лабораторные работы / Терморезисторы 11 / терморезистор. Расчет терморезистора


Примерный расчет чэ датчика температуры

Исходные данные:

– температурный диапазон –52C … +89 C;

– материал терморезистора – кремний ЭКЭФ 4.5-8б ГОСТ 19658-81;

– сопротивление терморезистора 1400 Ом;

– напряжение питания 410 В;

– инерционность не более 0.01 с.

Расчет статических характеристик ЧЭ

1) Температурная характеристика определяет зависимость сопротивление термоэлемента (ТЭ) от температуры RТ(T). Она описывается уравнением [1]

(4.16)

где RT и RN – соответственно сопротивление при температурах T и Tb = 298 К;

В – константа материала терморезистора, K

(4.17)

где E – энергия активации, для Si равна 1.15 эВ; k – постоянная Больцмана, равная 1.38·10-23 Дж/ К

Подставим известные значения в формулу (4.16) и получим

RТ=1400 · exp[1.33 · 104 · (1/T – 1/298)]. (4.18)

Подставляя в формулу (4.18) значения температуры от 220 до 400 К построим зависимость RТ = f(T) (рис. 4.27).

Рис. 4.27. Рабочая характеристика терморезистора с отрицательным ТКС

2) Температурный коэффициент сопротивления терморезистора равен

(4.19)

где В = 1.33·104 К.

Подставляем в формулу (4.19) значения температуры от 220 до 400 К и строим зависимость ТКС от температуры (рис. 4.28).

Рис. 4.28. Зависимость ТКС кремния n-типа электропроводности

от температуры

3) Если к терморезистору подключить еще резистор с не зависящим от температуры сопротивлением, то температурную характеристику терморезистора можно до некоторой степени линеаризовать. Подключим параллельно термонезависимое сопротивление RР

(4.20)

где RТМ – сопротивление терморезистора при температуре TМ; TМ – средняя температура рабочего диапазона, равная

(4.21)

Подставим известные значения в формулу (4.20)

Принимаем RР = 3500 Ом.

Произведем расчет линеаризованной характеристики, равной

истроим зависимость R = f(Т) в диапазоне температур от 220 до 400 К (рис.4.29).

Рис. 4.29. Линеаризация характеристики терморезистора с отрицательным ТКС посредством параллельного включения дополнительного

термонезависимого сопротивления

Рис. 4.30. Зависимость выходного напряжения UМ от температуры

4) Измеряемое напряжение на выходе UМ рассчитывается по формуле

(4.22)

если схема питается постоянным током, I = 0.4 – 5 мА.

Подставляя в данную формулу значения температуры от 220 до 400 К, построим зависимость выходного напряжения UМ от температуры (рис. 4.30).

Конструктивный расчет терморезистора

Термосопротивление изготавливается из монокристаллического кремния, легированного фосфором до удельного сопротивления 4.5 Ом·см. Толщина исходной пластины кремния равна 0.35 мм. С помощью изотропного травления и химико–динамической полировки доводим толщину пластины до 15020 мкм. Контакты изготовлены из пленки алюминия с предварительным подлегированием контактных областей фосфором до удельного сопротивления  = 15 + 10 Ом/для создания омического контакта.

Удельное поверхностное сопротивление терморезистора [11]

(4.23)

где V – удельное сопротивление тела терморезистора, Ом·см; h – толщина кремниевого терморезистора, 150 мкм.

Находим удельное поверхностное сопротивление

Ом/.

Ширина резистора рассчитывается на основании удельной мощности рассеяния по формуле [12]

(4.24)

где PО – удельная мощность рассеяния резистора, (0.54.5) Вт/мм2; P – номинальная рассеиваемая мощность полупроводникового резистора, Вт.

При расчете выбираем минимальное значение PО, так как резистор выполнен из монокристаллического кремния большой толщины.

studfiles.net

5. Применение терморезисторов

При использовании терморезисторов в качестве датчиков систем автоматики различают два основных режима. В первом режиме температура терморезистора практически определяется только температурой окружающей среды. Ток, проходящий через терморезистор, очень мал и практически не нагревает его. Во втором режиме терморезистор нагревается проходящим по нему током, а температура терморезистора определяется изменяющимися условиями теплоотдачи, например интенсивностью обдува, плотностью окружающей газовой среды и т. п.

При использовании терморезисторов в первом режиме они играют роль датчиков температуры и называются обычно термометрами сопротивления. Наибольшее распространение получили термометры сопротивления типов ТСП (платиновые) и ТСМ (медные), включаемые в мостовую измерительную схему.

В процессе измерения температуры с помощью термометров сопротивления могут возникать следующие погрешности: 1) от колебания напряжения питания; 2) от изменения сопротивления соединительных проводов при колебаниях температуры окружающей среды; 3) от собственного нагрева датчика под действием протекающего через него тока.

Рассмотрим схему включения термометра сопротивления (рис. 5), в которой приняты меры для уменьшения отмеченных трех видов погрешностей. Для уменьшения погрешности от колебаний напряжения питания используется измерительный прибор логометрического типа. Угол отклонения подвижной системы логометра пропорционален отношению токов в двух катушках, одна из которых создает вращающий, а вторая — противодействующий моменты. Через одну катушку проходит ток разбаланса, зависящий от сопротивления терморезистора RT. Вторая катушка питается тем же напряжением, что и мостовая измерительная схема.

Рис. 5. Логометрическая схема включения терморезистора

При колебаниях напряжения питания одновременно будут изменяться токи в обеих катушках, а их отношение будет оставаться постоянным.

В автоматических уравновешенных мостах колебание напряжения питания не приводит к появлению пропорциональной погрешности измерения, незначительно изменяется лишь порог чувствительности.

Для уменьшения погрешности от изменения сопротивления соединительных проводов необходимо правильно выбирать сопротивление датчика. Эта погрешность сводится к минимуму, если сопротивление датчика выбрать из условия Rд>> Rпр, где Rпр — сопротивление соединительных проводов. При больших расстояниях (сотни метров) Rпр может достигать 3—5 Ом. Еще одним способом уменьшения погрешности от температурных изменений сопротивления соединительных проводов является применение многопроводных схем. На рис. 5 показана схема включения датчика Rд в мостовую схему посредством трех проводов (а, б, в). Сопротивления проводов а и б включены в смежные плечи моста, поэтому одновременное их изменение не нарушает равновесия моста. Сопротивление проводов в вообще не входит в мостовую схему. Погрешность за счет самонагрева датчика может быть учтена при градуировке шкалы измерительного прибора.

При быстром изменении температуры появляется динамическая погрешность, обусловленная тепловой инерцией датчика. Передача теплоты от измеряемой среды к терморезистору происходит не мгновенно, а в течение некоторого времени.

Для количественной оценки тепловой инерции датчика пользуются понятием «постоянная времени»:

(10)

где сд — удельная теплоемкость датчика; mд — масса датчика; к — коэффициент теплопередачи; s — поверхность соприкосновения со средой.

Если холодный датчик поместить в среду с температурой Tср(ºС), то его температура будет изменяться во времени по следующему закону:

(11)

Чем больше постоянная времени t, тем больше пройдет времени, пока температура датчика сравняется с температурой среды. За время t=τ датчик нагреется только до температуры Tср=0,63 ºС, а за время t=4,6 τ— до температуры Tср=0,99 ºС.

