Самый электропроводный металл в мире. Самый не электропроводный металл
Самый электропроводный металл на Земле • Люди
Самый электропроводный металл на Земле
Размышлять о практическом применении такого свойства как электропроводность металлов (а также поиск наиболее электропроводного металла) стали относительно недавно - в начале ХХ века учеными было совершено весомое открытие: путем проведения ряда опытов было установлено, что в структуру металлов входят мельчайшие заряженные частицы под названием электроны.
После этого открытия целью ученых было лишь одно - найти самый электропроводный металл на Земле (стало понятно, что именно электроны руководят процессом переноса электричества в металлах). Этот важный факт лег в основу теории электропроводности металлов и помог в поиске самого электропроводного металла в химии.
В результате исследований учёные и инженеры, которые трудились над поставленной задачей и проводили исследования в области использования электроэнергии, смогли прийти к единому решению и общему знаменателю относительно своих поисков самого электропроводного металла в мире.
Почему именно металлы можно назвать наилучшим материалом для проведения электрического тока? Практические испытания показали их существенное отличие от всех других элементов. Суть заключается в особенностях структуры - в их составе присутствует достаточно большое число "одиноких" электронов, хаотично вращающихся вокруг ядра. Однако, как только выбранный металл оказывается в поле воздействия электромагнитных сил, эти "одинокие" элементы соединяются в один направленный поток и автоматически становятся главными носителями электрического заряда. Именно такое взаимодействие на молекулярном уровне структуры и отличает все металлы от других элементов. Именно благодаря этому процессу ученым удалось определить самый электропроводный металл в мире - серебро. Лидера среди металлов помогает определить физическая величина, называемая удельной электропроводностью.
Ученые смогли выделить группу, состоящую из четырех металлов лидеров, которые наиболее всего подходят для применения их в качестве электропроводников (относительно величины их удельной электропроводности, измеряемой при 20 градусах Цельсия):
- серебро - 62,5 миллиона;
- медь- 59,5 миллиона;
- золото - 45,5 миллиона;
- алюминий - 38 миллионов.
Из вышеприведенных данных следует вывод: серебро имеет наивысшее значение удельной электропроводности и, соответственно, признано самым электропроводным металлом в мире. И хотя это достаточно дорогостоящий металл (как и золото), уникальные свойства серебра и сплавов на его основе часто делают его применение экономически целесообразным. Например, кроме использования в узлах и агрегатах с пониженным сопротивлением, серебряное напыление предохраняет контактные группы от окисления.
Зато медь и алюминий - самые распространенные металлы в производстве. Такими востребованными их делают низкое сопротивление электрическому току и доступность по цене. Что касается меди, то этот металл особенно хорош при постоянных электрических нагрузках. Она отличается долговечностью и надежностью - ей не страшны ни перепады напряжения, ни длительная эксплуатация в условиях высоких температур.
Вот так, благодаря тому, что люди всегда жаждали новых открытий в науке и познания окружающего мира, человечество сегодня не мыслит себя без современной бытовой техники, электронных устройств, сверхточных станков и всех благ техники, существованию и работе которых, мы обязаны такому физико-химическому явлению как электропроводость металлов.
Последние опубликованные
Самая большая свинья в мире: где она живет? Рейтинг детских смесей: самые популярные производителиsamogoo.net
Самый электропроводный металл в мире
Ценность металлов напрямую определяется их химическими и физическими свойствами. В случае с таким показателем, как электропроводимость, эта связь не так прямолинейна. Самый электропроводный металл, если измерять данный показатель при комнатной температуре (+20 °C), серебро. Но высокая стоимость ограничивает применение деталей из серебра в электротехнике и микроэлектронике. Серебряные элементы в таких приборах применяются только в случае экономической целесообразности.
