17.08.2024

Генератор тока на транзисторе: Генератор тока на полевом транзисторе.

Содержание

Генератор тока на полевом транзисторе.

Генератор тока на полевом транзисторе.

     Простой генератор тока на полевом транзисторе. Применение генератора тока на полевом транзисторе на практике. Дополнительный материал к статье «Генератор тока (источник тока). Различия и сходства стабилизаторов тока и напряжения»

     ***

     Часто на мою предыдущую статью о генераторах тока посетители приходят по запросу «генератор тока на полевом транзисторе». Так как там ничего об этом не говорится я решил восполнить этот пробел данной статьёй.

     Здесь расскажу об одной, но очень привлекательной схеме генератора тока на полевом транзисторе КП303. Но сначала рассмотрим, что из себя представляет этот транзистор.

     Полевые транзисторы серии КП303(А-И) это кремниевые эпитаксиально-планарные полевые транзисторы с затвором на основе p-n перехода и каналом n-типа. Или их ещё называют полевыми транзисторами со встроенным n-каналом.

     Буква n означает что управление током через канал, то есть током протекающем от стока к истоку, осуществляется подачей отрицательного напряжения на затвор относительно истока, Рис. 1(а).

 generator-toka-na-polevom-tranzistore_01.jpg
Рис. 1

     В этом смысле принцип работы эпитаксиально-планарных полевых транзисторов, т.е. полевых транзисторов со встроенным каналом аналогично работе электронной (радио) лампе, Рис. 1(б)

     Приблизительная зависимость тока стока () от Uзи для транзистора КП303И показана на графике, Рис. 2.

 generator-toka-na-polevom-tranzistore_02.jpg
Рис. 2

     Для простоты ток Iси буду обозначать как ток стока , так как это одно и тоже.

     Из графика видно, что при Uзи = 0, Iс = max.

     Минимума ток стока достигает при Uзи равном приблизительно минус 1,4В. На самом деле из-за большого разброса характеристик график лишь приблизительно отображает зависимость Ic от Uзи.

     Подавать положительный потенциал на затвор бессмысленно так как при Uзи = 0 транзистор, итак, открыт полностью.

     Вообще эквивалентную схему транзистора КП303 можно представить так как это показано на Рис. 3. Сопротивление переменного резистора R1 — десятки МОм, резистора R2 около 1кОм,.

 generator-toka-na-polevom-tranzistore_03.jpg
Рис. 3

     Тогда, когда напряжение Uзи = 0 ползунок резистора R1 находится в нижнем положении, ток Iс будет определяться по формуле:

     Ic = Uси / R2.

     То есть ток будет максимальным, но не бесконечным.

     Тогда, когда отрицательное напряжение на затворе достигнет некоторого максимума, ползунок резистора R1 окажется в верхнем положении и ток стока будет определяться по формуле:

     Ic = Uси / (R1 + R2).

     То есть ток будет минимальным, но не нулевым.

     Такая зависимость тока стока от напряжения на затворе позволяет сделать очень простой генератор тока на полевом транзисторе КП303. Соберём такую схему, Рис. 4.

 generator-toka-na-polevom-tranzistore_04.jpg
Рис. 4

     Подключим к клеммам 1-2 регулируемый источник напряжения. Начнём увеличивать напряжение от нуля. Изначально ток стока и ток через резистор равны нулю. Падение напряжения на резисторе также равно нулю, Uзи = 0. Транзистор полностью открыт.

     Повышение напряжения на клеммах приведёт к протеканию тока через транзистор и резистор. Появится некоторое падение напряжения на резисторе, при этом минус этого напряжения приложен к затвору, а плюс к истоку. Чем больше ток будет протекать через резистор, тем больший запирающий потенциал будет на затворе.

     В конце концов схема войдёт в режим стабилизации тока так как попытка увеличения тока приводит к увеличению запирающего потенциала на затворе, а следовательно, к уменьшению тока. А попытка уменьшения тока к уменьшению запирающего потенциала на затворе, а следовательно, к увеличению тока. Изменяя величину резистора, можно изменять величину стабилизируемого тока.

     Схема собранная на транзисторе КП303И имеет максимальное рабочее напряжение 30В. Ток стабилизации единицы миллиампер. Недостаток схемы в том, что из-за большого разброса характеристик транзисторов невозможен какой-либо осмысленный расчёт.

     Но в этом нет большой беды. Зачастую расчёт и не нужен. Там, где нужен просто простой и стабильный источник тока, генератор тока. К тому же такой генератор тока не требует дополнительного источника питания. Такая схема очень хороша в генераторах пилообразного напряжения для получения высокой линейности пилы.

     Дело в том, что в обычных, не лабораторных генераторах пилообразного или треугольного напряжения используется принцип заряда-разряда конденсатора. Если этот самый заряд-разряд производить через резистор, то напряжение на конденсаторе будет изменяться по экспоненте. Если вместо резистора включить источник (генератор) тока, то напряжение будет изменяться строго по прямой линии.

     Есть у этой схемы ещё одно достоинство. Её можно использовать для стабилизации тока в цепи переменного напряжения, для этого схему изображённую на Рис. 4 нужно включить в диагональ диодного моста, Рис 5.

 generator-toka-na-polevom-tranzistore_05.jpg
Рис. 5

     В этой схеме полярность приложенного напряжения не важна. Именно такую схему генератора тока я применил в двухканальном прецизионном генераторе треугольного напряжения ШИМ-модулятора электронной нагрузки, описанной в статье «Импульсная электронная нагрузка».

2.06. Транзисторный источник тока

ГЛАВА 2. ТРАНЗИСТОРЫ

НЕКОТОРЫЕ ОСНОВНЫЕ ТРАНЗИСТОРНЫЕ СХЕМЫ

Хотя источники тока не столь известны, они не менее полезны и важны, чем источники напряжения. Источники тока представляют собой прекрасное средство для обеспечения смещения транзисторов, и кроме того, незаменимы в качестве активной нагрузки для усилительных каскадов с большим коэффициентом усиления и в качестве источников питания эмиттеров для дифференциальных усилителей. Источники тока необходимы для работы таких устройств, как интеграторы, генераторы пилообразного напряжения. В схемах усилителей и стабилизаторов они обеспечивают широкий диапазон напряжений. И наконец, источники постоянного тока требуются в некоторых областях, не имеющих прямого отношения к электронике, например в электрохимии, электрофорезе.

эмиттерный повторитель

Рис. 2.20.

Подключение резистора к источнику напряжения. Схема простейшего источника тока показана на рис. 2.20. При условии что Rн » R (иными словами, Uн » U), ток сохраняет почти постоянное значение и равен приблизительно I = U/R. Если нагрузкой является конденсатор, то, при условии что Uконд » U, он заряжается с почти постоянной скоростью, определяемой начальным участком экспоненты, характерной для данной RC-цепи.

Простейшему резистивному источнику тока присущи существенные недостатки. Для того чтобы получить хорошее приближение к источнику тока, следует использовать большие напряжения, а при этом на резисторе рассеивается большая мощность. Кроме того, током этого источника трудно управлять в широком диапазоне с помощью напряжения, формируемого где-либо в другом узле схемы.

Упражнение 2.6. Допустим, нам нужен источник тока который бы обеспечивал точность 1% в диапазоне изменения напряжения на нагрузке от 0 до +10 В. Какой источник напряжения нужно подключить последовательно к резистору?

Упражнение 2.7. Допустим, что в предыдущем упражнении требуется получить от источника ток 10 мА. Какая мощность будет рассеиваться на резисторе? Какая мощность передается нагрузке?

эмиттерный повторитель

Рис. 2.21. Транзисторный источник тока: основная идея.

Какая мощность передается нагрузке? Транзисторный источник тока. Очень хороший источник тока можно построить на основе транзистора (рис. 2.21). Работает он следующим образом: напряжение на базе Uб > 0,6 В поддерживает эмиттерный переход в открытом состоянии: Uэ = Uб — 0,6 В. В связи с этим Iэ = Uэ/Rэ = (Uэ — 0,6/Rэ. Так как для больших значений коэффициента h21эIэ ≈ Iк, то Iк ≅ (Uб — 0,6 В)/Rэ независимо от напряжения Uк до тех пор, пока транзистор не перейдет в режим насыщения (Uк > Uэ + 0.2 В).

Смешение в источнике тока. Напряжение на базе можно сформировать несколькими способами. Хороший результат дает использование делителя напряжения, если он обеспечивает достаточно стабильное напряжение. Как и в предыдущих случаях, сопротивление делителя должно быть значительно меньше сопротивления схемы со стороны базы по постоянному току h21эRэ. Можно воспользоваться также зенеровским диодом и использовать для смещения источник питания Uкк, а можно взять несколько диодов, смещенных в прямом направлении и соединенных последовательно, и подключить их между базой и соответствующим источником питания эмиттера. На рис. 2.22 показаны примеры схем смещения. В последнем примере (рис. 2.22,6) транзистор p-n-p — типа питает током заземленную нагрузку (он — источник тока). Остальные примеры (в которых используются транзисторы n-р-n — типа.) правильнее было бы называть «поглотителями» тока, но принято называть все схемы такого типа источниками тока. [Название «поглотитель» и «источник» связано с направлением тока; если ток поступает в какую-либо точку схемы, то это источник, и наоборот]. В первой схеме сопротивление делителя напряжения составляет приблизительно 1,3 кОм и очень мало по сравнению с сопротивлением со стороны базы, составляющим ≅100кОм (для h21э = 100). Любое изменение коэффициента β, связанное с изменением напряжения на коллекторе, не повлияет существенным образом на выходной ток, так как соответствующее изменение напряжения на базе совсем мало. В двух других схемах резисторы в цепи смещения выбраны так, чтобы протекающий ток составлял несколько миллиампер, — этого достаточно, чтобы диоды были открыты.