Рассмотрим теперь некоторые примеры использования собственного нагрева терморезисторов в устройствах для измерения различных физических величин, косвенно связанных с температурой.

Автоматическое измерение скорости газового потока проводится с помощью термоанемометра. Датчик этого прибора (рис. 6, а) состоит из терморезистора, представляющего собой тонкую платиновую проволоку 1, припаянную к двум манганиновым стержням 2, закрепленным в изоляционной втулке 3. С помощью выводов 4 терморезистор включается в измерительную схему. Через терморезистор пропускается ток, вызывающий его нагрев. Но температура (а следовательно, и сопротивление) терморезистора будет определяться скоростью газового потока, в который помещен датчик. Чем больше будет эта скорость, тем интенсивнее будет отводиться теплота от терморезистора. На рис. 6, б показана градуировочная кривая термоанемометра, из которой видно, что при увеличении скорости примерно вдвое сопротивление терморезистора уменьшается примерно на 20 %.

На аналогичном принципе основана работа электрического газоанализатора. Если взять два одинаковых саморазогреваемых терморезистора и поместить один в камеру, наполненную воздухом, а другой — в камеру, наполненную смесью воздуха с углекислым газом СО2, то из-за различной теплопроводности воздуха и углекислого газа сопротивление терморезисторов будет разным. Так как теплопроводность углекислого газа значительно меньше теплопроводности воздуха, то и отвод теплоты от терморезистора в камере с СО2 будет меньше, чем от терморезистора в камере с воздухом. По разнице сопротивлений терморезисторов можно судить о процентном содержании углекислого газа в газовой смеси.

Рис. 6. Термоанемометр — датчик скорости газового потока

Зависимость теплопроводности газа от его давления позволяет использовать терморезисторы с собственным нагревом в электрических вакуумметрах. Чем глубже вакуум (т. е. более разрежен газ), тем хуже условия теплоотдачи с поверхности терморезистора, помещенного в вакуумную камеру. Если через терморезистор пропускать ток для его нагрева, то температура терморезистора будет возрастать при уменьшении давления контролируемого газа.

Таким образом, с помощью терморезисторов можно измерять скорости и расход газов и жидкостей, давление и плотность газов, определять процентное содержание газов в смеси. Кроме платины в таких приборах используют вольфрам, никель, полупроводниковые терморезисторы. Для того чтобы исключить влияние колебаний температуры окружающей среды, стремятся обеспечить достаточно интенсивный собственный нагрев (до 200—500 °С).

ТЕРМОЭЛЕКТРИЧЕСКИЕ ДАТЧИКИ

studfiles.net

ТЕРМОРЕЗИСТОРЫ

Изучение свойств терморезистора - лабораторный практикум и теоретические вопросы. Это сокращённый вариант статьи, полная версия тут. Приборы и принадлежности для выполнения работы: Латунный сосуд с водой, термометр, плитка, термосопротивление, миллиамперметр, вольтметр, источник питания.

1. Краткие сведения из теории о терморезисторах

Терморезистором называется полупроводниковый резистор, сопротивление которого в сильной степени зависит от температуры. Удельная электрическая проводимость полупроводников:

В примесных (n-типа или p-типа) полупроводниках одним из слагаемых в приведенном выражении можно пренебречь.

Подвижность носителей при нагревании изменяется сравнительно слабо, а концентрация очень сильно. Поэтому температурная зависимость удельной проводимости полупроводников подобна температурной зависимости концентрации основных носителей, а электрическое сопротивление терморезисторов может быть определено по формуле:

где Nо – коэффициент, зависящий от типа и геометрических размеров полупроводника.

Экспериментально коэффициент температурной чувствительности определяют по формуле:

где Т1 и Т2 – исходная и конечная температуры рабочего температурного диапазона, R1 и R2 – сопротивления терморезистора при температуре соответственно Т1 и Т2. 

Рис. 1 График зависимости сопротивления полупроводникового резистора от температуры.

Чаще всего терморезисторы имеют отрицательный температурный коэффициент сопротивления. Выпускаются также терморезисторы, имеющие в сравнительно узком интервале температур положительный коэффициент и называемые позисторами. При нагревании величина сопротивления терморезисторов убывает, а позисторов возрастает в сотни и тысячи раз. В справочниках значение  аR приводится для температуры 20 оС.

Терморезистор характеризуется определенной тепловой инерцией, зависящей от химических свойств полупроводника и конструкции элемента (площади излучающей поверхности). Тепловая инерция оценивается постоянной времени т – временем, за которое разность между собственной температурой тела и температурой среды уменьшается в е раз. 

Если терморезистор, имеющий определённую температуру, поместить в среду с иной температурой, то его температура будет изменяться с течением времени по показательному закону:

С остыванием терморезистора сопротивление его увеличивается (рис. 2).

Рис 2. Процесс изменения температуры и сопротивления терморезистора при его остывании

2. Описание экспериментальной установки

Снятие вольтамперных характеристик выполняется по схеме, приведенной на рис.3.

Рис.3. Электрическая принципиальная схема установки

Измерительной цепь питается от источника постоянного регулируемого напряжения со встроенным вольтметром. Ток через терморезистор измеряется миллиамперметром.

Терморезистор ММТ-4 размещается в демонстрационной пробирке с клеммами, которая не позволяет горячей воде контактировать с корпусом терморезистора, в пробирку можно установить жидкостной термометр (желательно использовать ртутный термометр), для контроля температуры, непосредственно рядом с терморезистором.

Переменный резистор R2 необходим, только если используется нерегулируемый блок питания.

3. Порядок выполнения работы

3.1. Снятие зависимости R(T) сопротивления терморезистора от температуры. Терморезистор помещается в сосуд с водой, которая нагревается на электроплитке. Измерить сопротивление терморезистора при различных температурах – от комнатной до максимальной, равной 90°С, с интервалом 10 °С. Выполнить измерения для терморезисторов ММТ-4 и ММТ-1. Результаты опыта занести в таблицу.

3.2. Определение тепловой постоянной времени терморезистора. Измерив сопротивление терморезистора при 90 °С, быстро извлечь его из воды. Момент извлечения принять за t = 0. Отключить термостат.

Фиксируя время, измерять сопротивление терморезистора при его остывании до тех пор, пока оно не увеличится примерно в три раза. Данные измерений занести в таблицу.

Список использованной литературы

  1. Электрорадиоматериалы. Методические указания к лабораторным работам./ Под ред. С.А.Гусева. Изд. второе пер. и доп.; Балт. гос. техн. ун -т, СПб., 2000.   
  2. Пасынков В. В. Материалы электронной техники. М.: Высшая школа, 1980. 
  3. Богородицкий Н. П., Пасынков В. В., Тареев Б. М. Электротехнические материалы. Л.: Энергия, 1977.
  4. Справочник по электротехническим материалам. Тт. 1 – 3/ Под ред. Д. В. Корицкого и др. Л.: Энергия, 1974—1976.

   Форум по теории

   Обсудить статью ТЕРМОРЕЗИСТОРЫ

radioskot.ru

терморезистор

Расчёт и построение основных параметров терморезисторов.

