4. Стрелочный вольтметр с растянутой шкалой 10...15 В. Стрелочный вольтметр


СТРЕЛОЧНЫЙ ВОЛЬТМЕТР

   И то, что ко всему привыкаешь и то, что с кем поведешься от того и наберешься - прописные истины. Вот и я привык к своему мультиметру и когда его кто-то хватает (извините, берёт попользоваться) – меня «жаба душит». Сказать ничего не могу, это от меня домочадцы подцепили некоторое количества вируса радиолюбительства и теперь имеют потребность померить напряжение батареек в пульте, аккумулятора в телефоне и т.д. Терпел. Пока не услышал, что некоторые граждане заинтересовались напряжением в розетках.

   Откуда появилась эта измерительная головка уже не помню, но всегда считал её «убитой в ноль» - ошибался. При проверке выяснилась её полная адекватность. Вот только внешний вид...

   Разобрал по максимуму. Корпус отмыл, верхнюю часть подклеил. Со шкалы кончиком лезвия маленького канцелярского ножа соскрёб лишние нолики. Получилась шкала на 15 вольт. Вместо сопротивления на 150к запаял в колодку перемычку. Отломанный кончик стрелки вернул на место при помощи кусочка изоляции и клея.

   Стрелка, конечно, нуждалась в балансировке. Сделал по следующей технологии уравновешивания стрелки имеющимися противовесами с капельками припоя на них (двигаем хорошо разогретым паяльником, эти самые капельки). 

  1. Куда двигать – стрелку располагаем горизонтально и смотрим, что перевешивает, если стрелка, то каплю передвинуть от центра. Если противовес - то каплю к центру.
  2. Какую каплю двигать – стрелку располагаем вертикально.
  • а) нужно двигать «к центру». Стрелка отклонилась вправо – двигаем правую каплю. Влево – левую.
  • б) нужно двигать «от центра». Стрелка отклонилась вправо – двигаем левую каплю. Влево – правую.

   Имеющиеся углубления в верхней части корпуса заполнил при помощи паяльника пластмассой и выровнял напильником, затем мелкой и потом самой мелкой шкуркой, наконец, покрасил и вставил в неё на клей вырезанное стекло. Покрасил и внутреннюю металлическую планку (чтоб всё в цвет), просушил и собрал.

   Внешний шарм появился. А для придания технического изыска дополнил измерительную головку переключателем на три положения и тремя резисторами.

   Измерительная головка стала обладательницей трёх пределов измерения: на 3, 15 и 30 вольт. Вот картинка печатной платы и схемы по совместительству:

   Остановлюсь на моменте сборки. Как оказалось, научиться выколупывать компаунд из зазора между нижней и верхней частями измерительных головок и тем самым их разъединять не проблема, проблема их соединить. Ну не заморачиваться же, в самом деле, их заливкой компаундом по новой. Соединяю так:

   В самом уголке сверлю отверстие несколько меньшее диаметром, чем приготовленные саморезы (исключительно алюминиевые) и... А если кого смущает возможность проникновения вовнутрь пыли, то для этого есть пластилин. По готовности измерителя (назвал его вольтметром первого уровня) проинструктировал причастных и выдал в пользование. Прибор понравился, особенно тем, что всего одна «кнопочка». В розетку просил щупы не толкать – лучше сразу гвоздики. С пожеланием успеха, Babay.

   Форум по стрелочникам

   Обсудить статью СТРЕЛОЧНЫЙ ВОЛЬТМЕТР

radioskot.ru

Измерение напряжения цепи с помощью вольтметра

Ищем двух авторов для нашего сайта, которые ОЧЕНЬ хорошо разбираются в устройстве современных автомобилей.Обращаться на почту [email protected].

Прибор вольтметр помогает измерить разность потенциалов в электрической цепи. Для минимизации влияния на сеть прибор должен иметь максимально большое сопротивление. Оно определяет погрешность измерений и чувствительность устройства. В процессе усовершенствования вольтметры прошли путь от стрелочных, аналоговых приборов до дискретных с цифровыми индикаторами. Измерение напряжения стало неотъемлемой функцией большинства мультиметров и электронных осциллографов. Применяются измерение и индикация напряжения в некоторых удлинителях, устройствах защитного отключения и автоматических выключателях.

Подключение прибора

Контроль напряжения происходит всегда параллельно. Измерение может быть осуществлено как у источника питания, так и у нагрузки. Схема подключения вольтметра изображена на рисунке ниже.