Физический смысл проводимости
Использование металлических проводников имеет давнишнюю историю. Ученые и инженеры, работающие в областях науки и техники, использующих электроэнергию, давно определились с материалами для проводов, клемм, контактов, печатных плат и т. д. Определить самый электропроводный металл в мире помогает физическая величина, называемая электрической проводимостью.
Понятие проводимости обратно электрическому сопротивлению. Количественное выражение проводимости связано с единицей сопротивления, которое в международной системе единиц (СИ) измеряется в Омах. Единица электрической проводимости в системе СИ – сименс. Русское обозначение этой единицы – См, интернациональное – S. Электрической проводимостью в 1 См обладает участок электрической сети с сопротивлением в 1 Ом.
Удельная проводимость
Мера способности вещества проводить электроток называется удельной электропроводностью. Самым высоким подобным показателем обладает самый электропроводный металл. Эта характеристика может быть определена для любого вещества или среды инструментально и имеет числовое выражение. Удельная электропроводность цилиндрического проводника единичной длины и единичной площади сечения связана с удельным сопротивлением данного проводника.
Системной единицей удельной проводимости является сименс на метр – См/м. Чтобы выяснить, какой из металлов самый электропроводный металл в мире, достаточно сравнить их удельную проводимость, определенную экспериментально. Можно определить удельное сопротивление при помощи специального прибора – микроомметра. Эти характеристики являются обратнозависимыми.
Проводимость металлов
Само понятие электрического тока как направленного потока заряженных частиц кажется более гармоничным для веществ, основанных на кристаллических решетках свойственных металлам. Носителями зарядов при возникновении электрического тока в металлах являются свободные электроны, а не ионы, как это бывает в жидких средах. Экспериментально установлено, что при возникновении тока в металлах не происходит переноса частиц вещества между проводниками.
Металлические вещества отличаются от других более свободными связями на атомарном уровне. Внутреннее устройство металлов отличается присутствием большого числа «одиноких» электронов. которые при малейшем воздействии электромагнитных сил образуют направленный поток. Поэтому не зря именно металлы являются лучшими проводниками электрического тока, и именно такие молекулярные взаимодействия отличают самый электропроводный металл. На особенностях структуры кристаллической решетки металлов основано еще одно их специфическое свойство высокая теплопроводность.
Топ лучших проводников металлов
4 металла, имеющие практическое значение для их применения в качестве электропроводников распределяются в следующем порядке относительно величины удельной проводимости, измеряемой в См/м:
- Серебро 62 500 000.
- Медь – 59 500 000.
- Золото – 45 500 000.
- Алюминий 38 000 000.
Видно, что самый электропроводный металл – серебро. Но подобно золоту, оно используется для организации электрической сети лишь в особых специфических случаях. Причина – высокая стоимость.
Зато медь и алюминий – самый распространенный вариант для электроприборов и кабельной продукции благодаря низкому сопротивлению электрическому току и ценовой доступности. Другие металлы применяются в качестве проводников редко.
Факторы, влияющие на проводимость металлов
Даже самый электропроводный металл снижает свою проводимость, если в нём присутствуют другие добавки и примеси. У сплавов иная, чем у «чистых» металлов, структура кристаллической решетки. Она отличается нарушением в симметрии, трещинами и другими дефектами. Снижается проводимость и при повышении температуры окружающей среды.
Повышенное сопротивление, присущее сплавам, находит применение в нагревательных элементах. Неслучайно для изготовления рабочих элементов электропечей, обогревателей применяют нихром, фехраль и другие сплавы.
Самый электропроводный металл это драгоценное серебро, больше используемое ювелирами, для чеканки монет и т. д. Но и в технике и приборостроении его особые химические и физические свойства находят широкое применение. Например, кроме использования в узлах и агрегатах с пониженным сопротивлением, серебряное напыление предохраняет контактные группы от окисления. Уникальные свойства серебра и сплавов на его основе часто делают его применение оправданным, несмотря на высокую стоимость.
autogear.ru
2QM.ru: Самый электропроводный металл в мире
Ценность металлов напрямую определяется их химическими и физическими свойствами. В случае с таким показателем, как электропроводимость, эта связь не так прямолинейна. Самый электропроводный металл, если измерять данный показатель при комнатной температуре (+20 °C), - серебро. Но высокая стоимость ограничивает применение деталей из серебра в электротехнике и микроэлектронике. Серебряные элементы в таких приборах применяются только в случае экономической целесообразности.