Дано:

T0 = 393 ˚К;

T1 = 373 ˚К;

T2 = 413 ˚К;

R1 = 218000 Ом;

R2 = 12100 Ом;

τ = 24 сек – постоянная времени; τ - постоянная времени – время, в течение которого температура рабочего тела при его свободном охлаждении понижается на 63% от первоначальной разницы температур рабочего тела и окружающей среды.

ВАХ:

Решение

Построим температурную характеристику R(T):

1. Статическая (температурная) характеристика представляет собой зависимость сопротивления материала чувствительного элемента от температуры:

где T – температура в К,

, B – постоянные коэффициенты.

= 11134 ˚К;

T

380

411

446

473

497

516

532

546

557

568

577

R

13750

4600

1700

853

500

336

250

194

160

133

115

Вольтамперная характеристика - зависимость напряжения на чувствительном элементе от протекающего через него тока.

Статическая вольтамперная характеристика полупроводниковых терморезисторов (ПТР)—это зависимость между протекающим через них током и падением напряжения при установившемся режиме нагрева.

В связи с тем, что при прохождении через ПТР тока в нем выделяется тепло, температура рабочего тела оказывается выше температуры окружающей среды. Сопротивление ПТР принимает значение, соответствующее этой суммарной температуре (температура среды плюс перегрев).

Построим характеристику рассеяния η(Θ):

Величина коэффициента рассеяния b зависит от материала, размеров, состояния поверхности рабочего тела ПТР и токоподводящих частей, а также от свойств окружающей среды. Входящий в уравнение (1-9) коэффициент рассеяния является функцией температуры перегрева: .

3. Характеристика рассеяния - зависимость количества мощности, отдаваемой с поверхности терморезистора от перегрева

b - коэффициент теплоотдачи, Вт/см2*ºС;

- перегрева датчика относительно окружающей среды, ºС.

Θ

16

48

83

110

134

154

169

183

194

205

214

222

η

3.4

2.4

2

1.7

1.5

1.37

1.33

1.3

1.32

1.32

1.34

1.39

l= 7,75 мм – расстояние от места крепления переключающей пружины до размыкающего контакта;

L1= 8,75 мм – расстояние от места крепления переключающей пружины до замыкающего контакта;

lН= 2,0 мм – рабочая длина пружин неподвижных контактов;

Находим температурный коэффициент α383(т.е. приТ= 383 ˚К):

αt – температурный коэффициент, выражающий в процентах изменение абсолютной величины сопротивления при изменении температуры на 1K.

Вследствие нелинейности температурной характеристики значение температурного коэффициента зависит от величины температуры, поэтому его записывают обычно с индексом, указывающим температуру, при которой имеет место данное значение.

= – 7,2 %/˚К

Среднее значение рассеяния:

ηср = 1,75 Вт/˚К

Определяем теплоёмкость:

H – теплоемкость - количество теплоты, которое необходимо сообщить рабочему телу, чтобы повысить его температуру на 1K

H = τ · ηср = 36,75 Дж/˚К

Находим коэффициент энергетической чувствительности G383 (т.е. при Т = 383 ˚К):

= – 0,485 Вт/%

Из графика ВАХ находим допустимый ток:

Iдоп = 60·10 – 3 А

Uдоп = 5,5 В

Находим:

= 91,67 Ом

Тогда из температурной характеристики находим допустимую температуру терморезистора:

Tдоп – допустимая температура, определяемая свойствами рабочего материала и конструкционными особенностями терморезистора.

Tдоп= 591,6 ˚К

studfiles.net

Способ определения температуры полупроводниковым терморезистором

Изобретение относится к измерительной технике, в частности к измерению температуры различных объектов и сред. Техническим результатом изобретения является повышение точности определения температуры за счет исключения погрешности саморазогрева терморезистора и повышение оперативности за счет сокращения числа измерительных операций. Сущность: через размещенный в контролируемой среде полупроводниковый терморезистор пропускают ток и измеряют его сопротивление. Увеличивают ток, что вызывает дополнительный нагрев терморезистора относительно контролируемой среды, и измеряют второе сопротивление терморезистора. По двум сопротивлениям, измеряемым при минимальном токе для двух заданных границами диапазона температур, определяют параметры температурной характеристики терморезистора (предельное сопротивление и постоянную температуры) для минимального тока, по ней для измеренного сопротивления терморезистора определяют температуру контролируемой среды. Определенную температуру сопоставляют второму сопротивлению терморезистора, заранее при втором токе и максимальной температуре измеряют третье сопротивление, которое принимают за норму. По нормированному и второму сопротивлениям терморезистора и соответствующим им температурам определяют параметры рабочей температурной характеристики терморезистора, по которой определяют температуру контролируемой среды при измерении сопротивления терморезистора на увеличенном токе. 4 ил.

 

Изобретение относится к измерительной технике, в частности к измерению температур.

Известен способ измерения температуры термометром сопротивления [а.с. № 1332158], который приводят в контакт с объектом контроля. Подают на термометр сопротивления мощность P1 и в момент времени t1 измеряют первое значение температуры θ1 и увеличивают мощность до величины Р2. В моменты времени t2 и t3 проводят второе и третье измерение температуры θ2 и θ3. Измерение температур организовано так, что t2-t1=t3-t2. Значение измеряемой температуры рассчитывается по формуле

Недостатками данного метода являются неопределенность условий и параметров, при которых проводится градуировка термометра сопротивления. При градуировке термометра сопротивления при различных величинах рассеиваемой мощности градуировочные характеристики получаются разными. Также большое влияние оказывают параметры теплообмена со средой, в которой проводится градуировка термометра сопротивления. Неучет этих факторов в процессе измерения температуры приводит к погрешности.

За прототип принят способ измерения температуры полупроводниковым терморезистором [а.с.№ 1364911] при измерении его сопротивления. Для этого через терморезистор пропускают электрический ток, который производит его нагрев. Температуру дополнительного нагрева контролируют сравнением полученного сопротивления с первоначальным сопротивлением. Измеряют второе значение сопротивления. Измеряют ток нагрева, соответствующий второму значению сопротивления терморезистора, и определяют рассеиваемую на нем электрическую мощность. Определяют температуру нагрева терморезистора из уравнения теплового баланса. Постепенно увеличивают температуру нагрева ступенчатыми изменениями тока нагрева с регистрацией изменения сопротивления терморезистора. Процесс увеличения тока нагрева прекращают, если изменение сопротивления терморезистора становится незначительным по сравнению с предыдущим состоянием. Измеряют третье значение сопротивления терморезистора. По результатам измерения трех значений сопротивления терморезистора и по току нагрева находят температуру Т контролируемой среды по формуле

где R1 - сопротивление терморезистора при температуре контролируемой среды, R2 - сопротивление терморезистора, дополнительно нагретого измерительным током, I1 - ток дополнительного нагрева терморезистора, С - коэффициент рассеивания тепла нагретым терморезистором, S - поверхность охлаждения терморезистора.