Схема подключения прибора

Схема подключения прибора

Тонкости, которые необходимо учесть перед тем как подключить вольтметр:

  • Правильно выбранный диапазон измерений убережет прибор и проверяемую схему от повреждений. С особой осторожностью следует работать, когда показание вольтметра близко к пределу. Скачок ЭДС способен спалить обмотки измерительного прибора;
  • Стрелочный вольтметр может обеспечить нормативную точность только при правильном положении. Если на приборе указанно горизонтальное размещение, то располагать его вертикально запрещено, как и наоборот. Также следует уделять внимание отсутствию вибраций и сильных магнитных полей;
  • Измерения вольтметром можно выполнять как под напряжением, так и отключая схему от источника питания с последующим включением;
  • При работе с опасной величиной напряжения рекомендуется использовать защитные перчатки и диэлектрические коврики;
  • При использовании аналогового прибора до начала измерений необходимо проконтролировать, что стрелка показывает ровно на ноль. В случае необходимости следует произвести настройку специальным регулировочным винтом;
  • В случае необходимости проводится калибровка;
  • Для обеспечения высокой точности измерений следует проверить как давно происходила поверка вольтметра.

Часто приборы имеют несколько пределов измерения. У аналоговых вольтметров для каждой величины используются разные схемы подключения. В цифровых достаточно установить указатель напротив требуемого значения. Наиболее современные устройства способны автоматически определить предел измерения и в процессе контроля напряжения менять его.

Классификация вольтметров

Вольтметр постоянного тока используются для измерения напряжения в сетях с постоянным напряжением. В основе обычно лежит магнитоэлектрическая система. При работе сильно подвержены внешнему воздействию, поэтому используются с экранированием.

Для измерения синусоидального напряжения с частотой близкой к 50 Герцам используется вольтметр переменного тока. Наиболее часто в аналоговых приборах встречается электромагнитная система. Она имеет нелинейную шкалу, что усложняет снятие показаний.

Селективные вольтметры рассчитаны на измерение среднеквадратического значения отдельной гармонической составляющей напряжения. В его основе лежит электронный вольтметр, рассчитанный на работу с постоянным током. По принципу действия прибор похож на супергетеродинный радиоприемник.

Фазочувствительные вольтметры называются вектрометрами. Они применяются для измерения комплексных напряжений. Одной из популярных сфер их применения является векторное управление асинхронными двигателями с помощью преобразователей частоты. Одна шкала вольтметра показывает действительную составляющую напряжения, а вторая отображает мнимую. Опорное напряжение, необходимое для работы аппарата, может генерироваться как самим прибором, так и с помощью внешнего источника. Благодаря данному устройству можно легко получить амплитудно-фазовую характеристику, позволяющую контролировать правильность работы ключей полупроводниковых четырехполюсников.

Для измерения напряжений, форма которых имеет большую важность, используются импульсные вольтметры. Они способны измерять не только периодический сигнал, но и амплитуду единичного скачка. Эти вольтметры имеют самое высокое быстродействие, поэтому изготавливаются преимущественно цифровыми.

Аналоговые и цифровые приборы

В основании аналоговых приборов лежат электромагнитные, магнитоэлектрические, электродинамические системы. Аналогичные типы конструкций заложены в амперметры. Для увеличения пределов измерения используются шунты. После измерения необходимо учитывать в полученном результате сопротивление добавочного резистора.

Внешний вид стрелочного вольтметра

Внешний вид стрелочного вольтметра

Одним из главных недостатков аналоговых приборов является высокое энергопотребление. Подключение такого вольтметра может привести к падению напряжения в цепи, что отразится на погрешности. Наличие индуктивности в конструкции вызывает чувствительность от частоты измеряемого напряжения.

В основе конструкции цифрового вольтметра лежит АЦП. Точность измерения определяется дискретизацией с которой работает аналогово-цифровой преобразователь. Индикатор вольтметра отображает готовый результат в цифровом виде, что значительно облегчает работу с устройством. Влияние на сеть у таких приборов минимально благодаря наличию собственного источника питания.

Цифровой вольтметр

Цифровой вольтметр

Широкая распространенность дискретных вольтметров привела к их интеграции в другие устройства. Большинство мультиметров имеют возможность измерять постоянное и переменное напряжение. При этом для повышения точности измерений в конструкции предусматривается несколько пределов. Высокое сопротивление вольтметра позволяет уменьшить его влияние цепь, к которой подключается измерительный прибор.

Вольтметр, встроенный в мультиметр

Вольтметр, встроенный в мультиметр

Основные технические параметры

Основные технические характеристики вольтметра, заносимые в руководство пользования и паспорт прибора, согласно международных стандартов:

  • внутреннее сопротивление вольтметра;
  • диапазон измерений, в котором обеспечивается указанная точность при правильном подсоединении прибора;
  • при работе с переменным напряжением указывается рабочая частота.

Одним из наиболее важных параметров является класс точности. Он всегда отображается на шкале прибора. С его помощью можно определить с какой погрешностью получается результат после включения прибора в сеть.