Рабочий диапазон. Источник тока передает в нагрузку постоянный ток только до определенного конечного напряжения на нагрузке. В противном случае источник тока был бы способен генерировать бесконечную мощность. Диапазон выходного напряжения, в котором источник тока ведет себя как следует, называется рабочим диапазоном. Для рассмотренных только что транзисторных источников тока рабочий диапазон определяется из того, что транзистор должен находиться в активном режиме работы. Так, в первой схеме напряжение на коллекторе можно понижать до тех пор, пока не будет достигнут режим насыщения, т. е. до +12 В. Вторая схема, с более высоким напряжением на эмиттере, сохраняет свойства источника лишь до значения напряжения на коллекторе, равного приблизительно + 5,2 В.

Во всех случаях напряжение на коллекторе может изменяться от значения напряжения насыщения до значения напряжения питания. Например, последняя схема работает как источник тока в диапазоне напряжения на нагрузке, ограниченном значениями 0 и +8,6 В. Если в нагрузке используются батареи или собственные источники питания, то напряжение на коллекторе может быть больше, чем напряжение источника питания. При использовании такой схемы рекомендуется следить за тем. чтобы не возник пробой транзистора (напряжение Uкэ не должно превышать значение Uкэпроб — напряжение пробоя перехода коллектор-эмиттер) и не рассеивалась излишняя мощность (определяемая величиной произведения IкUкэ). В разд. 6.07 вы увидите, что для мощных транзисторов область безопасной работы определяется специально.

Упражнение 2.8. В схеме имеются два стабилизированных источника напряжения: +5 и 15 В. Разработайте схему источника тока на основе транзистора n-р-n — типа, которая бы обеспечивала ток +5 мА. В качестве источника напряжения для базы используйте источник +5 В. Чему равен рабочий диапазон в такой схеме?

В источнике тока напряжение на базе не обязательно должно быть фиксированным. Если предусмотреть возможность изменения напряжения Uб, то получим программируемый источник тока. Если выходной ток должен плавно отслеживать изменения входного напряжения, то размах входного сигнала uвх (напоминаем, что строчными буквами мы договорились обозначать изменения) должен быть небольшим, таким, чтобы напряжение на эмиттере никогда не уменьшалось до нуля. В таком источнике тока изменение выходного тока будет пропорционально изменениям входного напряжения.

Недостатки источников тока. Как сильно отличается транзисторный источник тока от идеального? Иными словами, изменяется ли ток в нагрузке при изменении, скажем напряжения, т.е. имеет ли источник тока эквивалентное сопротивление конечной величины (Rэкв

1. При заданном токе коллектора и напряжение Uбэ, и коэффициент h21э (эффект Эрли) несколько изменяются при изменении напряжения коллектор-эмиттер. Изменение напряжения Uбэ, связанное с изменением напряжения на нагрузке, вызывает изменение выходного тока, так как напряжение на эмиттере (а следовательно, и эмиттерный ток) изменяется, даже если напряжение на базе фиксировано. Изменение значения коэффициента h21э приводит к небольшим изменениям выходного (коллекторного) тока при фиксированном токе эмиттера, так как Iк = Iэ — Iб; кроме того, немного изменяется напряжение на базе в связи с возможным изменением сопротивления источника смешения, обусловленного изменениями коэффициента h21э (а следовательно, и тока базы). Эти изменения незначительны. Например, изменение выходного тока для схемы, представленной на рис. 2.22, a, составляет приблизительно 0,5% для транзистора типа 2N3565. В частности, при изменении напряжения на нагрузке от 0 до 8 В эффект Эрли обусловливает изменение тока на 0,5%, а нагрев транзистора — на 0,2%. Изменение коэффициента вносит дополнительный вклад в изменение выходного тока — 0,05% (для жесткого делителя напряжения). Все эти изменения приводят к тому, что источник тока работает хуже, чем идеальный: выходной ток немного зависит от напряжения и, следовательно, его сопротивление не бесконечно. В дальнейшем вы узнаете, что есть методы, которые позволяют преодолеть этот недостаток.

2. Напряжение Uбэ и коэффициент h21э зависят от температуры. В связи с этим при изменении температуры окружающей среды возникает дрейф выходного тока. Кроме того, температура перехода изменяется при изменении напряжения на нагрузке (в связи с изменением мощности, рассеиваемой транзистором) и приводит к тому, что источник работает не как идеальный. Изменение напряжения и Uбэ в зависимости от температуры окружающей среды можно скомпенсировать с помощью схемы, показанной на рис. 2.23. В этой схеме падение напряжения между базой и эмиттером транзистора Т2 компенсируется падением напряжения на эмиттерном переходе Т1 который имеет такие же температурные характеристики. Резистор R3 играет роль нагрузки для Т1, необходимой для задания втекающего тока базы транзистора Т2.

эмиттерный повторитель

Рис. 2.23. Один из методов температурной компенсации источника тока.

Улучшение характеристик источника тока. Вообще говоря, изменение напряжения Uбэ, вызванное как влиянием температуры (относительное изменение составляет приблизительно -2 мВ/°С), так и зависимостью от напряжения Uбэ (эффект Эрли оценивается величиной ΔUбэ ≈ -0,001 ΔUкэ), можно свести к минимуму, если установить напряжение на эмиттере достаточно большим (по крайней мере 1 В), тогда изменение напряжения Uбэ на десятые доли милливольта не приведет к значительному изменению напряжения на эмиттерном резисторе (напомним, что схема поддерживает постоянное напряжение на базе). Например, если Uэ = 0,1В (т. е. к базе приложено напряжение 0,7 В), то изменение напряжения Uбэ на 10 мВ вызывает изменение выходного тока на 10%, если же Uэ = 1,0 В, то такое же изменение Uбэ вызывает изменение тока на 1%. Однако, не стоит заходить слишком далеко. Напомним, что нижняя граница рабочего диапазона определяется напряжением на эмиттере. Если в источнике тока, работающем от источника питания +10 В, напряжение на эмиттере сделать равным +5 В, то диапазон выхода будет равен немного менее 5 В (напряжение на коллекторе может изменяться от Uэ + 0,2 В до Uкк, т. е. от 5,2 до 10 В).

эмиттерный повторитель

Рис. 2.24. Каскодный источник тока, обладающий повышенной устойчивостью к изменениям напряжения на нагрузке.

На рис. 2.24 показана схема, которая существенно улучшает характеристики источника тока. Источник тока Т1 работает, как и прежде, но напряжение на коллекторе фиксируется с помощью эмиттера Т2. Ток, текущий в нагрузку, такой же, как и прежде, так как коллекторный (для Т2) и эмиттерный токи приблизительно равны между собой (из-за большого значения h21э). В этой схеме напряжение Uкэ (дая Т1) не зависит от напряжения на нагрузке, а это значит, что устранены изменения напряжения Uбэ, обусловленные эффектом Эрли и температурой. Для транзисторов типа 2N3565 эта схема дает изменение тока на 0,1% при изменении напряжения на нагрузке от 0 до 8 В; для того чтобы схема обеспечивала указанную точность, следует использовать стабильные резисторы с допуском 1%. (Кстати, эту схему используют в высокочастотных усилителях, где она известна под названием «каскод»). В дальнейшем вы познакомитесь со схемами источников тока, в которых используются операционные усилители и обратная связь, и в которых также решена задача устранения влияния изменений Uбэ на выходной ток.

Влияние коэффициента h21э можно ослабить, если выбрать транзистор с большим значением h21э, тогда ток базы будет вносить незначительный вклад в ток эмиттера.

эмиттерный повторитель

Рис. 2.25. Транзисторный источник тока с использованием напряжения Uбэ в качестве опорного.

На рис 2.25 показан еще один источник тока, в котором выходной ток не зависит от напряжения питания. В этой схеме напряжение Uбэ транзистора Т1, падая на резисторе R1, определяет выходной ток независимо от напряжения Uкк

Uвых = Uбэ/R2U2.

С помощью резистора R1 устанавливается смещение транзистора Т2 и потенциал коллектора Т1, причем этот потенциал меньше, чем напряжение Uкк, на удвоенную величину падения напряжения на переходе; тем самым уменьшается влияние эффекта Эрли. В этой схеме нет температурной компенсации; напряжение на R2 уменьшается приблизительно на 2,1 мВ/°С и вызывает соответствующее изменение выходного тока 0,3%/°С).

Модель Эберса-Молла для основных транзисторных схем

⚡️Генератор тока повышенной мощности | radiochipi.ru


На чтение 7 мин. Опубликовано
Обновлено

Для проверки работоспособности и настройки источников питания, стабилизаторов напряжения постоянного тока, измерения ёмкости аккумуляторных батарей, зарядки аккумуляторов стабильным током и в других случаях необходим мощный генератор стабильного тока.

Схема генератор постоянного тока Схема мощного генератора стабильного тока, собранного на биполярных транзисторах, с использованием отечественных комплектующих, показана на сайте смотрите рис.1. Устройство для своей работы не требует дополнительного источника питания, имеет защиту от перегрузки и переполюсовки входного напряжения. Диапазон входных напряжений устройства 3…75В постоянного тока, максимальная рассеиваемая мощность 150 Вт, максимальный рабочий ток 10 А. Такой генератор пригодится также для регулировки тока осветительных или нагревательных устройств.

Конструкция содержит встроенные аналоговые амперметр и вольтметр. Вход устройства подключают к источнику напряжения постоянного тока в соответствии с указанной полярностью. Плавкий предохранитель FU1 защищает конструкцию и источник питания от перегрузки. Диод VD1 защищает генератор тока нагрузки от переполюсовки напряжения питания. На высоковольтных транзисторах VT1, VT2, резисторах R4, R5, R6 и светодиоде HL2 собран индикатор наличия входного напряжения. Транзисторы этого узла включены как генератор стабильного тока около 1.5 мА, который будет протекать через светодиод HL2, практически не изменяясь от изменения входного напряжения в несколько раз.

