Три фазы в частном доме: подключение, схема и назначение. Три фазы


Что такое трехфазный ток

Современный образ жизни невозможно представить без электроэнергии и благ, которые с ней связаны. Отсутствие природного газа легко компенсируется твердотопливными источниками тепла, вода также доступна, а вот без электричества настает самый настоящий «конец света».

Подавляющее большинство современных электростанций генерируют трехфазный переменный ток. Среди его преимуществ особо следует отметить легкость получения и последующих преобразований, высокую надежность и простоту конструкции предназначенных для него асинхронных электродвигателей. Трехфазный ток – это наиболее распространенный во всем мире тип электроэнергии.

Система трехфазного электрического тока представляет собой совокупность трех цепей однофазного тока с одинаковой частотой и амплитудой, однако, смещенных относительно друг друга на 120 градусов (или, что одно и то же, 1/3 периода). Каждая из этих цепей называется фазой, соответственно, все три формируют трехфазный ток.

Теоретические основы довольно просты: металлическая рамка вращается в магнитном поле, пересекая линии напряженности. Чтобы в соответствии с законом электромагнитной индукции получить электрический ток, достаточно подключить к ее выводам нагрузку и создать цепь. Если же необходим трехфазный ток, то устройство усложняется: в механизме располагаются три идентичные рамки, сдвинутые одна относительно другой на 120 градусов. Итогом является генерация трех электродвижущих сил (ЭДС). В стандартных электростанциях скорость вращения неизменна.

На практике же реализация немного отлична от теории. Трехфазный ток создают специальные машины – генераторы. В них обмотки фазных цепей неподвижны (сравните с теорией) и определенным образом расположены на полюсах статора (неподвижная часть машины). А вращающееся магнитное поле создается ротором. Момент вращения ему сообщает энергия падающей воды в гидроэлектростанциях, паровой турбины в АЭС и пр.

Одна из особенностей цепей, использующих трехфазный ток, заключается в задействовании на стороне потребителя всего трех или четырех проводов – три фазных и нулевой. Этого удается добиться благодаря способу соединения обмоток генератора – звездой или треугольником.

Соединение звездой подразумевает, что концы всех трех обмоток сходятся в одной нулевой точке. Исходя из закона Кирхгофа, следует, что сумма всех токов в этой точке (узле) равняется нулю, поэтому никакого замыкания не происходит. Из нулевой точки выводится нулевой провод. Напряжение, замеренное между этим проводом и любым из трех линейных, в 1.73 раз меньше, чем значение напряжения между самими линейными проводами. В первом случае получается фазное напряжение, а во втором линейное.

Важной особенностью соединения звездой является необходимость избегать перекоса фаз, то есть, контролировать, чтобы протекающие в ветках токи были примерно равны. Та небольшая неизбежная разница приводит к появлению небольшого тока в нулевом проводе, но он невелик.

Совершенно иной тип соединения обмоток генератора – треугольником, позволяет упразднить нулевой провод. При ее реализации каждый конец обмотки соединяется с началом следующей, фактически, образуя треугольник, а напряжения снимаются с его вершин. При таком способе фазное и линейное напряжения равны. Также необходим контроль за равенством токов в ветвях, так как при игнорировании этого общее значение тока в замкнутой цепи может стать чрезмерным, вызывая нагрев генератора и выход его из строя.

Большинство электрических двигателей, предназначенных для трехфазной сети, предусматривают возможность выбора способа соединения обмоток на звезду или треугольник. Это позволяет выбирать рабочее напряжение. Так, при соединении обмоток нагрузки звездой расчетное напряжение будет в 1.73 раз меньше, чем при треугольнике.

fb.ru

ТРИ ФАЗЫ - БЕЗ ПОТЕРИ МОЩНОСТИ

С.БИРЮКОВ, г. Москва

 В различных любительских электромеханических станках и приспособлениях чаще всего используются трехфазные асинхронные двигатели с короткозамкнутым ротором. К сожалению, трехфазная сеть в быту — явление крайне редкое, поэтому для их питания от обычной электрической сети любители применяют фазосдвигающий конденсатор, что не позволяет в полном объеме реализовать мощность и пусковые характеристики двигателя. Существующие же тринисторные "фазосдвигающие" устройства еще в большей степени снижают мощность на валу двигателей.Вариант схемы устройства запуска трехфазного электродвигателя без потери мощности приведен на рис. 1. Обмотки двигателя 220/380 В соединены треугольником, а конденсатор С1 включен, как обычно, параллельно одной из них. Конденсатору "помогает" дроссель L1, включенный параллельно другой обмотке.При определенном соотношении емкости конденсатора С1, индуктивности дросселя L1 и мощности нагрузки можно получить сдвиг фаз между напряжениями на трех ветвях нагрузки, равный точно 120°. На рис. 2 приведена векторная диаграмма напряжений для устройства, представленного на рис. 1, при чисто активной нагрузке R в каждой ветви.

Линейный ток Iл в векторном виде равен разности токов Iз и Ia, а по абсолютному значению соответствует величине Iф, где Iф=I1=I2=I3=Uл/R — фазный ток нагрузки, Uл=U1=U2=U3=220 В — линейное напряжение сети.К конденсатору С1 приложено напряжение Uc1=U2, ток через него равен Ic1 и по фазе опережает напряжение на 90°.   Аналогично к дросселю L1 приложено напряжение UL1=U3, ток через него IL1 отстает от напряжения на 90°. При равенстве абсолютных величин токов Ic1 и IL1 их векторная разность при правильном выборе емкости и индуктивности может быть равной Iл. Сдвиг фаз между токами Ic1 и IL1 составляет 60°, поэтому треугольник из векторов Iл, Iс1 и IL1 — равносторонний, а их абсолютная величина составляет Iс1=IL1=Iл=Iф.

В свою очередь, фазный ток нагрузки Iф=Р/ЗUL, где Р — суммарная мощность нагрузки. Иными словами, если емкость конденсатора С1 и индуктивность дросселя L1 выбрать такими, чтобы при поступлении на них напряжения 220 В ток через них был бы равен Ic1=IL1=P/(Uл)=P/380, показанная на рис. 1 цепь L1C1 обеспечит на нагрузке трехфазное напряжение с точным соблюдением сдвига фаз.

В табл. 1 приведены значения тока Ic1=IL1. емкости конденсатора С1 и индуктивности дросселя L1 для различных величин полной мощности чисто активной нагрузки.Реальная нагрузка в виде электродвигателя имеет значительную индуктивную составляющую. В результате линейный ток отстает по фазе от тока активной нагрузки на некоторый угол ф порядка 20...40°. На шильдиках электродвигателей обычно указывают не угол, а его косинус — широко известный , равный отношению активной составляющей линейного тока к его полному значению.Индуктивную составляющую тока, протекающего через нагрузку устройства, показанного на рис. 1, можно представить в виде токов, проходящих через некоторые катушки индуктивности Lн, подключенные параллельно активным сопротивлениям нагрузки (рис. 3,а), или, что эквивалентно, параллельно С1, L1 и сетевым проводам.

Из рис. 3,б видно, что поскольку ток через индуктивность противофазен току через емкость, катушки индуктивности LH уменьшают ток через емкостную ветвь фазосдвигающей цепи и увеличивают через индуктивную. Поэтому для сохранения фазы напряжения на выходе фазосдвигающей цепи ток через конденсатор С1 необходимо увеличить и через катушку уменьшить.

Векторная диаграмма для нагрузки с индуктивной составляющей усложняется. Ее фрагмент, позволяющий произвести необходимые расчеты, приведен на рис 4.Полный линейный ток Iл разложен здесь на две составляющие: активную и реактивную . В результате решения системы уравнений для определения необходимых значений токов через конденсатор С1 и катушку L1  получаем следующие значения этих токов .

При чисто активной нагрузке  формулы дают ранее полученный результат Ic1=IL1=Iл. На рис. 5 приведены зависимости отношений токов Ic1 и IL1 к Iл от , рассчитанные по этим формулам Для( /2=0,87) ток конденсатора С1 максимален и равен  а ток дросселя L1 вдвое меньше. Этими же соотношениями с хорошей степенью точности можно пользоваться для типовых значений , равных 0,85 0,9.