Описание некоторых видов измерительных устройств

Микровольтметр В3-57 способен работать с переменным напряжением от 5 Герц до 5 МГц. Отображение результата происходит путем вычисления среднеквадратичного значения. Устройство способно работать с напряжениями любой формы. Сопротивление вольтметра составляет не менее 5 МОм. Наиболее широко прибор используется в радиотехнике для наладки оборудования.

Внешний вид микровольтметра В3-57

Внешний вид микровольтметра В3-57

Измерители переменного напряжения АКИП-2401 имеют два канала. Также имеется возможность фиксации результата на экране при помощи кнопки «Hold». Устройство имеет в наличии интерфейс RS-232, позволяющий считывать данные дистанционно.

Цифровой вольтметр АКИП-2401

Цифровой вольтметр АКИП-2401

Прибор В7-40/1 преимущественно используется для высокоточных научных исследований и поверки других вольтметров. Его сопротивление достигает 2 ГОи при пределе измерения в 2 В. Это позволяет максимально уменьшить влияние на цепь, что немаловажно при работе с низковольтными радиотехническими схемами. В7-40/1 успешно используется в средствах автоматики и SCADA системах.

Высокоточный, дискретный вольтметр В7-40/1

Высокоточный, дискретный вольтметр В7-40/1

Меры безопасности

В отличие от других приборов, например, омметра или мегометра, работая с вольтметром, приходится иметь дело с напряжением. При небольших значениях оно не представляет опасности для человека. Измеряя напряжения, способные создать опасный ток, протекающий через тело человека, необходимо соблюдать повышенную осторожность.

Измерение напряжений должно сопровождаться полным соблюдением ТБ и ПУЭ. Это предотвратит получение электротравмы. Запрещено работать без средств защиты, например, резиновых перчаток и ковриков. По завершению работ не должно оставаться оголенных токоведущих частей, с которыми может произойти случайный контакт у обслуживающего персонала.

Повсеместное использование измерения напряжения в электротехнике привело к созданию вольтметров различных конструкций. Они отличаются как по принципу работы, так и по точности. Наибольшую популярность получают универсальные устройства, способные автоматически выбрать не только предел, но и тип контролируемой величины.

Если у вас возникли вопросы - оставляйте их в комментариях под статьей. Мы или наши посетители с радостью ответим на них

swapmotor.ru

Высокоомный стрелочный вольтметр постоянного напряжения

Последние два десятка лет у радиолюбителей популярны малогабаритные цифровые мультиметры с ЖК дисплеем и автономным питанием. Мультиметры низшей ценовой категории, например, из серий М83х, DT83x дёшевы, но неудобны в использовании, имеют низкую точность измерения, не содержат элементов защит от неправильного использования.

Более серьёзные мультиметры с автоматическим выбором диапазонов, защитой, повышенной точностью измерений стоят уже в несколько раз дороже. Даже если вы не сожжёте мультиметр, например, подключением к сети напряжения 220 В переменного тока, когда его переключатель рода работ находится в положении измерения сопротивлений, рано или поздно, а скорее рано, при интенсивной эксплуатации прибора печатные контакты переключателя придут в негодность от износа. Измерительные приборы с автоматическим выбором пределов измерений позволяют продлить срок службы переключателя рода работ.

Ещё более продлит срок службы мультиметров то, если на рабочем месте будет одновременно эксплуатироваться несколько мультиметров, каждый из которых большую часть времени производит измерения только одной электрической величины, что уменьшит необходимость пользоваться переключателем рода работ. Например, у автора один мультиметр измеряет сопротивления, другой ёмкость, третий измеряет переменный ток, четвёртый тестирует полупроводниковые переходы и т.д.

Но так получилось, что не было выделенного мультиметра для измерения напряжения постоянного тока. Чтобы лишний раз не переключать один из задействованных мультиметров на измерение напряжений, было решено изготовить несложный стрелочный вольтметр, который, имея только одну функцию измерения напряжения постоянного тока, частично разгрузил бы используемые мультиметры от «лишних» переключений рода работ.

Вольтметр было решено собирать по подобию схемы из [1], адаптировав её под имеющиеся детали и под конкретные потребности. Следует отметить, что около четверти века назад автор уже изготовил мультиметр по мотивам схемы из той публикации, который обычно используется как милливольтметр напряжения переменного тока и как фазометр [2]. Аналоговое представление измеряемого напряжения обычно более наглядно в случае его быстрого изменения — не требуется интерпретация «большеменьше», но предоставляет меньшую точность, чем цифровая индикация.

Вольтметр было решено делать с входным сопротивлением более 20 МОм, для сравнения, дешёвые цифровые мультиметры обычно имеют входное сопротивление в режиме измерения напряжений всего 1 МОм или 10 МОм, а магнитоэлектрический ТЛ4М всего около 300 кОм на диапазоне «30 В» постоянного тока. Число диапазонов для вольтметра было выбрано равным четырём, по числу положений имеющегося компактного галетного переключателя. Питается вольтметр от сети переменного тока, что исключает периодическую необходимость замены батарей.