Регулируемый генератор стабильного тока собран на транзисторах VT3-VT8. Регулируют ток переменным резистором R13. Генератор тока имеет два диапазона регулировки потребляемого тока: при разомкнутых контактах SA1 ток можно регулировать в диапазоне 0.2…1.5А; при замкнутых контактах SA1 потребляемый ток регулируется в диапазоне 1.5…10 А. Транзисторы VT3, VT5, VT6-VT8 включены как мощный составной транзистор с большим коэффициентом усиления по току. Маломощный транзистор VT4 управляет величиной тока, потребляемого устройством. При перемещении движка переменного резистора R13 вверх по схеме, протекающий через транзисторы VT3, VT5, VT6-VT8 ток увеличивается.

Транзисторы VT6-VT8 для увеличения нагрузочной способности включены параллельно, их выводы эмиттеров подключены к минусовому проводу питания через мощные токовыравнивающие резисторы R15-R17. Стабилизация тока осуществляется следующим образом: например, при увеличении входного напряжения, ток через транзисторы VT6-VT8, резисторы R15-R17, резистор R14 и, при замкнутых контактах SA1, через резисторы R18-R20 стремится увеличиться. Следовательно, увеличивается падение напряжения на выводах резистора R14.

принцип работы генератора токаЭто ведёт к тому, что также возрастает ток база- эмиттер VT4, этот транзистор открывается сильнее и шунтирует переход база-эмиттер транзистора VT3. Ток коллектор-эмиттер VT3 уменьшается, следовательно, будет уменьшаться ток через переходы транзисторов VT5-VT8.

Конденсатор С1 и резистор R8 предотвращают самовозбуждение узла на транзисторах VT3-VT8. Резистор R10 защитный для транзистора VT4. РА1 – стрелочный амперметр со встроенным шунтом. Если на его месте будет применён миллиамперметр без встроенного шунта, то дополнительно устанавливают мощный резистор R2.

РА1 – вольтметр со встроенным токоограничительным резистором. Если на его месте будет применён микроамперметр без встроенного резистора, то устанавливают дополнительный резистор R3. На резисторе R1, диодах VD1-VD4 и светодиоде HL1 собран индикатор перегорания плавкого предохранителя FU1. При зарядке аккумулятора последний включается последовательно с амперметром РА 1, т.е. в разрыв провода «+» от внешнего источника питания.

Конструкция и детали. Большинство деталей конструкции смонтировано на плате размерами 150×95 мм навесным монтажом (рис.2). Все сильноточные цепи должны быть выполнены медным монтажным проводом с сечением по меди не менее 1.5 мм². Все детали устройства смонтированы в корпусе размерами 255x150x110 мм (рис.3). Маломощные постоянные резисторы типов МЛТ, РПМ, С1-4, С2-23, С2-33. Переменный резистор R13 проволочный ППБ-ЗА, ППБ-1А сопротивлением 100…220 Ом. Качество переменного резистора должно быть безупречным, поскольку при плохом контакте подвижного контакта ток через генератор тока неконтролируемо увеличится.

Мощный резистор R14 типа С5-37 мощностью 10 Вт, под корпусом этого резистора в монтажной плате просверлены вентиляционные отверстия диаметром 5 мм. Вместо такого резистора подойдут другие проволочные мощностью 10 или 15 Вт, например, С5-35В-10, ПЭВ-10, 1ПЭВ-10. Резисторы R18-R20 самодельные проволочные, намотаны высокоомным проводом диаметром 0.68 мм на керамических трубках длиной 45 мм и диаметром 8 мм, можно использовать керамические трубки большего размера.

Для уменьшения количества межвитковых замыканий самодельные проволочные резисторы промазаны силикатным клеем. Вместо этих резисторов можно установить проволочные резисторы промышленного изготовления мощностью 15…25Вт, например, ПЭВ-20, ПЭВ-25 или удвоенное количество резисторов С5-37-10 сопротивлением 2.4 Ом. Под этими резисторами в монтажной плате также просверливают вентиляционные отверстия.

Регистры R15-R17 самодельные проволочные с одинаковым сопротивлением 0.1…0.25 Ом, по конструкции аналогичны резисторам R18-R20, установлены рядом с мощными транзисторами на дополнительной монтажной планке. Явно избыточная мощность постоянных проволочных резисторов необходима для того, чтобы уменьшить их нагрев, тем самым, повысив стабильность их сопротивления.

Конденсатор С1 плёночный импортный на рабочее напряжение не менее 100 В, можно заменить конденсатором типа К73-15, К73-16. К73-17, К73-24, К73-9. Маломощные диоды КД522А можно заменить любыми из серий КД503, КД510, КД521, 1 N914, 1N4148. Диод Д215 можно заменить любым из Д214, Д231А, Д232, Д242, Д242А, Д243, Д243А, серий КД203, 2Д203, КД206, 2Д213, КД213, 2Д231, HFA15PB60, HFA16TA60C и другими выпрямительными на обратное рабочее напряжение не менее 100 В и прямой рабочий ток не менее 10 А.

Светодиоды любого типа общего применения, желательно с повышенной светоотдачей, например, из серий КИПД21, КИПД36, КИПД40, КИПД66. Транзисторы КТ940Б можно заменить любыми из серий КТ940, КТ969, КТ9179, 2SC2330, 2SC2383, 2SC2310. Вместо транзистора КТ851А можно установив КТ851Б, КТ851В. КТ816Г, КТ8167А, КТ8167Г, 2SA1249, 2SA1306 с коэффициентом передачи тока базы не менее 100 при токе коллектора 50 мА. Этот транзистор установлен на дюралюминиевый теплоотвод с площадью охлаждения 6 см² (одна сторона).

Транзистор КТ850А можно заменить КТ850Б. КТ850В, КТ863В, КТ817Г, 2SD1407, 2SD1474, 2SD669A с коэффициентом передачи тока базы не менее 80 при токе коллектора 1 А. Этот транзистор установлен на дюралюминиевый теплоотвод размерами 50x45x3 мм. Транзисторы КТ808АМ можно заменить другими аналогичными, выполненными в металлостеклянном корпусе КТ-9 (ТО-3), например, тремя однотипными КТ808БМ, КТ808ВМ, КТ808А, КТ819ГМ, КТ864А, 2N3442, 2N3773, MJ3281 с коэффициентом передачи тока базы не менее 40 при токе коллектора 3 А.

Эти транзисторы установлены на общий массивный ребристый дюралюминиевый теплоотвод с площадью охлаждающей поверхности около 800 см² (одна сторона). Корпуса транзисторов изолированы от теплоотвода тонкими слюдяными прокладками. С таким теплоотводом генератор тока может рассеивать непрерывно до 60 Вт мощности при пассивном воздушном охлаждении или до 150 Вт кратковременно или при принудительном воздушном охлаждении с помощью вентилятора. Из этого следует, например, что при входном напряжении 37В максимальный постоянный ток не должен превышать 4А.

Этот теплоотвод также выполняет функцию задней стенки корпуса. Лучшим выбором в качестве мощных транзисторов VT6-VT8 будут транзисторы типа MJ3281A, которые имеют максимальную рассеиваемую мощность до 250 Вт каждый и гарантированный минимальный коэффициент передачи тока базы не менее 45 при токе коллектора 8 А.

Транзистор КТ3107Г можно заменить любым из серий КТ502, КТ3107, КТ361, SS9015, 2SB1116. Амперметр и вольтметр применены готовые типа М4200 со встроенными резисторами и готовыми шкалами. Кнопка SA1 типа KDC-A04-1 с зависимой фиксацией положения, можно заменить аналогичной с переключаемыми контактами, рассчитанными на коммутацию тока 10 А или более.

Свободные группы контактов соединяют параллельно. От сопротивления резистора R12 зависит максимальная величина тока, который можно установить переменным резистором. Внешний вид устройства показан на фото в начале статьи. Верхняя и нижняя крышки корпуса – металлические с вентиляционными отверстиями, с электрическими цепями устройства не соединены.

При проверке работоспособности следует учитывать, что измерительные щупы цифровых мультиметров, несмотря на значительную внешнюю толщину проводов, могут иметь крайне малое сечение провода по меди и значительно влиять на результаты измерений при токе более 1 А и низком выходном напряжении источника питания.

схема генератора на транзисторе DIY

Радиолюбителям необходимо получать различные радиосигналы. Для этого необходимо наличие нч и вч генератора. Зачастую такой тип приборов называют генератор на транзисторе за его конструктивную особенность.

Работа генератора на транзисторе

Работа генератора на транзисторе

Дополнительная информация. Генератор тока – это автоколебательное устройство, созданное и используемое для появления электрической энергии в сети или преобразования одного вида энергии в другой с заданной эффективностью.

Автоколебательные транзисторные приборы

Генератор на транзисторе разделяют на несколько видов:

  • по частотному диапазону выдаваемого сигнала;
  • по типу выдаваемого сигнала;
  • по алгоритму действия.

Частотный диапазон принято подразделять на следующие группы:

  • 30 Гц-300 кГц – низкий диапазон, обозначается нч;
  • 300 кГц-3 МГц – средний диапазон, обозначается сч;
  • 3-300 МГц – высокий диапазон, обозначается вч;
  • более 300 МГц – сверхвысокий диапазон, обозначается свч.

Так подразделяют диапазоны радиолюбители. Для звуковых частот используют промежуток 16 Гц-22 кГц и тоже делят его на низкие, средние и высокие группы. Эти частоты присутствуют в любом бытовом приёмнике звука.

