Пять применений ультразвука, которые могут изменить мирв закладки 1. Ультразвук включить


Включить ультразвук. Ультразвук - это что? Ультразвук в медицине. Лечение ультразвуком

Ультразвук. Применение и работа. Свойства и развитие. Особенности

Ультразвук представляет волны продольного вида, которые имеют частоту колебаний более 20 КГц. Это больше частоты колебаний, воспринимаемых человеческим слуховым аппаратом. Человек же может воспринимать частоты, находящиеся в пределах 16-20 КГц, они называются звуковыми. Ультразвуковые волны выглядят как череда сгущений и разряжений вещества или среды. Благодаря их свойствам они находят широкое применение во многих областях.

Что это?

В ультразвуковой диапазон попадают частоты, начиная от 20 тысяч и до нескольких миллиардов герц. Это колебания высокой частоты, которые находятся за областью слышимости ухом человека. Однако ультразвуковые волны вполне воспринимают некоторые виды животных. Это дельфины, киты, крысы и другие млекопитающие.

По физическим свойствам ультразвуковые волны являются упругими, поэтому они не имеют отличий от звуковых. В результате разница между звуковыми и ультразвуковыми колебаниями весьма условна, ведь она зависит от субъективного восприятия слуха человека и равняется верхнему уровню слышимого звука. Но наличие более высоких частот, а значит и небольшой длины волны, придает ультразвуковым колебаниям определенные особенности:

  1. Ультразвуковые частоты имеют разную скорость перемещения через различные вещества, благодаря чему можно с высокой точностью определять свойство протекающих процессов, удельную тепловую емкость газов, а также характеристики твердого тела.
  2. Волны значительной интенсивности обладают определенными эффектами, которые подчиняются нелинейной акустике.
  3. При движении ультразвуковых волн со значительной мощностью в жидкостной среде возникает явление акустической кавитации. Данное явление очень важно, ведь в результате создается поле пузырьков, которые образуются из субмикроскопических частиц газа или пара в водной или иной среде. Они пульсируют с некоторой частотой и захлопываются с огромным локальным давлением. Это создает сферические ударные волны, что ведет к появлению акустических микроскопических потоков. Благодаря использованию этого явления ученые научились очищать загрязненные детали, а также создавать торпеды, которые движутся в воде быстрее скорости звука.
  4. Ультразвук может быть сфокусирован и сконцентрирован, что позволяет создавать звуковые рисунки. Это свойство с успехом применяется в голографии и звуковом видении.
  5. Ультразвуковая волна вполне может выступать в качестве дифракционной решетки.
Свойства

Ультразвуковые волны по своим свойствам схожи со звуковыми волнами, однако у них есть и специфические особенности:

  1. Малая длина волны. Даже для низкой границы длина равняется менее нескольких сантиметров. Такой небольшой размер длины приводит к лучевому характеру перемещения ультразвуковых колебаний. Непосредственно рядом с излучателем волна идет в виде пучка, которая приближается к параметрам излучателя. Однако, оказываясь в условиях неоднородной среды, пучок перемещается как луч света. Он также может отражаться, рассеиваться, преломляться.
  2. Малый период колебаний, благодаря чему появляется возможность использования ультразвуковых колебаний в виде импульсов.
  3. Ультразвукнельзя услышать и он не создает раздражающего эффекта.
  4. При воздействии ультразвуковых колебаний на определенные среды можно добиться получения специфических эффектов. К примеру, можно создать локальный нагрев, дегазацию, обеззаразить среду, кавитацию и многие иные эффекты.
Принцип действия

Для создания ультразвуковых колебаний используются различные устройства:

  1. Механические, где в качества источника выступает энергия жидкости или газа.
  2. Электромеханические, где ультразвуковая энергия создается из электрической.

В качестве механических излучателей могут выступать свистки и сирены, работающие с помощью воздуха или жидкости. Они удобны и просты, однако у них есть свои минусы. Так коэффициент полезного действия у них находится в пределах 10-20 процентов. Они создают обширный спектр частот с нестабильной амплитудой и частотой. Это ведет к тому, что такие устройства невозможно использовать в условиях, когда требуется точность. Чаще всего их применяют в качестве средств сигнализации.

Электромеханические устройства используют принцип пьезоэлектрического эффекта. Его особенность в том, что при образовании электрозарядов на гранях кристалла происходит его сжимание и растягивание. В результате создаются колебания с частотой, зависящей от периода смены потенциала на поверхностях кристалла.

Кроме преобразователей, которые базируются на пьезоэлектрическом эффекте, могут применяться и магнитострикционные преобразователи. Они используются для создания мощного ультразвукового пучка. Сердечник, который выполнен из магнитострикционного материала, размещенный в проводящей обмотке, изменяет собственную длину согласно форме электрического сигнала, поступающего на обмотку.