Принципиальная схема прибора показана на сайте radiochipi.ru. Измеряемое напряжение постоянного тока поступает на неивертирующий вход операционного усилителя DA2 через последовательно включенные высокоомные резисторы R6, R7, которые совместно с резистором R8 образуют делитель входного напряжения. В случае, когда переключатель диапазонов SA1 находится в левом по схеме положении, вольтметр будет измерять напряжение до 0,3 В. В других положениях переключателя SA1 к общему проводу будет подключена одна из цепочек резисторов R12R13, R14R15 или R16R17, соответственно, от положения SA1 будет выбран диапазон измерений 0,3, 3,0, 30 или 300 Вольт.

Коэффициент усиления DA2 по напряжению зависит от соотношения сопротивлений резисторов R22/R18, выбран около 16, что необходимо для работы микроамперметра РА1 с относительно низкой чувствительностью. Микроамперметр включен в диагональ выпрямительного моста VD13 VD16. Диод VD17 снижает величину перегрузки РА1. Конденсатор С7 уменьшает чувствительность прибора к наводкам напряжения переменного тока. Диоды VD8 VD12 защищают DA2 от повреждения высоким входным напряжением.

При настройке этого прибора было выявлено, что температура защитных диодов VD8 — VD12 влияет на показания РА1, поэтому было установлено четыре защитных диода, а не два, как в публикации [1]. Резистор R26 ограничивает ток через микроамперметр, диоды выпрямительного моста и выход DA2. Переменным резистором R24 при замкнутых между собой щупах XI, Х2 устанавливают стрелку РА1 на нулевое деление шкалы.

На операционном усилителе DA1 собран индикатор полярности измеряемого напряжения. Если на щупе XI плюс, то светит «красный» светодиод HL2. Если на XI минус, то светит «синий» HL3. Подстроечным резистором R11 при замкнутых щупах XI, Х2 и установленной на ноль стрелке РА1 устанавливают минимально возможное напряжение на выходе DA1, вывод 6. Максимальное напряжение на щупах XI, Х2 не должно превышать 1000 В, иначе возможны пробои резисторов делителя напряжения и искровые пробои между контактами монтажа.

Микросхемы DAI, DA2 питаются двуполярным напряжением +/- 8,3 В от параметрических стабилизаторов напряжений положительной и отрицательной полярности, собранных на транзисторах VT1, VT2 и элементах их обвязки. Модуль стабилизаторов напряжений изготовлен на отдельной плате, на принципиальной схеме обозначен как А2. На стабилизаторы напряжений поступает напряжение переменного тока около 16 В от сетевого адаптера, обозначенного как модуль А1. Резисторы Rl, R2 уменьшают вероятность повреждения понижающего трансформатора Т1 и снижают его ток холостого хода. Светодиод HL1 светит при включении адаптера в сеть переменного тока 220 В. Светодиоды HL4, HL5 подсвечивают шкалу микроамперметра.

Большинство деталей вольтметра установлено на монтажной плате размерами 79×35 мм. Монтаж двусторонний навесной. Детали стабилизатора напряжений установлены на монтажной плате размерами 73×32 мм. Прибор помещён в пластмассовый корпус размерами 85x85x42 мм, вид на компоновку деталей в корпусе показан на рисунке на последней странице обложки журнала. Корпус изнутри частично оклеен липкой алюминиевой фольгой, электрически соединённой с общим проводом, точка подключения — резистор R8, к которому также подключен щуп Х2.

В качестве сетевого адаптера применён источник питания для телевизионного антенного усилителя. Не разбирая сердечника трансформатора, с вторичной обмотки Т1 отматывают около 120 витков провода с тем расчётом, чтобы в режиме холостого хода на выводах обмотки II было напряжение около 18 В. Стабилизатор напряжения +12 В удаляют. Диоды мостового выпрямителя можно применить для сборки индикаторного узла VD1 — VD4, HL1, R3. Сетевой адаптер потребляет от сети 220 В ток около 8 мА. Ток через вторичную обмотку Т1 около ЗОмА.

Постоянные резисторы типов Cl-14, С2-14, С2-23, 0-4, МЯТ, РПМ соответствующей мощности. Переменный резистор R24 типа СП4- 1, СПЗ-9. Подстроечный резистор R11 малогабаритный импортный или СПЗ-39а, СП5-2, СП5-16ВА сопротивлением 4,7…100 кОм. Конденсатор С7 малогабаритный плёночный. Остальные неполярные К10-17, К10-50 или импортные аналоги. Оксидные конденсаторы малогабаритные импортные или К53-19, К53- 30. Диоды 1N4148 можно заменить любыми из 1SS176, 1SS244, КД521, КД522. Вместо диодов 1N4007 подойдут любые из 1N4001  1N4006, UF4001  UF4007, КД209, КД243, КД247. Германиевые диоды Д9Е можно заменить любыми из серий Д9, Д18, ГД507, 2Д507 или маломощными диодами Шотки, например, SB 140, 1N5818.

