Описание электрооборудования трактора Т-25 и его схема. Проводка тт


Что такое ТТ? - ElectrikTop.ru

Сложно сейчас представить квартиру или частный дом, к которому не подходит электроэнергия. Она подводится с помощью кабеля или воздушной линии от трансформаторной подстанции. Состояние сетей влияет на эксплуатационные характеристики энергосистемы.

А исправность подводящих линий напрямую связана с безопасностью людей. При возникновении аварийной ситуации или повреждения оборудования возникает опасность попадания человека под опасное напряжение.

Чтобы уменьшить риск поражения электрическим током организуют систему заземления. А для исключения возможных последствий от поражения электрического тока применяют систему заземления по схеме ТТ.

Такая схема применяется в сетях с глухозаземленной нейтралью. Она применяется при условии, когда электрическая связь нулевого провода между трансформаторной подстанцией и объектом ненадежная. Может применяться когда необходимо подключить к сети временные объекты, жилые бытовки, частные дома, передвижные мастерские и т. п.

Что такое ТТ

Согласно ПЭУ в сетях необходимо применять схему заземления TN. Однако, если воздушная линия длинная, а техническое состояние ее не обеспечивает необходимой защиты, то реализуется система ТТ. Схема TN предполагает соединение цепи заземления нейтрали трансформатора с потребителем посредством непосредственной связи с помощью провода.

В системе ТТ трансформаторная подстанция имеет непосредственную связь токоведущих частей с землёй. Все открытые проводящие части электроустановки здания имеют непосредственную связь с землёй через заземлитель, электрически независимый от заземлителя нейтрали трансформаторной подстанции.

При невозможности обеспечения надежного соединения реализуется защита ТТ. Для этого непосредственно на объекте изготавливается контур защитного заземления, от которого проводится проводник РЕ, а в помещении или квартире монтируется трехпроводная сеть. Обязательное условие, что защитный проводник РЕ не должен быть соединен с нулевым проводом.

Заземление ТТ предполагает обязательное использование устройств защитного отключения (УЗО). Это предписано правилами эксплуатации электроустановок. Чаще всего система заземления ТТ применяется при подключении частного дома, к которому подводится воздушная линия электропередач, и есть вероятность ее повреждения.

Защита применяется при подключении к сети:

  1. Строительных домиков и бытовок;
  2. Павильонов и торговых точек, киосков и металлических контейнеров;
  3. Помещений с повышенной влажностью или с поверхностью стен изготовленных из диэлектрика;
  4. Коттеджей и частных домов при подключении к трехфазной сети.

В коттеджах проводник РЕ монтируется во все розетки третьим проводом и подсоединяется к заземляющему контакту электроприборов. В промышленных помещениях проводник РЕ монтируют отдельной шиной или толстым проводом по периметру здания, который соединяются с отдельным контуром заземления.

Система заземления ТТ запрещает подключение нейтрали к заземляющему проводу, что указано в ПЭУ. При таком подключении, самой трудоемкой операцией служит изготовление контура заземления. Его делают специальные люди, которые затем производят замеры.

Согласно ПЭУ параметром характеризующий контур заземления является его сопротивление. Его определяют по формуле:

R=50B/Iср.УЗО

Если в здании применяется несколько устройств защитного отключения, то в формулу подставляют значение дифференциального тока устройства с максимальным значением.

При этом должны соблюдаться условия, при которых все конструкции должны быть соединены между собой:

  1. Несущий металлический каркас здания;
  2. Металлические трубы водопровода (горячего и холодного водоснабжения) газовые и трубы отопления, если они выполнены из металла;
  3. Металлические короба вентиляции и кондиционирования;
  4. Контур заземления грозозащиты, если такой имеется.

Достоинства

К достоинствам системы защиты ТТ можно отнести, что при возникновении повреждения на линии электропередачи все приборы остаются защищенными. Это обеспечивается отдельным контуром заземления.

Недостатки

Несмотря на высокую степень защиты, система имеет и недостатки. Схема заземления ТТ требует изготовления заземлителей контура. Эта работа трудоемкая и для изготовления необходимо выполнить земляные работы.

Также в схеме обязательное использование УЗО, что приводит к удорожанию. Однако, она надежно защищает при аварийной ситуации, когда неожиданно происходит повреждение изоляции и напряжение питания появляется на корпусе прибора.

При прикасании к токоведущим частям человек попадает под воздействие напряжение. Обычные устройства отключения не позволяют произвести отключение линии.

При организации такой защиты обычными способами возникают осложнения по следующим причинам:

  • Технически сложно создать алгоритм работы отключающих устройств;
  • Высокое сопротивление контура заземления;
  • Большие значения токов коротких замыканий, которые обусловлены конструкциями отключающих устройств.

А это значит, что для обеспечения эффективной защиты устанавливаются системы, реагирующие на токи утечки, которые не должны превышать значения в 30 мА. Это обеспечивает безопасность человека при случайном прикосновении к токоведущим частям или корпусу, на котором присутствует потенциал. Для этого и предназначены приборы УЗО.

Кроме этого, эти устройства защищают проводку частного дома при возникновении больших токов утечки. Часто устанавливают УЗО на вводе в дом с током срабатывания 100-300 мА. Это повышает уровень безопасной селективности второй степени.

Для правильной работы устройств защиты ТТ провод нейтрали не должен иметь соединения с контуром заземления. Схемы подключения нейтрального проводника от трансформатора к потребителю имеет особенность, из-за перекоса фаз, в нулевом проводнике возникает уравнительный ток. Поэтому при соединении контура заземления с нулевым проводом возникают токи утечки, что приводит к неправильной работе УЗО.

