Устройство плавного пуска: назначение и принцип действия. Пуск электродвигателя


Пуск электродвигателя

 

Первый пробный пуск смонтированного электродвигателя производится после окончаний наладочных работ по настройке схемы управления и после испытания неподвижной машины. Для установления полной исправности и надежности двигателя желательно предварительно испытать его в режиме холостого хода при отсоединенном механизме и редукторе. Пробный пуск без механизма обусловливается, как правило, не проверкой исправности двигателя, а необходимостью произвести настройку схемы управления.

В практике наладочных работ принято предварительно испытывать без механизмом все крупные и средние двигатели постоянного тока, синхронные и асинхронные двигатели с фазным ротором, а также двигатели приводов, имеющих тяжелый запуск (насосы, компрессоры).  Пуск двигателя без нагрузки или с механизмом должен быть тщательно подготовлен и произведен с максимальной осторожностью.

 

Подготовка  пробного пуска. Перед подачей на схему рабочего напряжения должны быть выполнены следующие подготовительные операции:

  • осмотр внутренней части машины для проверки положения щеток, отсутствия посторонних предметов, контроля соединений между обмотками и др.

  • проверка состояния подшипников и наличия в них масла

  • проверка надежности заземления корпуса машины

  • проверка свободного хода ротора электродвигателя

  • реле максимальной защиты временно устанавливаются на ток срабатывания, не превышающий 200% номинального тока двигателя

  • при ступенчатом пуске реле ускорения временно исключается из схемы

  • мегомметром проверяется изоляция силовых цепей

  • в цепь обмоток включается амперметр для контроля пусковых токов.

 

Следует предусмотреть аварийное снятие напряжения в случае отказа действия схемы управления. Для этого рекомендуется обеспечить быстрое отключение автомата ввода.В некоторых случаях необходимо предусмотреть возможность осуществления электрического или механического торможения.Необходимо принять меры защиты персонала: установить ограждения, вывесить плакаты, пользоваться резиновым ковриком, перчатками и т. п.

Первое включение электродвигателя производится толчком продолжительностью 1-2 сек. Двигатель разгоняется и тормозится на выбеге. При толчке двигателя проверяются: а) направление вращения; б) состояние ходовой части; в) величина пускового тока и надежность действия отключающих устройств; г) действие максимальной защиты и других элементов схемы управления. 

Толчок двигателя целесообразно повторить 2-3 раза, постепенно увеличивая длительность включения.Кратковременное включение и разгон до полной скорости. Убедившись в надежности пусковых устройств и исправности механической части, можно произвести включение двигателя на более продолжительное время. Двигатель разгоняется и достигает установившейся скорости вращения, соответствующей введенному пусковому сопротивлению. Асинхронные двигатели с короткозамкнутым ротором при этом разгоняются полностью, а синхронные – входят в синхронизм. После достижения установившейся скорости двигатель отключается.

За время включения двигателя нужно убедиться в хорошем состоянии ходовой части: отсутствии вибрации, у машин постоянного тока оценивается коммутация щеток. Если состояние двигателя и работа схемы управления оказывается стабильными, производятся повторные включения. В дальнейшем ходе испытаний двигателей, для которых схемой управления предусмотрено регулирование скорости вращения, проверяется их работа на повышенных скоростях.

Длительное включение двигателя и обкатка совместно с механизмом. При удовлетворительных результатах пробных пусков двигатель включается на 20-30 мин. Проверяется нагревание подшипников, обмоток и железа. За это время детали даже небольшой машины не успевают нагреться до установившейся температуры, но по характеру ее нарастания можно судить, нет ли в какой-либо части машины избыточного выделения тепла. Повреждение обмоток машины проявляется также характерным запахом горелой изоляции, который во многих случаях обнаруживается раньше, чем обмотка успевает заметно нагреться.

Если двигатель соединен с механизмом, работающим продолжительное время, например, с транспортером или вентилятором с закрытой задвижкой, то пуск и проверка его работы выполняются аналогично испытанию двигателя без механизма.

После пробного включения на 20-30 мин производится длительное включение двигателя с механизмом на обкатку. Обкатка, производимая в течение 8 ч или более служит для прошлифовки подвижных связей механизмов, определения слабых мест схемы управления и проверки электрооборудования на нагревание.

 

Узнайте условия проведения наладки станков, отправив запрос на [email protected]

Наши услуги:

prom-electric.ru

Устройство плавного пуска электродвигателя :: SYL.ru

Характерным для любого электродвигателя в процессе запуска является многократное превышение тока и механической нагрузки на приводимое в действие оборудование. При этом также возникают перегрузки питающей сети, создающие просадку напряжения и ухудшающие качество электроэнергии. Во многих случаях требуется устройство плавного пуска (УПП).

Необходимость плавного пуска электродвигателей

Статорная обмотка является катушкой индуктивности, состоящей из активного сопротивления и реактивного. Значение последнего зависит от частоты подаваемого напряжения. При запуске двигателя реактивное сопротивление изменяется от нуля, а пусковой ток имеет большую величину, многократно превышающую номинальный. Момент вращения также велик и может разрушить приводимое в движение оборудование. В режиме торможения также появляются броски тока, приводящие к повышению температуры статорных обмоток. При аварийной ситуации, связанной с перегревом двигателя, возможен ремонт, но параметры трансформаторной стали изменяются и номинальная мощность снижается на 30 %. Поэтому необходим плавный пуск.

Запуск электродвигателя переключением обмоток

Обмотки статора могут соединяться "звездой" и "треугольником". Когда у двигателя выведены все концы обмоток, можно снаружи коммутировать схемы "звезда" и "треугольник".

Устройство плавного пуска электродвигателя собирается из 3 контакторов, реле нагрузки и времени.

Электродвигатель запускается по схеме "звезда", когда контакты К1 и К3 замкнуты. Через интервал, заданный реле времени, К3 отключается и производится подключение схемы "треугольник" контактором К2. При этом двигатель выходит на полные обороты. Когда он разгоняется до номинальных оборотов, пусковые токи не такие большие.

Недостатком схемы является возникновение короткого замыкания при одновременном включении двух автоматов. Этого можно избежать, применив вместо них рубильник. Для организации реверса нужен еще один блок управления. Кроме того, по схеме "треугольник" электродвигатель больше нагревается и жестко работает.

Частотное регулирование скорости вращения

Вал электродвигателя вращается магнитным полем статора. Скорость зависит от частоты питающего напряжения. Электропривод будет работать эффективней, если дополнительно менять напряжение.

В состав устройства плавного пуска асинхронных двигателей может входить частотный преобразователь.

Первой ступенью устройства является выпрямитель, на который подается напряжение трехфазной или однофазной сети. Он собирается на диодах или тиристорах и предназначен для формирования пульсирующего напряжения постоянного тока.

В промежуточной цепи пульсации сглаживаются.

В инверторе выходной сигнал преобразуется в переменный заданной частоты и амплитуды. Он работает по принципу изменения амплитуды или ширины импульсов.