Следующее разделение – по виду выдаваемого сигнала:

  • синусоидальный – происходит выдача сигнала по синусоиде;
  • функциональный – на выходе у сигналов появляется специально заданная форма, например, прямоугольная или треугольная;
  • генератор шума – на выходе наблюдается равномерный диапазон частот; диапазоны могут быть различны, в зависимости от нужд потребителя.

Транзисторные усилители различаются по алгоритму действия:

  • RC – основная область применения – низкий диапазон и звуковые частоты;
  • LC – основная область применения – высокие частоты;
  • Блокинг-генератор – используется для производства сигналов-импульсов с большой скважностью.

Деление частот

Деление частот

Изображение на электрических схемах

Для начала рассмотрим получение синусоидального типа сигнала. Самый известный генератор на транзисторе такого типа – генератор колебаний Колпитца. Это задающий генератор с одной индуктивностью и двумя последовательно соединёнными ёмкостями. С помощью него производится генерация требуемых частот. Оставшиеся элементы обеспечивают требуемый режим работы транзистора на постоянном токе.

Дополнительная информация. Эдвин Генри Колпитц – руководитель отдела инноваций «Вестерн Электрик» в начале прошлого века. Был пионером в разработке усилителей сигнала. Впервые произвёл радиотелефон, позволяющий разговаривать через Атлантику.

Также широко известен задающий генератор колебаний Хартли. Он, как и схема Колпитца, достаточно прост в сборке, однако требуется индуктивность с отводом. В схеме Хартли один конденсатор и две последовательно соединённые катушки индуктивности производят генерацию. Также в схеме присутствует дополнительная ёмкость для получения плюсовой обратной связи.

Схемы генераторов на транзисторах

Схемы генераторов на транзисторах

Основная область применения вышеописанных приборов – средние и высокие частоты. Используют для получения несущих частот, а также для генерации электрических колебаний малой мощности. Принимающие устройства бытовых радиостанций также используют генераторы колебаний.

Все перечисленные области применения не терпят нестабильного приёма. Для этого в схему вводят ещё один элемент – кварцевый резонатор автоколебаний. В этом случае точность высокочастотного генератора становится практически эталонной. Она достигает миллионных долей процента. В принимающих устройствах радиоприёмников для стабилизации приёма применяют исключительно кварц.

Что касается низкочастотных и звуковых генераторов, то здесь есть очень серьёзная проблема. Для увеличения точности настройки требуется увеличение индуктивности. Но увеличение индуктивности ведёт к нарастанию размеров катушки, что сильно сказывается на габаритах приёмника. Поэтому была разработана альтернативная схема генератора Колпитца – генератор низких частот Пирса. В ней индуктивность отсутствует, а на её месте применён кварцевый резонатор автоколебаний. Кроме того, кварцевый резонатор позволяет отсечь верхний предел колебаний.

В такой схеме ёмкость не даёт постоянной составляющей базового смещения транзистора дойти до резонатора. Здесь могут формироваться сигналы до 20-25 МГц, в том числе звуковые.

Производительность всех рассмотренных устройств зависит от резонансных свойств системы, состоящей из емкостей и индуктивностей. Отсюда следует, что частота будет определена заводскими характеристиками конденсаторов и катушек.

Важно! Транзистор – это элемент, произведённый из полупроводника. Имеет три вывода и способен от поданного входного сигнала небольшой величины управлять большим током на выходе. Мощность элементов бывает разная. Используется для усиления и коммутации электрических сигналов.

Дополнительная информация. Презентация первого транзистора была проведена в 1947 г. Его производная – полевой транзистор, появился в 1953г. В 1956г. за изобретение биполярного транзистора была вручена Нобелевская премия в области физики. К 80-м годам прошлого века электронные лампы были полностью вытеснены из радиоэлектроники.

Функциональный транзисторный генератор

Функциональные генераторы на транзисторах автоколебания изобретены для производства методично повторяющихся сигналов-импульсов заданной формы. Форма их задаётся функцией (название всей группы подобных генераторов появилось вследствие этого).

Различают три основных вида импульсов:

  • прямоугольные;
  • треугольные;
  • пилообразные.

Как пример простейшего нч производителя прямоугольных сигналов зачастую приводится мультивибратор. У него самая простая схема для сборки своими руками. Часто с её реализации начинают радио электронщики. Главная особенность – отсутствие строгих требований к номиналам и форме транзисторов. Это происходит из-за того, что скважность в мультивибраторе определяется емкостями и сопротивлениями в электрической цепи транзисторов. Частота на мультивибраторе находится в диапазоне от 1 Гц до нескольких десятков кГц. Высокочастотные колебания здесь организовать невозможно.

Получение пилообразных и треугольных сигналов происходит путём добавления в типовую схему с прямоугольными импульсами на выходе дополнительной цепочки. В зависимости от характеристик этой дополнительной цепочки, прямоугольные импульсы преобразуются в треугольные или пилообразные.

Блокинг-генератор

По своей сути, является усилителем, собранным на базе транзисторов, расположенных в один каскад. Область применения узка – источник внушительных, но скоротечных по времени (продолжительность от тысячных долей до нескольких десятков мкс) сигналов-импульсов с большой индуктивной плюсовой обратной связью. Скважность – больше 10 и может доходить до нескольких десятков тысяч в относительных величинах. Наблюдается серьезная резкость фронтов, по своей форме практически не отличающихся от геометрически правильных прямоугольников. Применяются в экранах электронно-лучевых приборов (кинескоп, осциллограф).

Генераторы импульсов на полевых транзисторах

Главное отличие полевых транзисторов – сопротивление на входе соизмеримо с сопротивлением электронных ламп. Схемы Колпитца и Хартли можно собирать и на полевых транзисторах, только катушки и конденсаторы необходимо подбирать с соответствующими техническими характеристиками. В противном случае генераторы на полевых транзисторах работать не будут.

Цепи, задающие частоту, подчиняются таким же законам. Для производства высокочастотных импульсов лучше приспособлен обычный прибор, собранный с использованием полевых транзисторов. Полевой транзистор не шунтирует индуктивность в схемах, поэтому генераторы вч сигнала работают более стабильно.

Регенераторы

LC-контур у генератора можно заменить путём добавления активного и отрицательного резистора. Это регенеративный путь получения усилителя. Такая схема обладает положительной обратной связью. Благодаря этому происходит компенсация потерь в колебательном контуре. Описанный контур называется регенерированным.

Генератор шума

Главное отличие – равномерная характеристика нч и вч частот в требуемом диапазоне. Это означает, что амплитудная характеристика всех частот этого диапазона не будет отличаться. Используются преимущественно в аппаратуре для измерений и в военной отрасли (особенно самолёто,- и ракетостроении). Кроме того, применяют для восприятия звука человеческим ухом – так называемый «серый» шум.

Простой звуковой генератор своими руками

Рассмотрим простейший пример – ревун. Понадобятся всего четыре элемента: плёночный конденсатор, 2 биполярных транзистора и резистор для подстройки. Нагрузкой будет электромагнитный излучатель. Для питания устройства достаточно простой батарейки на 9В. Работа схемы проста: резистор задаёт смещение на базу транзистора. Через конденсатор происходит обратная связь. Резистор для подстройки изменяет частоту. Нагрузка должна быть с высоким сопротивлением.

Схема звукового генератора

Схема звукового генератора

При всём многообразии типов, размеров и форм исполнения рассмотренных элементов мощных транзисторов для сверхвысоких частот до сих пор не придумано. Поэтому генераторы на транзисторах автоколебания применяют в основном для нч и вч диапазонов.

Видео

3. Источник тока и токовое зеркало

В современной схемотехнике, особенно в интегральном исполнении, в качестве нагрузок широко используют источники тока или, как их ещё называют, генераторы стабильного тока (ГСТ). Для получения активных источников тока в качестве динамической нагрузки чаще всего используют отражатели тока (ОТ) -токовое зеркало.

Простейший генератор тока представлен на рис.46. Ток нагрузки равен:

Iн-(Uст-Uбэ)/R2

Выходное сопротивление такого источника равно выходному со противлению каскада с общим эмиттером. Недостаток такого источника — в относительно низком выходном сопротивлении и наличии эффекта модуляции h2lэ под действием Uк из-за изменения нагрузки.

Усовершенствованные в этом отношении генераторы тока показаны на рис.47 и 48. В первом случае — за счёт применения каскада, во-втором — усовершенствованного составного транзистора (рис.4) («Азбука…», ч.1).

Однако наиболее простые двуполярные генераторы тока можно получить с применением полевых транзисторов (рис.49 и 50).

Характерная особенность ГСТ (рис.51) — отсутствие стабилитрона как источника опорного напряжения. Выходной ток рассчитывают по формуле:

Iн=0.66/R2

При токах нагрузки свыше 3 мА в качестве VT2 следует применять составной транзистор. Основной недостаток такого ГСТ — низкая температурная стабильность.

Двуполярный ГСТ (рис.52) получен в результате встречного включения двух зеркальных ГСТ (рис.51).

Простейший отражатель тока (ОТ) показан на рис.53. Выходное сопротивление Rвых=rКэ, а выходной ток Iн=Ion*h21э/(h21э+2) при условии равенства параметров транзисторов. Введение в эмиттеры транзисторов резисторов 1…2кОм практически сводит на нет эффект Эрли (изменение коллекторного тока до — 25% в зависимости от изменения напряжения на коллекторе).

В результате замены резистора R2 в схеме (рис.51) на транзистор VT3 получим токовое зеркало Уилсона (рис.54). Опорный ток Iоп=const, т.к. Iб2 вычитается, а Iб1 вновь добавляется. Динамическое выходное сопротивление такого ОТ значительно выше: Rвых=I21э*rкэ, отклонения тока значительно меньше и имеют величину 1/h21э2. Меньше и критичность к разбросу параметров ЭРЭ.