Вместо стабилитронов BZV55C9V1 подойдут 1N4739A, TZMC9V1, Д814Б1, КС191Ф, КС191Ж. Светодиоды серии RL30 относятся к сверхъярким, можно заменить любыми аналогичными непрерывного свечения. «Белые» светодиоды HL4, HL5 приклеены к боковым стенкам микроамперметра РА1. Вместо транзистора 2SD1616 подойдёт любой из 2SC2331, 2SC2500, SS8050, КТ646, КТ6114, КТ503. Транзистор 2SA1271 можно заменить на любой из серий SS8550, 2SA916, 2SA931, КТ502, КТ6115, КТ684.

Упомянутые транзисторы имеют отличия 8 цоколёвке выводов и типе корпуса. Вместо микросхем КР544УД2Б подойдут любые из КР544УД2, К544УД2, LF355, LF255, LF155, LF356, LF256, LF156, LF357, LF257, LF157. Все эти микросхемы имеют одинаковые схемы включения и близкие параметры, содержат полевые транзисторы на входах. При отсутствии ненужного сетевого адаптера для антенного усилителя, на месте Т1 можно применить унифицированный понижающий трансформатор ТПК 212В.

Галетный переключатель малогабаритный импортный, идущий к нему кабель должен быть экранирован. Микроамперметр применён типа М4167 от индикатора уровня Записи/Воспроизведения катушечного магнитофона «Сатурн». Следует учитывать, что шкала с таким микроамперметром будет нелинейной. Пример шкалы показан на рис. 2, размер шкалы 54×44 мм. Нулевое деление шкалы должно быть в месте нахождения стрелки при обесточенной катушке. Максимальное деление шкалы должно находиться в правой части, не доходя около 5… 10 градусов до ограничителя хода подвижной стрелки.

Для настройки изготовленного прибора щупы XI, Х2 соединяют вместе. После чего, подбором сопротивлений резисторов R21, R23 добиваются того, чтобы при перемещении движка переменного резистора R24 из конца в конец, стрелка РА1 перемещалась от нулевого деления шкалы до примерно ее середины в обоих крайних положениях R24. Установив стрелку РА1 на нулевое деление шкалы, подбором сопротивления резистора R8 настраивают работу прибора на диапазоне 0,3 В.

Затем изготавливают рабочую копию шкалы РА1. После сборки микроамперметра подбором резисторов R12  R17 настраивают работу вольтметра на других диапазонах. При настройке прибора измеряемое напряжение не должно содержать переменной составляющей. Если будет применён более чувствительный микроамперметр, то усиление DA2 можно уменьшить, установив резистор R18 большего сопротивления.

Читайте также статьи: Автомобильный вольтметр,

www.radiochipi.ru

2. Проектирование вольтметра | 7. Измерительные приборы | Часть1

2. Проектирование вольтметра

Проектирование вольтметра

Как уже говорилось ранее, стрелочные индикаторы являются очень чувствительными устройствами. Номинальный (предельный) ток некоторых из них составляет всего 50 мкА, а внутреннее сопротивление менее 1000 Ом. Если на базе такого индикатора сделать вольтметр, то он сможет измерить напряжение не превышающее 50 милливольт (50 мкА х 1000 Ом). Чтобы существенно повысить эту планку, нам нужно найти способ уменьшить изменяемое напряжение до номинального напряжения индикатора.

Давайте начнем проектирование вольтметра, взяв за основу стрелочный индикатор с номинальным током 1 мА и внутренним сопротивлением 500 Ом:

 

 

Используя закон Ома (U = IR), рассчитаем максимальное напряжение, которое может измерить данный прибор:

 

U = IR

 

U = (1мА)(500Ом)

 

U = 0,5  вольта

 

Если нам нужен прибор, который может измерять напряжения величиной до 0,5 вольт, то вышеприведенной схемы будет достаточно. Для измерения более высоких напряжений необходимо нечто большее. А именно, нужно разработать схему, способную подавать на стрелочный индикатор только часть измеряемого напряжения, соответствующую его диапазону. После этого необходимо будет соответствующим образом разметить новую шкалу индикатора.

