Опыт пилотных регионов, где соцнормы на электроэнергию уже введены, показывает: граждане платить стали меньше

Подробнее...
23.10.2018

Соответствует ли вода и воздух установленным нормативам?

Подробнее...
22.10.2018

С начала года из ветхого и аварийного жилья в республике были переселены десятки семей

Подробнее...
22.10.2018

Столичный Водоканал готовится к зиме

Подробнее...
17.10.2018

Более 10-ти миллионов рублей направлено на капитальный ремонт многоквартирных домов в Лескенском районе

Подробнее...

Актуальные темы

13.05.2018

Формирование энергосберегающего поведения граждан

 

Подробнее...
29.03.2018

ОТЧЕТ о деятельности министерства энергетики, ЖКХ и тарифной политики Кабардино-Балкарской Республики в сфере государственного регулирования и контроля цен и тарифов в 2012 году и об основных задачах на 2013 год

Подробнее...
13.03.2018

Предложения организаций, осуществляющих регулируемую деятельность о размере подлежащих государственному регулированию цен (тарифов) на 2013 год

Подробнее...
11.03.2018

НАУЧИМСЯ ЭКОНОМИТЬ В БЫТУ

 
Подробнее...

inetpriem


<< < Ноябрь 2013 > >>
Пн Вт Ср Чт Пт Сб Вс
        1 2 3
4 5 6 7 8 9 10
11 12 13 14 15 16 17
18 19 20 21 22 23 24
25 26 27 28 29 30  

calc

banner-calc

.