Неисправности ТТ защиты

Для того чтобы защита выполняла свои функции следует следить за состоянием внутренних сетей. За этим должен следить владелец жилого дома.

Если этого не делать, то последствия могут быть печальными. Так, при повреждении изоляции фазного провода, на корпусе прибора возникает фазное напряжение, а при неисправном устройстве защитного отключения или нарушенном контуре заземления, человек попадет под опасное напряжение, что может окончиться смертью последнего. Смонтированные автоматические выключатели не сработают, так как ток отсечки автомата будет значительно больше, чем ток, протекающий через человека.

При монтаже электропроводки эту ситуацию пытаются нивелировать. Для этого устанавливают устройство выравнивания потенциалов и устанавливают вторую ступень селективной защиты.Монтаж и устройство защитного заземления ТТ является сложным. При выполнении этой работы следует строго соблюдать правила ПЭУ, поэтому выполнение монтажных работ следует поручить специалистам.

electriktop.ru

Электрическая безопасность дачи и частного дома (часть 2)

Итак, мы пришли к выводу, что электроэнергия, позволяющая нам пользоваться многими благами цивилизации, одновременно представляет большую опасность для жизни человека и поэтому требует внимательного отношения, четкого соблюдения разработанных правил обращения с ней.

Риски поражения электрическим током, которым подвергались жильцы, эксплуатирующие старую электропроводку при схеме TN-C в современных условиях, значительно возросли благодаря массовому внедрению мощных потребителей энергии. Простые защиты, используемые для нее, стали работать неэффективно.

Как устроена схема TN-C здания

Система прокладки электропроводки по TN-C основана на использовании четырех жил проводов для трехфазной цепи (3 фазы и общий ноль) и двухпроводной — у однофазной. Вариант подключения потребителей гаражей и дач по четырехпроводной воздушной линии показан на фотографии.

Рабочий ноль у этой схемы подключается непосредственно к контуру заземления питающей трансформаторной подстанции. В других местах заземления не создаются.

Они исключены проектом, не учитывающим аварийные перетоки через дополнительные контуры. Поэтому при возникновении необходимости их установки требуется согласование с энергоснабжающей организацией на корректировку и перерасчет аварийных режимов, способных возникнуть в новой ситуации.

Предыдущий материал, изложенный в первой части этой темы, посвящен электрической безопасности дачи и частного дома. Он подробно анализирует возможные риски, нацеливает на вывод: необходимо коренным образом изменять ситуацию, принимать один из способов технического решения вопроса, работающего в автоматическом режиме.

Для дачи и частного дома лучше подходят две схемы подключения:

  1. TN-C-S;
  2. ТТ.

Как работает схема TN-C-S

Принцип обеспечения электрической безопасности этой системы основан на монтаже, установке, подключении, замерах и обслуживании энергоснабжающей организацией дополнительного контура заземления к вводному щиту дома.

В нем осуществляется разделение PEN проводника на два составляющих РЕ и N, которые уже дальше разводятся по квартирным щиткам и потребителям отдельными жилами.

Этот способ практически основан на привлечении посторонних специалистов организации, на балансе которой находится здание и электроустановка. Своими руками здесь ничего не сделаешь, а выполненная работа стоит немалых денег.

Поэтому систему TN-C-S применяют чаще всего в многоэтажных зданиях, электрооборудование которых обслуживают электрики ЖКХ и подобных организаций.

Как работает схема ТТ

В ней используется индивидуальный контур заземления для отдельно стоящего здания. Его вполне можно собрать своими руками по одной из распространенных схем.

До начала работ их необходимо согласовать, а по окончании — выполнить электрические замеры электротехнической лабораторией. Привлечение же посторонних специалистов обойдется дешевле, чем в предыдущем случае.

Принцип подключения электропроводки и устройств защитного отключения к контуру созданного заземления по системе TT здания показан на схеме.

Между двумя контурами заземления: трансформаторной подстанции и жилого здания в этой схеме создается хорошая электрическая связь за счет высокой проводимости земли.

Это свойство используется с целью создания разных маршрутов для прохождения токов нагрузки и утечки потенциалов фаз через возможные нарушения изоляции электрической проводки.

Как учитываются токи утечек в системе ТТ

В качестве защит домашней проводки чаще всего используются:

  • автоматический выключатель, устраняющий перегрузки и короткие замыкания;
  • УЗО, ликвидирующие токи утечек;
  • ограничители и реле максимального напряжения, предохраняющие развитие аварий от проникновения в сеть посторонних повышенных потенциалов и разрядов молний.

Автоматический выключатель настраивается по своим параметрам на срабатывание пропускаемых через него токов больших, чем номинальная величина нагрузки. Он не может защитить от небольших значений тока утечки, проходящих через него.

Дифференциальный орган УЗО постоянно сравнивает вектора токов, циркулирующие через фазу и рабочий ноль в двухпроводной схеме и трехфазной сети, с высокой точностью выявляет их геометрическое отклонение.

Оно способно возникнуть при незначительном пробое изоляции, вызывающем малый ток утечки. У неисправных проводов и кабелей существует большая вероятность того, что потенциал фазы начнет стекать по строительным элементам на землю. Когда же неисправность возникает внутри изолированного корпуса электроприбора, то он может на нем и остаться.

Поэтому металлические корпуса всех электрических потребителей внутри здания соединяют с подходящим РЕ проводником, который напрямую подключен к контуру заземления созданной схемы ТТ. По этой цепочке проникший через нарушенную изоляцию проводки потенциал фазы станет стекать на землю и образует замкнутую цепь утечки через контуры заземления здания и трансформаторной подстанции.