Содержание статьи
Физический смысл проводимости
Использование металлических проводников имеет давнишнюю историю. Ученые и инженеры, работающие в областях науки и техники, использующих электроэнергию, давно определились с материалами для проводов, клемм, контактов, печатных плат и т. д. Определить самый электропроводный металл в мире помогает физическая величина, называемая электрической проводимостью.
Понятие проводимости обратно электрическому сопротивлению. Количественное выражение проводимости связано с единицей сопротивления, которое в международной системе единиц (СИ) измеряется в Омах. Единица электрической проводимости в системе СИ – сименс. Русское обозначение этой единицы – См, интернациональное – S. Электрической проводимостью в 1 См обладает участок электрической сети с сопротивлением в 1 Ом.
Удельная проводимость
Мера способности вещества проводить электроток называется удельной электропроводностью. Самым высоким подобным показателем обладает самый электропроводный металл. Эта характеристика может быть определена для любого вещества или среды инструментально и имеет числовое выражение. Удельная электропроводность цилиндрического проводника единичной длины и единичной площади сечения связана с удельным сопротивлением данного проводника.
Системной единицей удельной проводимости является сименс на метр – См/м. Чтобы выяснить, какой из металлов самый электропроводный металл в мире, достаточно сравнить их удельную проводимость, определенную экспериментально. Можно определить удельное сопротивление при помощи специального прибора – микроомметра. Эти характеристики являются обратнозависимыми.
Проводимость металлов
Само понятие электрического тока как направленного потока заряженных частиц кажется более гармоничным для веществ, основанных на кристаллических решетках свойственных металлам. Носителями зарядов при возникновении электрического тока в металлах являются свободные электроны, а не ионы, как это бывает в жидких средах. Экспериментально установлено, что при возникновении тока в металлах не происходит переноса частиц вещества между проводниками.
Металлические вещества отличаются от других более свободными связями на атомарном уровне. Внутреннее устройство металлов отличается присутствием большого числа «одиноких» электронов. которые при малейшем воздействии электромагнитных сил образуют направленный поток. Поэтому не зря именно металлы являются лучшими проводниками электрического тока, и именно такие молекулярные взаимодействия отличают самый электропроводный металл. На особенностях структуры кристаллической решетки металлов основано еще одно их специфическое свойство - высокая теплопроводность.
Топ лучших проводников - металлов
4 металла, имеющие практическое значение для их применения в качестве электропроводников распределяются в следующем порядке относительно величины удельной проводимости, измеряемой в См/м:
Видно, что самый электропроводный металл – серебро. Но подобно золоту, оно используется для организации электрической сети лишь в особых специфических случаях. Причина – высокая стоимость.
Зато медь и алюминий – самый распространенный вариант для электроприборов и кабельной продукции благодаря низкому сопротивлению электрическому току и ценовой доступности. Другие металлы применяются в качестве проводников редко.
Факторы, влияющие на проводимость металлов
Даже самый электропроводный металл снижает свою проводимость, если в нём присутствуют другие добавки и примеси. У сплавов иная, чем у «чистых» металлов, структура кристаллической решетки. Она отличается нарушением в симметрии, трещинами и другими дефектами. Снижается проводимость и при повышении температуры окружающей среды.
Повышенное сопротивление, присущее сплавам, находит применение в нагревательных элементах. Неслучайно для изготовления рабочих элементов электропечей, обогревателей применяют нихром, фехраль и другие сплавы.
