Работа и мощность тока. Мощность тока выделяющаяся на резисторе формула
Что такое мощность резистора? Мощность тока выделяющаяся на резисторе формула
Романова_1 / курсачи / Курсовик Романова / ПРИМЕР / 13 Тепловой расчет. Тепловая мощность на резисторе формула
Расчёт количества теплоты на резисторах
Задача по теме «Законы постоянного тока». Задача может быть интересна учащимся 10-х классов и выпускникам для подготовки к ЕГЭ. Кстати, подобного рода задача была на ЕГЭ в части 1 с несколько иным вопросом (необходимо было найти отношение количеств теплоты, выделяющихся на резисторах).
На каком из резисторов выделится наибольшее (наименьшее) количество теплоты? R1 = R4 = 4 Ом, R2 = 3 Ом, R3 = 2Ом. Дать решение. Чтобы ответить на вопрос задачи, необходимо сравнить количество теплоты, выделяющееся на каждом их резисторов. Для этого воспользуемся формулой закона Джоуля — Ленца.То есть основной задачей будет являться определение силы тока (или сравнение), протекающей через каждый резистор.
Согласно законам последовательного соединения, сила тока, протекающая через резисторы R1 и R2, и R3 и R4, одинаковая.Чтобы определить силу тока в верхней и в нижней ветвях, воспользуемся законом параллельного соединения, согласно которому, напряжение на этих ветвях одинаковое.Расписывая напряжение на нижней и верхней ветвях по закону Ома для участка цепи, имеем:Подставляя численные значения сопротивлений резисторов, получаем:То есть получаем соотношение между токами, протекающими в верхней и в нижней ветви:Определив силу тока через каждый из этих резисторов, определяем количество теплоты, выделяющееся на каждом из резисторов.Сравнивая числовые коэффициенты, приходим к выводу, что максимальное количество теплоты выделится на четвёртом резисторе, а минимальное количество теплоты — на втором.
Вы можете оставить комментарий, или поставить трэкбек со своего сайта.Написать комментарий
fizika-doma.ru
Тепловая мощность - формула расчета
С теплотехническими расчётами приходится сталкиваться владельцам частных домов, квартир или любых других объектов. Это основа основ проектирования зданий.
Понять суть этих расчётов в официальных бумагах, не так сложно, как кажется.
Для себя также можно научиться выполнять вычисления, чтобы решить, какой утеплитель применять, какой толщины он должен быть, какой мощности приобретать котёл и достаточно ли имеющихся радиаторов на данную площадь.
Ответы на эти и многие другие вопросы можно найти, если понять, что такое тепловая мощность. Формула, определение и сферы применения – читайте в статье.
Что такое тепловой расчет?
Если говорить просто, тепловой расчёт помогает точно узнать, сколько тепла хранит и теряет здание, и сколько энергии должно вырабатывать отопление, чтобы поддерживать в жилье комфортные условия.
Оценивая теплопотери и степень теплоснабжения, учитываются следующие факторы:
- Какой это объект: сколько в нём этажей, наличие угловых комнат, жилой он или производственный и т. д.
- Сколько человек будет «обитать» в здании.
- Важная деталь — это площадь остекления. И размеры кровли, стен, пола, дверей, высота потолков и т. д.
- Какова продолжительность отопительного сезона, климатические характеристики региона.
- По СНиПам определяют нормы температур, которые должны быть в помещениях.
- Толщина стен, перекрытий, выбранные теплоизоляторы и их свойства.
Могут учитываться и другие условия и особенности, например, для производственных объектов считаются рабочие и выходные дни, мощность и тип вентиляции, ориентация жилья по сторонам света и др.
Для чего нужен тепловой расчет?
Как умудрялись обходиться без тепловых расчётов строители прошлого?
Сохранившиеся купеческие дома показывают, что всё делалось просто с запасом: окна поменьше, стены — потолще. Получалось тепло, но экономически не выгодно.
Теплотехнический расчёт позволяет строить наиболее оптимально. Материалов берётся ни больше — ни меньше, а ровно столько, сколько нужно. Сокращаются габариты строения и расходы на его возведение.
Вычисление точки росы позволяет строить так, чтобы материалы не портились как можно дольше.
Для определения необходимой мощности котла также не обойтись без расчётов. Суммарная мощность его складывается из затрат энергии на обогрев комнат, нагрев горячей воды для хозяйственных нужд, и способности перекрывать теплопотери от вентиляции и кондиционирования. Прибавляется запас мощности, на время пиковых холодов.
При газификации объекта требуется согласование со службами. Рассчитывается годовой расход газа на отопление и общая мощность тепловых источников в гигакалориях.
Нужны расчёты при подборе элементов отопительной системы. Обсчитывается система труб и радиаторов – можно узнать, какова должна быть их протяжённость, площадь поверхности. Учитывается потеря мощности при поворотах трубопровода, на стыках и прохождении арматуры.
При расчетах затрат тепловой энергии могут пригодиться знания, как перевести Гкал в Квт и обратно. В следующей статье подробно рассмотрена эта тема с примерами расчета.
Полный расчет теплого водяного пола приведен в этом примере.