В табл. 2 приведены значения токов Ie1, IL1, протекающих через конденсатор С1 и дроссель L1 при различных величинах полной мощности нагрузки, имеющей указанное выше значение .Для такой фазосдвигающей цепи используют конденсаторы МБГО, МБГП, МБГТ, К42-4 на рабочее напряжение не менее 600 В или МБГЧ, К42-19 на напряжение не менее 250 В Дроссель проще всего изготовить из трансформатора питания стержневой конструкции от старого лампового телевизора. Ток холостого хода первичной обмотки такого трансформатора при напряжении 220 В обычно не превышает 100 мА и имеет нелинейную зависимость от приложенного напряжения Если же в магнитопровод ввести зазор порядка 0,2 1 мм, ток существенно возрастет, а зависимость его от напряжения станет линейной.Сетевые обмотки трансформаторов ТС могут быть соединены так, что номинальное напряжение на них составит 220 В (перемычка между выводами 2 и 2'), 237 В (перемычка между выводами 2 и 3') или 254 В (перемычка между выводами 3 и 3') Сетевое напряжение чаще всего подают на выводы 1 и1'. В зависимости от вида соединения меняются индуктивность и ток обмотки В табл. 3 приведены значения тока в первичной обмотке трансформатора ТС-200-2 при подаче на нее напряжения 220 В при различных зазорах в магнитопроводе и разном включении секций обмоток Сопоставление данных табл 3 и 2 позволяет сделать вывод, что указанный трансформатор можно установить в фазосдвигающую цепь двигателя с мощностью примерно от 300 до 800 Вт и, подбирая зазор и схему включения обмоток, получить необходимую величину тока. Индуктивность изменяется также в зависимости от синфазного или противофазного соединения сетевой и низковольтных (например, накальных) обмоток трансформатора. Максимальный ток может несколько превышать номинальный ток в рабочем режиме. В этом случае для облегчения теплового режима целесообразно снять с трансформатора все вторичные обмотки, часть низковольтных обмоток можно использовать для питания цепей автоматики устройства, в котором работает электродвигатель.

В табл. 4 приведены номинальные величины токов первичных обмоток трансформаторов различных телевизоров [1, 2] и ориентировочные значения мощности двигателя, с которыми их целесообразно использовать фазосдвигающую LC-цепь следует рассчитывать для максимально возможной нагрузки электродвигателя.

При меньшей нагрузке необходимый сдвиг фаз уже не будет выдерживаться, но пусковые характеристики по сравнению с использованием одного конденсатора улучшатся. Экспериментальная проверка проводилась как с чисто активной нагрузкой, так и с электродвигателем. Функции активной нагрузки выполняли по две параллельно соединенных лампы накаливания мощностью 60 и 75 Вт, включенные в каждую нагрузочную цепь устройства (см рис 1), что соответствовало общей мощности 400 Вт В соответствии с табл 1 емкость конденсатора С1 составляла 15 мкф Зазор в магнитопроводе трансформатора ТС-200-2 (0,5 мм) и схема соединения обмоток (на 237 В) были выбраны из соображений обеспечения необходимого тока 1,05 А. Измеренные на нагрузочных цепях напряжения U1, U2, U3 отличались друг от друга на 2.. 3 В, что подтверждало высокую симметрию трехфазного напряжения.

Эксперименты проводились также с трехфазным асинхронным двигателем с короткозамкнутым ротором АОЛ22-43Ф мощностью 400 Вт [З]. Он работал с конденсатором С1 емкостью 20 мкф (кстати, такой же, как и при работе двигателя только с одним фазосдвигающим конденсатором) и с трансформатором, зазор и соединение обмоток которого выбраны из условия получения тока 0,7 А В результате удалось быстро запустить двигатель без пускового конденсатора и заметно увеличить крутящий момент, ощущаемый при торможении шкива на валу двигателя. К сожалению, провести более объективную проверку затруднительно, поскольку в любительских условиях практически невозможно обеспечить нормированную механическую нагрузку на двигатель.

Следует помнить, что фазосдвигающая цепь — это последовательный колебательный контур, настроенный на частоту 50 Гц (для варианта чисто активной нагрузки), и без нагрузки подключать к сети эту цепь нельзя.

Сам делал для движка на 1 квт. все отлично работает, никаких проблем. Дерзайте.

(прислал Н.Куц)

nice.artip.ru

Подключение электричества: три фазы или одна?

Подключение электричества: три фазы или одна?

Любой объект, будь то коттедж, дача или загородный дом не может обойтись без подключения электричества. Не освоенному  дачному участку, конечно, электричество «до фени», но как только принято решение о строительстве загородного дома проблема  подключения электричества становится насущной. Перед тем, как обратиться за разрешением на подключение электричества к загородному дому, следует определиться с необходимой мощностью и нюансами ее распределения между имеющимися или перспективными источниками потребления. Владелец загородного дома вынужден «чесать репу» и задумываться о том, как подключить электричество посредством трех фаз или одной?

Потребляемая мощность электричества в жилых домах непрерывно растет. Если сравнить современные бытовые электроприборы с электроприборами средины прошлого века,  то без вооруженного взгляда можно прийти к выводу, что потребляемая мощность электричества выросло в несколько раз. Причем из года в год наблюдается тенденция постоянного увеличения потребляемой мощности электричества на душу населения. Причина заключается в том, что в каждом доме появилась львиная доля бытовых потребителей электроэнергии (электрочайники, стиральные машины, электроутюги) ,  которые характеризуются повышенным спросом на подключение электричества и требуют соответственно потребляемую мощность большего объема.  Нормальное функционирование и жизнеобеспечение загородного дома не мыслится без таких  потребителей электроэнергии, как электронасосов, электрических котлов, сварочных аппаратов, электродвигателей, ТЭНов различного назначения и др. силовых агрегатов. Поэтому в загородных домах все чаще стали подключать три фазы электричества, отказываясь от  традиционной однофазной электросети.

В чем же преимущество трехфазной электросети от однофазной?

Многие владельцы загородных домов считают, что трехфазная электросеть допускает потреблять больше мощности, т.е. подключать больше потребителей. Однако это предположение не в полной мере соответствует действительности. В инструкции ФАС указано, что максимально разрешенная мощность для загородного дома составляет 15 кВт без привязки к трехфазной или однофазной электросети. Конкретная потребляемая мощность для того или иного загородного дома указывается отдельно в технических условиях на подключение электричества. Как правило,  потребляемая мощность определяется возможностями трансформаторной подстанции (ТП) электросети и предполагаемым числом точек подключения электричества. В этом случае соответствующие органы могут установить  единую потребляемую мощность, например, те же 5 кВт, как для трехфазной электросети, так и для однофазной. Таким образом, в потребляемой мощности здесь выигрыш практически отсутствует.

В то же время не следует забывать, что при одинаковой потребляемой мощности для ввода  трехфазной электросети в загородный дом можно использовать силовой кабель с жилами меньшей площади сечения. Причина кроется в том, что потребляемая мощность, а, следовательно, и ток распределяются по трем фазам. Тогда в меньшей степени нагружается каждый фазный провод и номинал вводного автоматического выключателя в трехфазной электросети, будет тоже соответственно меньшим. Вместе с  тем, возрастает в два раза число жил вводного силового кабеля: с двух до четырех, вместо одно(двух) полюсного вводного автоматического выключателя потребуется трех(четырех) полюсный, а для учета электроэнергии – трехфазный электросчетчик. Вследствие этого увеличиваются габариты электрощитка (ЩРН) и соответственно стоимость материалов и комплектующих узлов.

 

В дополнение ко всему следует отметить, что, как правило, все наиболее распространенные бытовые потребители электроэнергии рассчитаны для работы в однофазной электросети переменного тока.

Однако недостатки трехфазной электросети меркнут перед ее преимуществами.  Для любого владельца загородного дома «фора» трехфазной электросети проявляется с первых же  минут. С одной стороны, известно, что асинхронные электродвигатели в трехфазной электросети работают с лучшими энергетическими и механическими параметрами. Следовательно, реализуется возможность непосредственного подключения электричества к таким  трехфазным потребителям электроэнергии, как электрические котлы, асинхронные электроприводы и др .  С другой стороны, мощные потребители электроэнергии – те же котлы, электроплиты, обогреватели, сварочные аппараты и т.д.  не вызывают «перекоса фаз», так как нагрузка таких потребителей электроэнергии равномерно распределяется между тремя фазами электросети.

Проблема «перекоса фаз» довольно-таки щекотливая, поэтому есть смысл рассмотреть ее более детально. Перекос фаз проявляется в трехфазных четырех(пяти)- проводных электросетях с глухозаземленной нейтралью и напряжением до 1 000 В.  Как правило, низковольтная трехфазная электросеть напряжением 400 В (0,4 кВ)  содержит источники электроэнергии, обмотки которых соединены  «звездой» с выведенным нулем.