Недостатками способа являются погрешность измерений, обусловленная присутствием в расчетном выражении параметров С и S, определить которые с высокой точностью не представляется возможным. Параметр С зависит не только от свойств измеряемой среды, но и от контактных термических сопротивлений (для твердых материалов), режима течения (для жидких и газообразных сред), в широком диапазоне температур его значение нельзя считать постоянным. К недостаткам так же следует отнести большую длительность процесса измерения температуры, в течение которого температура контролируемой среды может поменяться вследствие внешних условий или из-за сильного разогрева терморезистора пропускаемым током.

Технической задачей способа являются повышение точности определения температуры за счет исключения погрешности саморазогрева терморезистора и повышение оперативности за счет сокращения числа измерительных операций.

Поставленная задача достигается тем, что через размещенный в контролируемой среде полупроводниковый терморезистор пропускают минимальный ток и измеряют его сопротивление, увеличивают ток, что вызывает дополнительный нагрев терморезистора относительно контролируемой среды, и измеряют второе сопротивление терморезистора, отличающийся тем, что по двум сопротивлениям, измеряемым при минимальном токе для двух заданных границами диапазона температур, определяют параметры температурной характеристики терморезистора (предельное сопротивление и постоянную температуры) для минимального тока, по ней для измеренного сопротивления терморезистора определяют температуру контролируемой среды, которую сопоставляют второму сопротивлению терморезистора, заранее при втором токе и максимальной температуре измеряют третье сопротивление, которое принимают за норму, по нормированному и второму сопротивлениям терморезистора и соответствующим им температурам определяют параметры рабочей температурной характеристики терморезистора, по которой определяют температуру контролируемой среды при измерении сопротивления терморезистора на увеличенном токе.

Терморезистор является параметрическим датчиком - с изменением температуры он меняет свое сопротивление. Для измерения сопротивления терморезистора его включают в схему формирования электрического сигнала - управляемый источник стабилизированного тока (фиг.1). При пропускании тока через терморезистор происходит его саморазогрев - повышение его температуры по отношению к температуре измеряемой среды. Величина саморазогрева зависит от рассеиваемой на терморезисторе мощности и параметров теплообмена с окружающей средой, которые определяются свойствами самой среды и ее состоянием (неподвижная, подвижная - в случае жидких и газообразных сред; гладкая, шероховатая - для твердых материалов). Саморазогрев является причиной возникновения методической погрешности. Снижения ее величины можно достичь путем уменьшения рассеиваемой на терморезисторе мощности. При минимальном токе различие между величиной саморазогрева терморезистора в различных средах незначительно, однако при этом чувствительность преобразования сопротивления в напряжение будет недостаточна для достоверной регистрации малых изменений температуры. Для повышения чувствительности преобразования сопротивления в напряжение величину тока необходимо увеличивать. Сопротивление полупроводниковых терморезисторов сильно зависит от величины протекающего тока, что не позволяет использовать температурную характеристику терморезистора (зависимость его сопротивления от температуры или зависимость температуры от сопротивления), полученную при токе одной величины, для токов другой величины. Кроме того, температурные характеристики, полученные при одинаковых токах, но на материалах с различными свойствами, так же отличаются (фиг.2). Температурная характеристика полупроводниковых терморезисторов имеет вид

или

где R - сопротивление терморезистора [Ом], Т - абсолютная температура [К], R0 - предельное сопротивление, соответствующее сопротивлению полупроводникового термистора при T→∞:

T0 - постоянная температуры, численно равная температуре терморезистора, при которой его сопротивление принимает значение eR0, где е - основание натурального логарифма.

Сущность предлагаемого способа поясняется на фиг.1-4.

Способ организуется следующим образом. Полупроводниковый терморезистор располагают в контролируемойсреде, пропускают через него минимальный ток I1 и измеряют первое сопротивление терморезистора R1. Повышают ток до величины I2 и измеряют второе сопротивление термистора R2. Величина сопротивления R1 практически не зависит от свойств измеряемой среды вследствие малости тока I1, а величина сопротивления R2 будет различна для каждой контролируемой среды. Для учета саморазогрева терморезистора на предварительном этапе производят его градуировку - получение его температурной характеристики при минимальном токе I1. Для этого на токе I1 при двух известных температурах T01 и Т02 измеряют соответствующие им сопротивления R01 и R02. Температуры T01 и Т02 соответствуют нижней и верхней границам диапазона рабочих температур, которые будут измеряться терморезистором. Параметры температурной характеристики и находятся решением системы уравнений:

Расчетные зависимости для предельного сопротивления и постоянной температуры имеют вид:

Получаемая таким образом температурная характеристика T0(R) (фиг.2, кривая 1) подходит для любых материалов и сред, однако чувствительность преобразования сопротивления в напряжение недостаточна для измерения малых изменений температуры.

По сопротивлению R1 и температурной характеристике Т0(R) определяют температуру среды T1, которую сопоставляют сопротивлению R2.

Расхождение температурных характеристик, полученных при увеличенном токе в различных средах, уменьшается с увеличением температуры (фиг.2, кривые 2). Это позволяет выбрать некоторую температуру T*, при которой расхождение между температурными характеристиками различных сред значительно меньше, чем в области рабочих температур (фиг.2). Используя это наблюдение, при токе I2 измеряют третье сопротивление терморезистора R*, соответствующее температуре T*. Полученные значения R* и T* принимают за норму, то есть утверждают, что сопротивление R* соответствует температуре T* для любой контролируемой среды.

По второму и третьему сопротивлениям терморезистора R2 и R* и соответствующим им температурам Т1 и Т* получают параметры R0 и T0 рабочей температурной характеристики по формулам:

Полученная таким образом рабочая температурная характеристика T(R) (фиг.2, кривая 3) учитывает величину саморазогрева терморезистора любой контролируемой среды, в которой он располагается. По характеристике T(R) определяют температуру контролируемой среды при измерении сопротивления R терморезистора на токе I2 (фиг.2).

Для оценки эффективности предлагаемого способа проведены экспериментальные исследования. В качестве датчика температуры использован полупроводниковый терморезистор типа СТ1-18 с номинальным сопротивлением 22 кОм при 150°С. В термокамере высокой точности типа ТВТ-1 при температурах 5 и 35°С на стекле ТФ-1, полиметилметакрилате (ПММ) и РИПОРе проведены измерения сопротивления терморезистора путем измерения на нем падения напряжения при стабилизированных токах I1=5 и I2=50 мкА. По полученным значениям сопротивлений и соответствующим им температурам по формулам (4) и (5) рассчитаны параметры температурной характеристики T°(R) для тока I1 и параметры реальных температурных характеристик терморезистора для стекла, ПММ и РИПОРа для тока I2 соответственно: T0(R), Т1(R), T2(R). В качестве нормированной точки использовалось сопротивление терморезистора R*=45 кОм, полученное при температуре Т*=329 К на токе I2.

Оценка предлагаемого способа по точности проведена по погрешности определения абсолютных значений температуры и по погрешности определения малых изменений температуры относительно начального значения. В качестве сравнительного использовали способ определения температуры путем перевода измеренных сопротивлений терморезистора по единственной температурной характеристике Т0(Р), полученной на стекле при токе I2.