Но как же мы создадим нужную нам схему? Ответ на этот вопрос прост. Можно использовать делитель напряжения , который в нужных нам пропорциях поделит измеряемое напряжение, и меньшую его часть подаст на контакты стрелочного индикатора. Зная, что схема делителя напряжения состоит из последовательно соединенных сопротивлений, мы подключим резистор последовательно с индикатором (роль второго резистора делителя будет играть внутреннее сопротивление самого индикатора):

 

 

Последовательный резистор мы назвали Rмножителя, потому что он увеличивает рабочий диапазон стрелочного индикатора. Рассчитать требуемое значение этого резистора не составит труда, если вы знакомы с анализом последовательных схем .

В качестве примера, давайте рассчитаем значение Rмножителя, чтобы вышеуказанный стрелочный индикатор мог измерять напряжения до 10 вольт. Для этой цели нам потребуется следующая таблица:

 

 

На данный момент нам известно, что номинальный (предельный) ток индикатора составляет 1 мА (он будет одинаков для всех компонентов последовательной цепи), его внутреннее сопротивление равно 500 Ом, и мы хотим, чтобы этот индикатор измерял напряжения величиной до 10 вольт. Давайте внесем эти исходные данные в таблицу:

 

Определить значение резистора Rмножителя можно несколькими способами. Один из этих способов состоит в следующем: применив закон Ома к столбцу "Общее" рассчитываем общее сопротивление схемы, а затем, отняв от полученного значения 500 Ом, получаем искомую величину:

 

 

Другой способ немного длиннее. Сначала мы определяем максимальное напряжение на индикаторе (U = IR), затем, отняв это напряжение от общего, мы получаем напряжение на резисторе Rмножителя. И наконец, применив закон Ома к столбцу Rмножителя, мы получаем искомую величину:

 

 

И первый, и второй способ дадут нам одинаковый результат - 9,5 кОм. В целях исключения ошибки, один способ можно использовать для проверки другого.

 

 

Измеряемое напряжение, величиной 10 вольт (например батареи), ограниченное резистором Rмножителя и внутренним сопротивлением индикатора, будет соответствовать номинальному току нашего индикатора. Падение напряжения на внутреннем сопротивлении индикатора в этом случае составит ровно 0,5 вольта, и его стрела отклонится на максимальное значение шкалы. Все что нам теперь остается сделать - это повторно отградуировать шкалу прибора на новый диапазон измерения от 0 до 10 вольт (вместо диапазона от 0 до 1 мА).

Из всего вышесказанного вам нужно уяснить следующее. В целях обеспечения максимальной чувствительности, большинство индикаторов разрабатываются для работы с минимальными напряжениями и токами. Для измерения величин, которые превосходят номинальные значения индикаторов, нужно использовать делители напряжений. Теперь можно сказать, что мы изучили конструкцию простого вольтметра. По такому же принципу проектируются и вольтметры, только вместо последовательных делителей напряжения в них применяются параллельные делители тока. Подробнее этот вопрос мы рассмотрим в последующих статьях.

Вообще, в радиолюбительской практике полезно иметь вольтметр с несколькими диапазонами измерений, который позволяет измерять как большие, так и маленькие напряжения, используя для этих целей всего один индикатор. Реализовать такой вольтметр можно за счет использования многопозиционного переключателя и нескольких резисторов, каждый из которых рассчитан на определенный диапазон напряжения:

 

 

Переключатель этого прибора одновременно может контактировать только с одним резистором. Нижний контакт переключателя "пустой", он выключает прибор. Каждый из резисторов рассчитан на измерение определенного диапазона напряжений, и на конкретный индикатор (500 Ом, 1 мА). В конечном итоге мы получили вольтметр на четыре диапазона измерений. И еще одно замечание, шкала этого прибора так же должна иметь четыре диапазона.

Величина каждого резистора определяется по вышеописанной методике (используя максимальное измеряемое напряжение, а так же номинальный ток и внутреннее сопротивление индикатора). Для вольтметра с диапазонами измерений 1 В, 10 В, 100 В и 1000 В, номиналы резисторов будут следующими:

 

 

Обратите внимание на сопротивления резисторов, используемых для этих диапазонов. Маловероятно, что вы с легкостью найдете резистор сопротивлением 999,5 кОм в своей заначке. Поэтому, во избежание проблем с элементной базой, проектировщики вольтметров несколько изменяют вышеприведенную схему: 

 

 

В этой схеме, для каждого более высокого диапазона задействуется большее количество последовательно соединенных резисторов, сумма сопротивлений которых равна сопротивлениям резисторов из предыдущего примера. Например, для диапазона 1000 вольт нам нужен резистор сопротивлением 999,5 кОм. Если мы сложим сопротивления четырех резисторов данной схемы, то получим как раз эту величину:

 

Rобщ. = R4 + R3 + R2 + R1

 

Rобщ. = 900 кОм + 90 кОм + 9 кОм + 500 Ом

 

Rобщ. = 999.5 кОм

 