Самый электропроводный металл - это драгоценное серебро, больше используемое ювелирами, для чеканки монет и т. д. Но и в технике и приборостроении его особые химические и физические свойства находят широкое применение. Например, кроме использования в узлах и агрегатах с пониженным сопротивлением, серебряное напыление предохраняет контактные группы от окисления. Уникальные свойства серебра и сплавов на его основе часто делают его применение оправданным, несмотря на высокую стоимость.
2qm.ru
Самый электропроводный металл в мире
Ценность металлов напрямую определяется их химическими и физическими свойствами. В случае с таким показателем, как электропроводимость, эта связь не так прямолинейна. Самый электропроводный металл, если измерять данный показатель при комнатной температуре (+20 °C), - серебро. Но высокая стоимость ограничивает применение деталей из серебра в электротехнике и микроэлектронике. Серебряные элементы в таких приборах применяются только в случае экономической целесообразности.
Физический смысл проводимости
Использование металлических проводников имеет давнишнюю историю. Ученые и инженеры, работающие в областях науки и техники, использующих электроэнергию, давно определились с материалами для проводов, клемм, контактов, печатных плат и т. д. Определить самый электропроводный металл в мире помогает физическая величина, называемая электрической проводимостью.
Понятие проводимости обратно электрическому сопротивлению. Количественное выражение проводимости связано с единицей сопротивления, которое в международной системе единиц (СИ) измеряется в Омах. Единица электрической проводимости в системе СИ – сименс. Русское обозначение этой единицы – См, интернациональное – S. Электрической проводимостью в 1 См обладает участок электрической сети с сопротивлением в 1 Ом.
Удельная проводимость
Мера способности вещества проводить электроток называется удельной электропроводностью. Самым высоким подобным показателем обладает самый электропроводный металл. Эта характеристика может быть определена для любого вещества или среды инструментально и имеет числовое выражение. Удельная электропроводность цилиндрического проводника единичной длины и единичной площади сечения связана с удельным сопротивлением данного проводника.
Системной единицей удельной проводимости является сименс на метр – См/м. Чтобы выяснить, какой из металлов самый электропроводный металл в мире, достаточно сравнить их удельную проводимость, определенную экспериментально. Можно определить удельное сопротивление при помощи специального прибора – микроомметра. Эти характеристики являются обратнозависимыми.
Проводимость металлов
Само понятие электрического тока как направленного потока заряженных частиц кажется более гармоничным для веществ, основанных на кристаллических решетках свойственных металлам. Носителями зарядов при возникновении электрического тока в металлах являются свободные электроны, а не ионы, как это бывает в жидких средах. Экспериментально установлено, что при возникновении тока в металлах не происходит переноса частиц вещества между проводниками.
Металлические вещества отличаются от других более свободными связями на атомарном уровне. Внутреннее устройство металлов отличается присутствием большого числа «одиноких» электронов. которые при малейшем воздействии электромагнитных сил образуют направленный поток. Поэтому не зря именно металлы являются лучшими проводниками электрического тока, и именно такие молекулярные взаимодействия отличают самый электропроводный металл. На особенностях структуры кристаллической решетки металлов основано еще одно их специфическое свойство - высокая теплопроводность.
Топ лучших проводников - металлов
4 металла, имеющие практическое значение для их применения в качестве электропроводников распределяются в следующем порядке относительно величины удельной проводимости, измеряемой в См/м:
- Серебро - 62 500 000.
- Медь – 59 500 000.
- Золото – 45 500 000.
- Алюминий - 38 000 000.
Видно, что самый электропроводный металл – серебро. Но подобно золоту, оно используется для организации электрической сети лишь в особых специфических случаях. Причина – высокая стоимость.
Зато медь и алюминий – самый распространенный вариант для электроприборов и кабельной продукции благодаря низкому сопротивлению электрическому току и ценовой доступности. Другие металлы применяются в качестве проводников редко.