Путь тока утечки выделен на картинке для наглядности жирными красными линиями и проходит через автомат и фазный провод УЗО совместно с нагрузкой. В рабочем нуле ток утечки отсутствует. Поэтому он вносит дисбаланс в орган сравнения, за счет которого автоматика УЗО снимает питание с неисправных потребителей.

Чтобы это положение выполнялось, защитный и рабочий ноли в здании не должны объединяться никакими электрическими связями. Они всегда прокладываются изолированными проводами.

В противном случае ток утечки изменит свое направление и УЗО будет работать неправильно.

Защита дома от перенапряжения в системе ТТ

Для предохранения попадания разряде молнии в здание необходимо использовать систему молниезащиты, когда высокая энергия природных явлений улавливается молниеприемником и отводится на потенциал земли через контур заземления. Последний должен выдерживать чрезвычайно большие нагрузки.

Когда высоковольтный разряд попадает в питающую дом воздушную линию электропередачи, то работают ее защиты-разрядники. Однако, часть энергии коротким импульсом вполне может проникнуть по фазному проводу в домашнюю электропроводку, выжечь подключенное оборудование.

Кроме того, на ВЛ вполне возможен обрыв электрического провода рабочего нуля, когда в трехфазной системе происходит смещение нейтрали, а фазное напряжение 220 вольт способно возрасти до линейного 380.

Защита оборудования здания в таких ситуациях возлагается на ограничители перенапряжения ОПН или УЗИП (импульсного типа) и реле максимального напряжения.

Как могут возникнуть неисправности в системе ТТ

Нарушения алгоритмов правильной работы схемы здания возникают при:

  1. неправильном монтаже электрического оборудования;
  2. выходе из строя защитных устройств;
  3. естественном снижении проводимости контура заземления.

Разберем подробнее два последних.

Поломки УЗО

Чтобы своевременно выявить отказ защиты на корпусе УЗО имеется кнопка «Тест», которую необходимо периодически нажимать. При этом внутрь дифференциального органа подается контрольный ток, приводящий к отключению питания с подключенной схемы. Выполнять эту операцию необходимом хотя бы раз в месяц.

Технически частично предотвратить ситуацию может резервирование УЗО по степеням селективности, когда на вводе в здание монтируется противопожарное, а для потребителей — рабочее устройство защитного отключения.

В этом плане конструкция противопожарного УЗО выполняет частичную функцию резервирования токов утечек, но, в пределах своей уставки.

Поддержание исправности контура заземления

Металл, постоянно соприкасающийся с почвой, подвергается коррозии, которая снижает его электрическую проводимость. Увеличивающееся сопротивление контура заземления нарушает баланс проходящих токов, занижает их. В результате токи утечек могут снижаться до такой величины, когда они станут меньше уставки УЗО. Это приведет к отказу срабатывания защиты.

Исключить подобные отказы УЗО помогают своевременные замеры сопротивления контура заземления здания электротехническими лабораториями и поддержания его величины за счет монтажа дополнительных электродов в нормированных пределах, показанных на картинке.

После устройства системы домашней электропроводки по схеме ТТ или TN-C-S останется собрать основную и дополнительную системы уравнивания потенциалов (ОСУП и ДСУП) в доме для корректной работы УЗО по создаваемым токам утечки. Но, этот материал вы прочитаете в другой специальной статье.

А сейчас рекомендую к просмотру видео ролик о системах заземления владельца Stubborn.

Теперь подошло время задать возникшие вопросы по схемам протекания тока в различных системах заземления и работе УЗО по токам утечки через комментарии и поделиться статьей с друзьями в соц сетях.

Полезные товары

housediz.ru

Маркировка вторичных цепей трансформаторов тока

Здравствуйте, уважаемые читатели и гости сайта «Заметки электрика».

Я уже знакомил Вас с требованиями по цветовой маркировке шин и проводов.

В данной статье я хочу рассказать Вам про цифровую и буквенную маркировку вторичных цепей трансформаторов тока.

В последнее время я часто замечаю, что маркировку токовых цепей выполняют совершенно не правильно.

Например, маркируют любыми взятыми из головы цифрами или буквами. А бывает и так, что маркировка вообще отсутствует. Причем зачастую в этом виноваты не монтажники, а специалисты, которые разрабатывали проект — монтажники лишь выполняют все по проекту.

В данной статье я хочу Вас призвать к соблюдению правил маркировки вторичных цепей ТТ, ведь она очень удобна для распознавания проводников при обслуживании и эксплуатации.

Признаюсь Вам, что на обслуживаемых мною подстанциях (их  более 100) маркировка вторичных цепей выполнена не идеально — имеются, как старые обозначения, так и новые. Изменять старые обозначения я не собираюсь, но вот когда вводится новый объект (фидер, подстанция), то я обязательно проверяю маркировку на соответствие нормативному техническому документу (НТД).

Итак, единственный документ, который существует по маркировке токовых цепей (и не только) - это руководящие материалы (РУМ) Минэнерго СССР 10260ТМ-Т1, которые были разработаны и введены в действие еще 1 апреля 1981 года производственно-техническим отделом института «Энергосетьпроект» (г.Москва).

Что же там говорится о маркировке?

Запомните!!! Для маркировки вторичных цепей ТТ используется нумерация с 401 по 499. Есть исключение, но об этом я расскажу чуть ниже.

 

Основное правило маркировки

Перед цифрой всегда должна стоять буква соответствующей фазы (А, В, С) в зависимости от того, где установлен трансформатор тока. Если трансформатор тока установлен в нуле, то используется буква «N».

Первая цифра всегда «4».