Все три элемента получают сигналы от электронной схемы управления.

Принцип действия УПП

Увеличение пускового тока в 6-8 раз и вращающего момента требуют применения УПП для выполнения следующих действий при запуске или торможении двигателя:

  • постепенное увеличение нагрузки;
  • снижение просадки напряжения;
  • управление запуском и торможением в определенные моменты времени;
  • снижение помех;
  • защита от скачков напряжения, при пропадании фазы и др.;
  • повышение надежности электропривода.

Устройство плавного пуска двигателя ограничивает величину напряжения, подаваемого в момент пуска. Оно регулируется путем изменения угла открытия симисторов, подключенных к обмоткам.

Пусковые токи необходимо снижать до величины, не более чем в 2-4 раза превышающей номинал. Наличие байпасного контактора предотвращает перегрев симисторов после его подключения после того, как двигатель раскрутится. Варианты включения бывают одно-, двух- и трехфазные. Каждая схема функционально отличается и имеет разную стоимость. Наиболее совершенным является трехфазное регулирование. Оно наиболее функционально.

Недостатки УПП на симисторах:

  • простые схемы применяются только с небольшими нагрузками или при холостом запуске;
  • продолжительный запуск приводит к перегреву обмоток и полупроводниковых элементов;
  • момент вращения вала снижается и двигатель может не запуститься.

Виды УПП

Наиболее распространены регуляторы без обратной связи по двум или трем фазам. Для этого предварительно устанавливается напряжение и время пуска. Недостатком является отсутствие регулирования момента по нагрузке на двигатель. Эту проблему решает устройство с обратной связью наряду с выполнением дополнительных функций снижения пускового тока, создания защиты от перекоса фаз, перегрузки и пр.

Наиболее современные УПП имеют цепи непрерывного слежения за нагрузкой. Они подходят для тяжело нагруженных приводов.

Выбор УПП

Большинство УПП - это регуляторы напряжения на симисторах, различающиеся функциями, схемами регулирования и алгоритмами изменения напряжения. В современных моделях софтстартеров применяются фазовые методы регулирования электроприводов с любыми режимами пуска. Электрические схемы могут быть с тиристорными модулями на разное количество фаз.

Одно из самых простых - это устройство плавного пуска с однофазным регулированием через один симистор, позволяющее только смягчать механические ударные нагрузки двигателей мощностью до 11 кВт.

Двухфазное регулирование также смягчает механические удары, но не ограничивает токовые нагрузки. Допустимая мощность двигателя составляет 250 кВт. Оба способа применяются из расчета приемлемых цен и особенностей конкретных механизмов.

Многофункциональное устройство плавного пуска с трехфазным регулированием имеет самые лучшие технические характеристики. Здесь обеспечивается возможность динамического торможения и оптимизации его работы. В качестве недостатков можно отметить только большие цены и габариты.

В качестве примера можно взять устройство плавного пуска Altistart. Можно подобрать модели для запуска асинхронных двигателей, мощность которых достигает 400 кВт.

Устройство выбирается по номинальной мощности и режиму работы (нормальный или тяжелый).

Выбор УПП

Основными параметрами, по которым выбираются устройства плавного пуска, являются:

  • предельная сила тока УПП и двигателя должны быть правильно подобраны и соответствовать друг другу;
  • параметр количества запусков в час задается как характеристика софтстартера и не должен превышаться при эксплуатации двигателя;
  • заданное напряжение устройства не должно быть меньше сетевого.

УПП для насосов

Устройство плавного пуска для насоса предназначено преимущественно для снижения гидравлических ударов в трубопроводах. Для работы с приводами насосов подходят УПП Advanced Control. Устройства практически полностью устраняют гидроудары при заполненных трубопроводах, позволяя увеличить ресурс оборудования.

Плавный запуск электроинструментов

Для электроинструмента характерны высокие динамические нагрузки и большие обороты. Его наглядным представителем является угловая шлифовальная машинка (УШМ). На рабочий диск действуют значительные силы инерции в начале вращения редуктора. Большие перегрузки по току возникают не только при запуске, но и при каждой подаче инструмента.

Устройство плавного пуска электроинструмента применяется только для дорогих моделей. Экономичным решением является его установка своими руками. Это может быть готовый блок, который помещается внутри корпуса инструмента. Но многие пользователи собирают простую схему самостоятельно и подключают ее в разрыв питающего кабеля.

При замыкании цепи двигателя, на регулятор фазы КР1182ПМ1 подается напряжение и начинает заряжаться конденсатор С2. За счет этого симистор VS1 включается с задержкой, которая постепенно уменьшается. Ток двигателя плавно нарастает и обороты набираются постепенно. Двигатель разгоняется примерно за 2 сек. Мощность, отдаваемая в нагрузку, достигает 2,2 кВт.

Устройство можно применять для любого электроинструмента.

Заключение

Выбирая устройство плавного пуска, необходимо анализировать требования к механизму и характеристикам электродвигателя. Характеристики производителя находятся в прилагаемой к оборудованию документации. Ошибки при выборе быть не должно, поскольку нарушится функционирование устройства. Важен учет диапазона скоростей, чтобы выбрать лучшее сочетание преобразователя и двигателя.

www.syl.ru

Плавный пуск электродвигателя - ElectrikTop.ru

Электродвигатели – самые распространенные в мире электрические машины. Ни одно промышленное предприятие, ни один технологический процесс без них не обходится. Вращение вентиляторов, насосов, перемещение лент конвейеров, движение кранов – вот неполный, но уже весомый перечень задач, решаемых с помощью двигателей.

Однако есть один нюанс работы всех без исключения электромоторов: в момент старта они кратковременно потребляют большой ток, называемый пусковым.

Чем опасен пусковой ток электродвигателя

При подаче напряжения на обмотку статора скорость вращения ротора равна нулю. Ротор нужно стронуть с места и раскрутить до номинального частоты вращения. На это тратится значительно большая энергия, чем та, что нужна для номинального режима работы.

Под нагрузкой пусковые токи больше, чем на холостом ходу. К весу ротора прибавляется механическое сопротивление вращению от приводимого двигателем в движение механизма. На практике влияние этого фактора стремятся минимизировать. Например, у мощных вентиляторов на момент запуска автоматически закрываются шиберы в воздуховодах.

В момент протекания пускового тока из сети потребляется значительная мощность, расходуемая на выведение электродвигателя на номинальный режим работы. Чем мощнее электромотор, тем большая мощность для разгона ему требуется. Не все электрические сети переносят этот режим без последствий.

Перегрузка питающих линий неизбежно приводит к снижению напряжения в сети. Это не только еще более затрудняет процесс запуска электродвигателей, но и влияет на других потребителей.

Да и сами электродвигатели во время пусковых процессов испытывают повышенные механические и электрические нагрузки. Механические связаны с увеличением вращающего момента на валу. Электрические же, связанные с кратковременным увеличением тока, воздействуют на изоляцию обмоток статора и ротора, контактные соединения и пусковую аппаратуру.