Идеальную модель, отображающую взаимосвязь и взаимное расположение фазных и линейных напряжений можно изобразить в виде равностороннего треугольника с вершинами «А», «B», «С» и центром «0». Разности потенциалов между точками — АВ, ВС и CA  являются линейными напряжениями (380 В), а разности потенциалов между точками — 0A, 0B и 0С являются фазными напряжениями (220 В). В идеальном случае фазные напряжения равны между собой U 0A = U 0B = U 0С  и сдвинуты друг относительно друга на угол 120°, т. е. L  A0B = L B0C= L C0A=120°.  При симметричной нагрузке для соединения обмоток звездой справедливо такое соотношение между линейными и фазными токами и напряжениями:

а  мощность трёхфазной сети равна:

Из формулы видно, что мощность трехфазной электросети сети отличается от мощности однофазной не в три раза, как вначале предполагалось, а всего лишь примерно в 1, 73 раза.

Представленная выше на рисунке модель электросети является идеальной и перекос фазных напряжений в ней отсутствует.  Но по той причине, что к трансформаторной  подстанции электросети подключается множество потребителей электроэнергии, в том числе и однофазных, то в каждый случайный момент времени можно ожидать, что  нагрузки в разных фазах будут заметно отличаться. Причем если даже однофазные нагрузки по величине одинаковы, то их подключение к электросети  или отключение не может происходить синхронно. Возникает ситуация, когда  Z A  >  Z B  >  Z C  ≠  0, где «Z» – это полное сопротивление нагрузки, и, соответственно, «Z A» — это полное сопротивление нагрузки на фазе А, «Z B» — это полное сопротивление нагрузки на фазе B, «Z C» — это полное сопротивление нагрузки на фазе C.  Если взглянуть на приведенный ниже равносторонний треугольник, то  графически это будет выглядеть следующим образом:  точка 0 в центре треугольника, из которой исходят векторы идеальных фазных напряжений величиной 220 В:  E 0A, E  0B и E  0С  — смещается относительно центра треугольника.

Щелкните по картинке и наглядно убедитесь к чему приводит перекос фаз.

Пусть будет это точка 0′. Смещаются и сами векторы фазных напряжений на произвольный угол друг относительно друга. Смещенные векторы фазных напряжений E 0’A, E 0’B и  E 0’С не равны между собой, т.е. E 0’A ≠ E 0’B ≠ E 0’С. Таким образом,  напряжения в каждой фазе никогда не будут иметь одинаковый сдвиг и значение. Отсюда различие фазных нагрузок по величине и характеру создает условия для возникновения перекоса фазных напряжений.

При симметричной нагрузке в трёхфазной электросети подключение потребителя электроэнергии к линейному напряжению возможно даже при отсутствии нейтрального провода. Однако, при подключении  потребителя электроэнергии к фазному напряжению, когда нагрузка на фазы не является строго симметричной, наличие нейтрального провода обязательно. В случае обрыва  или значительного увеличения его  сопротивления (плохой контакт)  также происходит так называемый «перекос фаз».  В конечном итоге подключенный потребитель электроэнергии, рассчитанный на фазное напряжение, может оказаться под произвольным напряжением в диапазоне от нуля до линейного (конкретное значение зависит от распределения нагрузки по фазам в момент обрыва нулевого провода).

Повышенное напряжение  зачастую является причиной выхода из строя бытовой радиоэлектронной техники, а также может привести к пожару.  Пониженное напряжение также не всегда благоприятно влияет на радиоэлектронную технику и может послужить причиной выхода ее из строя. К этому больше всего подвержены электродвигатели холодильников. Поэтому дорогостоящие аппараты (электрические котлы, компьютеры,  холодильники,  стиральные машины, телевизоры и др.) следует подключать к электричеству в загородном доме через стабилизаторы напряжения. Для этих целей в трехфазной электросети можно выделить даже отдельную фазу.

В однофазной электросети перекос фаз часто становится причиной того, что потребители электроэнергии, подключенные к «неудачной фазе», вынуждены мириться со слишком низким напряжением в электросети, что в большей степени касается проблемы  подключения электричества к загородному дому. Обладателей трехфазной электросети такие вопросы «колышут» меньше всего, поскольку у них есть возможность подключения (переключения)  особо важных и капризных однофазных потребителей электроэнергии к той фазе, напряжение которой меньше всего подвержено просадке из-за перекоса фаз.

Подключение электричества к загородному дому с помощью трех фаз не снимает полностью проблему перекоса фаз, так как в общей электросети,  как указывалось ранее,  достаточно много разных потребителей электроэнергии. Однако в своей внутренней электросети, т.е. после прибора учета электроэнергии, необходимо распределить нагрузку однофазных потребителей электроэнергии максимально равномерно. Далее, при подключении электричества к загородному дому не следует упускать из вида то, что напряжение трехфазной электросети составляет 380 В, которое ощутимо выше привычных 220 В. Поэтому при работе и эксплуатации трехфазной электросети требуется повышенное внимание уделять электробезопасности. Если подходить с позиций норм пожарной безопасности, то трехфазная электросеть также более опасна по той причине, что ток короткого замыкания будет намного выше.

На заметку. Нередко в ТТХ однофазных электрических аппаратов  указываются два значения питающего напряжения, в частности для некоторых типов сварочных трансформаторов —  220 В и 380 В, т.е. фазное напряжение и линейное соответственно. Учитывая большую потребляемую мощность подобными изделиями, рекомендуется с целью уменьшения перекоса фаз подключать их к линейному напряжению 380 В, т.е. к двум фазам. При выборе фаз следует исходить из того, чтобы фаза, от которой осуществляется питание бытовой радиоэлектронной техники, чувствительной к перепадам напряжения, не была задействована.

Подводя итог сказанному,  следует еще раз акцентировать внимание на основных недостатках и преимуществах подключения трехфазной электросети к загородному дому.

Итак, к основным недостаткам трехфазной электросети можно отнести:

  • Необходимость получения разрешения и технических условий от районной Электросети (РЭС), что связано с определенной волокитой для владельца загородного дома. В дачном кооперативе этот процесс менее болезненный, так как его согласование обычно проходит на уровне Правления.
  • Опасность поражения электрическим током и пожарная опасность существуют при любом раскладе, но эти опасности обостряются при эксплуатации трехфазной электросети. Поэтому, помимо автоматического выключателя, устанавливаемого обычно перед электросчетчиком на вводе электричества в дом, необходимо предусмотреть четырех полюсный  автоматический выключатель типа УЗО или дифференциального автомата с небольшим током утечки

 

  • Необходимость установки модульных ограничителей перенапряжения в ЩРН, поскольку не исключен обрыв индивидуального рабочего нуля во внутренней трехфазной электросети, последствия которого чреваты перенапряжением в одной наименее нагруженной фазе.
  • Увеличение габаритов ЩРН.  Но по сути дела это не столь заметно, так как современные электронные счетчики и автоматические выключатели как для трехфазной электросети, так и для однофазной отличаются от своих предшественников компактностью и небольшими размерами.

Основные преимущества трехфазной электросети:

  • Возможность непосредственного подключения электричества к трехфазным мощным потребителям электроэнергии.
  • Перераспределение потребляемой мощности  между фазами, сводя перекос фаз к минимуму.
  • Снижение номиналов по току автоматических выключателей и площади сечения жил силового кабеля.
  • Возможность увеличения в некоторых случаях максимально разрешенной потребляемой мощности электроэнергии при лояльном отношении районной Электросети.

Таким образом, практика подключения электричества с использованием трехфазной электросети себя оправдывает, если жилая площадь загородного дома более 100 кв. м. В этом случае однофазных потребителей электроэнергии может быть очень много и нагрузку во внутренней электросети можно распределить с соблюдением максимальной симметрии. Также трехфазная электросеть удобна тем владельцам загородных домов, который планируют подключение электричества для мощных трехфазных потребителей электроэнергии.  В остальных случаях подключение трехфазной электросети может оказаться излишним и стать причиной очередной головной боли владельца загородного дома.

В заключение для тех, кто любит мастерить своим руками будет полезен  «Сборник технической литературы».

barabyn.ru

Как подключить 3 фазы - Всё о электрике в доме

Трехфазное подключение частного дома

Общая схема трехфазного подключения

Несмотря на, то строите ли вы новый дом или хотите модернизировать старый без электропроводки обойтись не получится, поскольку все приборы в доме потребляют электроэнергию в большей или меньшей мере. Подключение частного дома к электросети дело непростое и небыстрое.