Оценку погрешности определения абсолютной температуры в случае использования единственной температурной характеристики вычисляли как разность между значениями температуры, полученными по температурной характеристике для стекла и действительными значениями температуры на ПММ и РИПОРе, определяемыми по соответствующим градуировочным характеристикам по формуле:

Изменение сопротивления R от 100 до 300 кОм соответствует изменению температуры от 35 до 5°С.

Погрешность определения абсолютной температуры в соответствии с предложенным методом определяли как отклонение рабочих температурных характеристик, полученных для стекла , ПММ и РИПОРа в соответствии с предлагаемым способом от реальных температурных характеристик по формуле:

Измерения сопротивлений R1 и R2 при токах I1 и I2, необходимых для определения параметров рабочих температурных характеристик, проводили при температурах 10, 20 и 30°С. На фиг.3 приведены кривые погрешностей, полученных по формулам (8) и (9). Эффективность по погрешности определения абсолютных температур определяли по формуле:

ΔTi лежит в пределах от 0,26 до 1,6°С, a не превышает 0,06°С. Таким образом, ηT=4...26, то есть предлагаемый способ позволяет определять температуру при увеличенном токе, в среднем, на порядок точнее, по сравнению со способом с единственной градуировочной характеристикой.

При измерении приращений температуры относительно какого-либо начального значения неучет вариаций величины саморазогрева на различных материалах также приводит к погрешности, что вызвано нелинейностью температурной характеристики терморезистора. Оценку величины этой погрешности проводили следующим образом. Значение сопротивления фиксировали (RФ) и, используя реальные градуировочные характеристики для ПММ и РИПОРа, определяли приращение температуры , соответствующее изменению сопротивления на величину в 20 кОм по формулам:

Погрешность определения величины перегрева при способе с единственной температурной характеристикой определяли как относительное отклонение величин перегрева, полученных на ПММ и РИПОРе, по отношению к перегреву, полученному на стекле:

Перегрев , соответствующий изменению сопротивления на 20 кОм по рабочим градуировочным характеристикам, рассчитывали по формуле (11). Погрешность предлагаемого способа оценивали как относительное отклонение перегрева, полученного по рабочей характеристике материала, по отношению к перегреву, полученному по реальной температурной характеристике того же материала, по формуле:

Результаты расчета погрешностей определения перегрева по формулам (12) и (13) приведены на фиг.4. Сравнительная оценка предлагаемого способа по точности при определении величины перегрева проводилась по формуле

δTi лежит в пределах от 1 до 4%, a не превышает 0,3%. Таким образом, ηΔT=3...13, то есть предлагаемый метод позволяет определять перегрев относительно начальной температуры при увеличенном токе точнее, в среднем, на порядок, по сравнению со способом с единственной градуировочной характеристикой.

Оценку предлагаемого способа по быстродействию проводили по формуле:

где τ1 - длительность процесса определения температуры в соответствии со способом-прототипом, τ2 - длительность определения температуры в соответствии с предлагаемым способом. Длительности τ1 и τ2 складываются из длительностей элементарных операций измерения сопротивления терморезистора. Длительность элементарной операции измерения сопротивления состоит из длительности переходного процесса τ0 при ступенчатом изменении тока и непосредственно из длительности процесса измерения сопротивления. Последней ввиду ее малости по сравнению с переходным процессом можно пренебречь. Значит, длительность процесса измерения в соответствии со способом-прототипом можно записать в виде , где n - число необходимых ступенчатых изменений тока. Как показали опыты, число n получается не менее 10 (τ1≥10τ0), в то время как для предлагаемого способа достаточно всего одного изменения тока, то есть τ2=τ0. Длительность процесса градуировки терморезистора в расчет не включена, так как она выполняется однократно. Таким образом, предлагаемый способ не менее чем в 10 раз превосходит по оперативности способ-прототип.

Предлагаемый способ реализован в измерительно-вычислительной системе для определения теплофизических свойств (теплопроводности и температуропроводности) твердых материалов «ТЕМП-075» и позволил снизить погрешность измерения абсолютных температур до 0,05°С, а погрешность измерения приращений температуры относительно начального до 0,3%, в то время как применение единственной температурной характеристики приводило к погрешности в до 1,6°С при определении абсолютных температур и 4% при измерении перегрева.

Таким образом, предлагаемый способ определения температуры, включающий определение рабочей температурной характеристики терморезистора, учитывающий величину саморазогрева терморезистора током, в отличие от известных решений, позволяет на порядок повысить точность и оперативность определения температуры. Применение предлагаемого способа в приборах для определения теплофизических свойств различных материалов и сред, а также других приборах, требующих точных измерений температуры, позволяет повысить их метрологические характеристики.

Способ определения температуры, заключающийся в пропускании тока через размещенный в контролируемой среде полупроводниковый терморезистор и измерении его сопротивления, дополнительном нагреве терморезистора относительно контролируемой среды током и измерении второго сопротивления терморезистора, отличающийся тем, что по двум сопротивлениям, измеряемым при минимальном токе для двух заданных границами диапазона температур, определяют параметры температурной характеристики терморезистора (предельное сопротивление и постоянную температуры) для минимального тока, по ней для измеренного сопротивления терморезистора определяют температуру контролируемой среды, которую сопоставляют второму сопротивлению терморезистора, заранее при втором токе и максимальной температуре измеряют третье сопротивление, которое принимают за норму, по нормированному сопротивлению и сопротивлению дополнительно нагретого терморезистора и соответствующим им температурам определяют параметры рабочей температурной характеристики терморезистора, по которой определяют температуру контролируемой среды при измерении сопротивления терморезистора на втором токе.

www.findpatent.ru

О терморезисторе замолвите слово... / Теория, измерения и расчеты / Сообщество EasyElectronics.ru

Доброго. Нашёл у себя в детальках NTC терморезисторы EPCOS, и захотел оценить, насколько точно можно с их помощью измерять температуру. Я не буду склонять или разубеждать использовать терморезисторы, это каждый для себя пусть решает сам. Кому любопытно — смотрите под катом. В моём случае это были B57621. Если посмотреть документацию, то характеристик мы не найдём, но есть отсылка к "No. of R/T characteristic" в зависимости от номинала, где можно увидеть, что сопротивление от температуры зависит весьма нелинейно. Тут стоит вспомнить, что типовое применение термисторов — это включение как делитель напряжения совместно с обычным резистором. А вот какое соотношение резисторов взять? Я набросал в Excell LibreOffice Calc табличку, построил по ней диаграмму и попробовал поменять отношения резисторов (за единицу берётся значение NTC при 25). У меня были с номиналом 10кОм, соответственно — для них всё и оценивалось. Изображение выше — это и есть полученные графики для температур от -55 до 125 °С. Ошибка здесь — это ошибка расчёта при линейной аппроксимации между крайними точками диапазона. Подбирая отношение постоянного резистора к номинальному сопротивлению термистора по минимальной ошибке получим для указанного диапазона минимум на величине 0,7. Для 10 кОм ближайший из ряда Е24 это 7,2 кОм и ожидаемая максимальная ошибка 11,4%.

Для более узкого температурного диапазона, например — 0..70 °С, можно добиться меньшей ошибки. Минимальный разбег будет при добавочном резисторе в 0,534 от номинального, а если ограничиться стандартным рядом — 5,1 кОм при максимальной ошибке 1,57%, что уже вполне применимо в ряде разработок.