Факторы, влияющие на проводимость металлов
Даже самый электропроводный металл снижает свою проводимость, если в нём присутствуют другие добавки и примеси. У сплавов иная, чем у «чистых» металлов, структура кристаллической решетки. Она отличается нарушением в симметрии, трещинами и другими дефектами. Снижается проводимость и при повышении температуры окружающей среды.
Повышенное сопротивление, присущее сплавам, находит применение в нагревательных элементах. Неслучайно для изготовления рабочих элементов электропечей, обогревателей применяют нихром, фехраль и другие сплавы.
Самый электропроводный металл - это драгоценное серебро, больше используемое ювелирами, для чеканки монет и т. д. Но и в технике и приборостроении его особые химические и физические свойства находят широкое применение. Например, кроме использования в узлах и агрегатах с пониженным сопротивлением, серебряное напыление предохраняет контактные группы от окисления. Уникальные свойства серебра и сплавов на его основе часто делают его применение оправданным, несмотря на высокую стоимость.
4u-pro.ru
Тест «Металлы»
Вариант 11. Какой металл является самым распространенным в земной коре?
А) медьБ) железо
В) алюминийГ) натрий
2. Какие частицы находятся в узлах кристаллической решетки металлов?
А) катионы металловБ) нейтральные атомы
В) катионы и нейтральные атомыГ) анионы и катионы
3. Какой металл наименее электропроводен?
A) WБ) Zn
В) Сг
4. У какого металла наибольшая плотность?А) платина
Б) вольфрам
B) железоГ) свинец
5. Регулируют белковый и углеводный обмен, влияют на процесс фотосинтеза и рост растений ионыА) железа
Б) магния
В) лития
Г) калия
6. Какой металл никогда не вытесняет водород из воды?
A) алюминийБ) цинк
В) кальций
Г) ртуть
7. Какой металл самый легкий?А) калий
Б) олово
B) алюминийГ) медь
8. С какими растворами солей будут взаимодействовать металлы?
А) Аl+ Hg(NO3)2Б) Zn+Na2SO4
В) С u+ FeCl3Г) Mg+KNO3
Вариант 2
1. Какие металлы встречаются в природе только в виде соединений?А) кальций, магний
Б) натрий, калий
В) ртуть, медь
Г) алюминий, скандий
2. Что обеспечивает металлам высокую электропроводность?
А) атомы металловБ) катионы металлов
В) свободные электроны
Г) катионы металлов и свободные электроны
3. Какой из перечисленных металлов наиболее электропроводный?
А) алюминийБ) железо
В) медьГ) серебро
4. Чем обусловлена ковкость металлов?
A) мягкостью металлов
Б) наличием электронного газа
B) несвязанностью ионов между собой
Г) наличием в кристаллической решетке катионов металлов
5. Какой из металлов наиболее твердый?А) титан
Б) цинк
В) никель
Г) хром
6. Какой металл не вытесняет водород из кислот?
А) железоБ) платина
В) свинецГ) цинк
7. Между раствором какой соли и металлом произойдет химическая реакция?