Существует два типа электропитания одно- и трехфазный. Большинство используют однофазный тип и считают, что этого достаточно. Так и есть. Сейчас же все чаще выбирают трехфазный, поскольку он позволяет значительно снизить нагрузку на сеть равномерно распределив ее на три параллельные линии.

Разница между трехфазным и однофазным подключением

Большинство считают, что, перейдя на трехфазное подключение дома можно увеличить потребляемую мощность. Но это совсем не так. Такой вопрос следует решать с компанией, которая поставляет электричество.В данном типе подключения используют 4 или 5 проводов. Три линии подачи тока (фаза), нулевой проводник (или просто ноль) и заземление, иногда ноль и заземление подключают одним проводом.

Сравнение типов подключения

В таком случае можно примерно рассчитать количество приборов, которые можно одновременно включить в сеть на каждую линию чтобы не было перенапряжения. В однофазовом подключении используют 2 или 3 провода. Соответственно 1 фаза, 1 ноль и заземление.

Тогда все напряжение идет на одну линию и перегрузок просто не избежать.Силовой щиток однофазного электроснабжения частного дома немного меньше чем для трехфазного, и если нужно заменить один на другой, то придется добавить свободного места. Что касается использования домовой проводки, то и тут есть различия. В первом случае толщина жил кабеля значительно больше, чем во втором, поскольку и нагрузка тоже выше.

Документация для подключения.

Для того чтобы не было проблем с законом все нужно сделать как следует и подготовить необходимые документы и договора.

  • Энергоснабжающая компания должна дать определенные условия эксплуатации.
  • Проектная документация на снабжение здания электроэнергией.
  • Акт разграничения по балансовой принадлежности.
  • Акт лабораторных исследований схемы, которая собрана для определенного дома.
  • Акт осмотра всего оборудования.
  • Договор с энергосбытовой компанией.

Проект трехфазной сети.

Для начала нужно сделать проект, где будут учтены все особенности потребления электроэнергии. Чаще всего делают разделение на группы потребителей, то есть розетки отдельно подключаются, а освещение отдельно. Это дает возможность отключить отдельную группу для ремонтных работ и не доставлять неудобства в использовании другой группы.

Проект трехфазной сети

Для каждой рассчитывают максимальную мощность потребления электричества, и соответственно подбирают провода нужной толщины. Например, для освещения чаще используют провод толщиной полтора сантиметра, а для розеток – 2,5 см.

Для каждой группы нужно использовать приборы автоматического выключения тока, чтобы при коротком замыкании не возникло возгорание проводки.Имея на руках проект подключения дома можно рассчитать количество необходимых материалов (проводов), приборов и даже планируемый размер силового щитка. А также можно наметить размещение розеток, выключателей и стабилизирующих устройств.

Как подключать?

Существует два вида подключения. Подземный и воздушный. Для частного дома используют преимущественно второй вариант, потому что:

  • меньше времени тратиться на работу;
  • есть возможность использования любых схем;
  • стоимость подключения значительно ниже;
  • при необходимости легче ремонтировать.

Нужно учитывать, что при воздушном подключении расстояние до ближайшего столба к частному дому должно быть не больше 15 м. Если же отрезок длиннее, нужно добавить дополнительный столб чтобы избежать сильного провисания или обрыва линии при плохих погодных условиях. Вблизи не должно быть крупных деревьев или больших веток.А также провода не должны мешать перемещению транспортных средств или пешеходовНа частный дом трехфазная линия крепится на высоте не меньше чем 2,7м, а при необходимости и выше. Там помещают специальные изоляторы, к которым и присоединяется питание, а уже оттуда провода идут к силовому щиту.

Щиток лучше прикрепить на фасаде здания. Дальше от щитка по всему дому идут в нужных направлениях провода. Если есть пристройки где используется электричество, то к ним проводка идет тоже от щитка.Счетчик для трехфазной линии.

Для особого подключения электричества нужен и особенный счетчик.

Счетчики для трехфазного подключения позволяют экономить электроэнергию, выбрать модель, подходящую именно потребителю, отслеживать перепады напряжения. Такие приборы есть трех видов:

  1. Прямого включения. Подключаются непосредственно к сети.
  2. Полукосвенного включения. Нужен трансформатор напряжения. При оплате, показания счетчика умножаются на коэффициент трансформации, который указан на приборе.
  3. Косвенного включения. Нужен трансформатор напряжения и силы тока. Подходит тем, кто подключается от высоковольтных линий электропередач. Чаще всего используют на предприятиях.

Для однофазного счетчика существует одна стандартная схема подключения, а для счетчиков трехфазной линии их много, поскольку видов несколько.Устройства прямого включения имеют схему подключения немного схожую на схему однофазного счетчика. Обязательно следует учитывать порядок присоединения проводов в соответствии с цветом, который указан в схеме и не забывать, что четные номера — это нагрузка, а нечетные — цвет провода. Схема подключения размещена на задней крышке прибора, а также в паспорте.Электросчетчик полукосвенного включения также применяют в домах и для их подключения есть множество схем. Чаще всего используются три из них: десятипроводная схема подключения, схема по типу звезда, соединение с помощью коробки с клеммами.

Первая самая распространенная, поскольку самая простая. По данной схеме для каждой фазы используют три провода, которые присоединяются в строгом порядке, десятый провод — ноль. Всегда выбирается такая схема подключения счетчика, при которой можно легко отремонтировать ее любую часть.Какой бы ни была схема подключения частного дома к электросети, не стоит забывать, что работать с напряжением, не имея нужного образования небезопасно для жизни. Поэтому и для выбора нужной схемы, нужного счетчика электроэнергии, и для самого подключения следует воспользоваться услугами человека, который в этом непросто разбирается, а специально обучался несколько лет.

Вы предоставляете план дома, указываете места где нужно разместить розетки, выключатели, где будут стоять котлы или бойлер, а квалифицированный специалист рассчитает длину проводов, их толщину, и подберет все необходимые приборы для безопасного использования электропроводки в частном доме. Подключение частного дома к электросети дело непростое и небыстрое.

Похожие статьи

Определение места повреждения кабельный линий

Подвес для кабеля к тросу

Подключение частного дома к трехфазной электросети — схема и важные особенности

Преимуществ у трехфазного подключения частного дома много. Одно из них – в возможности равномерного распределения нагрузки между линиями, что с увеличением количества бытовой техники в наших жилищах уже не просто рациональный подход к организации эн/снабжения, а необходимость. Любая работа начинается с планирования. Вот и разберемся, как грамотно составить схему трехфазного подключения частного дома в зависимости от местной специфики.

Следует пояснить, что переход на трехфазное эл/снабжение никак не повышает потребляемую мощность, как многие ошибочно считают. Ее лимит для частного дома устанавливается ресурсоснабжающей организацией и зависит от ряда факторов – собственных возможностей поставщика, количества абонентов, технического состояния линий, оборудования и так далее.

Что учесть при подключении

Для исключения вероятности перекоса фаз, резких скачков напряжения нагрузка по ним должна распределяться равномерно. Но расчеты делаются лишь примерные, так как невозможно заранее предусмотреть, какие именно потребители в определенный момент будут включены. Кроме того, если в частном доме имеются импульсные приборы, то их пуск сопровождается повышенным энергопотреблением. Поэтому обязательно понадобятся стабилизаторы, иначе перегрузка любой из фаз вызовет некорректную работу остальных.

Силовой (распределительный) щит для трехфазного подключения значительно габаритнее, чем щит для однофазной схемы. При ее переделке заменить боксы по принципу «один в один» вряд ли получится. Это связано с большим количеством защитных элементов и присоединяемых проводов (кабелей). Придется искать другое подходящее место для его монтажа электрощитка .

Хотя здесь есть и иные варианты. Вот один из них. Вне дома устанавливается только щиток ввода (к примеру, ЩРУН 3-12), а внутри – несколько небольших пластиковых, каждый (со своей комплектацией) на отдельную фазу. То же касается и надворных построек (сарая, гаража, мастерской и так далее), внутри которых целесообразно располагать такие же маломерные боксы.

При установке лишь одного щитка вне частного дома (встречается и такое решение) используется бокс со степенью защиты IP31 (или 54).