На рис.55 показан каскадный отражатель тока. Динамическое внутреннее сопротивление такого ОТ больше нескольких МОм, эффект Эрли значительно ослаблен.

Прецизионный отражатель тока (рис.56) [5] имеет повышенную точность за счёт добавления базового тока транзистора VT3 (равного базовому току VT2) к выходному току транзистора VT4.

Отражатель тока на несколько нагрузок сразу показан на рис.57. Эта схема требует высокой идентичности транзисторов VT1, VT3, VT4…VTn. Недостаток такого ОТ — сравнительно малое выходное сопротивление источников тока.

Встречное включение двух отражателей тока (рис.53) [6,7] даёт двуполярный преобразователь напряжение-ток (ПНТ) (рис.58).

1. Простейший генератор тока.

Ток нагрузки равен: Iн-(Uст-Uбэ)/R2. Выходное сопротивление такого источника равно выходному сопротивлению каскада с общим эмиттером. Недостаток — относительно низкое выходное сопротивление и наличие эффекта модуляции h21э под действием Uк из-за изменения нагрузки.

Рис. 46.

2. Усовершенствованные генераторы тока.

С каскодным включением.

С усовершенствованным составным транзистором.

Рис. 47, 48.

3. Простые двуполюсные генераторы тока на ПТ.

Рис. 49, 50.

4. ГСТ без стабилитрона.

Выходной ток равен: Iн=0.66/R2; При токах нагрузки более 3 мА в качестве VT2 нужно применять составной транзистор. Недостаток — низкая температурная стабильность.

Рис. 51.

5. Двуполюсный ГСТ.

Рис. 52.

6. Простейший отражатель тока.

Выходное сопротивление Rвых=Rкэ, выходной ток Iн=Ion*h21э/(h21э+2) при условии равенства параметров транзисторов. Введение в эмиттеры транзисторов резисторов 1..2 к практически подавляет эффект Эрли (изменение коллекторного тока — 25% в зависимости от изменения напряжения на коллекторе).

Рис. 53.

7. Токовое зеркало Уилсона.

Опорный ток Iоп=const , т.к. Iб2 вычитается, а Iб1 вновь добавляется. Динамическое выходное сопротивление такого отражателя тока значительно выше: Rвых=rКэ, отклонения тока значительно меньше и имеют величину 1/h21э2. Меньше и критичность к разбросу параметров радиоэлементов.

Рис. 54.

8. Каскодный отражатель тока.

Динамическое внутреннее сопротивление такого отражателя тока превышает несколько МОм, эффект Эрли значительно ослаблен.

Рис. 55.

9. Прецизионный отражатель тока.

Имеет повышенную точность за счёт добавления базового тока транзистора VT3 (равного базовому току VT2) к выходному току транзистора VT4.

Рис. 56.

10. Отражатель тока на несколько нагрузок.

Эта схема требует высокой идентичности VT1, VT3, VT4…VTn. Недостаток — такого отражателя тока — сравнительно малое выходное сопротивление источников тока.

Рис. 57.

11. Преобразователь напряжение — ток.

Рис. 58.

Простые автогенераторные преобразователи напряжения на транзисторах

В генераторах с самовозбуждением (автогенераторах) для возбуждения электрических колебаний обычно используется положительная обратная связь. Существуют также автогенераторы на активных элементах с отрицательным динамическим сопротивлением, однако в качестве преобразователей они практически не используются.

Наиболее простая схема однокаскадного преобразователя напряжения на основе автогенератора показана на рис. 9.1. Этот вид генераторов получил название блокинг-генераторов. Фазовый сдвиг для обеспечения условия возникновения колебаний в нем обеспечивается определенным включением обмоток.

принципиальная схема

Рис. 9.1. Схема преобразователя напряжения с трансформаторной обратной связь.

Аналог транзистора 2N3055 — КТ819ГМ. Блокинг-генератор позволяет получать короткие импульсы при большой скважности. По форме эти импульсы приближаются к прямоугольным. Емкости колебательных контуров блокинг-гене-ратора, как правило, невелики и обусловлены межвитковыми емкостями и емкостью монтажа. Предельная частота генерации блокинг-генератора — сотни кГц. Недостатком этого вида генераторов является выраженная зависимость частоты генерации от изменения питающего напряжения.

Резистивный делитель в цепи базы транзистора преобразователя (рис. 9.1) предназначен для создания начального смещения. Несколько видоизмененный вариант преобразователя с трансформаторной обратной связью представлен на рис. 9.2.

принципиальная схема

Рис. 9.2. Схема основного (промежуточного) блока источника высоковольтного напряжения на основе автогенераторного преобразователя.

Автогенератор работает на частоте примерно 30 кГц. На выходе преобразователя формируется напряжение амплитудой до 1 кВ (определяется числом витков повышающей обмотки трансформатора).

Трансформатор Т1 выполнен на диэлектрическом каркасе, вставляемом в броневой сердечник Б26 из феррита М2000НМ1 (М1500НМ1). Первичная обмотка содержит 6 витков; вторичная обмотка — 20 витков провода ГІЭЛШО диаметром 0,18 мм (0,12…0,23 мм). Повышающая обмотка для достижения выходного напряжения величиной 700…800 В имеет примерно 1800 витков провода ПЭЛ диаметром 0,1 мм. Через каждые 400 витков при намотке укладывается диэлектрическая прокладка из конденсаторной бумаги, слои пропитывают конденсаторным или трансформаторным маслом. Места выводов катушки заливают парафином.

Этот преобразователь может быть использован в качестве промежуточного для питания последующих ступеней формирования высокого напряжения (например с электрическими разрядниками или тиристорами).

Следующий преобразователь напряжения (США) также выполнен на одном транзисторе (рис. 9.3). Стабилизация напряжения смещения базы осуществляется тремя последовательно включенными диодами VD1 — VD3 (прямое смещение).

принципиальная схема

Рис. 9.3. Схема преобразователя напряжения с трансформаторной обратной связью.

Коллекторный переход транзистора VT1 защищен конденсатором С2, кроме того, параллельно коллекторной обмотке трансформатора Т1 подключена цепочка из диода VD4 и стабилитрона VD5.

Генератор вырабатывает импульсы, по форме близкие к прямоугольным. Частота генерации составляет 10 кГц и определяется величиной емкости конденсатора СЗ. Аналог транзистора 2N3700 — КТ630А.

Схема двухтактного трансформаторного преобразователя напряжения показана на рис. 9.4. Аналог транзистора 2N3055 — КТ819ГМ.

Трансформатор высоковольтного преобразователя (рис. 9.4) может быть выполнен с использованием ферритового незамкнутого сердечника круглого или прямоугольного сечения, а также на основе телевизионного строчного трансформатора. При использовании ферритового сердечника круглой формы диаметром 8 мм число витков высоковольтной обмотки в зависимости от требуемой величины выходного напряжения может достигать 8000 витков провода диаметром 0,15…0,25 мм. Коллекторные обмотки содержат по 14 витков провода диаметром 0,5…0,8 мм.

принципиальная схема

Рис. 9.4. Схема двухтактного преобразователя с трансформаторной обратной связью.

принципиальная схема

Рис. 9.5. Вариант схемы высоковольтного преобразователя с трансформаторной обратной связью.

Обмотки обратной связи (базовые обмотки) содержат по 6 витков такого же провода. При подключении обмоток следует соблюдать их фази-ровку. Выходное напряжение преобразователя — до 8 кВ.

В качестве транзисторов преобразователя могут быть использованы транзисторы отечественного производства, например, КТ819 и им подобные.

Вариант схемы аналогичного преобразователя напряжения показан на рис. 9.5. Основное различие заключается в цепях подачи смещения на базы транзисторов.

Число витков первичной (коллекторной) обмотки — 2×5 витков диаметром 1,29 мм\ вторичной — 2×2 витков диаметром 0,64 мм. Выходное напряжение преобразователя целиком определяется числом витков повышающей обмотки и может достигать 10…30 кВ.

Преобразователь напряжения А. Чаплыгина не содержит резисторов (рис. 9.6). Он питается от батареи напряжением 5 6 и способен отдавать в нагрузку до 1 А при напряжении 12 В.

принципиальная схема

Рис. 9.6. Схема простого высокоэффективного преобразователя напряжения с питанием от батареи 5 В.

Диодами выпрямителя служат переходы транзисторов автогенератора.

Устройство способно работать и при пониженном до 1 В напряжении питания. Для маломощных вариантов преобразователя можно использовать транзисторы типа КТ208, КТ209, КТ501 и другие. Максимальный ток нагрузки не должен превышать максимального тока базы транзисторов.

Диоды VD1 и VD2 — не обязательны, однако позволяют получить на выходе дополнительное напряжение 4,2 В отрицательной полярности. КПД устройства около 85%.

Трансформатор Т1 выполнен на кольце К18x8x5 2000НМ1. Обмотки I и II имеют по 6, III и IV — по 10 витков провода ПЭЛ-2 0,5.

Преобразователь напряжения (рис. 9.7) выполнен по схеме индуктивной трехточки и предназначен для измерений высокоомных сопротивлений и позволяет получить на выходе не-стабилизированное напряжение 120… 150 В. Потребляемый преобразователем ток около 3…5 мА при напряжении питания 4,5 В. Трансформатор для этого устройства может быть создан на основе телевизионного трансформатора БТК-70. Его вторичную обмотку удаляют, взамен нее наматывают низковольтную обмотку преобразователя — 90 витков (два слоя по 45 витков) провода ПЭВ-1 0,19…0,23 мм. Отвод от 70-го витка снизу по схеме. Резистор R1 — величиной 12…51 кОм.