Преимущество этой схемы состоит в том, что резисторы сопротивлением 9, 90 и 900 кОм гораздо легче найти, чем резисторы из предыдущего примера (9.5, 99.5 и 999.5 кОм). С точки зрения функционирования этих схем, никакой разницы не будет.

www.radiomexanik.spb.ru

СТРЕЛОЧНЫЙ ВОЛЬТМЕТР С РАСТЯНУТОЙ ШКАЛОЙ 10...15 В CAVR.ru

Рассказать в: Прибор будет полезен автолюбителям для измерения с высокой точностью напряжения на аккумуляторе, но он может найти и другие примененияРис. 4.6 Вольтметр с растянутой шкалой где требуется контролировать напряжение в интервале 10...15 В с точностью 0,01 В.Известно, что о степени заряженности автомобильного аккумулятора можно судить по его напряжению. Так, у полностью разряженного, разряженного наполовину и полностью заряженного аккумулятора оно соответствует 11,7, 12,18 и 12,66В.Для того чтобы измерить напряжение с такой точностью, нужен либо цифровой вольтметр, или стрелочный с растянутой шкалой, позволяющий контролировать интересующий нас интервал.Схема, приведенная на рис. 4.6, позволяет, используя любой микроамперметр со шкалой 50 мкА или 100 мкА, сделать из него вольтметр со шкалой измерения 10...15 В.Схема вольтметра не боится неправильного подключения полярности к измеряемой цепи (в этом случае показания прибора не будут соответствовать измеряемой величине).Для предохранения микроамперметра РА1 от повреждения при перевозках используется включатель S1, который при закорачивании выводов измерительного прибора препятствует колебаниям стрелки.В схеме использован прибор РА1 с зеркальной шкалой, типа М1690А (50 мкА), но подойдут и, многие другие.Прецизионный стабилитрон VD1 (Д818Д) может быть с любой последней буквой в обозначении. Подстроечные резисторы лучше использовать многооборотные, например R2 типа СПЗ-36, R5 типа СП5-2В.Для настройки схемы потребуется блок питания с регулируемым выходным напряжением О...15 В и образцовый вольтметр (удобней, если он будет цифровым). Настройка заключается в том, чтобы, подключив блок питания к зажимам Х1, Х2 и постепенно увеличивая напряжение до 10 В, добиться резистором R5 "нулевого" положения стрелки прибора РА1. После этого напряжение источника питания увеличиваем до 15 В и резистором R2 устанавливаем стрелку на предельное значение шкалы измерительного прибора. На этом настройку можно считать законченной.Рис. 4.7. Схема для более точного измерения сетевого напряженияНа основе данной схемы прибор можно выполнить многофункциональным. Так, если выводы микроамперметра подключать к схеме через галетный переключатель 6П2Н, можно сделать режим обычного вольтметра, подобрав добавочный резистор, а также тестер для проверки цепей и предохранителей.Прибор можно дополнить схемой (рис. 4.7) для измерения перемен- ного сетевого напряжения. При этом шкала у него будет от 200 до 300 В, что позволяет более точно измерять сетевое напряжение. Раздел: [Приборы] Сохрани статью в: Оставь свой комментарий или вопрос:

www.cavr.ru

Стрелочный вольтметр ЭВ80 80x80 мм

Руководство по эксплуатации щитовых измерительных стрелочных приборов серий МАК, МАР, МВК, МВР, ЭА, ЭВ (в формате pdf)

Декларация о соответствии ТС МАК, МАР, МВК, МВР, ЭА, ЭВ (в формате pdf)

Свидетельство об утверждении типа СИ МАК, МАР, МВК, МВР, ЭА, ЭВ (в формате pdf)

Листовка «Аналоговые щитовые приборы торговой марки КС (МАК, МАР, МВК, МВР, ЭА, ЭВ)»

Вольтметры щитовые серии ЭВ предназначены для измерения напряжения в электрических цепях переменного тока.

Приборы относятся к аналоговым показывающим электроизмерительным приборам прямого действия.

Вольтметры ЭВ являются приборами электромагнитной системы с подвижной частью на кернах и подпятниках.

Приборы внесены в государственный реестр средств измерений.