Особенности трехфазного подключения и реализуемые схемы

Существует 2 технологии – прокладка кабеля в грунте (подземный способ) и воздушная линия. Для частного дома целесообразнее выбрать второй вариант.

  • Значительно меньший объем работ.
  • Возможность прокладки линии по любой схеме.
  • Стоимость подключения намного ниже. Одно из обоснований – используемые для организации электроснабжения воздушным способом провода (СИП) по определению дешевле (за 1 п.м.) кабеля. К тому же при укладке последнего трасса может изгибаться в зависимости от особенностей грунта на участке и его планировки, что увеличивает расход монтажной продукции.
  • Ремонтопригодность такой линии трехфазного подключения значительно выше.

Резервное питание не в счет. Переключение на него предусматривается независимо от выбранного способа, поэтому на основную схему параметры (тип, мощность) автономного генератора не влияют.

Особенности воздушного подключения

Допустимые расстояния показаны на схеме.

Их следует выдерживать. К примеру, если между частным домом и ближайшей опорой более 15 м, то придется ставить еще один, дополнительный столб. Это объясняется просто – для исключения значительного провиса (или даже обрыва проводов) под нагрузкой – ледяной, снеговой, ветровой. Это также регламентировано. Минимальное расстояние от проводов (в м) до: проезжей части – 6, тротуара – 3,5. То есть они не должны мешать ни проезду габаритного автотранспорта, ни свободному перемещению людей.

Нужно принять во внимание и то, что трасса прокладывается так, чтобы исключить прикосновение к любому ее участку веток крупных деревьев, которые при сильном ветре могут ее повредить. Высота точки присоединения трехфазной линии к потребителю (частному дому) – от 2,75 или более, при необходимости. Подразумевается, что именно там располагаются изоляторы. К ним и подводится эл/питание, а уже потом оно подается на силовой щит.

Часто встречается такая рекомендация – расположить его на столбе. Но насколько это грамотно в плане ремонтопригодности? Если выбьет вводной автомат, да еще ночью, тем более зимой – что делать? Оптимальное решение – закрепить щиток на фасаде частного дома.

Вот несколько наиболее распространенных схем трехфазного подключения:

Автор акцентирует внимание, что эта информация позволит читателю составить общее представление о том, как организуется трехфазное подключение частного дома к промышленной сети. Конкретную работу (определение схемы, подбор необходимых приборов по характеристикам, комплектацию щитков, монтаж линий) лучше доверить профессионалу. Только он сможет учесть все особенности строения и произвести точные расчеты. Единой рекомендации по выбору схемы и ее составных частей, не зная специфики здания и участка, потребностей собственника в эл/энергии никто не даст. Все планируется и готовится индивидуально для каждого частного дома.

Внимание! Непосредственное подключение линии к источнику 3-ф напряжения имеет право делать только представитель ресурсоснабжающей организации. Он же снимает начальные показания счетчика, производит его опломбировку и постановку на учет.

Рекомендовано для вас:

Схема подключения проходного выключателя в двух вариантах, правила и советы Как проверить конденсатор мультиметром по всем параметрам — инструкция Электрические схемы для начинающих электриков — условные обозначения

Трехфазная схема распределительного щита — 5 вариантов

Подробности Опубликовано: 08 Декабрь 2014 Просмотров: 113311

Трехфазные распределительные щиты 380В часто применяют в частных домах и на много реже в квартирах в новостройках. Это позволяет снизить сечение подходящего к дому кабеля и грамотно распределить нагрузку. Зачастую отведенная мощность на дом составляет 15 кВт. Это очень широко распространенная практика в нашей стране. При такой отведенной мощности нужно устанавливать вводной автоматический выключатель номиналом 25А. Также 3-х фазное электроснабжение позволяет подключать электроплиты по трехфазной схеме. Это позволяет уменьшить номинал автомата, снизить сечение кабеля и уменьшить потребление тока по фазе. Например, варочная панель мощность 7кВт при однофазном подключении будет потреблять ток 31А, а при 3-х фазном подключении будет потреблять около 10А по каждой фазе. Давайте ниже рассмотрим типовые и не типовые трехфазные схемы в с наглядными примерами реальных собранных электрощитов .

Трехфазная схема распределительного щита

Типовая схема трехфазного щита состоит из входного 3-х фазного автоматического выключателя и нескольких групповых автоматов, которые защищают только свои отходящие однофазные линии. Тут на входе стоит 3-х полюсный автоматический выключатель номиналом 25А-40А и с характеристикой выше групповых однофазных автоматов (с характеристикой С ). Это необходимо для попытки соблюдения селективности и исключения одновременного срабатывания входного автомата и группового. Хотя при коротком замыкании скорее всего сработают и вводной автомат С25 и групповой В16. При такой минимальной разнице номиналов автоматических выключателей добиться селективности практически не возможно.

В схеме все нулевые проводники заводим на общую нулевую шину. все заземляющие проводники заводим на общую шину заземления, а фазные проводники на автоматические выключатели. Объединять групповые автоматы по фазам можно с помощью перемычек из провода, а лучше с помощью специальной гребенчатой шины. Ниже представлена типовая трехфазная схема распределительного щита 380В. Может кому и пригодится я сюда еще вставил счетчик электроэнергии. Здесь представлена система заземления TN-S. Если у вас система заземления TN-C, то вам обязательно нужно делать переход на систему заземления TN-C-S, т.е. разделять входящий PEN проводник на самостоятельные нулевой рабочий N и нулевой защитный PE проводники. Как это правильно организовать читайте здесь .

Вот наглядный пример подключения автоматических выключателей в 3-х фазном электрощите. Все фото сборки данного щитка можете посмотреть здесь: Сборка трехфазных электрощитов на заказ

Если у кого-то в доме помимо однофазных потребителей есть трехфазная нагрузка, например, электрическая плита, то вам должна пригодиться следующая схема трехфазного распределительного щита. В представленном варианте можно подключить один 3-х фазный прибор и несколько однофазных.

Если в щитке нет места для счетчика электроэнергии или он стоит в другом месте, то вот схема щита 380В аналогичная предыдущей, но уже без прибора учета. Тут все фазные проводники напрямую идут на групповые автоматические выключатели.

Если с предыдущими трехфазными схемами распределительных щитов все понятно, то идем дальше. Ниже для вас выложил схему, где еще присутствуют УЗО и дифавтомат. С их помощью обязательно нужно защищать все группы розеток. Этого требует ПУЭ, а также электробезопасность должна быть на первом месте. Тут дифавтомат стоит только на стиральную машину, так как в случае его срабатывания найти неисправность будет не так сложно. УЗО в паре с автоматическим выключателем стоит на группу кухонных розеток. Почему в паре можете узнать тут. Это сделано для облегчения поиска неисправности, так как в них будет включено много разных электроприборов. Если сработал автомат, то значит где-то короткое замыкание или если вы включили в сеть все электроприборы одновременно, то скорее всего перегрузка. Если сработало УЗО, то вероятнее всего появилась утечка в каком-то бытовом приборе. Ниже нарисовано как правильно подключить УЗО и подключить дифавтомат в щитке 380В.

Ниже представлен реальный пример трехфазного щита с подключением 2-х полюсных и 4-х полюсных УЗО.

Вот еще одна схемка может кому и пригодится. Она построена на одном общем (входном) и нескольких групповых УЗО.

Ниже представлены полностью готовые к монтажу трехфазные щитки. Это моя работа по сборке электрощитов на заказ. Данная услуга доступна всем желающим из любой точки нашей необъятной родины. Любые вопросы по данному вопросу пишите на адрес Этот адрес электронной почты защищён от спам-ботов. У вас должен быть включен JavaScript для просмотра.

Я готов вам предложить закупку комплектующих у официальных поставщиков электроматериалов по личной скидке до 20% от розничной цены ЭТМ. При заказе сборки электрощита разработка схемы и паспорт идут бесплатно. Буду очень рад вашим заказам. С каждого собранного электрощита 50% дохода идет на погашение ипотеки. Сделаем вместе жилье доступным для электромонтажника )))

Еще вас будут радовать цветные наклейки)))

Остались вопросы? Буду рад на них ответить в комментариях. Если и после этого ничего не понятно, то не искушайте судьбу и позовите грамотного электрика.

Электрик, химик, механик и программист едут вместе в машине. Вдруг заглох мотор.— Электрик говорит, — «Наверно аккумулятор сел».— Химик говорит, — «Нет, скорее всего не тот бензин».— Механик,- «Я думаю, что это передача не работает.»— Программист, — «Может выйдем из машины, и зайдем обратно?»