Методы снижения пусковых токов

Маломощные электромоторы с недорогой пускорегулирующей аппаратурой вполне достойно запускаются и без применения каких-либо средств. Снижать их пусковые токи или изменять частоту вращения нецелесообразно экономически.

Но, когда влияние на режим работы сети в процессе запуска оказывается существенным, пусковые токи требуют снижения. Этого добиваются за счет:

  • применения электродвигателей с фазным ротором;
  • использование схемы для переключения обмоток со звезды на треугольник;
  • использование устройств плавного пуска;
  • использование частотных преобразователей.

Для каждого механизма подходит один или несколько указанных методов.

Электродвигатели с фазным ротором

Применение асинхронных электродвигателей с фазным ротором на участках работы с тяжелыми условиями труда – самая древняя форма снижения пусковых токов. Без них невозможна работа электрифицированных кранов, экскаваторов, а также – дробилок, грохотов, мельниц, редко запускающихся при отсутствии продукции в приводимом механизме.

Снижение пускового тока достигается за счет поэтапного вывода из цепи ротора резисторов. Первоначально, в момент подачи напряжения, к ротору подключено максимально возможное сопротивление. По мере разгона реле времени один за другим включают контакторы, шунтирующие отдельные резистивные секции. В конце разгона добавочное сопротивление, включенное к цепи ротора, равно нулю.

Крановые двигатели не имеют автоматического переключения ступеней с резисторами. Это происходит по воле крановщика, передвигающего рычаги управления.

Переключение схемы соединения обмоток статора

В брно (блок распределения начала обмоток) любого трехфазного электромотора выведено 6 выводов от обмоток всех фаз. Таким образом, их можно соединить либо в звезду, либо в треугольник.

За счет этого достигается некоторая универсальность применения асинхронных электродвигателей. Схема включения звездой рассчитывается на большую ступень напряжения (например, 660В), треугольником – на меньшую (в данном примере – 380В).

Но при номинальном напряжении питания, соответствующем схеме с треугольником, можно воспользоваться схемой со звездой для предварительного разгона электромотора. При этом обмотка работает на пониженном напряжении питания (380В вместо 660), и пусковой ток снижается.

Для управления процессом переключения потребуется дополнительный кабель в брно электродвигателя, так как задействуются все 6 выводов обмоток. Устанавливаются дополнительные пускатели и реле времени для управления их работой.

Частотные преобразователи

Первые два метода можно применить не везде. А вот последующие, ставшие доступными относительно недавно, позволяют осуществить плавный пуск любого асинхронного электродвигателя.

Частотный преобразователь – сложное полупроводниковое устройство, сочетающее силовую электронику и элементы микропроцессорной техники. Силовая часть выпрямляет и сглаживает сетевое напряжение, превращая его в постоянное. Выходная часть из этого напряжения формирует синусоидальное с изменяемой частотой от нуля до номинального значения – 50 Гц.

За счет этого достигается экономия электроэнергии: приводимые во вращение агрегаты не работают с избыточной производительностью, находясь в строго требуемом режиме. К тому же технологический процесс получает возможность тонко настраиваться.

Но важное в спектре рассматриваемой проблемы: частотные преобразователи позволяют осуществлять плавный пуск электродвигателя, без толчков и рывков. Пусковой ток полностью отсутствует.

Устройства плавного пуска

Устройство плавного пуска электродвигателя – это тот же частотный преобразователь, но с ограниченным функционалом. Работает он только при разгоне электродвигателя, плавно изменяя скорость его вращения от минимально заданного значения до номинальной.

Чтобы исключить бесполезную работу устройства по окончании разгона электродвигателя, рядом устанавливается шунтирующий контактор. Он подключает электродвигатель напрямую к сети после завершения запуска.

При выполнении модернизации оборудования – это самый простой метод. Он зачастую может быть реализован своими руками, без привлечения узкопрофильных специалистов. Устройство устанавливается на место магнитного пускателя, управляющего пуском электромотора. Может потребоваться замена кабеля на экранированный. Затем в память устройства вносятся параметры электромотора, и оно готово к действию.

А вот с полноценными частотными преобразователями справиться самостоятельно по силам не каждому. Поэтому их применение в единичных экземплярах обычно лишено смысла. Установка частотных преобразователей оправдана лишь при проведении общей модернизации электрооборудования предприятия.

electriktop.ru

Плавный пуск асинхронного электродвигателя: устройство, схема

Устройства плавного пуска выпускаются для асинхронных двигателей разной мощности. Многие модели нацелены конкретно на обеспечение разгона. Однако есть конфигурации, которые способны обеспечить плавную остановку двигателя. Используются пускатели чаще всего на конвейерах.

Также они устанавливаются на ленточных транспортерах. Для насосов они подходят идеально. Принцип действия моделей построен на постепенном понижении параметра токовой нагрузки. Для того чтобы разобраться в этом вопросе более детально, следует рассмотреть устройство простого стартера.

Схема стандартного пускателя

Реверсивная схема пуска асинхронного электродвигателя включает в себя трансформатор понижающего типа. Реле в данном случае устанавливается с высоковольтной обмоткой и может справляться с очень большой перегрузкой. Если рассматривать мощные модели, то у них имеются выпрямители.

Также схема пуска асинхронного электродвигателя предполагает применение резисторов подстроченного типа. В некоторых конфигурациях можно встретить трансиверы. Данные устройства предназначены для понижения тактовой частоты асинхронного двигателя. Таким образом, он способен прослужить много лет. Кенотроны у моделей часто используются со стабилизаторами.

Однофазные пускатели

Плавный пуск асинхронного электродвигателя за счет однофазного стартера происходит благодаря подаче напряжения на трансформатор. Далее оно подается на реле, где происходит преобразование. Большинство модификаций данного типа оснащены расширителями. Применяются они только кодовые, или коммутируемые. Для подключения асинхронного двигателя используются выходы.

Некоторые модификации продаются с регуляторами. Непосредственно выпрямители устанавливаются операционные. Параметр пороговой перегрузки моделей не превышает 40 А. В свою очередь, мощность их находится на уровне 5-10 кВт. Параметр напряжения питания колеблется от 100 до 220 В. По степени защиты однофазные модификации довольно сильно отличаются между собой. Некоторые из них являются уязвимыми к влаге или пыли, и это следует учитывать перед покупкой.

Устройство двухфазных моделей

Двухфазные стартеры следует рассмотреть на примере общепроизводственных моделей. Данного типа электродвигатели асинхронные (трехфазные) технические характеристики имеют следующие: мощность 5-15 кВт, максимальная перегрузка 40 А, показатель входного напряжения 220 В. Якоря у модификаций используются с первичной обмоткой. В моделях используются трансформаторы понижающего типа. Также важно отметить, что реле устанавливаются со стабилизаторами. Модуляторы для данных устройств подходят только ортогональные. Модификации с резисторами встречаются очень редко.