Вторая цифра — это номер группы обмоток трансформаторов тока, согласно схемы (например, ТА, ТА1, ТА2…ТА9).

Третья цифра — от 1 до 9. Она обозначает последовательную маркировку от одного устройства или прибора (амперметры, преобразователи тока, обмотки реле, счетчиков и ваттметров) к другому. Т.е. в токовой цепи может быть включено не более 9 приборов.

Если в Вашей токовой цепи последовательно включено более 9 устройств или приборов, хотя я такое не встречал на практике, то третья цифра будет находиться в пределах от 10 до 99, т.е. нумерация будет начинаться с 4010 и заканчиваться 4099. Но это скорее всего частный случай.

Перейдем к примерам, чтобы легче понять вышесказанное.

1. Один трансформатор тока

Рассмотрим пример, когда на фидере (присоединении) установлен один трансформатор тока в фазе «С» для подключения щитового амперметра.

Таким образом, маркировка токовых цепей у нас будет следующая:

  • ТТ установлен в фазе «С», значит первой буквой в маркировке будет «С»
  • первая цифра всегда «4»
  • вторая цифра — «0», т.к. трансформатор тока обозначен по схеме, как «ТА»
  • третья цифра — нумерация от 1 до 9

Вот схема подключения амперметра через трансформатор тока:

С вывода И1 трансформатора тока провод с маркировкой «С401» идет на амперметр (РА), а с него уходит «С402» на вывод И2. В точке И2 вторичная цепь заземляется (на фото ниже видна перемычка с клеммы И2 на болт заземления).

Это щитовой амперметр типа Э30.

2. Два трансформатора тока (схема неполной звезды)

В этом примере на фидере установлены два трансформатора тока на фазе «А» и «С».

Таким образом, токовые цепи для фазы «А» будут маркироваться следующим образом:

  • ТТ установлен в фазе «А», значит первой буквой будет «А»
  • первая цифра всегда «4»
  • вторая цифра -  «0», т.к. группа трансформаторов тока обозначена по схеме, как «ТА»
  • третья цифра — нумерация от 1 до 9

Токовые цепи для фазы «С»:

  • ТТ установлен в фазе «С», значит первой буквой будет «С»
  • первая цифра всегда «4»
  • вторая цифра -  «0», т.к. группа трансформаторов тока обозначена по схеме, как «ТА»
  • третья цифра — нумерация от 1 до 9

Для примера рассмотрим схему подключения амперметра и двухэлементного счетчика САЗУ-ИТ:

С вывода И1 трансформатора тока фазы «А» провод с маркировкой «А401» идет на амперметр (РА), с амперметра «А402» идет  на обмотку счетчика, а с нее уходит на вывод И2. Аналогично по фазе «С» — провод с маркировкой «С401» идет на обмотку счетчика, а с нее —  на вывод И2. Нулевая (общая) цепь обозначается, как «N401» и заземляется.

Двухэлементный счетчик САЗУ-ИТ.

3. Три трансформатора тока (схема полной звезды)

На фидере установлено три трансформатора тока в каждой фазе.

Вторичные цепи для фазы «А» будут иметь следующую маркировку:

  • ТТ установлен в фазе «А», значит первой буквой будет «А»
  • первая цифра всегда «4»
  • вторая цифра — «0»,  т.к. группа трансформаторов тока обозначена по схеме, как «ТА»
  • третья цифра — нумерация от 1 до 9

Токовые цепи для фазы «В»:

  • ТТ установлен в фазе «В», значит первой буквой будет «В»
  • первая цифра всегда «4»
  • вторая цифра — «0»,  т.к. группа трансформаторов тока обозначена по схеме, как «ТА»
  • третья цифра — нумерация от 1 до 9

Токовые цепи для фазы «С»:

  • ТТ установлен в фазе «С», значит первой буквой будет «С»
  • первая цифра всегда «4»
  • вторая цифра — «0»,  т.к. группа трансформаторов тока обозначена по схеме, как «ТА»
  • третья цифра — нумерация от 1 до 9

Вот пример схемы подключения амперметра и трехэлементного счетчика СЭТ4ТМ.03М.01 через три трансформатора тока:

С клеммы И1 трансформатора тока фазы «А» провод с маркировкой «А401» идет на амперметр (РА), с амперметра «А402» идет на обмотку счетчика, а с нее уходит на вывод И2. Аналогично по фазе «В» — провод с маркировкой «В401» идет на обмотку счетчика, а с нее уходит на вывод И2. Аналогично по фазе «С» — провод с маркировкой «С401» идет на обмотку счетчика, а с нее уходит на вывод И2. Нулевая (общая) цепь обозначается, как «N401» и заземляется.

Перечисленные выше примеры имели на фидере (присоединении) всего одну группу обмоток трансформаторов тока. А теперь рассмотрим распространенный пример, когда на высоковольтном фидере имеется три группы обмоток:

  • 1 группа обмоток — это цепи измерения и учета
  • 2 группа обмоток — это токовые цепи релейной защиты
  • 3 группа обмоток — это токовые цепи земляной защиты

Схема подключения реле земляной защиты (КА7).

Здесь все аналогично.

Первая группа обмоток измерения и учета на схеме изображена, как «ТА1», а значит в обозначении всех проводников второй цифрой будет «1».

Вторая группа обмоток токовых цепей релейной защиты на схеме изображена, как «ТА2», а значит в обозначении всех проводников второй цифрой будет «2».

Третья группа обмоток земляной защиты на схеме изображена, как «ТА3», а значит в обозначении всех проводников второй цифрой будет «3».

Трансформатор тока нулевой последовательности (ТТНП), или другими словами, феррантий. Он устанавливается на оболочку силового кабеля.