Знаете ли вы, что количество секций радиаторов отопления не берется «с потолка»? Слишком малое их количество приведет к тому, что в доме будет холодно, а чрезмерно больше создаст жару и приведет к чрезмерной сухости воздуха. По ссылке http://microklimat.pro/sistemy-otopleniya/raschet-sistem-otopleniya/kolichestva-sekcij-radiatorov.html приведены примеры правильного расчета радиаторов.
Расчет тепловой мощности: формула
Рассмотрим формулу и приведем примеры, как произвести расчет для зданий с разным коэффициентом рассеивания.
Vx(дельта)TxK= ккал/ч (тепловая мощность), где:
- Первый показатель «V» – объем рассчитываемого помещения;
- Дельта «Т» — разница температур – это та величина, которая показывает насколько градусов внутри помещения теплее, чем снаружи;
- «К» — коэффициент рассеивания (его еще называют «коэффициент пропускания тепла»). Величина берется из таблицы. Обычно цифра колеблется от 4 до 0,6.
Примерные величины коэффициента рассеивания для упрощенного расчёта
- Если это неутепленный металлопрофиль или доска то «К» будет = 3 – 4 единицы.
- Одинарная кирпичная кладка и минимальное утепление – «К» = от 2 до 3-ёх.
- Стена в два кирпича, стандартное перекрытие, окна и
- двери – «К» = от 1 до 2.
- Самый теплый вариант. Стеклопакеты, кирпичные стены с двойным утеплителем и т. п. – «К» = 0,6 – 0,9.
Более точный расчет можно произв
xn----7sbeb3bupph.xn--p1ai
Что такое мощность резистора? | joyta.ru
Номинальная мощность резистора определяет, какое максимальное количество энергии может рассеять резистор без риска перегрева.
Как вытекает из закона Ома, электрическая мощность связана с напряжением и током:
P = I * U
Если электрическая мощность, выделяемая на резисторе, не превышает его номинальную рассеиваемую мощность, температура резистора будет стабильной. Следует отметить, что температура на самом резисторе распределена не равномерно. Его корпус немного теплее, чем выводы, а самая высокая температура в центре корпуса.
Чем выше скорость теплоотдачи в окружающую среду, тем ниже температура на резисторе. Крупные резисторы с большой площадью поверхности, как правило, могут рассеивать значительное количество тепловой мощности.
Если мощность выделяемая на резисторе превышает его номинальную мощность, то резис
xn--90adflmiialse2m.xn--p1ai
Мощность, выделяемая в цепи переменного тока
Мгновенное значение мощности переменного тока равно произведению мгновенного значения напряжения на силу тока:
,
где и .
Раскрыв , получим
.
Практический интерес представляет не мгновенное значение мощности, а ее среднее значение за период колебания. Учитывая, что , , получим:
, | (4.5.1) |
где , поэтому среднее значение мощности будет равно:
. | (4.5.2) |
Такую же мощность развивает постоянный ток: .
Величины и называются действующими (или эффективными) значениями тока и напряжения. Все амперметры и вольтметры градируются по действующим значениям тока и напряжения.
Учитывая действующие значения тока и напряжения, выражение средней мощности (4.5.1) можно записать в виде:
, | (4.5.4) |
где множитель называется коэффициентом мощности.
Формула (4.5.4) показывает, что мощность, выделяемая в цепи переменного тока, в общем случае, зависит не только от силы тока и напряжения, но и от сдвига фаз между ними. Если в цепи отсутствует реактивное сопротивление Х, то и . Если цепь содержит только реактивное сопротивление (R = 0), то и средняя мощность равна нулю, какими бы большими ни были ток и напряжение.
Если имеет значение существенно меньше единицы, то для передачи заданной мощности при данном напряжении генератора нужно увеличивать силу тока I, что приводит либо к выделению джоулевой теплоты, либо потребует увеличения сечения проводов, что повышает стоимость линий электропередачи. Поэтому на практике всегда стремятся увеличить . Наименьшее допустимое значение для промышленных установок составляет примерно 0,85.
В таблице 4.1 приведены сравнительные характеристики механических и электромагнитных колебаний.
Таблица 4.1
Колебания |
|||
механические |
электромагнитные |
||
Дифференциальное уравнение |
|
Дифференциальное уравнение |
|
Масса |
|
Индуктивность катушки |
|
Коэффициент жесткости |
|
Обратная величина емкости |
|
Смещение |
|
Заряд |
|
Скорость |
|
Сила тока |
|
Потенциальная энергия |
|
Энергия электрич. поля |
|
Кинетическая энергия |
|
Энергия магнитного поля |
|
Собств. частота пружинного маятника |
|
Собств. частота колебательного контура |
|
Период колебаний |
|
Период колеб. Формула Томсона |
|
Циклич. частота затухающих колебаний |
|
Циклич. частота затухающих колебаний |
|
Коэффициент затухания |
|
Коэффициент затухания |
|
Логарифмич. декремент затухания |
|
Логарифмич. декремент затухания |
|
Добротность пружинного маятника |
|
Добротность колебательного контура |
|
Резонансная частота |
|
Резонансная частота |
|
ens.tpu.ru
Работа и мощность тока
При протекании тока по однородному участку цепи электрическое поле совершает работу. За время Δt по цепи протекает заряд Δq = IΔt. Электрическое поле на выделенном учестке совершает работу
ΔA = (φ1 – φ2)Δq = Δφ12IΔt = UIΔt, |
где U = Δφ12 – напряжение. Эту работу называют работой электрического тока. Если обе части формулы
выражающей закон Ома для однородного участка цепи с сопротивлением R, умножить на IΔt, то получится соотношение
Это соотношение выражает закон сохранения энергии для однородного участка цепи. Работа ΔA электрического тока I, протекающего по неподвижному проводнику с сопротивлением R, преобразуется в тепло ΔQ, выделяющееся на проводнике.