Модификации трехфазного типа

Плавный пуск асинхронного электродвигателя при помощи трехфазных стартеров происходит быстро. Если говорить про характеристики моделей, то важно отметить, что пороговую нагрузку устройства способны выдерживать в среднем на уровне 60 А. Мощность многих моделей превышает 5 кВт. Недостатком данных устройств принято считать низкий порог минимальной температуры. В мороз их использовать строго запрещается. Модуляторы для моделей подходят ортогонального типа.

Расширители чаще всего можно встретить кодовые. По параметру пропускной способности тока они довольно сильно отличаются. Трансиверы, как правило, на пускатели устанавливаются однополюсные. Транзисторы у моделей используются в основном широкополосные. По степени защиты пускатели отличаются. Многие из них не боятся повышенной влажности, однако в данном случае многое зависит от производителя.

Стартер для моделей с короткозамкнутым ротором

С короткозамкнутым ротором электродвигатели асинхронные (трехфазные) технические характеристики имеют следующие: мощность от 10 кВт, максимальная перегрузка составляет 40 А, показатель входного тока 220 В. Большинство пускателей оснащаются трансформаторами понижающего типа. Некоторые конфигурации на рынке представлены со стабилизаторами. Также важно отметить, что модели с мощностью свыше 12 кВт снабжены специальными динисторами.

Для стабилизации выходного напряжения они подходят идеально. Расширители во всех устройствах используются кодовые. Однако тиристоры подходят лишь полупроводникового типа. В среднем минимальную температуру устройства способны держать на уровне 5 градусов. Непосредственно пуск асинхронного электродвигателя с короткозамкнутым ротором осуществляется через выходные контакты на верхней части корпуса.

Особенности моделей для пуска высоковольтного двигателя

Плавный пуск асинхронного электродвигателя высоковольтного типа осуществляется благодаря силовым трансформаторам. В данном для управления используются лишь электромагнитные регуляторы. Непосредственно кенотроны устанавливаются частотные. Транзисторы для указанных моделей подходят с высокой пропускной способностью. Изоляторов в устройствах имеется два. Для подключения высоковольтных двигателей применяются выходные контакты. Модели с динисторами встречаются довольно редко.

Стартеры серии ABB

Стартеры данной серии считаются очень распространенными. В данном случае пуск двигателя происходит за счет смены фазы. Непосредственно преобразование тока осуществляется благодаря динисторам. По типу реле модели довольно сильно отличаются. Мощность моделей колеблется от 4 до 12 кВт. В свою очередь, питающее напряжение составляет в среднем 220 В. Распределители устанавливаются только кодового типа.

Если говорить про модуляторы, то на моделях высокой мощности они ортогональные. Также важно отметить, что трансиверы во всех пускателях данной серии однополюсные. Чаще всего модели можно встретить на конвейерах. Стабилизаторы в устройствах отсутствуют. Система защиты у них установлена серии ИП-62, и повышенной влажности они не боятся.

Устройство для пуска "Шнайдер"

Указанный стартер отличается повышенным входным напряжением на уровне 200 В. В данном случае пуск двигателей осуществляется через силовой трансформатор. Реле у этой модели используется с первичной обмоткой. Согласно документации на устройство, параметр пороговой перегрузки находится на отметке 40 А. Резистор в представленной конфигурации установлен построечный, а расширитель используется кодового типа. Проблемы со сменой фазы у данного устройства возникают довольно редко. Для преобразования тока применяется качественный модулятор. Регулятор скорости вращения асинхронного электродвигателя электромагнитного типа. Производителем предусмотрен расширительный динистор у модели этого типа. Стабилитрон в устройстве отсутствует.

Пускатели для морских судов

Модели для морских судов выпускаются разной мощности. Запускается эл. двигатель через силовой трансформатор. Если рассматривать двухфазные модификации, то они оборудуются выпрямителями. Модуляторы, в свою очередь, устанавливаются как ортогонального, так и бесконденсаторного типа. Резисторы, как правило, применяются подстроечные. Трехфазные модификации стартеров оборудуются стабилизаторами. Для смены тактовой частоты используются тиристоры. Кенотроны в данном случае устанавливаются с высокой пропускной способностью.

Модульные модели для объектов атомной энергетики

Модульные стартеры отличаются высоким параметром выходного напряжения. Запускается эл. двигатель благодаря трансформаторам понижающего типа. Для двухфазных моделей силовые аналоги используются очень редко. Выпрямители в устройствах устанавливаются только с реле. Расширители используются коммутируемого типа.

Степень защиты в стартерах предусмотрена серии ИП-67. Повышенной влажности и пыли модели не боятся. Изоляторов в устройствах имеется от трех до шести единиц. Мощность колеблется от 4 до 10 кВт. Регулятор скорости вращения асинхронного электродвигателя у них имеется электромагнитного типа. Также важно отметить, что тиристорные блоки устанавливаются полупроводниковые с контактами.

Модульные устройства для лифтовых станций

Для лифтовых станций применяются лишь двухфазные стартеры. Пуск асинхронного электродвигателя с помощью пускателя в данном случае осуществляется благодаря работе понижающего трансформатора. Перегрузку тока указанные модели обязаны держать на уровне 40 А. Расширители для бесперебойного питания используются чаще всего кодового типа.

Непосредственно трансиверы применяются однополюсные. Модуляторы в данном случае используются редко. Однако модификации с регуляторами встречаются. Резисторы для моделей применяются как подстроечного, так и импульсного типа. Модификации с кенотронами на рынке не встречаются. С перегрузками отлично справляются транзисторные блоки. Также важно отметить, что у моделей используются изоляторы.

Характеристики моделей на 60 А

Стартеры на 60 А для лифтовых станций подходят идеально. Плавный пуск асинхронного электродвигателя в данном случае обеспечивается за счет силовых трансформаторов. Реле у многих моделей с первичной обмоткой.

Для нормальной работы стартера используются только ортогональные модуляторы. Непосредственно тиристорные блоки можно встретить полупроводникового типа. Пороговую нагрузку они способны выдерживать большую. Мощность моделей в среднем колеблется от 10 кВт.

fb.ru

Плавный пуск электродвигателя своими руками

Плавный пуск асинхронного двигателя – это всегда трудная задача, потому что для запуска индукционного мотора требуется большой ток и крутящий момент, которые могут сжечь обмотку электродвигателя. Инженеры постоянно предлагают и реализуют интересные технические решения для преодоления этой проблемы, например, использование схемы включения звезда-треугольник, автотрансформатора и т. д.

В настоящее время подобные способы применяются в различных промышленных установках для бесперебойного функционирования электродвигателей.

Зачем нужны УПП?

Из физики известен принцип работы индукционного электродвигателя, вся суть которого заключается в использовании разницы между частотами вращения магнитных полей статора и ротора. Магнитное поле ротора, пытаясь догнать магнитное поле статора, способствует возбуждению большого пускового тока. Мотор работает на полной скорости, при этом значение крутящего момента вслед за током тоже увеличивается. В результате обмотка агрегата может быть повреждена из-за перегрева.