Приборы доступны в 2-х исполнениях:

1. Вольтметр ЭВ80 (диапазон 10В...500В)

2. Вольтметр ЭВ80 (диапазон 1,2кВ...42кВ через трансформатор 100В)

Особенности

  • Широкий диапазон стандартных габаритных размеров
  • Класс точности 1,5 и 2,5
  • Нормальная область частот от 45 до 65 Гц (для амперметров и вольтметров серий ЭА, ЭВ).
  • Межповерочный интервал 2 года
  • Средний срок службы приборов 12 лет
  • Рабочий диапазон температур: от -40°С до +50°С (относительная влажность воздуха до 95% при 30°С)
  • Гарантийный срок эксплуатации – 24 месяца

Модификации

 Серия   Модификация  
  МАК60, МВК60, МАК80, МВК80, МАР80, МВР80, ЭА80, ЭВ80   Щитовое крепление под вырез круглой формы  
 ЭА72, ЭВ72, ЭА96, ЭВ96, ЭА120, ЭВ120   Щитовое крепление под вырез квадратной формы 

rill.ru

4. Стрелочный вольтметр с растянутой шкалой 10...15 В

СТРЕЛОЧНЫЙ ВОЛЬТМЕТР С РАСТЯНУТОЙ ШКАЛОЙ 10...15 В

Прибор будет полезен автолюбителям для измерения с высокой точностью напряжения на аккумуляторе, но он может найти и другие применения,

Рис. 4.6 Вольтметр с растянутой шкалой

где требуется контролировать напряжение в интервале 10...15 В с точностью 0,01 В.

Известно, что о степени заряженности автомобильного аккумулятора можно судить по его напряжению. Так, у полностью разряженного, разряженного наполовину и полностью заряженного аккумулятора оно соответствует 11,7, 12,18 и 12,66В.

Для того чтобы измерить напряжение с такой точностью, нужен либо цифровой вольтметр, или стрелочный с растянутой шкалой, позволяющий контролировать интересующий нас интервал.

Схема, приведенная на рис. 4.6, позволяет, используя любой микроамперметр со шкалой 50 мкА или 100 мкА, сделать из него вольтметр со шкалой измерения 10...15 В.

Схема вольтметра не боится неправильного подключения полярности к измеряемой цепи (в этом случае показания прибора не будут соответствовать измеряемой величине).

Для предохранения микроамперметра РА1 от повреждения при перевозках используется включатель S1, который при закорачивании выводов измерительного прибора препятствует колебаниям стрелки.

В схеме использован прибор РА1 с зеркальной шкалой, типа М1690А (50 мкА), но подойдут и, многие другие. Прецизионный стабилитрон VD1 (Д818Д) может быть с любой последней буквой в обозначении. Подстроечные резисторы лучше использовать многооборотные, например R2 типа СПЗ-36, R5 типа СП5-2В.

Для настройки схемы потребуется блок питания с регулируемым выходным напряжением О...15 В и образцовый вольтметр (удобней, если он будет цифровым). Настройка заключается в том, чтобы, подключив блок питания к зажимам Х1, Х2 и постепенно увеличивая напряжение до 10 В, добиться резистором R5 "нулевого" положения стрелки прибора РА1. После этого напряжение источника питания увеличиваем до 15 В и резистором R2 устанавливаем стрелку на предельное значение шкалы измерительного прибора. На этом настройку можно считать законченной.

Рис. 4.7. Схема для более точного измерения сетевого напряжения

На основе данной схемы прибор можно выполнить многофункциональным. Так, если выводы микроамперметра подключать к схеме через галетный переключатель 6П2Н, можно сделать режим обычного вольтметра, подобрав добавочный резистор, а также тестер для проверки цепей и предохранителей.

Прибор можно дополнить схемой (рис. 4.7) для измерения перемен- ного сетевого напряжения. При этом шкала у него будет от 200 до 300 В, что позволяет более точно измерять сетевое напряжение.

 

lib.qrz.ru


Видеоматериалы

24.10.2018

Опыт пилотных регионов, где соцнормы на электроэнергию уже введены, показывает: граждане платить стали меньше

Подробнее...
23.10.2018

Соответствует ли вода и воздух установленным нормативам?

Подробнее...
22.10.2018

С начала года из ветхого и аварийного жилья в республике были переселены десятки семей

Подробнее...
22.10.2018

Столичный Водоканал готовится к зиме

Подробнее...
17.10.2018

Более 10-ти миллионов рублей направлено на капитальный ремонт многоквартирных домов в Лескенском районе

Подробнее...

Актуальные темы

13.05.2018

Формирование энергосберегающего поведения граждан

 

Подробнее...
29.03.2018

ОТЧЕТ о деятельности министерства энергетики, ЖКХ и тарифной политики Кабардино-Балкарской Республики в сфере государственного регулирования и контроля цен и тарифов в 2012 году и об основных задачах на 2013 год

Подробнее...
13.03.2018

Предложения организаций, осуществляющих регулируемую деятельность о размере подлежащих государственному регулированию цен (тарифов) на 2013 год

Подробнее...
11.03.2018

НАУЧИМСЯ ЭКОНОМИТЬ В БЫТУ

 
Подробнее...

inetpriem


<< < Ноябрь 2013 > >>
Пн Вт Ср Чт Пт Сб Вс
        1 2 3
4 5 6 7 8 9 10
11 12 13 14 15 16 17
18 19 20 21 22 23 24
25 26 27 28 29 30  

calc

banner-calc

.