PS: Всё это, разумеется, идеализированно, и понятно, что у терморезисторов будет как разброс характеристик, например — разброс номинальной величины, так и могут добавиться погрешности измерения. Да и контроллеры сейчас позволяют не только хранить всю таблицу характеристики, но и считать какую угодно аппроксимацию, а не только линейную. Для меня же польза потраченного времени была в том, что для разных диапазонов в делитель следует включать резисторы с разным соотношением к номинальному терморезистора для получения минимальной ошибки при линейной аппроксимации.

Файлы в топике: NTC.zip

we.easyelectronics.ru

9. Терморезисторы » СтудИзба

Глава 9

ТЕРМОРЕЗИСТОРЫ

§ 9.1. Назначение. Типы терморезисторов

Терморезисторы относятся к параметрическим датчикам температуры, поскольку их активное сопротивление зависит от тем-гературы. Терморезисторы называют также термометрами сопро­тивления или термосопротивлениями. Они применяются для !змерения температуры в широком диапазоне от —270 до 1600°С.

Если терморезистор нагревать проходящим через него электри­ческим током, то его температура будет зависеть от интенсивности теплообмена с окружающей средой. Так как интенсивность тепло­обмена зависит от физических свойств газовой или жидкой среды (например, от теплопроводности, плотности, вязкости), в которой сходится терморезистор, от скорости перемещения терморезисто­ра относительно газовой или жидкой среды, то терморезисторы ис­пользуются и в приборах для измерения таких неэлектрических величин, как скорость, расход, плотность и др.

Различают металлические и полупроводниковые терморезисто­ры. Металлические терморезисторы изготовляют из чистых метал­лов: меди, платины, никеля, железа, реже из молибдена и воль­фрама. Для большинства чистых металлов температурный ко­эффициент электрического сопротивления составляет примерно (4—6,5)10-3 1/°С, т. е. при увеличении температуры на 1°С со-противление металлического терморезистора увеличивается на 0,4— 0,65%. Наибольшее распространение получили медные и платино­вые терморезисторы. Хотя железные и никелевые терморезисторы имеют примерно в полтора раза больший температурный коэффи­циент сопротивления, чем медные и платиновые, однако применя­ются они реже. Дело в том, что железо и никель сильно окисляют­ся и при этом меняют свои характеристики. Вообще добавление в металл незначительного количества примесей уменьшает темпе­ратурный коэффициент сопротивления. Сплавы металлов и окис­ляющиеся металлы имеют низкую стабильность характеристик. Однако при необходимости измерять высокие температуры прихо

дится применять такие жаропрочные металлы, как вольфрам имолибден, хотя терморезисторы из них имеют характеристики не­сколько отличающиеся от образца к образцу.                             '

Широкое применение в автоматике получили полупроводнико­вые терморезисторы, которые для краткости называют термисто-рами. Материалом для их изготовления служат смеси оксидов мар­ганца, никеля и кобальта; германий и кремний с различными пои-месями и др.                                                                                         к

По сравнению с металлическими терморезисторами полупровод­никовые имеют меньшие размеры в большие значения номиналь­ных сопротивлений. Термисторы имеют на порядок больший тем­пературный коэффициент сопротивления (до —6 10-2 1/°С) Но этот коэффициент —отрицательный, т. е. при увеличении темпера­туры сопротивление термистора уменьшается. Существенный не­достаток полупроводниковых терморезисторов по сравнению с ме­таллическими—непостоянство температурного коэффициента со­противления. С ростом температуры он сильно падает, т. е. термис-тор имеет нелинейную характеристику. При массовом производст­ве термисторы дешевле металлических терморезисторов, но имеют больший разброс характеристик.

§ 9.2. Металлические терморезисторы

Сопротивление металлического проводника R зависит от температуры:

где С — постоянный коэффициент, зависящий от материала и кон­структивных размеров проводника; а —температурный коэффици-ент сопротивления; е — основание натуральных логарифмов.

Абсолютная температура (К) связана с температурой в гра­дусах Цельсия соотношением Т К=273+Т°С.

Определим относительное изменение сопротивления проводника при его нагреве. Пусть сначала проводник находился при началь­ной температуре Т0и имел сопротивление . При нагреве до температуры Т его сопротивление RT = T. Возьмем отношение

 

  Известно, что функцию вида е* можно разложить в степенной ряд:

 

 Так как величина а для меди сравнительно мала и в диапазоне температур до +150°С может быть принята постоянной а=4,3-10-з 1/°с, то и произведение а (Г— Т0) в этом диапазоне температур меньше единицы. Поэтому не будет большой ошибкой пренебречь при разложении членами ряда второй степени и выше сопротивление при температуре Т через начальное со­противление при То

Медные терморезисторы выпускаются серийно и обозначаются ТСМ (термосопротивления медные)   с соответствующей   градуировкой:

Медные терморезисторы выпускаются серийно и обозначаются ТСМ (термосопротивления медные)   с соответствующей   градуировкой:

гр. 23 имеет сопротивление 53,00 Ом при 0°С; гр. 24 имеет сопро­тивление 100,00 Ом при 0°С. Медные терморезисторы выполняют­ся из проволоки диаметром не менее 0,1 мм, покрытой для изо­ляции эмалью.

Для платиновых терморезисторов, которые применяются в бо­лее широком диапазоне температур, чем медные, следует учиты­вать зависимость температурного коэффициента сопротивления от температуры. Для этого берется не два, а три члена разложения в степенной ряд функции е*.

В диапазоне температур от —50 до 700°С достаточно точное является формула

где для платины =3,94 10-3 1/°С,  = 5,8 10-7 (1/°С)2.

Платиновые терморезисторы выпускаются серийно и обознача­ются ТСП (термосопротивления платиновые) с соответствую­щей градуировкой; гр. 20 имеет сопротивление 10,00 Ом при 0°С, гр. 21—46,00 Ом; гр. 22—100,00 Ом. Платина применяется в виде неизолированной проволоки диаметром 0,05—0,07 мм.

В табл. 9.1 приведены зависимости сопротивления металличе­ских терморезисторов от температуры; они называются стандарт­ными градуировочными таблицами.

На рис. 9.1 показано устройство платинового термометра сопро­тивления. Сам терморезистор выполнен из платиновой проволо­ки 1, намотанной на слюдяную пластину 2 с нарезкой. Слюдяные накладки 3 защищают обмотку и крепятся серебряной лентой 4. Се­ребряные выводы 5 пропущены через фарфоровые изоляторы 6. Термосопротивление помещается в металлический защитный че­хол 7.

 

§ 9.3. Полупроводниковые терморезисторы

Сопротивление полупроводниковых терморезисторов (термисторов) резко уменьшается с ростом температуры. Их чувст­вительность значительно выше, чем металлических, поскольку тем­пературный коэффициент сопротивления полупроводниковых тер­морезисторов примерно на порядок больше, чем у металлических. Если для металлов = (4-6)*10-3 1/°С, то для полупроводнико­вых терморезисторов ||>4*10-2 1/°С. Правда, для термисторов этот коэффициент непостоянен, он зависит от температуры и им редко пользуются при практических расчетах.