Вот здесь нужно быть очень внимательным. Неправильный выбор автоматического выключателя по номиналу может привести к возгоранию проводки или автомат будет срабатывать на отключение по пять раз.

У вас дома в квартирном щитке сработал автоматический выключатель. В итоге какая-то часть квартиры обесточилась. В такой ситуации оказывался практически каждый. Какие ваши дальнейшие действия.

Лампочки перегорали, перегорают и будут перегорать иначе не выгодно их производить. Сами подумайте завод изготовил одну лампочку, человек ее купил, вкрутил у себя дома и она работает положенны.

Кабели и провода играют одну из самых важных ролей в электропитании вашего дома. Не правильный выбор сечения может привести к перегреву изоляции, ее пробою, короткому замыканию и к серьезным п.

Друзья, уважайте чужой труд и при копировании материалов, пожалуйста, ставьте открытую ссылку на источник sam-sebe-electric.ru, а то свет отключу. |

Источники: http://infoelectrik.ru/provoda-i-kabelya/trehfaznoe-podklyuchenie-chastnogo-doma.html, http://electroadvice.ru/electric/trexfaznoe-podklyuchenie-doma-sxema/, http://sam-sebe-electric.ru/raspredelitelnyj-shchit/39-trekhfaznaya-skhema-raspredelitelnogo-shchita

electricremont.ru

Как получить три фазы из одной

Всем привет! Сегодня я покажу как получить из обычной однофазной сети 220 В - трехфазную, причем без особых затрат. Но сначала расскажу о своей проблеме предшествующей поиску подобного решения.У меня имелась советская мощная настольная циркулярная пила (2 кВт), которая подключалась к трехфазной сети. Мои попытки запитать ее от однофазной сети, как это обычно принято, не представлялось возможным: была сильная просадка мощности, грелись пусковые конденсаторы, грелся сам двигатель.Благо в свое время я потратил должное время на поиск решения в интернете. Где я наткнулся на одно видео, где один парень сделал своеобразный расщепитель при помощи мощного электромотора. Далее он пустил по периметру своего гаража эту трехфазную сеть и подключил к ней все остальные приборы требующий трехфазного напряжения. Перед началом работ, приходил в гараж, запускал раздающий двигатель и до ухода он работал. В принципе, решение мне понравилось. Решил повторить и сделать свой расщепитель. В роли двигателя взял старый советский на 3,5 кВт мощности, с обмотками включенными звездой.

Схема

Вся схема состоит всего из нескольких элементов: общий сетевой выключатель, кнопка для запуска, конденсатор на 100 мкФ и собственно мощного мотора.Как все работает? Сначала подаем однофазное питание на раздающий мотор, пусковой кнопкой подключаем конденсатор, тем самым запуская его. Как только мотор раскрутился до нужных оборотов, конденсатор можно выключить. Теперь можно подключить к выходу расщепителя фаз нагрузку, в моем случае настольную циркулярку и ещё несколько трехфазных нагрузок.Корпус устройства - рама выполнен из Г-образных уголков, все оборудование закреплено на кусок листа OSB. Сверху переделаны ручки для переноски всей конструкции, а на выход подключенная трехвыводная розетка.После подключения пилы через такое устройство получилось существенное улучшение в работе, ничего не греется, мощности вполне хватает и не только на пилу. Ничего не рычит, не гудит, как это было раньше.Только желательно брать раздающий мотор мощнее потребителей хотя бы на 1 кВт, тогда не будет заметно особой просадки мощности при резкой нагрузке.Кто бы что не говорил про не чистый синус или это ничего не даст, советую их не слушать. Синус напряжения чистый и разбитый ровно на 120 градусов, в результате подключенная техника получает качественного напряжение, ввиду чего и не греется.Вторая половина читателей которые будут говорить по 21-век и большое наличие частотных преобразователей трехфазного напряжения могу сказать, что мой выход в разы дешевле, так как старый мотор довольно просто найти. Можно взять даже негодный для нагрузки, со слабыми и почти разбитыми подшипниками.Мой расщепитель фаз в холостом режиме потребляет не столь много: 200 - 400 Вт где-то, мощность подключенных инструментов вырастает в разы, по сравнению с обычной схемой подключения через пусковые конденсаторы.В заключении хочу обосновать свой выбор данного решения: надежность, невероятная простота, небольшие затраты, высокая мощность.

Смотрите видео

sdelaysam-svoimirukami.ru

Трёхфазный ток, преимущества трёхфазного тока при использовании

Преимущества трёхфазного тока очевидны только специалистам электрикам. Что такое трехфазный ток для обывателя представляется весьма смутно. Давайте развеем неопределенность.

Трехфазный переменный ток

Большинство людей, за исключением специалистов - электриков, имеют весьма смутное представление, что такое так называемый «трёхфазный» переменный ток, да и в понятиях, что такое сила тока, напряжение и электрический потенциал, а также мощность, - часто путаются.

Попытаемся простым языком дать начальные понятия об этом. Для этого обратимся к аналогиям. Начнём с простейшей – протекания постоянного тока в проводниках. Его можно сравнить с водным потоком в природе. Вода, как известно, всегда течёт от более высокой точки поверхности к более низкой. Всегда выбирает самый экономичный (наикратчайший) путь. Аналогия с протеканием тока – полнейшая. Причём количество воды протекающей в единицу времени через какое-то сечение потока будет аналогично силе тока в электрической цепи. Высота любой точки русла реки относительно нулевой точки – уровня моря – будет соответствовать электрическому потенциалу любой точки цепи. А разница в высоте любых двух точек реки будет соответствовать напряжению между двумя точками цепи.

Используя эту аналогию можно легко представить в уме законы протекания постоянного электрического тока в цепи. Чем выше напряжение – перепад высот, тем больше скорость потока, и, следовательно, количество воды протекающей по реке в единицу времени.

Водный поток, точно так же как электрический ток при своём движении испытывает сопротивление русла – по каменистому руслу вода будет протекать бурно, меняя направление, немного нагреваясь от этого (бурные потоки даже в сильные морозы не замерзают вследствие нагрева от сопротивления русла). В гладком канале или трубе вода потечёт быстро и в итоге в единицу времени канал пропустит гораздо больше воды, чем извилистое и каменистое русло. Сопротивление потоку воды полностью аналогично электрическому сопротивлению в цепи.

Теперь представим закрытую бутылку, в которой налито немного воды. Если мы начнём эту бутылку вращать вокруг поперечной оси, то вода в ней будет перетекать попеременно от горлышка к донышку и наоборот. Это представление – аналогия переменному току. Казалось бы, одна и та же вода перетекает туда-сюда и что? Тем не менее, этот переменный поток воды способен совершать работу.

Откуда вообще появилось понятие переменный ток? к содержанию

Да с тех самых пор, когда человечество, узнав, что перемещение магнита вблизи проводника вызывает электрический ток в проводнике. Именно движение магнита вызывает ток, если магнит положить рядом с проводом и не двигать – никакого тока в проводнике это не вызовет. Далее, мы хотим получить (генерировать) в проводнике ток, чтобы использовать его в дальнейшем для каких-либо целей. Для этого изготовим катушку из медного провода и начнём возле неё двигать магнит. Магнит можно передвигать возле катушки как угодно – двигать по прямой туда-сюда, но, чтобы не двигать магнит руками, создать такой механизм технически сложнее, чем просто начать его вращать около катушки, аналогично вращению бутылки с водой из предыдущего примера. Вот именно таким образом - по техническим причинам - мы и получили синусоидальный переменный ток, используемый ныне повсеместно. Синусоида – это развёрнутое во времени описание вращения.

В дальнейшем оказалось, что законы протекания переменного тока в цепи отличаются от протекания постоянного тока. Например, для протекания постоянного тока сопротивление катушки равно просто омическому сопротивлению проводов. А для переменного тока – сопротивление катушки из проводов значительно увеличивается из-за появления, так называемого индуктивного сопротивления. Постоянный ток через заряженный конденсатор не проходит, для него конденсатор – разрыв цепи. А переменный ток способен свободно протекать через конденсатор с некоторым сопротивлением. Далее выяснилось, что переменный ток может быть преобразован с помощью трансформаторов в переменный ток с другими напряжением или силой тока. Постоянный ток такой трансформации не поддаётся и, если мы включим любой трансформатор в сеть постоянного тока (что делать категорически нельзя), то он неизбежно сгорит, так как постоянному току будет сопротивляться только омическое сопротивление провода, которое делается как можно меньше, и через первичную обмотку потечёт большой ток в режиме короткого замыкания.