принципиальная схема

Рис. 9.7. Схема преобразователя напряжения по схеме индуктивной трехтонки.

принципиальная схема

Рис. 9.8. Схема преобразователя напряжения 1,5 В/-9 В.

Преобразователь (рис. 9.8) представляет собой однотакт-ный релаксационный генератор с емкостной положительной обратной связью (С2, СЗ). В коллекторную цепь транзистора VT2 включен повышающий автотрансформатор Т1. В преобразователе использовано обратное включение выпрямительного диода VD1, т.е. при открытом транзисторе VT2 к обмотке автотрансформатора приложено напряжение питания Un, и на выходе автотрансформатора появляется импульс напряжения. Однако включенный в обратном направлении диод VD1 в это время закрыт, и нагрузка отключена от преобразователя.

В момент паузы, когда транзистор закрывается, полярность напряжения на обмотках Т1 изменяется на противоположную, диод VD1 открывается, и выпрямленное напряжение прикладывается к нагрузке. При последующих циклах, когда транзистор VT2 запирается, конденсаторы фильтра (С4, С5) разряжаются через нагрузку, обеспечивая протекание постоянного тока. Индуктивность повышающей обмотки автотрансформатора Т1 при этом играет роль дросселя сглаживающего фильтра.

Для устранения подмагничивания сердечника автотрансформатора постоянным током транзистора VT2 используется перемагничивание сердечника автотрансформатора за счет включения параллельно его обмотке конденсаторов С2 и СЗ, которые одновременно являются делителем напряжения обратной связи. Когда транзистор VT2 закрывается, конденсаторы С2 и СЗ в течение паузы разряжаются через часть обмотки трансформатора, пе-ремагничивая сердечник Т1 током разряда.

Частота генерации зависит от напряжения на базе транзистора ѴТ1. Стабилизация выходного напряжения осуществляется за счет отрицательной обратной связи (ООС) по постоянному напряжению посредством R2. При понижении выходного напряжения увеличивается частота генерируемых импульсов при примерно одинаковой их длительности. В результате увеличивается частота подзарядки конденсаторов фильтра С4 и С5 и падение напряжения на нагрузке компенсируется. При увеличении выходного напряжения частота генерации, наоборот, уменьшается. Так, после заряда накопительного конденсатора С5 частота генерации падает в десятки раз. Остаются лишь редкие импульсы, компенсирующие разряд конденсаторов в режиме покоя. Такой способ стабилизации позволил уменьшить ток покоя преобразователя до 0,5 мА.

Транзисторы ѴТ1 и ѴТ2 должны иметь возможно больший коэффициент усиления для повышения экономичности. Обмотка автотрансформатора намотана на ферритовом кольце К10x6x2 из материала 2000НМ и имеет 300 витков провода ПЭЛ-0,08 с отводом от 50-го витка (считая от «заземленного» вывода). Диод VD1 должен быть высокочастотным и иметь малый обратный ток.

Налаживание преобразователя сводится к установке выходного напряжения равным -9 В путем подбора резистора R2.

На рис. 9.9 показана схема преобразователя стабилизированного напряжения с широтно-импульсным управлением. Преобразователь сохраняет работоспособность при уменьшении напряжения батареи с 9…. 12 до 3В. Такой преобразователь оказывается наиболее пригодным при батарейном питании аппаратуры.

КПД стабилизатора — не менее 70%. Стабилизация сохраняется при уменьшении напряжения источника питания ниже выходного стабилизированного напряжения преобразователя, чего не может обеспечить традиционный стабилизатор напряжения. Принцип стабилизации, использованный в данном преобразователе напряжения.

принципиальная схема

Рис. 9.9. Схема преобразователя стабилизированного напряжения.

При включении преобразователя ток через резистор R1 открывает транзистор ѴТ1, коллекторный ток которого, протекая через обмотку II трансформатора Т1, открывает мощный транзистор ѴТ2. Транзистор ѴТ2 входит в режим насыщения, и ток через обмотку I трансформатора линейно увеличивается. В трансформаторе происходит накопление энергии. Через некоторое время транзистор ѴТ2 переходит в активный режим, в обмотках трансформатора возникает ЭДС самоиндукции, полярность которой противоположна приложенному к ним напряжению (магнитопровод трансформатора не насыщается). Транзистор ѴТ2 лавинообразно закрывается и ЭДС самоиндукции обмотки I через диод VD2 заряжает конденсатор СЗ. Конденсатор С2 способствует более четкому закрыванию транзистора. Далее процесс повторяется.

Через некоторое время напряжение на конденсаторе СЗ увеличивается настолько, что открывается стабилитрон VD1, и базовый ток транзистора ѴТ1 уменьшается, при этом уменьшается ток базы, а значит, и коллекторный ток транзистора ѴТ2. Поскольку накопленная в трансформаторе энергия определяется коллекторным током транзистора ѴТ2, дальнейшее увеличение напряжения на конденсаторе СЗ прекращается. Конденсатор разряжается через нагрузку. Таким образом на выходе преобразователя поддерживается постоянное напряжение.

Выходное напряжение задает стабилитрон VD1. Частота преобразования изменяется в пределах 20… 140 кГц.

Преобразователь напряжения, схема которого показана на рис. 9.10, отличается тем, что в нем цепь нагрузки гальванически развязана от цепи управления. Это позволяет получить несколько вторичных стабильных напряжений. Использование интегрирующего звена в цепи обратной связи позволяет улучшить стабилизацию вторичного напряжения.

принципиальная схема

Рис. 9.10. Схема преобразователя стабилизированного напряжения с биполярным выходом.

Частота преобразования уменьшается почти линейно при уменьшении питающего напряжения. Это обстоятельство усиливает обратную связь в преобразователе и повышает стабильность вторичного напряжения. Напряжение на сглаживающих конденсаторах вторичных цепей зависит от энергии импульсов, получаемых от трансформатора. Наличие резистора R2 делает напряжение на накопительном конденсаторе СЗ зависимым и от частоты следования импульсов, причем степень зависимости (крутизна) определяется сопротивлением этого резистора. Таким образом, подстроечным резистором R2 можно устанавливать желаемую зависимость изменения напряжения вторичных обмоток от изменения напряжения питания. Полевой транзистор ѴТ2 — стабилизатор тока. КПД преобразователя может доходить до 70… 90%.

Нестабильность выходного напряжения при напряжении питания 4… 12 В не более 0,5%, а при изменении температуры окружающего воздуха от -40 до +50°С — не более 1,5%. Максимальная мощность нагрузки — 2 Вт.

При налаживании преобразователя резисторы R1 и R2 устанавливаются в положение минимального сопротивления и подключают эквиваленты нагрузок RH. На вход устройства подается напряжение питания 12 В и с помощью резистора R1 на нагрузке Rн устанавливается напряжение 15 В. Далее напряжение питания уменьшают до 4В и резистором R2 добиваются напряжения на выходе также 15 В. Повторяя этот процесс несколько раз, добиваются стабильного напряжения на выходе.

Обмотки I и II и магнитопровод трансформатора у обоих вариантов преобразователи одинаковы. Обмотки намотаны на броневом магнитопроводе Б26 из феррита 1500НМ. Обмотка I содержит 8 витков провода ПЭЛ 0,8, а II — 6 витков провода ПЭЛ 0,33 (каждая из обмоток III и IV состоит из 15 витков провода ПЭЛ 0,33 мм).

принципиальная схема

Рис. 9.11. Схема понижающего преобразователя напряжения на основе блокинг-генератора.

Схема простого малогабаритного преобразователя сетевого напряжения, выполненного из доступных элементов, показана на рис. 9.11. В основе устройства обычный блокинг-генера-тор на транзисторе VT1 (КТ604, КТ605А, КТ940).

Трансформатор Т1 намотан на броневом сердечнике Б22 из феррита М2000НН. Обмотки Іа и Іб содержат 150+120 витков провода ПЭЛШО 0,1 мм. Обмотка II имеет 40 витков провода ПЭЛ 0,27 мм III — 11 витков провода ПЭЛШО 0,1 мм. Вначале наматывается обмотка Іа, затем — II, после — обмотка lb, и, наконец, обмотка III.

Источник питания не боится короткого замыкания или обрыва в нагрузке, однако имеет большой коэффициент пульсаций напряжения, низкий КПД, небольшую выходную мощность (до 1 Вт) и значительный уровень электромагнитных помех. Питать преобразователь можно и от источника постоянного тока напряжением 120 6. В этом случае резисторы R1 и R2 (а также диод VD1) следует исключить из схемы.

Слаботочный преобразователь напряжения для питания газоразрядного счетчика Гейгера-Мюллера может быть собран по схеме на рис. 9.12. Преобразователь представляет собой транзисторный блокинг-генератор с дополнительной повышающей обмоткой. Импульсы с этой обмотки заряжают конденсатор СЗ через выпрямительные диоды VD2, VD3 до напряжения 440 В. Конденсатор СЗ должен быть либо слюдяным, либо керамическим, на рабочее напряжение не ниже 500 В. Длительность импульсов блокинг-генератора примерно 10 мкс. Частота следования импульсов (десятки Гц) зависит от постоянной времени цепи R1, С2.

принципиальная схема

Рис. 9.12. Схема слаботочного преобразователя напряжения для питания газоразрядного счетчика Гейгера-Мюллера.

Магнитопровод трансформатора Т1 изготавливают из двух склеенных вместе ферритовых колец К16x10x4,5 3000НМ и изолируют его слоем лакоткани, тефлона или фторопласта. Вначале наматывают внавал обмотку III — 420 витков провода ПЭВ-2 0,07, заполняя магнитопровод равномерно. Поверх обмотки III накладывают слой изоляции. Обмотки I (8 витков) и II (3 витка) наматывают любым проводом поверх этого слоя, их также следует возможно равномернее распределить по кольцу.