А) алюминий + нитрат калияБ) железо + хлорид меди(II)
В) цинк + нитрат натрияГ) золото + нитрат серебра
8. Проявляют антисептическое и сосудорасширяющее действие в организме человека, понижают артериальное давление соли
A) Ca
Б) Sr
В) Mg
Г) Al
xn--j1ahfl.xn--p1ai
Электропроводность - металл - Большая Энциклопедия Нефти и Газа, статья, страница 2
Электропроводность - металл
Cтраница 2
Электропроводность металлов обусловлена наличием в - их кристаллических решетках свободных электронов. Последние при наложении электрического поля даже небольшого напряжения получают направленное движение, которое с повышением температуры ослабевает, так как усиливаются колебательные движения ионов в узлах решетки, что препятствует направленному движению электронов. [16]
Электропроводность металлов с повышением температуры уменьшается. Это объясняется тем, что при нагревании колебательные движения атомов и ионов металлов усиливаются и это движение мешает направленному движению электронов. [17]
Электропроводность металлов обусловливается направленным перемещением электронов под влиянием разности потенциалов, приложенной к металлу. В отличие от электропроводности растворов электролитов она не связана с переносом вещества: электропроводность металлов носит название электронной или металлической и является характерным свойством металла. [18]
Электропроводность металлов объясняется присутствием в кристаллах свободных электронов, которые могут перемещаться j том или ином направлении. При нагревании в кристалле усили-шются колебательные движения ионов, что затрудняет передвижение электронов, ведет к понижению электропроводности. Но гри охлаждении металла происходит обратный процесс. [19]
Электропроводность металлов при 20 С лежит в пределах от примерно ЫО4 Ом-1 - см 1 в случае плохих проводников, таких, как барий - ( т1 7 - 104) и гадолиний ( а0 7 - 104), до 0 7 - 106 для наилучшего проводника - серебра. [20]
Электропроводность металлов в значительной степени зависит от температуры: при повышении температуры электропроводность уменьшается, при понижении - увеличивается. [21]
Электропроводность металлов падает с повышением температуры. [22]
Электропроводность металлов имеет электронный ха-ракте Г:::: гпгтлгге ан е в вдгтйЖ определяется направленным движением электронов. Нагревание металлического протддни ка при - протекании через него электрического тока может быть объяснимо передачей части энергии направленно двигающихся электронод узлам кристаллической решетки при столкновении с ними. [23]
Электропроводность металлов при повышении их температуры -, падает, а при понижении температуры - увеличивается. [24]
Электропроводность металлов, как показывает табл. 8.7, - наиболее отличительная особенность, которая объясняется природой химических связей в металлах. [26]
Электропроводность металлов обусловлена тем, что атомы, находящиеся в узлах кристаллической решетки, обмениваются-друг с другом валентными электронами. Эти свободные электроны непрерывно и беспорядочно перемещаются в кристаллической решетке, вследствие чего тот или иной атом решетки остается без одного или нескольких электронов. [28]
Электропроводность металлов мало изменяется в зависимости от температуры, поскольку увеличение заселенности их зоны проводимости компенсируется возрастающими при повышении температуры колебаниями кристаллической решетки, которые мешают продвижению электронов. В отличие от этого электропроводность полупроводников зависит от появления в их зоне проводимости даже небольшого числа электронов. Такая электропроводность быстро увеличивается при повышении температуры в результате возрастания заселенности зоны проводимости и одновременного образования вакансий, или дырок, в валентной зоне. В дефектных кристаллах ( см. разд. [29]
Страницы: 1 2 3 4
www.ngpedia.ru