 

 

Таким образом, необходимой становится установка мягкого стартера. УПП для трехфазных асинхронных моторов позволяют защитить агрегаты от первоначального высокого тока и крутящего момента, возникающих вследствие эффекта скольжения при работе индукционного мотора.

Преимущественные особенности применения схемы с устройством плавного пуска (УПП):

  1. снижение стартового тока;
  2. уменьшение затрат на электроэнергию;
  3. повышение эффективности;
  4. сравнительно низкая стоимость;
  5. достижение максимальной скорости без ущерба для агрегата.

Как плавно запустить двигатель?

Существует пять основных методов плавного пуска.

  • Высокий крутящий момент может быть создан путем добавления внешнего сопротивления в цепь ротора, как показано на рисунке.

  • С помощью включения в схему автоматического трансформатора можно поддерживать пусковой ток и крутящий момент за счет уменьшения начального напряжения. Смотрите рисунок ниже.

  • Прямой запуск – это самый простой и дешевый способ, потому что асинхронный двигатель подключен напрямую к источнику питания.
  • Соединения по специальной конфигурации обмоток – способ применим для двигателей, предназначенных для эксплуатации в нормальных условиях.

  • Использование УПП – это наиболее передовой способ из всех перечисленных методов. Здесь полупроводниковые приборы, такие как тиристоры или тринисторы, регулирующие скорость асинхронного двигателя, успешно заменяют механические компоненты.

Регулятор оборотов коллекторного двигателя

Большинство схем бытовых аппаратов и электрических инструментов создано на базе коллекторного электродвигателя 220 В. Такая востребованность объясняется универсальностью. Для агрегатов возможно питание от постоянного либо переменного напряжения. Достоинство схемы обусловлены обеспечением эффективного пускового момента.

Чтобы достичь более плавного пуска и обладать возможностью настройки частоты вращения, применяются регуляторы оборотов.

Пуск электродвигателя своими руками можно сделать, к примеру, таким образом.

Заключение

УПП разработаны и созданы, чтобы ограничить увеличение пусковых технических показателей двигателя. В противном случае нежелательные явления могут привести к повреждению агрегата, сжиганию обмоток или перегреву рабочих цепей. Для длительной же службы, важно чтобы трехфазный мотор работал без скачков напряжения, в режиме плавного пуска.

Как только индукционный мотор наберёт нужные обороты, посылается сигнал к размыканию реле цепи. Агрегат становится готов к работе на полной скорости без перегрева и сбоев системы. Представленные способы могут быть полезными в решении промышленных и бытовых задач.

 

electricdoma.ru

Плавный запуск электродвигателя - Всё о электрике в доме

Для чего нужен плавный пуск асинхронного двигателя

Из всех видов двигателей асинхронные двигатели получили наиболее широкое распространение в промышленности и продолжают вытеснять все больше и больше двигатели постоянного тока.

Асинхронные двигатели получили широкое распространение благодаря следующим своим качествам: дешевизне двигателя, простоте конструкции, надежности, высокому к. п. д. До настоящего времени асинхронные двигатели уступали место двигателям постоянного тока только в тех случаях, где требовалось плавное регулирование частоты вращения (строгальные станки, правильные машины, регулируемые главные приводы прокатных станов и т. п.), в электрическом транспорте и в приводах большой мощности повторно-кратковременного режима (реверсивные станы). Внедрение в промышленность регулируемых преобразователей частоты позволит, еще шире применять асинхронные двигатели.

Недостатками асинхронных двигателей являются:

1) Квадратичная зависимость момента от напряжения, при падении напряжения в сети сильно уменьшаются пусковой и критический моменты,

2) Опасность перегрева статора, особенно при повышениях напряжения сети, и ротора при понижении напряжения,

3) Малый воздушный зазор, несколько понижающий надежность двигателя,

4) Большие пусковые токи асинхронных двигателей. При пуске асинхронного двигателя с короткозамкнутым ротором ток статора больше номинального в 5 — 10 раз. Такие большие токи в статоре недопустимы по условиям динамических усилий в обмотках и нагрева обмоток. В асинхронных двигателях могут возникать переходные режимы с большими бросками тока не только при подключении двигателя к сети но и при его реверсе и торможении.

Итак, для чего нужно ограничивать пусковой ток в обмотках статора асинхронного электродвигателя с короткозамкнутым ротором?

Необходимость ограничения тока двигателей диктуется причинами электрического и механического характера. Причины электрического характера ограничения тока двигателей могут быть следующие:

1) Уменьшение толчков тока в сети. В некоторых случаях для крупных двигателей требуется ограничить пусковой ток до допускаемого для питающей системы.

2) Уменьшение электродинамических усилий в обмотках двигателя.

Уменьшение толчков тока в сети требуется обычно при пуске крупных асинхронных двигателей с короткозамкнутым ротором, если они получают питание от сравнительно маломощной питающей системы. Кроме того, для крупных двигателей заводы-изготовители машин не разрешают прямой пуск из-за чрезмерно больших электродинамических усилий в лобовых частях обмоток статора и ротора.

Причины механического характера ограничения момента двигателей могут быть самыми разнообразными, например предотвращение поломки или быстрого изнашивания передач, соскальзывания ремней со шкивов, буксования колес подвижных тележек, больших ускорений или замедлений, недопустимых для оборудования или людей в различных средствах передвижения и т. д. Иногда требуется уменьшить пусковой момент двигателей, даже небольших, для того чтобы смягчить удары в передачах и обеспечить плавное ускорение.

Во всех случаях, где условия работы не требуют форсированных ускорений или замедлений, желательно рассчитывать режимы на минимальные броски тока, а следовательно, и момента, сохраняя этим передачи механизма и двигатель.

Устройство плавного пуска двигателя

Для ограничения тока применяются пусковые реакторы, резисторы и автотрансформаторы, а также современные электронные устройства — софт-стартеры (устройства плавного пуска двигателей).

Напряжение на электродвигателе

Необходимо обратить внимание на то, что ограничение тока и момента с помощью устройств плавного пуска двигателей получается за счет усложнения схемы управления и удорожания установки, а потому должно применяться только там, где это обосновано.

Статьи и схемы

Полезное для электрика

Устройства плавного пуска двигателей — залог качественной работы электродвигателя

УПП — преобразователь частоты

В различных механических, электромеханических, а также электротехнических, электронных оборудованиях, в котором используют плавный пуск или же остановку электродвигателя, присутствует небольшой момент страгивание ротора, который влияет на рабочие характеристики электродвигателя. Для более щадящего режима пуска используют специальные технические устройства плавного пуска двигателей. Пусковые устройства позволяют сделать ряд функций при работе электродвигателя:

пуск и остановка электродвигателя

-универсальный плавный разгон электрического двигателя;-оптимальный режим остановки электрического двигателя;-уменьшение нагрузки тока пуска;-согласованный режим работы крутящегося момента с разрешимым моментом нагрузки электродвигателя.