Следует обратить внимание на правильную фазировку обмоток, она должна быть выполнена до первого включения. При сопротивлении нагрузки порядка единиц МОм преобразователь потребляет ток 0,4… 1,0 мА.

Преобразователь напряжения (рис. 9.13) предназначен для питания фотовспышки. Трансформатор Т1 выполнен на магнитопроводе из двух сложенных вместе пермаллоевых колец К40х28х6. Обмотка коллекторной цепи транзистора VT1 имеет 16 витков ПЭВ-2 0,6 мм; его базовой цепи — 12 витков такого же провода. Повышающая обмотка содержит 400 витков ПЭВ-2 0,2.

принципиальная схема

Рис. 9.13. Схема преобразователя напряжения для фотовспышки.

Неоновая лампа HL1 использована от стартера лампы дневного света. Выходное напряжение преобразователя плавно повышается на конденсаторе фотовспышки до 200 В за 50 секунд. Устройство при этом потребляет ток до 0,6 А.

Для питания ламп-вспышек предназначен преобразователь напряжения ПН-70, являющийся основой описываемого ниже устройства (рис. 9.14). Обычно энергия батарей преобразователя расходуется с минимальной эффективностью. Вне зависимости от частоты следования вспышек света генератор работает непрерывно, расходуя большое количество энергии и разряжая батареи.

принципиальная схема

Рис. 9.14. Схема модифицированного преобразователя напряжения ПН-70.

Перевести работу преобразователя в ждущий режим удалось О. Панчику, который включил на выходе преобразователя резистивный делитель R5, R6 и подал сигнал с него через стабилитрон VD1 на электронный ключ, выполненный на транзисторах VT1 — ѴТЗ по схеме Дарлингтона. Как только напряжение на конденсаторе фотовспышки (на схеме не показан) достигнет номинального значения, определяемого значением резистора R6, стабилитрон VD1 пробьется, а транзисторный ключ отключит батарею питания (9 В) от преобразователя. Когда напряжение на выходе преобразователя понизится в результате саморазряда или разряда конденсатора на лампу-вспышку, стабилитрон VD1 перестанет проводить ток, произойдет включение ключа и, соответственно, преобразователя.

Транзистор ѴТ1 должен быть установлен на медном радиаторе размерами 50x22x0,5 мм.

Источник: Шустов М. А. Практическая схемотехника. Преобразователи напряжения.

Источники тока на операционных усилителях, схемы и расчёты



Схемы генераторов тока, управляемых напряжением, на ОУ и выходными
каскадами на биполярных и полевых транзисторах.





Продолжаем наш тематический вечер, посвящённый схемотехническим исследованиям генераторов стабильного тока, источников тока и иже с ними —
стабилизаторов тока.

В повестке дня сегодняшнего радиолюбительского заседания обозначены следующие мероприятия: викторина «Угадай радиодетальку»,
а также обсуждение схемы источника (генератора) тока, выполненного на интегральном операционном усилителе
(ОУ в простонародье).

Базовые схемы генераторов тока на операционных усилителях мы бегло рассмотрели на предыдущей странице вместе с транзисторными источниками.
Повторим пройденный материал.
Источники тока на операционных усилителях

Рис.1

Генераторы тока, изображённые на Рис.1, (инвертирующий слева, неинвертирующий справа) — вполне себе работоспособные устройства,
которые являются близкими аналогами идеальных источников тока, и практически лишены недостатков, присущих транзисторным схемам.

Ток через нагрузку с достаточно высокой точностью описывается формулой
Iн≈ Uвх/R1.

При включении в качестве Rн конденсатора, приведённые схемы широким фронтом эксплуатируются в формирователях треугольного
и пилообразного напряжений.


В отдельных случаях существенным недостатком источников тока, изображённых на Рис.1, является «плавающая», т.е. не подключённая
никаким боком к земле или питанию нагрузка. К тому же, по большей части, операционный усилитель не может обеспечить значительных
величин токов, поступающих в нагрузку.

Рассмотрим схемы источников тока на ОУ, не имеющих этих недостатков.

Как правило, для получения устойчивого положительного результата,
к операционному усилителю присовокупляется дополнительный выходной каскад на биполярном или полевом транзисторе.
Источники тока на ОУ

Рис.2

На Рис.2 приведены схемы генераторов тока на ОУ с выходными каскадами на биполярном, либо полевом транзисторе и нагрузкой,
подключаемой к шине питания.

Пренебрегая входным током ОУ и конечным коэффициентом усиления транзистора, выходной ток составит всё ту же
величину Iн≈ Uвх/R1.

На самом деле, коэффициент усиления биполярного транзистора имеет конечное значение, а полная формула тока нагрузки выглядит
следующим образом Iн= Uвх×β/[R1(1+β)].

Это обуславливает некоторую нестабильность выходного тока при изменении сопротивления нагрузки за счёт проявления
эффекта Эрли (эффект влияния напряжения между коллектором и базой на величину коэффициента передачи тока транзистора).


Проявления этой нестабильности можно уменьшить, если в качестве биполярного транзистора использовать составной транзистор,
либо применяя полевой транзистор.


Особенность схем источников тока, показанных на Рис.2, состоит в том, что нагрузка подключается к шине питания.
Источники тока на ОУ

Рис.3

На Рис.3 приведены источники тока с заземлённой нагрузкой.

Выходной ток здесь описывается уже несколько другой формулой: Iн≈ (Еп-Uвх)/R1.


Подобная зависимость выходного тока от управляющего напряжения не всегда удобна в практических разработках, поэтому для устранения этого
недостатка к схеме можно присовокупить дополнительный преобразователь уровня.
Источник тока на операционном усилителе

Рис.4

Здесь первый операционник с транзистором n-p-n структуры служит для преобразования уровня входного управляющего напряжения Uвх
в значение Eп-Uвх.

Rпр1 и Rпр2, как правило, выбираются одного номинала, величина которого рассчитывается, исходя из входного сопротивления второго
ОУ, а также из соображений приемлемого быстродействия при работе источника тока в динамическом режиме (т.е. при подаче на вход
импульсного сигнала управления).

Ну и ясен шпунтубель, что всё наше усердие было направлено на получение удобной зависимости
Iн≈ Uвх/R1, а для повышения выходного сопротивления источника тока вместо
простого биполярного выходного транзистора следует включить составной или полевой транзистор.















 

Простая схема генератора постоянного тока с использованием транзистора

Многие из нас, кто работал с Аналоговые схемы , часто сталкивались с терминами источник напряжения и источник тока в схемотехнике. Хотя все, что обеспечивает постоянное напряжение, например, простой USB-выход на 5 В или адаптер на 12 В, можно рассматривать как источник напряжения, термин «источник тока» всегда кажется загадкой. И многие схемы, особенно те, которые включают в себя операционные усилители или схемы переключения, потребуют от вас использования источника постоянного тока, чтобы проект работал.Итак, что подразумевается под текущим источником? Как это будет работать и зачем это нужно?

В этом руководстве мы найдем ответы на эти вопросы, а также построим и протестируем простую схему источника постоянного тока с использованием транзистора . Схема, используемая в этом руководстве, сможет подавать на вашу нагрузку постоянный ток 100 мА , но вы можете изменить его с помощью потенциометра в соответствии с вашими проектными требованиями. Интересно! Итак, приступим.

Что такое источник постоянного тока (CC)?

Обычно, когда блок питания управляет нагрузкой, может быть два возможных режима работы: один — , режим постоянного напряжения (CV), , другой — , постоянный ток (CC), , , режим .

В режиме CV источник питания делает выходное напряжение постоянным и изменяет выходной ток в соответствии с требованиями сопротивления нагрузки. Лучшим примером будет ваш USB-порт 5 В, где выходное напряжение зафиксировано на уровне 5 В, но в зависимости от нагрузки ток будет меняться.Если вы подключите маленький светодиод, он будет потреблять меньше тока, а если вы подключите больший, он будет потреблять больше тока, но напряжение на светодиоде всегда будет 5 В.

В режиме CC идеальный источник тока Источник питания обеспечивает постоянный выходной ток и изменяет выходное напряжение в зависимости от сопротивления нагрузки. Примером этого может быть зарядное устройство 12 В в режиме CC, где ток зарядки будет фиксироваться в зависимости от напряжения. В случае, если у вас батарея 10.5 В, если вы подключите его к зарядному устройству на 1 А 12 В, выходной ток зарядного устройства всегда будет 1 А, но выходное напряжение будет изменяться для поддержания этого зарядного тока 1 А. Таким образом, здесь требуются Цепи постоянного тока , другим примером может быть схема драйвера светодиода постоянного тока, где ток через светодиод должен быть постоянным.

Простой источник постоянного тока 100 мА на транзисторе

В этом проекте мы построим простой генератор с транзисторным источником постоянного тока , используя всего 4 компонента.Это очень недорогая схема, которая может обеспечить источник постоянного тока 100 мА , используя источник питания 5 В. Он также будет иметь потенциометр для управления токовым выходом в диапазоне от 1 до 100 мА. Он будет обеспечивать постоянный ток даже при изменении сопротивления нагрузки. Это будет полезно использовать, когда в цепи требуется постоянный ток без колебаний. Ранее мы также построили другой тип схемы источника тока, называемой схемой токового насоса Хауленда, и схемой текущего зеркала, вы также можете взглянуть на них, если хотите.Теперь давайте посмотрим на материалы, необходимые для этого проекта.