ФPAГMEHT УЧЕБНИКА (...) Мы уже знаем, что в пространственной решётке металлических кристаллов находятся положительно заряженные атомы металлов — ионы. Они более или менее прочно удерживаются на своих местах. Вокруг ионов беспорядочно движутся свободные электроны. Их можно представить в виде «электронного газа», омывающего кристаллическую решётку. Свободные электроны легко перемещаются внутри решётки и служат хорошими переносчиками тепловой энергии от нагретых слоёв металла к холодным. Высокую теплопроводность металла всегда легко обнаружить. Прикоснитесь в холодную погоду рукой к стене деревянного дома и к железной ограде: железо на ощупь всегда гораздо холоднее, чем дерево, так как железо быстро отводит тепло от руки, а дерево — в сотни раз медленнее. Лучше всех других металлов проводят тепло серебро и золото, затем идут медь, алюминий, вольфрам, магний, цинк и другие. Самые плохие металлические проводники тепла — свинец и ртуть. Теплопроводность измеряют количеством тепла, которое проходит по металлическому стержню сечением в 1 квадратный сантиметр за 1 минуту. Если теплопроводность серебра условно принять за 100, то теплопроводность меди будет 90, алюминия 27, железа 15, свинца 12, ртути 2, а теплопроводность дерева всего 0,05. Чем больше теплопроводность металла, тем быстрее и равномернее он нагревается. Благодаря своей высокой теплопроводности металлы широко используются в тех случаях, когда необходимо быстрое нагревание или охлаждение. Паровые котлы, аппараты, в которых протекают различные химические процессы при высоких температурах, батареи центрального отопления, радиаторы автомобилей — всё это делается из металлов. Аппараты, которые должны отдавать или поглощать много тепла, чаще всего изготовляются из хороших проводников тепла — меди, алюминия. Самые лучшие проводники электричества — металлы. Хорошей электропроводностью металлы опять-таки обязаны свободным электронам. Когда мы присоединяем лампочку, плитку или какой-нибудь другой электрический прибор к источнику тока, в проводах, в нити лампочки, в спирали плитки мгновенно возникают большие изменения: электроны теряют прежнюю полную свободу движения и устремляются к положительному полюсу источника тока. Такой направленный поток электронов и есть электрический ток в металлах. Поток электронов движется по металлу не беспрепятственно — он встречает на своём пути ионы. Движение отдельных электронов тормозится. Электроны передают часть своей энергии ионам, благодаря чему скорость колебательного движения ионов увеличивается. Это приводит к тому, что проводник нагревается. Ионы разных металлов оказывают движению электронов неодинаковое сопротивление. Если сопротивление мало, металл нагревается током слабо, если же сопротивление велико, металл может раскалиться. Медные провода, подводящие ток к электрической плитке, почти не нагреваются, так как электрическое сопротивление меди ничтожно. А нихромовая спираль плитки раскаляется докрасна. Ещё сильнее нагревается вольфрамовая нить электрической лампочки. Наиболее высокой электропроводностью отличаются серебро и медь, затем следуют золото, хром, алюминий, марганец, вольфрам и т. д. Плохо проводят ток железо, ртуть и титан. Если электропроводность серебра принять за 100, то электропроводность меди равна 94, алюминия— 55, железа и ртути — 2, а титана — лишь 0,3. Серебро — металл дорогой и в электротехнике используется мало, но медь применяется для изготовления проводов, кабелей, шин и других электротехнических изделий в громадных количествах. Электропроводность алюминия в 1,7 раза меньше, чем у меди, и поэтому алюминий применяется в электротехнике реже, чем медь. Серебро, медь, золото, хром, алюминий, свинец, ртуть. Мы видели, что в таком же приблизительно порядке стоят металлы и в ряду с постепенно убывающей теплопроводностью (см. стр. 33). Наилучшие проводники электрического тока, как правило, являются и наилучшими проводниками тепла. Между теплопроводностью и электропроводностью металлов существует определённая связь, и чем выше электропроводность металла, тем обычно выше и его теплопроводность. Чистые металлы всегда проводят электрический ток лучше, чем их сплавы. Это объясняется следующим образом. Атомы элементов, составляющих примеси, вклиниваются в кристаллическую решётку металла и нарушают её правильность. В результате решётка становится более серьёзной преградой для электронного потока. Если в меди присутствуют ничтожные количества примесей — десятые и даже сотые доли процента — электропроводность её уже сильно понижается. Поэтому в электротехнике используют преимущественно очень чистую медь, содержащую только 0,05% примесей. И наоборот, в тех случаях, когда необходим материал с высоким сопротивлением— для реостатов), для различных нагревательных