P.S. Уважаемые, коллеги. Прошу Вас, соблюдайте правила маркировки вторичных цепей ТТ. Если есть вопросы по материалу статьи, то спрашивайте. 

Если статья была Вам полезна, то поделитесь ей со своими друзьями:

zametkielectrika.ru

Экранированные провода ТТ

Пожалуйста активируйте JavaScript в настройках браузера.

Форум посвящен вопросам релейной защиты и автоматики. Обмену опытом эксплуатации РЗА. Общению релейщиков ЕЭС России.
Экранированные провода ТТ
Автор
Сообщения
Des501 +1  Сообщения: 86Регистрация: 03.03.2009
Подскажите плиз нормы по которым контрольные кабели (все? и измерительные и управления?) ложатся в экране. Или на это нет норм и это просто по жизненному опыту? Или то что на защиту то в экране, а что просто на управление то можно и "так"?Получилось так что по недосмотру купили вместо экранированного весь обычный (дешевле). Вот и думаю насколько ужасно это и давить на перезакупку? ПС 35/10, все три РУ(35, 10, 10) - комплектные металические домики ЗРУ на основе КРУ. Щиты защиты и управления в домике КРУ 35 кВ, стоят впритык к ячейкам. В общем хэлп
Dmitriy +28  Сообщения: 1062Регистрация: 20.06.2007Откуда: Berlin
Если не ошибаюсь речь идет о "МЕТОДИЧЕСКИЕ УКАЗАНИЯ ПО ОБЕСПЕЧЕНИЮ ЭЛЕКТРОМАГНИТНОЙ СОВМЕСТИМОСТИ НА ЭЛЕКТРОСЕТЕВЫХ ОБЪЕКТАХ ЕНЭС" с большой ссылкой на МЭК 61000-4-…
Dmitriy +28  Сообщения: 1062Регистрация: 20.06.2007Откуда: Berlin
Тут не все так однозначно, где стоят трансформаторы, как заземлены нейтрали, какой уровень токов КЗ ... уйма инфы. --> расчет разности потенциалов меджу ЗУ Трансформатора. Какой вид имеет молниезащиты и как проходят кабельные трассы. Судя по всему у вас все достаточно компактно построенно.Как выглядит схема заземления из какого материала трассы между РУ и ОПУ =).Грубая рекомендация паралельно кабельным трассам уровнять потенциал проложив 70mm² медный провод. и заземлить его у трансформаторов в шкафах защит и вдоль трасс каждые 5-10м.____________________Экранированные провода ТТИ тем неменее для измерительных цепей я бы в любом случае взял экранированный кабель, потому, что ТТ по месту установки заземляются, а это прямая предпосылка притащить высокий потенциал в шкаф защиты при попадании молнии (работа ОПН), ОКЗ вблизи трансформатора.
Модераторы форумовgrsl +101  Сообщения: 4577Регистрация: 04.03.2008Откуда: http://rzia.ru/
Des501, это очень сложный вопрос.нормативы не знаю.Тут надо очень и очень подумать.Вопрос Вы хотите решать нормативами или по жизни. Кто будет брать за решение ответственость на себя.Для начала В вакумники или элегаз, это именно КРУ или КРУЭ.Какие защиты стоят на отходящих и какие на трансформаторах, и модели и виды: МТЗ, ТО и т.д.Есть ли ДЗ.

Само собой сделать то что Дима сказал. В принципе можно малой кровью обойтись :-).Нарусуйте схемку расположения ПС с расстояниями и подписями где и кто.

Новый Форум "Советы Бывалого Релейщика"http://rzia.ru/
Sergei +55  Сообщения: 1511Регистрация: 20.07.2007
Dmitriy>Грубая рекомендация паралельно кабельным трассам уровнять потенциал проложив 70mm² медный провод. и заземлить его у трансформаторов в шкафах защит и вдоль трасс каждые 5-10м.не проще силовой провод от той же ВЛ?, наверняка где-нибудь валяется АС-50,70,95
Dmitriy +28  Сообщения: 1062Регистрация: 20.06.2007Откуда: Berlin
Sergei>не проще силовой провод от той же ВЛ?, наверняка где-нибудь валяется АС-50,70,95Да, наверное проще.У нас как правило 70мм² медь на ПС в контур заземление ОРУ кладут, он у монтажников всегда под рукой и в таких случаев мы его используем.
LIK +53  Сообщения: 1927Регистрация: 22.08.2008Откуда: Киев
Сейчас мы к МП защитам подводим экранированные кабели, в том числе и токовых цепей. Для новых цепей понятно, надо тянуть экранированный кабель от я.з. ТТ в РУ. Но вот ситуация. Меняем на действ. ПС только одну защиту: старую ЭМ на новую МП. Токовые цепи уже проложены транзитом через другую панель. И будь новая – ЭМ, можно было бы просто проложить кабель от той транзитной панели до новой, и не тянуть его на ОРУ. Можно формально и про МП так рассуждать. Проложить от транзитной панели новый экранированный, а старый на ОРУ неэкранированный оставить. Но, по-моему, это лукавство. Ведь экранированный кабель нужен как раз для длинных цепей. И экранированный маленький кусок последовательно с неэкранированным длинным участком – обман.Кто как считает на этот счет?
LIK +53  Сообщения: 1927Регистрация: 22.08.2008Откуда: Киев
Как часто бывает, буду дискутировать сам с собой. Еще на том объекте есть ОВ-110, который может заменять выключатель линии, на которой мы меняем защиту. А это – ДЗЛ, которая не отдельно на ОВ-110, а токовые цепи ОВ переводятся на ДЗЛ при замене им В-110 линии. Значит, и кабель токовых цепей на ОРУ-110 и на ОВ-110 надо менять на кранированный? И у меня вопрос: а насколько необходимо экранировать токовые цепи к МП терминалу? Формальная сторона: эо объект не российский, и там нет жестких норм. А по сути. Насколько я понимаю, если токове цепи не в обрыве, то наводок практически нет. А если в обрыве, то они настолько малы при токах загрузки, что только контроль токовых цепей сработает ( а он и так сработает). И, случись внешнее к.з., при обрыве и так может бать ложная работа. То есть, неэкранирование токових цепей доп. погрешность не внесет.Или я неправ?
Федя +7  Сообщения: 196Регистрация: 25.11.2009
LIK>Как часто бывает, буду дискутировать сам с собой. Еще на том объекте есть ОВ-110, который может заменять выключатель линии, на которой мы меняем защиту. А это – ДЗЛ, которая не отдельно на ОВ-110, а токовые цепи ОВ переводятся на ДЗЛ при замене им LIK>В-110 линии. Значит, и кабель токовых цепей на ОРУ-110 и на ОВ-110 надо менять на кранированный? И у меня вопрос: а насколько необходимо экранировать токовые цепи к МП терминалу? LIK>Формальная сторона: эо объект не российский, и там нет жестких норм. А по сути. Насколько я понимаю, если токове цепи не в обрыве, то наводок практически нет. А если в обрыве, то они настолько малы при токах загрузки, что только контроль токовых цепей сработает ( а он и так сработает). И, случись внешнее к.з., при обрыве и так может бать ложная работа. То есть, неэкранирование токових цепей доп. погрешность не внесет.LIK>Или я неправ?Я думаю ,что такие кабели нужны во время внешних перенапряженийгроза и т. п.
Dmitriy +28  Сообщения: 1062Регистрация: 20.06.2007Откуда: Berlin
LIK> Кто как считает на этот счет?Леонид, конечно кусок экранированного кабеля ЭМ обстановку на Вашем объекте не улучшит и защите от этого "теплее" не станет.