Заметим также, что электродвигатели могут быть созданы для работы и от постоянного тока, и от переменного тока. Но разница между ними такая – электродвигатели постоянного тока сложнее в изготовлении, но зато позволяют плавно изменять скорость вращения обычным регулирующим силу тока реостатом. А электродвигатели переменного тока гораздо проще и дешевле в изготовлении, но вращаются только с одной, обусловленной конструкцией скоростью. Поэтому в практике широко применяются и те, и другие. В зависимости от назначения. Для целей управления и регулирования применяются двигатели постоянного тока, а в качестве силовых установок – двигатели переменного тока.

Далее конструкторская мысль изобретателя генератора двигалась примерно в таком направлении – если удобнее всего для генерации тока использовать вращение магнита рядом с катушкой, то почему бы вместо одной катушки генератора не расположить вокруг вращающегося магнита несколько катушек (места-то вокруг вон сколько)?

Получится сразу же, как бы несколько генераторов, работающих от одного вращающегося магнита. Причём переменный ток в катушках будет отличаться по фазе – максимум тока в последующих катушках будет несколько запаздывать относительно предыдущих. То есть синусоиды тока, если их графически изобразить, будут, как бы между собой, сдвинуты. Это важное свойство – сдвиг фаз, о котором мы расскажем ниже.

Примерно так рассуждая, американский изобретатель Никола Тесла и изобрёл сначала переменный ток, а затем и трёхфазную систему генерации тока с шестью проводами. Он расположил три катушки вокруг магнита на равном расстоянии под углами 120 градусов, если за центр углов принять ось вращения магнита.

(Число катушек (фаз) вообще-то может быть любым, но для получения всех тех преимуществ, что даёт многофазная система генерации тока, минимально достаточно трёх).

Далее русский учёный электротехник Михаил Осипович Доливо-Добровольский развил изобретение Н. Тесла, впервые предложив трёх - и четырёхпроводную систему передачи трёхфазного переменного тока. Он предложил соединить один конец всех трёх обмоток генератора в одну точку и передавать электроэнергию всего по четырём проводам. (Экономия на дорогих цветных металлах существенная). Оказалось, что при симметричной нагрузке каждой фазы (равным сопротивлением) ток в этом общем проводе равняется нулю. Потому что при суммировании (алгебраическом, с учётом знаков) сдвинутых по фазе на 120 градусов токов они взаимно уничтожаются. Этот общий провод так и назвали – нулевой. Поскольку ток в нём возникает только при неравномерности нагрузок фаз и численно он небольшой, гораздо меньше фазных токов, то представилась возможность использовать в качестве «нулевого» провод меньшего сечения, чем для фазных проводов.

По этой же самой причине (сдвиг фаз на 120 градусов) трехфазные трансформаторы получились значительно менее материалоёмкими, так как в магнитопроводе трансформатора происходит взаимопоглощение магнитных потоков и его можно делать с меньшим сечением.

Сегодня трёхфазная система электроснабжения осуществляется четырьмя проводами, три из них называются фазными и обозначаются латинскими буквами: на генераторе - А, В и С, у потребителя - L1, L2 и L3. Нулевой провод так и обозначается – 0. 

Напряжение между нулевым проводом и любым из фазных проводов называется – фазным и составляет в сетях потребителей – 220 вольт.

Между фазными проводами тоже существует напряжение, причём значительно выше, чем фазное напряжение. Это напряжение называется линейным и составляет в цепях потребителей 380 вольт. Почему же оно больше фазного? Да всё это из-за сдвига фаз на 120 градусов. Поэтому, если на одном проводе, к примеру, в данный момент времени потенциал равен плюс 200 вольт, то на другом фазном проводе в этот же момент времени потенциал будет минус 180 вольт. Напряжение – это разность потенциалов, то есть оно будет + 200 – (-180)=+380 В.

Возникает вопрос, если по нулевому проводу ток не протекает, то нельзя ли его вообще убрать. Можно. И мы получим трёхпроводную систему электроснабжения. С соединением потребителей так называемым «треугольником» - между фазными проводами. Однако нужно заметить, что при неравномерной нагрузке в сторонах «треугольника» на генератор будут действовать разрушающие его нагрузки, поэтому данную систему можно применять при огромном количестве потребителей, когда неравномерности нагрузок нивелируются. Передача электроэнергии от больших электростанций при высоких фазных и линейных напряжениях (сотни тысяч вольт) так и осуществляются. Почему же применяется такое высокое напряжение. Ответ простой – чтобы уменьшить потери в проводах на нагрев. Так как нагрев проводов (потери энергии) пропорционален квадрату протекающего тока, то желательно чтобы протекающий ток был минимален. Ну а для передачи необходимой мощности при минимальном токе нужно повышать напряжение. Линии электропередач (ЛЭП) так и обозначаются, к примеру, ЛЭП – 500 – это линия электропередачи под напряжением 500 киловольт.

Кстати потери в проводах ЛЭП можно ещё более снизить, применяя передачу постоянного тока высокого напряжения (перестаёт действовать емкостная составляющая потерь, действующая между проводами), проводились даже такие эксперименты, но широкого распространения пока такая система не получила, видимо вследствие большей экономии в проводах при трёхфазной системе генерации.

Выводы: преимущества трёхфазной системы к содержанию

В заключение статьи подведём итоги, – какие же преимущества даёт трёхфазная система генерации и электроснабжения?

  1. Экономия на количестве проводов, необходимых для передачи электроэнергии. Учитывая немалые расстояния (сотни и тысячи километров) и то, что для проводов используют цветные металлы с малым удельным электрическим сопротивлением, экономия получается весьма существенной.
  2. Трёхфазные трансформаторы, при равной мощности с однофазными, имеют значительно меньшие размеры магнитопровода. Что позволяет получить существенную экономию.
  3. Очень важно, что трёхфазная система передачи электроэнергии создаёт при подключении потребителя к трём фазам как бы вращающееся электромагнитное поле. Опять-таки, вследствие сдвига фаз. Это свойство позволило создать чрезвычайно простые и надёжные трёхфазные электродвигатели, у которых нет коллектора, а ротор, по сути, представляет собой простую «болванку» в подшипниках, к которой не нужно подсоединять никакие провода. (На самом деле конструкция короткозамкнутого ротора имеет свои особенности и вовсе не болванка) Это так называемые трёхфазные асинхронные электродвигатели с короткозамкнутым ротором. Очень широко распространённые сегодня в качестве силовых установок. Замечательное свойство таких двигателей – это возможность менять направление вращения ротора на обратное простым переключением двух любых фазных проводов.
  4. Возможность получения в трёхфазных сетях двух рабочих напряжений. Другими словами менять мощность электродвигателя или нагревательной установки путём простого переключения питающих проводов.
  5. Возможность значительного уменьшения мерцаний и стробоскопического эффекта светильников на люминисцентных лампах путём размещения в светильнике трёх ламп, питающихся от разных фаз.

Благодаря этим преимуществам трёхфазные системы электроснабжения получили широчайшее распространение в мире.

www.pergam.ru

Три фазы в частном доме: подключение, схема и назначение

Похожие публикации

Меня часто спрашивают: «Зачем ты подвёл к дому трёхфазную линию, у тебя, что какой-то особый электроинструмент?»  Нет, инструмент самый обычный на 220 вольт, правда, мощность порой достигает два киловатта. Ну и в самом деле зачем мне нужны три фазы в доме? Как их подключить без ошибок?

Теория и практика подключения

Сначала совсем немного общей информации. Подводящая линия по выбору может быть однофазной, когда только два провода, или трехфазной, когда четыре провода, три провода фазных и один провод нулевой. Так устроены генераторы, вырабатывающие электроэнергию, что у них только три катушки. Поэтому, если в технических условиях укажете мощность до 5 кВт, Вас запитают от одной катушки, запросите больше, то сразу от трёх катушек.

Как провести три фазы в частный дом? Если есть техническая возможность требуется запросить (заявить) о таком подключении. Правда, по пути от генератора до вас будет стоять трансформатор, уменьшающий высоковольтное напряжение до бытовой величины, поэтому вы получите не 380, а родные 220. Но у Вас будет целых три фазы 220 вольт! В последнем случае от щитка с автоматическими выключателями в доме, сразу пойдут три сетевые линии, имеющая каждая напряжение 220 вольт и мощность от 3,5 до 5 кВт в зависимости от установленного автомата.