Закон преобразования работы тока в тепло был экспериментально установлен независимо друг от друга Дж. Джоулем и Э. Ленцем и носит название закона Джоуля–Ленца. Мощность электрического тока равна отношению работы тока ΔA к интервалу времени Δt, за которое эта работа была совершена:
|
Работа электрического тока в СИ выражается в джоулях (Дж), мощность – в ваттах (Вт). Рассмотрим теперь полную цепь постоянного тока, состоящую из источника с электродвижущей силой и внутренним сопротивлением r и внешнего однородного участка с сопротивлением R. Закон Ома для полной цепи записывается в виде
(R + r)I = . |
Умножив обе части этой формулы на Δq = IΔt, мы получим соотношение, выражающее закон сохранения энергии для полной цепи постоянного тока:
RI2Δt + rI2Δt = IΔt = ΔAст. |
Первый член в левой части ΔQ = RI2Δt – тепло, выделяющееся на внешнем участке цепи за время Δt, второй член ΔQист = rI2Δt – тепло, выделяющееся внутри источника за то же время. Выражение IΔt равно работе сторонних сил ΔAст, действующих внутри источника. При протекании электрического тока по замкнутой цепи работа сторонних сил ΔAст преобразуется в тепло, выделяющееся во внешней цепи (ΔQ) и внутри источника (ΔQист).
. |
Следует обратить внимание, что в это соотношение не входит работа электрического поля. При протекании тока по замкнутой цепи электрическое поле работы не совершает; поэтому тепло производится одними только сторонними силами, действующими внутри источника. Роль электрического поля сводится к перераспределению тепла между различными участками цепи. Внешняя цепь может представлять собой не только проводник с сопротивлением R, но и какое-либо устройство, потребляющее мощность, например, электродвигатель постоянного тока. В этом случае под R нужно понимать эквивалентное сопротивление нагрузки. Энергия, выделяемая во внешней цепи, может частично или полностью преобразовываться не только в тепло, на и в другие виды энергии, например, в механическую работу, совершаемую электродвигателем. Поэтому вопрос об использовании энергии источника тока имеет большое практическое значение. Полная мощность источника, то есть работа, совершаемая сторонними силами за единицу времени, равна
Во внешней цепи выделяется мощность
Отношение равное
|
называется коэффициентом полезного действия источника. На рис. 4.11.1 графически представлены зависимости мощности источника Pист , полезной мощности P, выделяемой во внешней цепи, и коэффициента полезного действия η от тока в цепи I для источника с ЭДС, равной , и внутренним сопротивлением r. Ток в цепи может изменяться в пределах от I = 0 (при ) до (при R = 0).
1 |
Рисунок 4.11.1. Зависимость мощности источника Pист, мощности во внешней цепи P и КПД источника η от силы тока. |
Из приведенных графиков видно, что максимальная мощность во внешней цепи Pmax , равная
достигается при R = r. При этом ток в цепи
а КПД источника равен 50 %. Максимальное значение КПД источника достигается при I → 0, то есть при R → ∞. В случае короткого замыкания полезная мощность P = 0 и вся мощность выделяется внутри источника, что может привести к его перегреву и разрушению. КПД источника при этом обращается в нуль.
fizika.ayp.ru
Видеоматериалы
Опыт пилотных регионов, где соцнормы на электроэнергию уже введены, показывает: граждане платить стали меньше
Подробнее...С начала года из ветхого и аварийного жилья в республике были переселены десятки семей
Подробнее...Более 10-ти миллионов рублей направлено на капитальный ремонт многоквартирных домов в Лескенском районе
Подробнее...Актуальные темы
ОТЧЕТ о деятельности министерства энергетики, ЖКХ и тарифной политики Кабардино-Балкарской Республики в сфере государственного регулирования и контроля цен и тарифов в 2012 году и об основных задачах на 2013 год
Подробнее...Предложения организаций, осуществляющих регулируемую деятельность о размере подлежащих государственному регулированию цен (тарифов) на 2013 год
Подробнее...
КОНТАКТЫ
360051, КБР, г. Нальчик
ул. Горького, 4
тел: 8 (8662) 40-93-82
факс: 8 (8662) 47-31-81
e-mail:
Этот адрес электронной почты защищен от спам-ботов. У вас должен быть включен JavaScript для просмотра.