Применение

Ультразвук находит широкое применение в самых разнообразных областях.

Чаще всего его используют в следующих направлениях:
  1. Получение данных о конкретном веществе.
  2. Обработка и передача сигналов.
  3. Воздействие на вещество.
Так при помощи ультразвуковых волн изучают:
  1. Молекулярные процессы в различных структурах.
  2. Определение концентрации веществ в растворах.
  3. Определение, состава, прочностных характеристик материалов и так далее.
В ультразвуковой обработке часто используется метод кавитации:
  1. Металлизация.
  2. Ультразвуковая очистка.
  3. Дегазация жидкостей.
  4. Диспергирование.
  5. Получение аэрозолей.
  6. Ультразвуковая стерилизация.
  7. Уничтожения микроорганизмов.
  8. Интенсификация электрохимических процессов.
Воздействием ультразвуковых волн в промышленности производят следующие технологические операции:
  1. Коагуляция.
  2. Горение в ультразвуковой среде.
  3. Сушка.
  4. Сварка.

В медицине ультразвуковые волны используются в терапии и диагностике. В диагностике задействуют локационные методы с применением импульсного излучения. К ним относятся ультразвуковая кардиография, эхоэнцефалография и ряд иных методов. В терапии ультразвуковые волны применяются в качестве методов, основанных на тепловом и механическом воздействии на ткани. К примеру, довольно часто во время операций используют ультразвуковой скальпель.

Также ультразвуковыми колебаниями проводится:
  1. Микромассаж структур ткани при помощи вибрации.
  2. Стимуляция регенерации клеток, а также межклеточного обмена.
  3. Увеличение проницаемости оболочек тканей.

Ультразвук может действовать на ткани угнетением, стимулированием или разрушением. Все это зависит от применяемой дозы ультразвуковых колебаний и их мощности. Однако не на все области тела человека разрешается использовать таки

xn--90adflmiialse2m.xn--p1ai

Пять применений ультразвука, которые могут изменить мир

Ультразвук способен на большее, чем просто на создание снимков нерожденных младенцев. С тех пор как в 1930-х годах он стал практически незаменимым медицинским инструментом, технология производства звуковых волн, которые люди не могут услышать, нашла применение практически во всех отраслях промышленности. Вибрации, которые она создает, могут убивать бактерий, плавить пластик и даже помогают коньяку взрослеть за считанные дни, а не годы.

Сегодня ультразвук находит свое применение в еще более широкой сфере, стимулируя изобретения, которые могут привести к мощным изменениям. Перед вами несколько таких:

По-настоящему неосязаемые телефоны

Мы стоим на пороге появления по-настоящему бесконтактной альтернативы сенсорным технологиям. Устройства вроде Microsoft Kinect могут обнаруживать, где вы находитесь, и использовать эту информацию в качестве инструкций. Но расположить ваши руки в нужном месте, чтобы дать правильные инструкции, все еще достаточно трудно, и эта управляемая жестами система пока не используется широко.

Одна компания использует ультразвук для эффективного создания невидимых кнопок в воздухе, которые можно почувствовать. Массив ультразвуковых передатчиков производит и формирует звуковые волны, создавая небольшие участки с тактильными ощущениями на коже в определенных местах. Поэтому вместо того, чтобы махать рукой и надеяться, что она находится в нужном месте, вы сразу же узнаете, когда активировали распознавание жеста.

Это может сделать повседневные устройства, такие как смартфоны, полностью водонепроницаемыми, бесконтактными и осведомленными об окружающей среде. Эта технология также может быть совмещена с системами виртуальной реальности, чтобы вы могли почувствовать свое искусственно созданное окружение, что привнесет новое измерение в видеоигры и развлечения.

Ходят слухи, что следующее поколение смартфонов будет использовать ультразвуковое распознавание отпечатков пальцев, поэтому вам даже не нужно прикасаться к телефону, чтобы разблокировать его. Эти телефоны могут даже включать ультразвук для беспроводной зарядки, когда энергия ультразвука будет преобразовываться в электрическую энергию в телефоне. Эта энергия будет проецироваться из передающего устройства, хранящегося, например, на стене вашего дома.

Акустические голограммы

Ультразвук давно используется для создания двухмерных изображений тела, которые могут изучать врачи. Но только недавно появилась разработка, которая может занять видное место в медицине в будущем, — ультразвуковая акустическая голограмма.

В этом методе ультразвук используется для перемещения микрочастиц в определенной среде для формирования желаемого изображения. Например, проецирование звуковых волн через специально сконструированную пластину с рисунком в воду, содержащую пластмассовые частицы, приводит их к определенному выравниванию. Ученые считают, что акустическая голограмма такого рода может быть полезна для улучшения медицинской визуализации и для разработки улучшенных способов ультразвукового лечения.