Схемы подключения и проводки с учётом наличия трёх фаз могут быть различными, в зависимости от потребностей и наличия строений на участке, но общие принципы, конечно одинаковые. Далее мой персональный вариант:

Схема подключения на три фазы частного дома и хозяйственных построек на участке

Кстати, и в бане и в хозблоке автоматические выключатели (предохранители) тоже необходимы. Установленные на тот же ток, что и при центральном вводе, они в этих постройках, при неисправной нагрузке сработают быстрее, из-за потерь в подводящей линии.

Этой зимой я уже прочувствовал преимущество трёхфазной подводки, когда пёс Боб, наигравшись на первом снегу, укутанный в плед грелся у масляного радиатора в бытовке, дополнительно направив морду на нагретый воздух, идущий от тепловентилятора. Можно было не бояться, что предохранитель сработает от перегрузки при работе с электроинструментом большой мощностью, подключившись к временной розетке с другой фазой.

Зачем нужна временная розетка?

Ну, конечно, не из-за собаки. Когда уже стоят стены и окна, есть крыша над головой и настелен черный пол, но не хватает только внутренней отделки, вот тогда и настаёт время для временной розетки внутри дома. А каждый раз затаскивать удлинитель из бытовки крайне неудобно. Хотя розетка и называется временной, делать её надо как настоящую, по всем правилам техники безопасности с использованием автоматического выключателя.

Определяем фазу правильно: цвет и нумерация

Честно сказать особо не задумывался о фазах, когда в своё время делал проводку у себя на даче. Отец мой так же не обращал на это внимание, в те времена вся проводка была практически одинаковая, в потрескавшейся резиновой изоляции. Однако я когда решил заняться к электрификацией хозяйства и собрать щиток на три фазы, то волей не волей узнал не мало фактов об истории электричества в нашей стране.

Какого цвета фаза?

Дело в том, в Советском Союзе, фазные провода были желтого, красного или зелёного цветов. После исчезновения Союза с карты мира цвета поменялись на коричневый, чёрный и серый. Однако этот факт абсолютно не связан с цветами с символикой флагов. Дело в том, что в отношении маркировки проводов были приняты европейские стандарты. Последняя, перечисленная цветовая гамма является различимой для людей с дефектами зрения. Но что нас с Европой объединяло довольно долго, это то, что земля и нейтраль у нас всегда были одного цвета, — желто-зеленая земля и голубая (светло-синяя) нейтраль.

Запомнив последнее, что нейтральный провод голубой или синий (светло-синий), а заземляющий зелёный с желтой полосой, логически понимаем, что фаза будет любого другого оставшегося цвета, уверенно соединяем провода для следующих поколений, невзирая на будущие революции и сотрясения мира. Это и есть ответ на вопрос как подключить три фазы.

Но в других странах маркировка проводов другая. Как подумаешь об этом, сразу появляется зайти на броневик и громко крикнуть: «Электрики всех стан – объединяйтесь!»

Зачем нумеровать три фазы?

Для однофазной цепи, где одна фаза, нет смысла. А вот для трёхфазной линии передач пронумеруем, так сказать, на будущее по последовательности цветов подводящего к дому кабеля. Прижавшись к шестиметровой лестнице и подсоединяя орехами к воздушке выходящие из отверстия в стене дома провода, не забудьте прокричать:

«Первая фаза – коричневый провод! Вторая фаза – черный провод! Третья фаза – серый провод!»

В такой же последовательности необходимо подсоединить провода к строенному автоматическому выключателю. Не помешает жирный фломастер для нумерации.

Рядом с электрощитом обязательно надо повесить картину в рамке с полной электрической схемой, с нумерацией каждого защитного автомата, и цветовую гамму проводов. Думаю, что план эвакуации в этом случае не потребуется.

Да, я так и не ответил на вопрос, зачем нужна нумерация. Пока ещё не знаю. Вдруг сын купит электроприбор исключительно для трёхфазной цепи с инструкцией, где фазы указаны цифрами? Вот тогда не придётся повторно подниматься по семиметровой лестнице, полностью забыв к тому времени и цвета и цифры.

Как всё же соединять провода в распределительных коробках?

Вопрос действительно важный. Контакты — наиболее уязвимое место в любой электроцепи. И на сегодня решен вопрос как НЕ соединять.

Отбрасываем все резьбовые соединения. Тот, кто ездил на отечественных машинах, и каждый год протягивал резьбу, спорить со мной не будет. Под воздействием разных температур, болт и гайка будут менять свои линейные размеры, и соединение ослабнет, плюс ещё плохое покрытие, и как следствие — ржавчина. Конец контакта наступит быстро. Многие ещё помнят разогревшиеся и расплавленные штепсельные вилки и розетки.

Из прошлого века пока остаётся скрутка с последующей пайкой. А в новом веке пока на первом месте контакты с пружинами, например от фирмы WAGO. Монтаж проводки в этом случае может напоминать игру в конструктор ЛЕГО. Но помните, что многожильный провод для контакта всё равно придётся скручивать и паять. Если меня пригласят на шашлык, а пока он готовится, попросят помочь с электропроводкой, то я заранее набью все карманы пружинными клеммниками, чтобы побыстрее освободиться, иначе мясо съедят без меня. А себе всё равно буду делать скрутку.

P.S. Кому интересно досконально узнать о проводке в деревянной бане или доме (начиная с азов и заканчивая практикой) обязательно посмотрите мою статью  «Проводка в бане и парилке: правила и рекомендации»

Зачем свет и силовые розетки вести от разных автоматических выключателей (предохранителей)?

Здесь несколько вариантов ответа. Кому что понравиться… На выбор:

  1. Легче найти неисправность, когда в люстре замкнуло, если сработало по свету, или электрочайнику наступил конец, если сработало по розеткам.
  2. По освещению электропотребление меньше, особенно при использовании энергосберегающих ламп, следовательно, автоматическое устройство будет стоять на меньший ток и оно сработает быстрее, не успев перегреть провода. Это условие позволяет использовать осветительные провода с меньшим сечением (0,75 мм), опять же экономия. Да и обидно будет, когда время работы на компьютере пройдёт в пустую, после замыкания лампочки в люстре, в случае общего предохранителя.
  3. Свечи искать не придётся, в полной темноте не останемся.

Есть ли необходимость в устройстве защитного отключения (УЗО)?

Да есть, будем ставить УЗО и делать заземление, без последнего первое не работает. Розетки класса евро с заземляющими ламелями. Есть ребенок и собака. Техника безопасности должна стоять на первом месте. Сейчас обсуждается вопрос поставить общее УЗО на всё, или только на ванную комнату. Еще есть время: чай не совсем остыл:)

P.S. Три фазы в частном доме действительно стоящая вещь, позволяющая чувствовать себя более уверенно и спокойно. Не отказывайте себе в дополнительном удобстве…

Автор статьи В.Ю. Белк

hozayindoma.ru


Видеоматериалы

24.10.2018

Опыт пилотных регионов, где соцнормы на электроэнергию уже введены, показывает: граждане платить стали меньше

Подробнее...
23.10.2018

Соответствует ли вода и воздух установленным нормативам?

Подробнее...
22.10.2018

С начала года из ветхого и аварийного жилья в республике были переселены десятки семей

Подробнее...
22.10.2018

Столичный Водоканал готовится к зиме

Подробнее...
17.10.2018

Более 10-ти миллионов рублей направлено на капитальный ремонт многоквартирных домов в Лескенском районе

Подробнее...

Актуальные темы

13.05.2018

Формирование энергосберегающего поведения граждан

 

Подробнее...
29.03.2018

ОТЧЕТ о деятельности министерства энергетики, ЖКХ и тарифной политики Кабардино-Балкарской Республики в сфере государственного регулирования и контроля цен и тарифов в 2012 году и об основных задачах на 2013 год

Подробнее...
13.03.2018

Предложения организаций, осуществляющих регулируемую деятельность о размере подлежащих государственному регулированию цен (тарифов) на 2013 год

Подробнее...
11.03.2018

НАУЧИМСЯ ЭКОНОМИТЬ В БЫТУ

 
Подробнее...

inetpriem


<< < Ноябрь 2013 > >>
Пн Вт Ср Чт Пт Сб Вс
        1 2 3
4 5 6 7 8 9 10
11 12 13 14 15 16 17
18 19 20 21 22 23 24
25 26 27 28 29 30  

calc

banner-calc

.