приборов, применяются сплавы — нихром, никелин, константан и другие. Электропроводность металла зависит также и от характера его обработки. После прокатки, волочения и обработки резанием электропроводность металла понижается. Это связано с искажением кристаллической решётки при обработке, с образованием в ней дефектов, которые тормозят движение свободных электронов. Очень интересна зависимость электропроводности металлов от температуры. Мы уже знаем, что при нагревании размах и скорость колебаний ионов в кристаллической решётке металла увеличиваются. В связи с этим должно возрастать и сопротивление ионов электронному потоку. И действительно, чем выше температура, тем выше сопротивление проводника току. При температурах плавления сопротивление большинства металлов увеличивается в полтора-два раза. При охлаждении происходит-обратное явление: беспорядочное колебательное движение ионов в узлах решётки уменьшается, сопротивление потоку электронов понижается и электропроводность увеличивается. Исследуя свойства металлов при глубоком (очень сильном) охлаждении, учёные обнаружили замечательное явление: вблизи абсолютного нуля, то-есть при температурах около минус 273,16°, металлы полностью утрачивают электрическое сопротивление. Они становятся «идеальными проводниками»: в замкнутом металлическом кольце ток не ослабевает долгое время, хотя кольцо уже не соединено с источником тока! Это явление названо сверхпроводимостью. Оно наблюдается у алюминия, цинка, олова, свинца и некоторых других металлов. Эти металлы становятся сверхпроводниками при температурах ниже минус 263°. Как объяснить сверхпроводимость? Почему одни металлы достигают состояния идеальной проводимости, а другие нет? На эти вопросы пока ещё нет ответа. Явление сверхпроводимости имеет громадное значение для теории строения металлов, и в настоящее время его изучают советские учёные. Работы академика Ландау и члена-корреспондента Академии наук СССР А. И. Шаль-никова в этой области удостоены Сталинских премий. МАГНИТНЫЕ СВОЙСТВА Известна железная руда — магнитный железняк. Куски магнитного железняка обладают замечательным свойством притягивать к себе железные и стальные предметы. Это — естественные магниты. Лёгкая стрелка, сделанная из магнитного железняка, всегда поворачивается одним и тем же концом к северному полюсу Земли. Этот конец магнита условились считать северным полюсом, а противоположный ему — южным. Если железный или стальной стержень привести в соприкосновение с магнитом, стержень сам становится магнитом, сам будет притягивать железные опилки, стальные гвозди. Говорят, что стержень намагничивается. Намагничиваться способны все металлы, но в разной степени. Очень сильно намагничиваются только четыре чистых металла — железо, кобальт, никель и редкий металл гадолиний. Хорошо намагничиваются также сталь, чугун и некоторые сплавы, не содержащие в своём составе железа, например сплав никеля и кобальта. Все эти металлы и сплавы называют ферромагнитными (от латинского слова «феррум» — железо). Совсем слабо притягиваются к магниту алюминий, платина, хром, титан, ванадий, марганец. Намагничиваются они так незначительно, что без специальных приборов обнаружить их магнитные свойства нельзя. Эти металлы получили название парамагнитных (греческое слово «пара» означает около, возле). |
sheba.spb.ru
Видеоматериалы
Опыт пилотных регионов, где соцнормы на электроэнергию уже введены, показывает: граждане платить стали меньше
Подробнее...С начала года из ветхого и аварийного жилья в республике были переселены десятки семей
Подробнее...Более 10-ти миллионов рублей направлено на капитальный ремонт многоквартирных домов в Лескенском районе
Подробнее...Актуальные темы
ОТЧЕТ о деятельности министерства энергетики, ЖКХ и тарифной политики Кабардино-Балкарской Республики в сфере государственного регулирования и контроля цен и тарифов в 2012 году и об основных задачах на 2013 год
Подробнее...Предложения организаций, осуществляющих регулируемую деятельность о размере подлежащих государственному регулированию цен (тарифов) на 2013 год
Подробнее...
КОНТАКТЫ
360051, КБР, г. Нальчик
ул. Горького, 4
тел: 8 (8662) 40-93-82
факс: 8 (8662) 47-31-81
e-mail:
Этот адрес электронной почты защищен от спам-ботов. У вас должен быть включен JavaScript для просмотра.