Очки для слепых

Еще одно возможное медицинское применение ультразвука может помочь слепым людям «видеть» так же, как летучие мыши видят при помощи эхолокации. Вместо того чтобы фиксировать отраженные световые волны, чтобы увидеть объекты, летучие мыши посылают ультразвуковые волны и используют отраженный звук для ориентации в пространстве. Это эхо дает информацию о размере и положении объекта.

Ученые из Калифорнии создали ультразвуковой шлем, который посылает похожие ультразвуковые волны. Затем он преобразует отраженные сигналы в слышимые звуки, которые человеческий мозг может научиться превращать в подробный мысленный снимок окружающей среды. Со временем эта технология может стать более практичной и компактной. Возможно, на ее основе даже сделают специальные очки.

Притягивающие лучи

Имея достаточную мощность, можно с помощью ультразвука заставить объекты левитировать при помощи одних только звуковых волн и перемещать их в разные стороны, подобно притягивающему лучу из области научной фантастики. Ученые из Бристольского университета показали, что контролируя и фокусируя звуковые волны от массива ультразвуковых источников, можно создать достаточно силы, чтобы поднять объект размером с бусину с земли.

Подъем более крупных объектов, таких как человек, потребует очень высоких уровней мощности, и до конца непонятно, какой вред акустические силы могут нанести человеку. Но у такой технологии есть потенциал преобразовать область медицины. Например, ее можно использовать для перемещения лекарств по телу в направлении целевых клеток.

Марсианские сканеры

Ультразвуковая технология уже давно рассматривается как исследовательский инструмент. При достаточно высокой мощности ультразвуковые колебания могут использовать для бурения достаточно плотного материала. Это использование предлагалось при поиске подземных нефтяных и газовых месторождений. Ультразвуковую эхолокацию также можно использовать в качестве датчика, который помогает воздушным беспилотным аппаратам избегать препятствия, чтобы их можно было отправлять в опасные и труднодоступные места.

Однако исследовательские применения не ограничиваются планетой Земля. Если люди когда-либо навестят Марс, нам понадобятся новые способы анализа марсианской среды. Из-за малой гравитации на Марсе обычные сверла не смогут работать с обычной силой, поэтому ученые рассматривают вариант использования ультразвуковых приборов для сбора образцов.

Май 21, 2017Геннадий

zhizninauka.info

Как услышать ультразвук | Сабвуфер своими руками

Известно, что ультразвук оказывает определенное воздействие как на животных, так и на человека. Да, человек ультразвук не слышит. Но, когда вы находитесь рядом с мощным источником ультразвука острота вашего слуха снижается. Почему это происходит? Да потому что мы, люди, слышим ультразвук, просто не понимаем этого.И очень часто это оказывает на нас весьма негативное влияние. Длительное нахождение рядом с достаточно мощным источником ультразвука оказывает на человека почти такое же влияние, как и нахождение рядом с источником слышимого звука. Но, ультразвук мы вроде бы не слышим, и потому не понимаем почему голова болит и закладывает уши. Для того чтобы зарегистрировать наличие ультразвука существуют различные акустические приборы, измеряющие его уровень, частоту и т.д. Но, хотелось бы его еще и услышать (вернее, осознать как звук). Сделать это можно с помощью прибора, который понизит частоту ультразвука, так как в приемнике прямого преобразования понижается частота радиосигнала до звуковой частоты.

Схема, показанная на сайте radiochipi.ru, во многом напоминает схему приемника прямого преобразования, только вместо антенны на её входе включен микрофон. За неимением ультразвукового микрофона здесь используется обычный электретный микрофон типа МСЕ2500 или аналогичный. Согласно тех.данным АЧХ этого микрофона практически линейна до 20 кГц. Далее что происходит с АЧХ в тех.данных не указывается. Как показали испытания (проведенные в радиолюбительских условиях, и потому не претендующие на исключительную точность), микрофон неплохо слышит аж до 70100 кГц, но конечно его чувствительность с ростом частоты сильно снижается.

И так, схема показана на сайте Радиочипи. Ультразвук воспринимается элек третным микрофоном М1. Питание на него поступает через R6. Переменное напряжение с выхода микрофона через конденсатор С5 подается на двухкаскадный УНЧ на транзисторах VT1 и VT2. Здесь используются малошумящие транзисторы ВС550С. Основное усиление происходит в транзисторе VT1. Транзистор VT2 служит эмиттерным повторителем. С него переменное напряжение ультразвуковой частоты поступает на вход смесителя на основе микросхемы А1 типа SA612 (или NE612).

Микросхема SA612 представляет собой преобразователь частоты и широко применяется в разнообразной связной и радиоприемной технике. Здесь она тоже работает по прямому назначению, преобразователь частоты. Для того чтобы понизить частоту ультразвука, лежащего обычно по частоте от 22кГц до 100 кГц в слышимый звук, нужно соответственно, подать на смеситель частоту гетеродина, которая будет на 200-5000 Гц отличаться от частоты принимаемого ультразвука. То есть, желательно чтобы частоту гетеродина можно было оперативно регулировать от 10 до 100 кГц.