В момент пуска электродвигателя, крутящий момент за считанные доли секунды, может достигать значения до 150-200%, который отличный от номинального показания. Данный фактор влияет на рабочие характеристики электродвигателя, и в некоторых случаях это приводит к выходу из строя электрической машины. При этом пусковое значение тока в 6-8 раз превышает номинальное значение, которое значительно влияет на нагрузку во всей системе электросети. Перепады напряжения могут создавать на всех участках сети явные проблемы, а если падение достаточно большое, то это чревато проблемой полного запуска электродвигателя (то есть электродвигатель может вовсе не запуститься).

Технические параметры устройства плавного пуска

Устройства плавного пуска двигателей ограничивают отрицательные моменты плавного пуска двигателей. Технические параметры устройства плавного пуска электродвигателей позволяют выдерживать строгие рамки запуска, которые предписаны для каждого электродвигателя. При этом параметры пуска будут соответствовать приближенным в техусловиях электродвигателя, то есть от нуля до номинального значения. Выдержка параметров запуска будет влиять на заданные значения в строго определенный временной промежуток, то есть, до полного запуска электродвигателя в нормальный режим работы.

устройства плавного пуска электродвигателя

минимизируются гидравлические удары в системах трубопровода, задвижек

В электронном оборудовании добиться плавного хода можно за счет нарастания допустимого значения напряжения на обмотках электродвигателя. Данные свойства помогают удерживать в нормальном рабочем состоянии напряжение, ток и прочие параметры электрического двигателя. Таким образом, снижается риск перегрева электродвигателя, а также устраняются или минимизируются гидравлические удары в системах трубопровода, задвижек во время пуска, а также в момент остановки системы.

устройства плавного пуска электродвигателей

прямой пуск насоса

На сегодняшний день разработаны практически все типы устройства плавного пуска электродвигателей, ко всем типам, маркам, моделям электродвигателя. Подобрать необходимое устройство достаточно просто, необходимо знать основные рабочие параметры электродвигателя, а также конечное предназначение и роль электротехнического приспособления. Правильно подобранное устройство обеспечит долговечность службы электродвигателя, а также минимизирует отрицательные влияния электрики на всю систему обслуживания. Устройства плавного пуска для электродвигателя имеет большой диапазон функций, на сегодняшний день наиболее популярные устройства это — УПП, устройство, рассчитанное на мягкий пуск, система плавного пускателя, система мягкого пускателя, софтстартер.

Оцените качество статьи. Нам важно ваше мнение:

Плавный пуск асинхронного электродвигателя: устройство, схема

January 24, 2016

Устройства плавного пуска выпускаются для асинхронных двигателей разной мощности. Многие модели нацелены конкретно на обеспечение разгона. Однако есть конфигурации, которые способны обеспечить плавную остановку двигателя. Используются пускатели чаще всего на конвейерах.

Также они устанавливаются на ленточных транспортерах. Для насосов они подходят идеально. Принцип действия моделей построен на постепенном понижении параметра токовой нагрузки. Для того чтобы разобраться в этом вопросе более детально, следует рассмотреть устройство простого стартера.

Схема стандартного пускателя

Реверсивная схема пуска асинхронного электродвигателя включает в себя трансформатор понижающего типа. Реле в данном случае устанавливается с высоковольтной обмоткой и может справляться с очень большой перегрузкой. Если рассматривать мощные модели, то у них имеются выпрямители.

Также схема пуска асинхронного электродвигателя предполагает применение резисторов подстроченного типа. В некоторых конфигурациях можно встретить трансиверы. Данные устройства предназначены для понижения тактовой частоты асинхронного двигателя. Таким образом, он способен прослужить много лет. Кенотроны у моделей часто используются со стабилизаторами.

Однофазные пускатели

Плавный пуск асинхронного электродвигателя за счет однофазного стартера происходит благодаря подаче напряжения на трансформатор. Далее оно подается на реле, где происходит преобразование. Большинство модификаций данного типа оснащены расширителями. Применяются они только кодовые, или коммутируемые. Для подключения асинхронного двигателя используются выходы.

Некоторые модификации продаются с регуляторами. Непосредственно выпрямители устанавливаются операционные. Параметр пороговой перегрузки моделей не превышает 40 А. В свою очередь, мощность их находится на уровне 5-10 кВт. Параметр напряжения питания колеблется от 100 до 220 В. По степени защиты однофазные модификации довольно сильно отличаются между собой. Некоторые из них являются уязвимыми к влаге или пыли, и это следует учитывать перед покупкой.

Устройство двухфазных моделей

Двухфазные стартеры следует рассмотреть на примере общепроизводственных моделей. Данного типа электродвигатели асинхронные (трехфазные) технические характеристики имеют следующие: мощность 5-15 кВт, максимальная перегрузка 40 А, показатель входного напряжения 220 В. Якоря у модификаций используются с первичной обмоткой. В моделях используются трансформаторы понижающего типа. Также важно отметить, что реле устанавливаются со стабилизаторами. Модуляторы для данных устройств подходят только ортогональные. Модификации с резисторами встречаются очень редко.

Модификации трехфазного типа

Плавный пуск асинхронного электродвигателя при помощи трехфазных стартеров происходит быстро. Если говорить про характеристики моделей, то важно отметить, что пороговую нагрузку устройства способны выдерживать в среднем на уровне 60 А. Мощность многих моделей превышает 5 кВт. Недостатком данных устройств принято считать низкий порог минимальной температуры. В мороз их использовать строго запрещается. Модуляторы для моделей подходят ортогонального типа.

Расширители чаще всего можно встретить кодовые. По параметру пропускной способности тока они довольно сильно отличаются. Трансиверы, как правило, на пускатели устанавливаются однополюсные. Транзисторы у моделей используются в основном широкополосные. По степени защиты пускатели отличаются. Многие из них не боятся повышенной влажности, однако в данном случае многое зависит от производителя.

Стартер для моделей с короткозамкнутым ротором

С короткозамкнутым ротором электродвигатели асинхронные (трехфазные) технические характеристики имеют следующие: мощность от 10 кВт, максимальная перегрузка составляет 40 А, показатель входного тока 220 В. Большинство пускателей оснащаются трансформаторами понижающего типа. Некоторые конфигурации на рынке представлены со стабилизаторами. Также важно отметить, что модели с мощностью свыше 12 кВт снабжены специальными динисторами.

Для стабилизации выходного напряжения они подходят идеально. Расширители во всех устройствах используются кодовые. Однако тиристоры подходят лишь полупроводникового типа. В среднем минимальную температуру устройства способны держать на уровне 5 градусов. Непосредственно пуск асинхронного электродвигателя с короткозамкнутым ротором осуществляется через выходные контакты на верхней части корпуса.