Основной   характеристикой   терморезистора   является   зависи­мость его сопротивления от абсолютной температуры Т:

где А — постоянный коэффициент, зависящий от материала и кон­структивных размеров термистора; В — постоянный коэффициент, зависящий от физических свойств полупроводника; е — основание натуральных логарифмов.

Сравнение формулы (9.6) с формулой (9.1) показывает, что у термисторов с ростом температуры сопротивление уменьшается, а у металлических терморезисторов — увеличивается. Следовательно, у термисторов температурный коэффициент сопротивления имеет отрицательное значение.

Вообще чувствительность терморезистора (как датчика темпе­ратуры) можно оценить как относительное изменение его сопро­тивления (R/R), деленное на вызвавшее это изменение прираще­ние температуры:

Для металлического терморезистора чувствительность можно полу­чить дифференцируя (9.4). Следовательно, , т. е. именно тем­пературный коэффициент сопротивления определяет чувствитель­ность.

Для полупроводникового терморезистора   (термистора)   чувст­вительность получим, дифференцируя (9.6):

Из (9.9) видно, что чувствительность термистора имеет нелиней­ную зависимость от температуры.

Серийно выпускаются медно-марганцевые (тип ММТ) и кобаль-тово-марганцевые (тип КМТ) термисторы. На рис. 9.2 показаны за­висимости сопротивления от температуры для термисторов этих ти­пов и для сравнения — для медного терморезистора. Величина В для термисторов составляет 2—5 тыс. К (меньше — для ММТ, боль­ше для КМТ).

Электрическое сопротивление термистора при окружающей тем­пературе +20°С называют номинальным или холодным сопротив­лением. Для термисторов типов ММТ-1, ММТ-4, ММТ-5 эта вели­чина может составлять 1—200 кОм, а для типов КМТ-1, ММТ-4 — от 20 до 1000 кОм.

Верхний диапазон измеряемых температур для типа ММТ — 120°С, а для типа КМТ— 180°С.

Термисторы выпускаются в различных конструктивных испол­нениях: в виде стерженьков, дисков, бусинок. На рис. 9.3 показаны некоторые конструкции термисторов.

Термисторы типов ММТ-1, КМТ-1 (рис. 9.3, а) внешне подобны высокоомным резисторам с соответствующей системой герметиза­ции. Они состоят из полупроводникового стержня /, покрытого эма-

левой краской, контактных колпачков 2 с токоотводами 3. Термис-торы типов ММТ-4 и КМТ-4 (рис. 9.3, б) также состоят из полу­проводникового стержня 1, контактных колпачков 2 с токоотвода­ми 3. Кроме покрытия эмалью стержень обматывается металличе­ской фольгой 4, защищен металлическим чехлом 5 и стеклянным изолятором 6. Такие термисторы применимы в условиях повышен­ной влажности.

На рис. 9.3, в показан термистор специального типа ТМ-54 — «Игла». Он состоит из полупроводникового шарика / диаметром от 5 до 50 мкм, который вместе с платиновыми электродами 2 впрессован в стекло толщиной порядка 50 мкм. На расстоянии около 2,5 мм от шарика платиновые электроды приварены к выводам 3 из никелевой проволоки. Термистор вместе с токоотводами поме­щен в стеклянный корпус 4. Термисторы типа МТ-54 обладают очень малой тепловой инерцией, их постоянная времени порядка 0,02 с, и они используются в диапазоне температур от —70 до 4-250°С. Малые размеры термистора позволяют использовать его, например, для измерений в кровеносных сосудах человека.

§ 9.4. Собственный нагрев термисторов

Термисторы применяются в самых различных схемах ав­томатики, которые можно разделить на две группы. В первую груп­пу входят схемы с термисторами, сопротивление которых определя­ется только температурой окружающей среды. Ток, проходящий при этом через термистор, настолько мал, что не вызывает допол­нительного разогрева термистора. Этот ток необходим только для измерения сопротивления и для термисторов типа ММТ составляет около 10 мА, а для типа КМТ— 2—5 мА. Во вторую группу вхо­дят схемы с термисторами, сопротивление которых меняется за счет

собственного нагрева. Ток, проходящий через термистор, разогрева­ет его. Поскольку   при повышении   температуры   сопротивление уменьшается, ток увеличивается, что приводит к еще большему вы­делению теплоты. Можно сказать, что в данном случае проявля­ется положительная обратная связь. Это позволяет получить в схе­мах с термисторами своеобразные характеристики релейного типа. На рис. 9.4, а показана вольт-амперная характеристика термис-тора. При малых токах  влияние собственного нагрева незначительно и сопротивление термистора практически остается постоянным. Следовательно, напряжение на термисторе растет про­порционально току (участок ОА). При дальнейшем увеличении то­ка (/>/доп) начинает сказываться собственный нагрев термистора, сопротивление его уменьшается. Вольт-амперная   характеристика изменяет свой вид, начинается ее «падающий» участок АБ. Этот участок используется для создания на базе термистора схем тер­мореле, стабилизатора напряжения и др.

Резко выраженная нелинейность вольт-амперной характеристи­ки термистора позволяет использовать его в релейном режиме. На рис. 9.4, б представлена схема включения, а на рис. 9.4, в — харак­теристика термистора в этом режиме. Если в цепи термистора от сутствует добавочное сопротивление(RДОБ0), то при некотором значении напряжения ток в цепи термистора резко увеличивается, что может привести к разрушению термистора (кривая UTна рис. 9.4, в). Для ограничения роста тока необходимо в цепь тер­мистора RTвключить добавочный резистор RДОБ(рис. 9.4, б) с пря­молинейной характеристикой (кривая URна рис. 9.4, в). При гра­фическом сложении этих двух характеристик {Ut+Ur) получим общую вольт-амперную характеристику U0(имеющую S-образный вид на рис. 9.4, в). Эта характеристика похожа на характеристику бесконтактного магнитного реле (см. гл. 26). Рассмотрим по этой характеристике процесс изменения тока I в цепи (рис. 9.4, б) при плавном увеличении напряжения питания U0При достижении значения напряжения срабатывания Ucp(этому напряжению со­ответствует ток I1) ток скачком возрастает от значения 1 до су­щественно большего значения /2. При дальнейшем увеличении на­пряжения ток будет плавно возрастать от I2. При уменьшении на­пряжения ток вначале плавно уменьшается до значения I3(этому току соответствует напряжение отпускания U0T), а затем скачком падает до значения /4, после чего ток плавно уменьшается до-нуля. Скачкообразное изменение тока происходит не мгновенно, а посте­пенно из-за инерционности термистора.

§ 9.5. Применение терморезисторов

При использовани терморезисторов в качестве датчиков систем автоматики различают два основных режима. В первом ре­жиме температура терморезистора практически определяется толь­ко температурой окружающей среды. Ток, проходящий через тер­морезистор, очень мал и практически не нагревает его. Во втором режиме терморезистор нагревается проходящим по нему током, а температура терморезистора определяется изменяющимися усло­виями теплоотдачи, например интенсивностью обдува, плотностью окружающей газовой среды и т. п.