LIK> И у меня вопрос: а насколько необходимо экранировать токовые цепи к МП терминалу? LIK>Формальная сторона: эо объект не российский, и там нет жестких норм. А по сути. Насколько я понимаю, если токове цепи не в обрыве, то наводок практически нет. А если в обрыве, то они настолько малы при токах загрузки, что только контроль токовых цепей сработает ( а он и так сработает). И, случись внешнее к.з., при обрыве и так может бать ложная работа. То есть, неэкранирование токових цепей доп. погрешность не внесет.LIK>Или я неправ?Я вобще не понял при чем здесь обрыв токовых цепей и экранирование кабеля .Мое личное мнение, кабели ТТ лучше прокладывать в экранах и заземлять с обеих сторон. Почему?, читай темы по ЭМС.

   

arhiv.rzia.ru

Электрооборудования трактора Т-25 и его схема

Электроэнергия тесно вошла в нашу жизнь и используется во всех отраслях. Сейчас трудно представить, что-либо где бы не использовалась энергия движений электронов. Используется она и в тракторных системах: для запуска двигателя с помощью стартера, для внешнего освещения, питания различных контроль-измерительных приборов и звуковой сигнализации. Сегодняшняя наша статья будет посвящена именно этому вопросу, потому что вопросов по нему возникает достаточно много.

Электрооборудование трактора Т-25 принцип работы

Согласно своего функционального назначения все приборы и аппарату электрооборудование трактора делят на две группы: потребительские и дающие (источники тока).

Во «Владимирце» Т-25 источниками электрического тока являются: стартовая аккумуляторная батарея 12-ти вольтова и емкость от 132 Ач (ампер часов) и генератор переменного тока, которые базово оснащен выпрямителем на кремниевой основе и имеет реле-регулятор контактно-резисторного типа.

Схема электрооборудования Т-25

Ниже мы приведем полную схему электрооборудования трактора и дадим краткое её описание.

Генератор нужен для выработки самой электроэнергии, которая нужна для питания потребительских источников во время работы двигателя. Аккумуляторная батарея нужна для питания тех же потребителей, но в момент, когда двигатель не заведен.

Когда требуется много энергии, например, в ночное время суток или при большей нагрузке, то питания может происходить одновременно как от генератора, так и от батареи.

Все излишняя энергия, которая вырабатывается генератором во время своей работы, идет на зарядку батареи, что очень удобно.

Если стрелка амперметра отклонена от нуля к плюсу, это означает что в данный момент идет зарядка батареи и наоборот. При исправных системах питания, наличия приводного ремня генератора и работающем двигателе – индикатор контроля положения массы гаснет.

Если же она загорается при работающем двигателе, то это свидетельствует об обрыве вентиляторного ремня или самой неисправности генератора. Тогда следует немедленно остановить трактор, отключить массу и устранить поломку.

Важно! Как только Вы остановите двигатель, нужно отключить аккумулятор от клемм.

Иначе, это может привести к полному разряду батареи через обмотку генератора.

Также вместе с потребительскими источниками энергии трактор Т-25 имеет и потребительские. К которым относятся:

1. Система запуска двигателя: стартер, блокирующее реле, стартерное реле, подогрев свечи накала;2. Сигнализация и освещение: передние и задние лампы, повороты и габариты, подсветка номерного знака и контрольных приборов, подача звукового сигнала;3. Измерительно-контрольные приборы: это все что находиться на торпеде трактора (амперметр, прибор давления масла, термометр и т.д.).