Схема гетеродина выполнена на цифровых микросхемах D1 и D2. На инверторах микросхемы D1 сделана схема генератора прямоугольных импульсов частоту которых можно регулировать переменным резистором R2 в пределах от 20 кГц до 200 кГц. Как известно, на выходе мультивибратора на логических элементах импульсы не симметричные, поэтому для придания им симметричной формы используется Dтриггер на микросхеме D2, включенный в режиме одноразрядного двоичного счетчика. Он делит частоту входных импульсов, подаваемых на его вход «С» на два, но придает им строго симметричную форму.

Таким образом, частота на выводе 1 D2 регулируется переменным резистором R2 в пределах от 10 кГц до 100 кГц. Амплитуда этих импульсов понижается до необходимого для нормальной работы смесителя микросхемы А1, уровня делителем на резисторах R3 и R4. На выходе смесителя, как обычно, есть суммарный и разностный сигнал. Суммарный подавляется как простейшим фильтром, состоящим из конденсатора С9, так и самим УНЧ. на который сигнал поступает с регулятора громкости R13. так и нашим слухом.

Таким образом, в остатке остается разностный сигнал, который, при соответствующей установке частоты гетеродина (резистором R2) и можно услышать вполне отчетливо. Например, можно услышать звук от кварцевого резонатора на 32768 Гц, работающего в электронных часах. Или звуки импульсных источников питания различной аппаратуры, а так же. весьма странные изменяющиеся звуки, происхождение которых мне кажется непонятным. Усилитель НЧ желательно чтобы работал на наушники. Можно использовать любой УНЧ, на транзисторах или микросхеме, например, использовать в качестве УНЧ плату неисправного аудиоплеера (с точки входа телефонного УНЧ). Или УНЧ от слухового аппарата.

Детали. Конечно, лучше всего использовать специальный ультразвуковой электретный микрофон, если конечно есть возможность его приобрести. В противном случае любой обычный электретный, но желательно меньшего диаметра (чтобы мембрана была более подвижной и могла лучше двигаться с большой частотой). Транзисторы ВС550С можно заменить отечественными КТ3102Е. Микросхему SA612 можно заменить на SA602 или NE612, NE602.Цифровые микросхемы можно заменить отечественными аналогами К561ЛЕ1 или К561ТМ2. Впрочем, микросхему D1 можно заменить любой КМОП-микросхемой, у которой есть не менее трех инверторов, то есть это может быть и CD4011 (К561ЛА7) и CD4025 (К561ЛА9), CD4023 (К561ЛЕ10) или К561ЛН2.

Вполне возможно гетеродин вообще сделать по совсем другой схеме, например, по схеме генератора НЧ на операционном усилителе или транзисторах, на интегральном таймере 555, или другие варианты, важно чтобы можно было частоту регулировать в указанных пределах и импульсы были либо симметричные, либо неискаженный синус. Так как устройство собиралось с чисто экспериментальными целями, плата для него не разрабатывалась, так на «макетке» и работает.

www.radiochipi.ru


Видеоматериалы

24.10.2018

Опыт пилотных регионов, где соцнормы на электроэнергию уже введены, показывает: граждане платить стали меньше

Подробнее...
23.10.2018

Соответствует ли вода и воздух установленным нормативам?

Подробнее...
22.10.2018

С начала года из ветхого и аварийного жилья в республике были переселены десятки семей

Подробнее...
22.10.2018

Столичный Водоканал готовится к зиме

Подробнее...
17.10.2018

Более 10-ти миллионов рублей направлено на капитальный ремонт многоквартирных домов в Лескенском районе

Подробнее...

Актуальные темы

13.05.2018

Формирование энергосберегающего поведения граждан

 

Подробнее...
29.03.2018

ОТЧЕТ о деятельности министерства энергетики, ЖКХ и тарифной политики Кабардино-Балкарской Республики в сфере государственного регулирования и контроля цен и тарифов в 2012 году и об основных задачах на 2013 год

Подробнее...
13.03.2018

Предложения организаций, осуществляющих регулируемую деятельность о размере подлежащих государственному регулированию цен (тарифов) на 2013 год

Подробнее...
11.03.2018

НАУЧИМСЯ ЭКОНОМИТЬ В БЫТУ

 
Подробнее...

inetpriem


<< < Ноябрь 2013 > >>
Пн Вт Ср Чт Пт Сб Вс
        1 2 3
4 5 6 7 8 9 10
11 12 13 14 15 16 17
18 19 20 21 22 23 24
25 26 27 28 29 30  

calc

banner-calc

.