При использовании терморезисторов в первом режиме они иг­рают роль датчиков температуры и называются обычно термомет­рами сопротивления. Наибольшее распространение получили тер­мометры сопротивления типов ТСП (платиновые) и ТСМ (медные), включаемые в мостовую измерительную схему.

В процессе измерения температуры с помощью термометров со­противления могут возникать следующие погрешности: 1) от ко­лебания напряжения питания; 2) от изменения сопротивления со­единительных проводов при колебаниях температуры окружающей среды; 3) от собственного нагрева датчика под действием проте­кающего через него тока.

Рассмотрим схему включения термометра сопротивления (рис. 9.5), в которой приняты меры для уменьшения отмеченных трех видов погрешностей. Для уменьшения погрешности от колебаний питания используется измерительный прибор логомет.-рического типа (см. гл. 2). Угол отклонения подвижной системы логометра пропорционален отношению токов в двух катушках, од­на из которых создает вращающий, а вторая — противодействую­щий моменты. Через одну катушку проходит ток разбаланса, за­висящий от сопротивлеия терморезистора Rt. Вторая катушка пи­тается тем же напряжением, что и мостовая измерительная схема.

При колеоаниях напряжении питания

одновременно будут изменяться токи в обеих катушках, а их отношение бу­дет оставаться постоянным.

В автоматических уровновешенных мостах колебание напряжения пита­ния не приводит к появлению пропор­циональной погрешности измерения, незначительно изменяется лишь порог чувствительности.

Для уменьшения погрешности от изменения сопротивления соединитель­ных проводов необходимо правильно выбирать сопротивление датчика. Эта погрешность сводится к минимуму, ес­ли сопротивление датчика выбрать из условия  намного больше Rпр, где Rпр— сопротив­ление соединительных проводов. При больших расстояниях (сотни метров) Rпр может достигать 3—5 ОмЛЕще од­ним способом уменьшения погрешно­сти от температурных изменений со-

противления соединительных проводов является применение «п»-гопроводных схем. На рис. 9.5 показана схема включения датчи­ка RДв мостовую схему посредством трех проводов (а, б, в). Со­противления проводов а и б включены в смежные плечи моста, поэтому одновременное их изменение не нарушает равновесия мос­та. Сопротивление проводов b вообще не входит в мостовую схе­му. Погрешность за счет самонагрева датчика может быть учтена при градуировке шкалы измерительного прибора.

При быстром изменении температуры появляется динамическая погрешность, обусловленная тепловой инерцией датчика. Переда­ча теплоты от измеряемой среды к терморезистору происходит не мгновенно, а в течение некоторого времени.

Для количественной оценки тепловой инерции датчика пользу­ются понятием «постоянная времени»:

коэффициент теплопередачи; s — поверхность соприкосновения дат­чика со средой.

Если холодный датчик поместить в среду с температурой Тср(°С), то его температура будет изменяться во времени по сле­дующему закону:

Чем больше постоянная времени т, тем больше пройдет времени, пока температура датчика сравняется с температурой среды. За время  датчик нагреется только до температуры Тср=0,63°С,

а за время / до температуры Т,ср=0>99оС. Графиком уравне­ния   (9.11)   является экспонента, показанная на  рис.   1.3, в.

Рассмотрим теперь некоторые примеры использования собст­венного нагрева терморезисторов в устройствах для измерения раз­личных физических величин, косвенно связанных с температурой.

Автоматическое измерение скорости газового потока проводится с помощью термоапемометра. Датчик этого прибора (рис. 9.6, а) состоит из терморезистора, представляющего собой тонкую пла­тиновую проволоку /, припаянную к двум манганиновым стерж­ням 2, закрепленным в изоляционной втулке 3. С помощью выводов 4 терморезистор включается в измерительную схему. Через термо­резистор пропускается ток, вызывающий его нагрев. Но темпера­тура (а следовательно, и сопротивление) терморезистора будет оп­ределяться скоростью газового потока, в который помещен дат­чик. Чем больше будет эта скорость, тем интенсивнее будет отво­диться теплота от терморезистора. На рис. 9.6, б показана градуи-ровочная кривая термоанемометра, из которой видно, что при уве­личении скорости примерно вдвое сопротивление терморезистора уменьшается примерно на 20%.

На аналогичном принципе основана работа электрического га­зоанализатора. Если взять два одинаковых саморазогреваемых тер­морезистора и поместить один в камеру, наполненную воздухом, а другой — в камеру, наполненную смесью воздуха с углекислым газом СО2, то из-за различной теплопроводности воздуха и угле­кислого газа сопротивление терморезисторов будет разным. Так как теплопроводность углекислого газа значительно меньше тепло­проводности воздуха, то и отвод теплоты от терморезистора в ка­мере с С02 будет меньше, чем от терморезистора в камере с воз­духом. По разнице сопротивлений терморезисторов можно судить о процентном содержании углекислого газа в газовой смеси.

Зависимость теплопроводности газа от его давления позволя­ет использовать терморезисторы с собственным нагревом в элек- • трическнх вакуумметрах. Чем глубже вакуум ( т. е. более разре­жен газ), тем хуже условия теплоотдачи с поверхности терморезис­тора, помещенного в вакуумную камеру. Если через терморезис­тор пропускать ток для его нагрева, то температура терморезисто­ра будет возрастать при уменьшении давления контролируемого газа.

Таким образом, с помощью терморезисторов можно измерять скорости и расход газов и жидкостей, давление и плотность газов, определять процентное содержание газов в смеси. Кроме платины в таких приборах используют вольфрам, никель, полупроводниковые терморезисторы. Для того чтобы исключить влияние колебаний температуры окружающей среды, стремятся обеспечить достаточ­но интенсивный собственный нагрев (до 200—500°С).

studizba.com


Видеоматериалы

24.10.2018

Опыт пилотных регионов, где соцнормы на электроэнергию уже введены, показывает: граждане платить стали меньше

Подробнее...
23.10.2018

Соответствует ли вода и воздух установленным нормативам?

Подробнее...
22.10.2018

С начала года из ветхого и аварийного жилья в республике были переселены десятки семей

Подробнее...
22.10.2018

Столичный Водоканал готовится к зиме

Подробнее...
17.10.2018

Более 10-ти миллионов рублей направлено на капитальный ремонт многоквартирных домов в Лескенском районе

Подробнее...

Актуальные темы

13.05.2018

Формирование энергосберегающего поведения граждан

 

Подробнее...
29.03.2018

ОТЧЕТ о деятельности министерства энергетики, ЖКХ и тарифной политики Кабардино-Балкарской Республики в сфере государственного регулирования и контроля цен и тарифов в 2012 году и об основных задачах на 2013 год

Подробнее...
13.03.2018

Предложения организаций, осуществляющих регулируемую деятельность о размере подлежащих государственному регулированию цен (тарифов) на 2013 год

Подробнее...
11.03.2018

НАУЧИМСЯ ЭКОНОМИТЬ В БЫТУ

 
Подробнее...

inetpriem


<< < Ноябрь 2013 > >>
Пн Вт Ср Чт Пт Сб Вс
        1 2 3
4 5 6 7 8 9 10
11 12 13 14 15 16 17
18 19 20 21 22 23 24
25 26 27 28 29 30  

calc

banner-calc

.