Трактор т-25 имеет однопроводную цепь, это означает что все потребители и источники энергии соединяются с помощью одного провода, а в качестве заземления (массы) выступают металлические части трактора. Защита от большого перепада напряжения при коротком замыкании электрооборудование и проводов выступают специальные плавкие предохранители, которые находятся в определенно отсеке.

agromania.com.ua

Схема электрооборудования трактора Т-25

Схема электрооборудования трактора Т-25

Схема электрооборудования трактора Т-25 (рис. 71) однопровод­ная, номинальное выпрямленное напряжение 12 вольт; с корпу­сом («массой» трактора) соединены отрицательные клеммы источников тока.Перед запуском двигателя включателем 6 «массы», установ­ленном под щитком приборов, включают минусовую клемму ак­кумуляторной батареи 4 к корпусу трактора. При этом на щит­ке приборов загорается контрольная лампа 14 с красным кол­пачком. Запуск двигателя осуществляется стартером 3 с элек­тромагнитным включением. Стартер включается поворотом ключа, вставленного во включатель 13 стартера через промежуточное реле 37.

Включатель стартера имеет два положения: первое — вклю­чение подогревателя 45 (свеча накаливания) и второе — вклю­чение стартера.При запуске двигателя в зимнее время продолжительность включения свечи накаливания должна быть 30—40 сек. Работа стартера при запуске двигателя не должна превышать 10 сек. Если двигатель после двух-трех включений с минутным пере­рывом не запустился, то следует выяснить причины плохого за­пуска и устранить их. Для автоматического отключения старте­ра при запуске двигателя и исключения возможности повторно­го включения его при работающем двигателе, в электросхеме предусмотрено блокировочное реле 43. Зарядка аккумулятор­ной батареи происходит во время работы двигателя. При этом напряжение постоянного тока с выводных клемм генератора че­рез амперметр 34 подается на плюсовую клемму аккумулятор­ной батареи. Минусовая клемма генератора соединена с кор­пусом трактора «массой». Зарядный и разрядный ток аккуму­ляторной батареи контролируется амперметром.

 

Схема электрооборудования трактора Т-25

Рис. 71. Схема электрооборудования трактора Т-25:1 — фара тракторная передняя ФГ 305; 2 — генератор Г302Б переменного тока 12 в 190 вт; 3 — стартер 12 в 2,8 л. с. СТ222; 4 — аккумуля­торная батарея 135 а*ч 3-ТСТ-135ЭМС; 5 — розетка штепсельная 47 к.; 6 — включатель «массы» ВК318Б; 7 — реле указателя поворота РС410В; 8 — пат­роны ламп освещения приборов ПП102-Ж; 9 — электролампа 12 в 1,5 св; 10 — контрольный элемент подогрева ПД51; 11 — указатель давления масла МД219; 12— тахоспидометр со счетчиком мото-часов ТХ120; 13 — включа­тель стартера ВК316Б; 14 — фонарь контрольной лампы ПД-20-Е; 15 — панель соединительная 12-клеммовая ПС 12; 16 — электролампа указателя пово­рота 12 в 21 св; 17 — фонарь тракторный передний ПФ204; 18 — элек­тролампа габарита 12 в 6 ев; 19 — включатель стоп-сигнала ВКЮ-Б; 20 — фара тракторная задняя ФГ304; 21 — фонарь тракторный задний ФП209; 22 — соединитель проводов ПС305; 23 — электролампа стоп-сигнала и габа­рита 12 в 21+6 св; 24 — кнопка сигнала ВК-34; 25 — переключатель освещения передних фар П57; 26 — переключатель указателей поворота П57; 27 — штепсельный разъем; 28 — розетка штепсельная ПСЗООА; 29 — электро­лампа освещения номерного знака 12 в 3 св; 30 — фонарь тракторный номерного знака ФП200; 31 — фонарь контрольной лампы ПД20-Д; 32 — включатель задних фар ВК-57; 33 — включатель габаритов ВК-57; 34 — ам­перметр АП200; 35 — указатель температуры масла УК 133М; 36 — патрон контрольной лампы ПП113Д; 37 — реле включения стартера РС502; 38 — со­противление добавочное СЭ-52: 39 — панель соединительная 5-клеммовая ПС5; 40 — блок предохранителей ПР106; 41 — блок защиты БЗ-30; 42 — плавкая вставка ПВ-20А; 43 — .реле блокировки РБ1; 44 — реле-регулятор РР362Б; 45 — свеча накаливания СН150; 46 — сигнал звуковой С44; 47 — датчик температуры масла ТМ100; 48 — штепсельный разъем.

Отклонение стрелки амперметра от нуля к плюсу свидетельствует о зарядке батареи, а отклонение от нуля к минусу — о ее разрядке.Электролампа контроля положения включателя массы при исправных системах питания и пуска и наличии приводного рем­ня генератора гаснет при работающем двигателе. Если сигналь­ная лампа загорается во время работы двигателя, то это сви­детельствует либо об обрыве ремня вентилятора, либо о неис­правности генератора. В этом случае необходимо остановить двигатель, отключить «массу» и устранить неисправность. Внимание:Останавливая двигатель, необходимо отключить аккумуля­торную батарею, выключив включатель «массы» (контрольная лампа при этом гаснет). Невыполнение этого требования может привести к разряду аккумуляторной батареи через обмотку возбуждения генератора.

traktor-t25.ru

Как выбрать трансформатор тока для счетчика: таблица и формулы

При организации электроснабжения предприятий, жилых и коммерческих объектов, в тех случаях, когда суммарный ток нагрузки многократно превышает возможности узла учета, или же необходимо произвести учет электроэнергии высоковольтных потребителей, устанавливаются дополнительные узлы преобразования — трансформаторы тока (ТТ) и напряжения (ТН). Они позволяют произвести линейное преобразование и осуществить учет или контроль проходящего тока с помощью обычных однофазных или трехфазных электросчетчиков, амперметров, а также организовать систему защиты линии с помощью них. В этой статье мы узнаем как выбрать трансформатор тока для счетчика электроэнергии по мощности и другим параметрам.