Особенности моделей для пуска высоковольтного двигателя

Плавный пуск асинхронного электродвигателя высоковольтного типа осуществляется благодаря силовым трансформаторам. В данном для управления используются лишь электромагнитные регуляторы. Непосредственно кенотроны устанавливаются частотные. Транзисторы для указанных моделей подходят с высокой пропускной способностью. Изоляторов в устройствах имеется два. Для подключения высоковольтных двигателей применяются выходные контакты. Модели с динисторами встречаются довольно редко.

Стартеры серии ABB

Стартеры данной серии считаются очень распространенными. В данном случае пуск двигателя происходит за счет смены фазы. Непосредственно преобразование тока осуществляется благодаря динисторам. По типу реле модели довольно сильно отличаются. Мощность моделей колеблется от 4 до 12 кВт. В свою очередь, питающее напряжение составляет в среднем 220 В. Распределители устанавливаются только кодового типа.

Если говорить про модуляторы, то на моделях высокой мощности они ортогональные. Также важно отметить, что трансиверы во всех пускателях данной серии однополюсные. Чаще всего модели можно встретить на конвейерах. Стабилизаторы в устройствах отсутствуют. Система защиты у них установлена серии ИП-62, и повышенной влажности они не боятся.

Устройство для пуска «Шнайдер»

Указанный стартер отличается повышенным входным напряжением на уровне 200 В. В данном случае пуск двигателей осуществляется через силовой трансформатор. Реле у этой модели используется с первичной обмоткой. Согласно документации на устройство, параметр пороговой перегрузки находится на отметке 40 А. Резистор в представленной конфигурации установлен построечный, а расширитель используется кодового типа. Проблемы со сменой фазы у данного устройства возникают довольно редко. Для преобразования тока применяется качественный модулятор. Регулятор скорости вращения асинхронного электродвигателя электромагнитного типа. Производителем предусмотрен расширительный динистор у модели этого типа. Стабилитрон в устройстве отсутствует.

Пускатели для морских судов

Модели для морских судов выпускаются разной мощности. Запускается эл. двигатель через силовой трансформатор. Если рассматривать двухфазные модификации, то они оборудуются выпрямителями. Модуляторы, в свою очередь, устанавливаются как ортогонального, так и бесконденсаторного типа. Резисторы, как правило, применяются подстроечные. Трехфазные модификации стартеров оборудуются стабилизаторами. Для смены тактовой частоты используются тиристоры. Кенотроны в данном случае устанавливаются с высокой пропускной способностью.

Модульные модели для объектов атомной энергетики

Модульные стартеры отличаются высоким параметром выходного напряжения. Запускается эл. двигатель благодаря трансформаторам понижающего типа. Для двухфазных моделей силовые аналоги используются очень редко. Выпрямители в устройствах устанавливаются только с реле. Расширители используются коммутируемого типа.

Степень защиты в стартерах предусмотрена серии ИП-67. Повышенной влажности и пыли модели не боятся. Изоляторов в устройствах имеется от трех до шести единиц. Мощность колеблется от 4 до 10 кВт. Регулятор скорости вращения асинхронного электродвигателя у них имеется электромагнитного типа. Также важно отметить, что тиристорные блоки устанавливаются полупроводниковые с контактами.

Модульные устройства для лифтовых станций

Для лифтовых станций применяются лишь двухфазные стартеры. Пуск асинхронного электродвигателя с помощью пускателя в данном случае осуществляется благодаря работе понижающего трансформатора. Перегрузку тока указанные модели обязаны держать на уровне 40 А. Расширители для бесперебойного питания используются чаще всего кодового типа.

Непосредственно трансиверы применяются однополюсные. Модуляторы в данном случае используются редко. Однако модификации с регуляторами встречаются. Резисторы для моделей применяются как подстроечного, так и импульсного типа. Модификации с кенотронами на рынке не встречаются. С перегрузками отлично справляются транзисторные блоки. Также важно отметить, что у моделей используются изоляторы.

Характеристики моделей на 60 А

Стартеры на 60 А для лифтовых станций подходят идеально. Плавный пуск асинхронного электродвигателя в данном случае обеспечивается за счет силовых трансформаторов. Реле у многих моделей с первичной обмоткой.

Для нормальной работы стартера используются только ортогональные модуляторы. Непосредственно тиристорные блоки можно встретить полупроводникового типа. Пороговую нагрузку они способны выдерживать большую. Мощность моделей в среднем колеблется от 10 кВт.

Как организовать путешествие с пользой для души и тела? Если вы отправляетесь в путешествие, то вы можете использовать эту возможность для того, чтобы ваш мозг восстанавливался и даже развивался.

11 странных признаков, указывающих, что вы хороши в постели Вам тоже хочется верить в то, что вы доставляете своему романтическому партнеру удовольствие в постели? По крайней мере, вы не хотите краснеть и извин.

Наши предки спали не так, как мы. Что мы делаем неправильно? В это трудно поверить, но ученые и многие историки склоняются к мнению, что современный человек спит совсем не так, как его древние предки. Изначально.

Топ-10 разорившихся звезд Оказывается, иногда даже самая громкая слава заканчивается провалом, как в случае с этими знаменитостями.

Непростительные ошибки в фильмах, которых вы, вероятно, никогда не замечали Наверное, найдется очень мало людей, которые бы не любили смотреть фильмы. Однако даже в лучшем кино встречаются ошибки, которые могут заметить зрител.

7 частей тела, которые не следует трогать руками Думайте о своем теле, как о храме: вы можете его использовать, но есть некоторые священные места, которые нельзя трогать руками. Исследования показыва.

Источники: http://electricalschool.info/spravochnik/maschiny/843-dlja-chego-nuzhen-plavnyjj-pusk.html, http://electric-tolk.ru/ustrojstva-plavnogo-puska-dvigatelej-zalog-kachestvennoj-raboty-elektrodvigatelya/, http://fb.ru/article/226021/plavnyiy-pusk-asinhronnogo-elektrodvigatelya-ustroystvo-shema

electricremont.ru

Устройство плавного пуска электродвигателя

Устройство плавного пуска электродвигателя (сокращенно УПП) – это механизм, используемый для сдерживания роста пусковых характеристик. Он делает мягкими процессы запуска и остановки мотора, защищая его от перегрева и рывков, увеличивает срок эксплуатации. Применяется только для асинхронных двигателей.

Зачем асинхронному двигателю УПП

При пуске двигателя в ход напрямую в одно мгновение крутящий момент достигает 150-200% от номинального значения. В это же время образуются пусковые токи, которые превышают номинальный в 5, а то и больше раз. Повышенные во время запуска мотора характеристики становится причиной проблем:

  • Повреждение изоляции обмоток и прекращение работы вследствие перегрева.
  • Выход из строя кинематической цепи провода из-за обрыва транспортерных лент, механических рывков или гидравлических ударов.
  • Тяжелый пуск, препятствующий его завершению.

Именно эти проблемы вызывают у электрического двигателя необходимость в устройстве плавного пуска. Благодаря ему мотор разгоняется плавно, без рывков и ударов. Пусковые токи снижаются. Поэтому удовлетворительное состояние изоляции будет держаться еще долго.

А как понять, что пуск тяжелый, и двигатель нужно оборудовать УПП? Для этого познакомьтесь с описанием трех случаев этого явления:

  1. Пуск слишком тяжелый для используемого источника питания. От сети нужен ток, который она может выработать только при «работе на износ» или не может выдать такое значение вообще. При попытке запуска на входе системы вырубаются автоматы, лампочки отключаются. Некоторые контакторы и реле переключения отключаются, а генератор питания прекращает работу. В этом случае УПП поможет, если питающая сеть сможет обеспечить 250% от номинального значения тока вместо 500-800%, которые были ей не под силу. Если же сеть не даст даже 250%, то смысла в установке устройства плавного пуска нет.
  2. Двигатель не запускается напрямую (не начинает крутиться или не разгоняется до нужной скорости, вызывая срабатывание защитной системы). УПП не поможет, но можно попробовать исправить ситуацию с помощью преобразователя частоты.
  3. Запуск отличный, но на входе отключается автомат еще до того, как устанавливается номинальная частота. УПП может помочь, но не обязательно. Чем ближе частота вращения к номинальному значению в момент срабатывания автомата, тем больше шансов на успех.

Продвинутые устройства плавного пуска для асинхронных двигателей выполняют дополнительные функции:

  • Защита от короткого замыкания при пуске в ход;
  • Предотвращение обрыва фазы;
  • Исключение повторного незапланированного включения;
  • Защиты от превышения номинальных нагрузок.

Использовать такие устройства можно не только для смягчения запуска, но и для плавной остановки мотора. График ниже показывается зависимость скорости вращения двигателя от времени при прямом пуске и с использованием стартсофтера (второе название УПП).

Дополнительный бонус обладателям УПП: можно будет подобрать менее мощный источник бесперебойного питания, если в нем есть необходимость.

Принцип действия устройства плавного пуска

Стартсофтеры бывают:

  • Механические;
  • Электрические.

Рассмотрим принцип действия каждого из видов УПП.

Механическое регулирование пусковых характеристик

Самый простой способ сделать запуск электродвигателя плавным – принудительно сдерживать нарастающую скорость вращения. Для этого можно использовать устройства, механически регулируя вращение вала. Сюда относят тормозные колодки, противовесы с дробью, блокираторы магнитного действия и жидкостные муфты.

В каждом случае принцип действия свой. Однако представить, что происходит при механическом сдерживании скорости, можно на примере вращающегося диска: попробуйте коснуться его предметом. Между ним и диском образуется сила трения, которая будет направлена в противоположную сторону относительно вращения. Это значит, что диску понадобится больше времени для разгона до установленного значения. Скорость при этом будет расти плавно.

Электрические устройства для плавного пуска электродвигателей

Принцип действия электрических УПП заключается в ограничении подаваемого мотору напряжения с помощью параллельно соединенных тиристоров, как показано на рисунке ниже.

Чтобы лучше понять, как работает стартсофтер, нужно подробнее изучить запуск. Теоретически это процесс преобразования энергии из электрической в кинетическую. При этом сопротивление двигателя от малого значения, характерного для не вращающегося двигателя, увеличивается до большого, когда уже достигнута номинальная скорость. И по закону Ома(I=U/R) в начальный момент ток максимален.

Формула же энергии имеет вид: E=P*t=U*I*t. А поскольку в начале запуска ток максимален, то энергия должна передаваться очень быстро. Если же своими руками подключить электродвигатель к сети через УПП, то на входе в устройство будет работать вторая формула. Энергия будет подаваться очень быстро, но выходить будет медленно. Это достигается путем ограничения напряжения, контролирующего рост пускового тока. А поскольку в обеих формулах ток имеет одинаковую величину, видно, что чем меньше сила тока, тем больше времени потребуется на разгон. Но разгон при этом будет плавный.

Важно! Несмотря на необходимость в снижении пусковых токов, устанавливать их на слишком низких значениях нельзя. Иначе двигатель не сможет разогнаться. Обычно достаточно снизить ток до 250% от номинального (при прямом пуске он составляет 500-800%).

Управление электрическими стартсофтерами

Различают два вида электрических устройств, смягчающих пусковой процесс:

  • С амплитудным управлением;
  • С фазовым управлением.

Работа амплитудного УПП базируется на постепенном увеличении напряжения на клеммах мотора до максимальной величины. Такие устройства помогают запускать электродвигатели в холостом режиме или с небольшой нагрузкой.

Фазовые стартсофтеры регулируют частотные характеристики фазного тока без снижения напряжения. Это позволяет сохранить высокую мощность мотора, запускать который можно даже с большой нагрузкой. Установить плавное нарастание вращательной частоты можно даже в рабочем режиме. Это важная функция, благодаря которой можно менять скорость вала, не теряя мощность.

Оборудовать электродвигатель устройством плавного пуска или нет – ваше личное дело, если только он не завершает работу на полпути до разгона. Но имейте в виду, что за рубежом запрещено пускать в ход моторы мощностью более 15000 Ватт без стартсофтера. Попытка сэкономить на УПП может привести к преждевременному износу механизма. Если уж не хочется сильно тратиться, то просто установите устройство своими руками, но приобретите его обязательно.

electricdoma.ru


Видеоматериалы

24.10.2018

Опыт пилотных регионов, где соцнормы на электроэнергию уже введены, показывает: граждане платить стали меньше

Подробнее...
23.10.2018

Соответствует ли вода и воздух установленным нормативам?

Подробнее...
22.10.2018

С начала года из ветхого и аварийного жилья в республике были переселены десятки семей

Подробнее...
22.10.2018

Столичный Водоканал готовится к зиме

Подробнее...
17.10.2018

Более 10-ти миллионов рублей направлено на капитальный ремонт многоквартирных домов в Лескенском районе

Подробнее...

Актуальные темы

13.05.2018

Формирование энергосберегающего поведения граждан

 

Подробнее...
29.03.2018

ОТЧЕТ о деятельности министерства энергетики, ЖКХ и тарифной политики Кабардино-Балкарской Республики в сфере государственного регулирования и контроля цен и тарифов в 2012 году и об основных задачах на 2013 год

Подробнее...
13.03.2018

Предложения организаций, осуществляющих регулируемую деятельность о размере подлежащих государственному регулированию цен (тарифов) на 2013 год

Подробнее...
11.03.2018

НАУЧИМСЯ ЭКОНОМИТЬ В БЫТУ

 
Подробнее...

inetpriem


<< < Ноябрь 2013 > >>
Пн Вт Ср Чт Пт Сб Вс
        1 2 3
4 5 6 7 8 9 10
11 12 13 14 15 16 17
18 19 20 21 22 23 24
25 26 27 28 29 30  

calc

banner-calc

.