Разновидность устройств

При выборе трансформатора нужно учитывать его место расположение (закрытые или открытые распределительные установки, встраиваемые системы), а также конструктивные особенности исполнения (проходные, шинные, опорные, разъемные).

Проходной ТТ устанавливают в комплексных РУ и используют в качестве проходного изолятора. Опорные используют для установки на ровной поверхности. Шинный ТТ устанавливается непосредственно на токоведущие части. В роли первичной обмотки трансформатора выступает участок шины. Встроенные модели как элемент конструкции, устанавливаются в силовые трансформаторы, масляные выключатели и пр. Разъемные ТТ выполнены разборными для быстрой установки на жилы кабеля, без физического вмешательства в целостность электрических сетей.

Кроме того, разделение также проходит по типу используемой изоляции:

  • литая;
  • пластмассовый корпус;
  • твердая;
  • вязкая компаудная;
  • маслонаполненная;
  • газонаполненная;
  • смешанная масло-бумажная.

И различают по спецификации и сфере применения:

  • коммерческий учет и измерения;
  • защита систем электроснабжения;
  • измерения текущих параметров;
  • контроль и фиксация действующих значений;

Также различаются трансформаторы по напряжению: для электроустановок до 1000 Вольт и выше.

Правила выбора

При выборе трансформатора его напряжение не должно быть меньшим, чем номинальное напряжение счетчика.

U ном ≥ U уст

Аналогично поступаем при выборе ТТ по току, который должен быть равен или больше максимального тока контролируемой установки. С учетом аварийных режимов работы.

 I ном ≥ I макс.уст

В ПУЭ описаны правила и нормативные требования к устройствам коммерческого учета счетчиками, а также уделено не мало внимания трансформаторам тока и нормам расчетных мощностей. Детально ознакомится можно в пункте ПУЭ 1.5.1.

Помимо этого существуют следующие правила выбора трансформатора тока для счетчика:

  1. Длина и сечение проводников от ТТ к узлу учета должны обеспечивать минимальную потерю напряжения (не более 0.25% для класса точности 0.5 и 0.5% для трансформаторов точностью 1.0). Для счетчиков, используемых для технического учета, допускается падение напряжения 1.5% от номинального.
  2. Для систем АИИС КУЭ трансформаторы должны иметь высокий класс точности. Для установки в такие системы используют ТТ класса S 0.5S и 0.2S, позволяя увеличить точность учета при минимальных первичных токах.
  3. Для коммерческого учета нужно выбрать класс точности ТТ не более 0.5. При использовании счетчика точностью 2.0 и для технического учета, допускается применение трансформатора класса 1.0.
  4. Выбор ТТ с завышенной трансформацией допускается, если при максимуме тока нагрузки, ток в трансформаторе не меньше 40% от I ном электросчетчика.
  5. При расчете количества потребленной энергии необходимо учитывать коэффициент преобразования.
  6. Расчет мощности ТТ производится в зависимости от сечения проводника и расчетной мощности.

Пример расчета:

По таблице ниже, согласно получившимся расчетным параметрам выбираем ближайший ТТ:

При заключении договора с энергоснабжающей организацией, в случае когда для производства учета необходима установка трансформаторов тока, для организации узла учета, выдаются технические условия, в которых указано модель узла учета а также тип ТТ, номинал автоматических выключателей место их установки для конкретной организации. В результате самостоятельные расчеты ТТ производить не нужно.

Напоследок советуем читателям https://samelectrik.ru просмотреть полезное видео по теме:

Надеемся, теперь вам стало понятно, как выбрать трансформаторы тока для счетчиков и какие варианты исполнения ТТ бывают. Надеемся, предоставленная информация была для вас полезной и интересной!

Наверняка вы не знаете:

samelectrik.ru


Видеоматериалы

24.10.2018

Опыт пилотных регионов, где соцнормы на электроэнергию уже введены, показывает: граждане платить стали меньше

Подробнее...
23.10.2018

Соответствует ли вода и воздух установленным нормативам?

Подробнее...
22.10.2018

С начала года из ветхого и аварийного жилья в республике были переселены десятки семей

Подробнее...
22.10.2018

Столичный Водоканал готовится к зиме

Подробнее...
17.10.2018

Более 10-ти миллионов рублей направлено на капитальный ремонт многоквартирных домов в Лескенском районе

Подробнее...

Актуальные темы

13.05.2018

Формирование энергосберегающего поведения граждан

 

Подробнее...
29.03.2018

ОТЧЕТ о деятельности министерства энергетики, ЖКХ и тарифной политики Кабардино-Балкарской Республики в сфере государственного регулирования и контроля цен и тарифов в 2012 году и об основных задачах на 2013 год

Подробнее...
13.03.2018

Предложения организаций, осуществляющих регулируемую деятельность о размере подлежащих государственному регулированию цен (тарифов) на 2013 год

Подробнее...
11.03.2018

НАУЧИМСЯ ЭКОНОМИТЬ В БЫТУ

 
Подробнее...

inetpriem


<< < Ноябрь 2013 > >>
Пн Вт Ср Чт Пт Сб Вс
        1 2 3
4 5 6 7 8 9 10
11 12 13 14 15 16 17
18 19 20 21 22 23 24
25 26 27 28 29 30  

calc

banner-calc

.