Необходимые материалы:

  1. TL431
  2. BC547
  3. 2к резистор 1%
  4. Переменный резистор 10к
  5. 22R 1% резистор
  6. Адаптер 5 В постоянного тока или блок питания.
  7. Различное сопротивление нагрузке в соответствии с требованиями.
  8. Макетная плата и провода подключения
  9. Мультиметр для тестирования.

TL431 Pinout

Как указано в вышеприведенной спецификации, схема состоит только из двух активных компонентов, TL431 и BC547.TL431 является регулятором шунта, который использует ссылку 2.5V напряжения. Он поддерживает катодный ток 1–100 мА для операций, связанных с шунтом. Корпус этого компонента такой же, как и у обычного сквозного транзистора. Остальные компоненты являются пассивными. Для точной выходной мощности резисторы должны иметь допуск 1%.

Схема источника постоянного тока:

Принципиальная схема источника постоянного тока на транзисторе проекта представлена ​​ниже.

Simple Constant Current Generator Circuit Diagram

Вышеупомянутая цепь полностью подключена к линии 5В. Выходная нагрузка должна быть подключена между выходом и соединением GND. На приведенной выше схеме BC547 работает как транзистор прохода , подробнее об этом будет сказано в рабочем разделе.

Важные расчеты для цепи постоянного тока

Выходной ток вышеуказанной схемы зависит от приведенной ниже формулы, которую можно использовать для вычисления выходного тока цепи источника постоянного тока.

I  out =  V  ref  / R4 + I  KA  

Для этой цепи

I  выход = 100 мА  (0,100 А)
V  ref =  2,5 В
I  KA  = 1 мА (0,001 A) [Примечание: минимальный ток смещения] 

Итак,

I  из  = V  ref  / R4 + I  KA 
.100 = 2,5 / R4 + .001
0,100 - 0,001 = 2,5 / R4
R4 = 2,5 / 0,099
R4 = 25 Ом (приблизительно) 

Доступное наименьшее значение приближения R4 составляет 22 Ом. Теперь переменный резистор или значение потенциометра можно найти по той же формуле.Раньше максимальный доступный ток 100 мА достигался резистором 22 Ом. На этот раз потенциометр снизит выходной ток до самого низкого уровня.

Поскольку минимальный катодный ток, необходимый для TL431, составляет 1 мА, хорошо предположить, что минимальный ток будет 2 мА. Следовательно, используя ту же формулу,

I  из  = V  ref  / VR  1  + I  KA 
0,002 = 2,5 / VR  1  + 0,001
0,002 - 0,001 = 2,5 / VR  1 
.001 = 2,5 / VR  1 
VR  1  = 2,5 К 

Таким образом, для контроля тока можно использовать потенциометр 2.2k с наименьшим приближающим значением. Последний расчет для предназначен для расчета значения резистора смещения R1 с использованием следующих формул.

R1 = V  вход  / (I  выход  / hFE + I  KA ) 

Для этой цепи

Io  ut  = 100 мА (0,100 А)
V  в  = 5 В
hFE = 100 (максимум)
IKA = 1 мА (0,001 А) [Примечание: минимальный ток смещения]
R1 = V  дюйм  / (I  выход  / hFE + I  KA )
R1 = 5 / (.100/100 + 0,001)
R1 = 2,5 кОм 

Таким образом, доступное наименьшее значение R1 приближающего устройства может составлять 2,2 кОм.

Работа цепи постоянного тока:

Транзистор BC547 действует как транзистор прохода , который управляется резистором смещения R1 и шунтирующим стабилизатором TL431. База транзистора фактически подключена к делителю тока . Эта схема делителя тока сделана с использованием резистора смещения и шунтирующего регулятора.TL431 регулирует постоянный ток путем измерения опорного напряжения и контролируя проход транзистор BC547. Схема построена на макете, как показано ниже.

Simple Constant Current Generator Circuit using Transistor

Проверка цепи источника постоянного тока

Когда плата была готова, я включил свою схему, используя источник постоянного тока 5 В, и начал ее тестирование. Я использовал разные нагрузки (разные значения резистора) на выходной стороне и следил за тем, чтобы ток всегда оставался постоянным.Я использовал свой мультиметр для измерения выходного тока моей схемы, и он всегда был около 100 мА, как показано на рисунке ниже

.

Testing the Simple Constant Current Generator Circuit

Полное видео тестирования можно найти внизу этой страницы. Если у вас есть какие-либо вопросы, оставьте их в разделе комментариев ниже или используйте форумы для других технических вопросов.

Применение цепей постоянного тока

В системе светодиодного освещения требуется источник постоянного тока для операций, связанных с управлением светодиодом.Как и в портативных устройствах, в схемах зарядки аккумуляторов используются источники постоянного тока. Небольшой список приложений, в которых используется источник постоянного тока, приведен ниже

.

  • Система усилителя.
  • Солнечные системы
  • Электромагниты
  • Система двигателя для постоянной скорости.
  • Датчики на эффекте Холла.
  • Цепи стабилизатора смещения стабилитронов.

.

Electronics Club — Transistor Circuits

Electronics Club — Transistor Circuits — функциональная модель, база, коллектор, эмиттер, использование в качестве переключателя, инвертора, пара Дарлингтона

Electronics Club

Типы | Токи | Функциональная модель |
Использовать как переключатель | Выход IC | Датчики |
Инвертор | Дарлингтон пара

Следующая страница: Емкость

См. Также: Транзисторы

На этой странице объясняется работа транзисторов в простых схемах, в основном их использование в качестве переключателей.
Практические вопросы, такие как тестирование, меры предосторожности при пайке и идентификация выводов, рассматриваются в
страница транзисторов.

Типы транзисторов

Есть два типа стандартных (биполярных) транзисторов, NPN и PNP ,
с разными обозначениями схем. Буквы относятся к слоям полупроводникового материала, из которых изготовлен транзистор.
Большинство используемых сегодня транзисторов являются NPN, потому что это самый простой тип из кремния.
Эта страница в основном посвящена транзисторам NPN, и новичкам следует сначала сосредоточиться на этом типе.

Выводы имеют маркировку база (B), коллектор (C) и эмиттер (E).Эти термины относятся к внутренней работе транзистора, но их не так много.
помогают понять, как используется транзистор, поэтому относитесь к ним как к ярлыкам.

NPN and PNP transistor symbols

Обозначения схем транзисторов

Пара Дарлингтона — это два транзистора, соединенные вместе
чтобы дать очень высокий коэффициент усиления по току.

Помимо стандартных (биполярный переход) транзисторов, есть
полевые транзисторы , которые обычно обозначаются как FET s.
У них разные символы схем и свойства, и они не рассматриваются на этой странице.

Rapid Electronics: транзисторы

MECControl


Токи транзисторов

На схеме показаны два пути тока через транзистор.

Малый базовый ток управляет большим током коллектора .

Когда переключатель замкнут , небольшой ток течет в основание (B)
транзистор. Этого достаточно, чтобы светодиод B тускло светился. Транзистор усиливает
этот небольшой ток, чтобы позволить большему току течь через его коллектор (C)
к его эмиттеру (E).Этот ток коллектора достаточно велик, чтобы светодиод C светился ярко.

При разомкнутом переключателе базовый ток не течет, поэтому транзистор отключается
ток коллектора. Оба светодиода выключены.

Вы можете построить эту схему с двумя стандартными 5-миллиметровыми красными светодиодами и любыми маломощными светодиодами общего назначения.
Транзистор NPN (например, BC108, BC182 или BC548).
Это хороший способ проверить транзистор и убедиться, что он работает.

Транзистор усиливает ток и может использоваться в качестве переключателя, как описано на этой странице.

С подходящими резисторами (и конденсаторами для переменного тока) транзистор может усиливать напряжение, такое как аудиосигнал.
но это еще не рассматривается на этом веб-сайте.

transistor currents

Режим общего эмиттера

Это устройство, в котором эмиттер (E) находится в цепи управления (базовый ток)
а в управляемой цепи (коллекторный ток) называется общим эмиттерным режимом .
Это наиболее широко используемая схема транзисторов, поэтому ее нужно изучить в первую очередь.



Функциональная модель транзистора NPN

Функционирование транзистора сложно объяснить и понять с точки зрения его внутренней структуры.Более полезно использовать эту функциональную модель.

  • Переход база-эмиттер ведет себя как диод.
  • A базовый ток I B течет только при напряжении V BE
    через переход база-эмиттер составляет 0,7 В или более.
  • Малый базовый ток I B контролирует большой ток коллектора Ic
    варьируя сопротивление R CE .
  • Ic = h FE × I B
    (если транзистор не открыт и не насыщен).h FE — коэффициент усиления по току (строго по постоянному току),
    Типичное значение для h FE — 100 (это отношение, поэтому у него нет единиц измерения).
  • Сопротивление коллектор-эмиттер R CE регулируется током базы I B :

    I B = 0 , R CE = бесконечность, транзистор выключен

    I B малый , R CE уменьшенный, транзистор частично включен

    I B увеличено , R CE = 0, транзистор полностью открыт («насыщен»)

Functional model of NPN transistor

Дополнительные примечания:
  • Базовый ток I B должен быть ограничен, чтобы предотвратить повреждение транзистора
    и резистор может быть подключен последовательно с базой.
  • Транзисторы

  • имеют максимальный ток коллектора Ic.
  • Коэффициент усиления по току h FE может широко варьироваться ,
    даже для однотипных транзисторов!
  • Транзистор, заполненный на на (с R CE = 0), называется
    « насыщенный ».
  • Когда транзистор насыщен, напряжение коллектор-эмиттер В CE
    снижается почти до 0В.
  • Когда транзистор насыщен, определяется ток коллектора Ic.
    от напряжения питания и внешнего сопротивления в цепи коллектора, а не от
    коэффициент усиления транзистора по току.В результате соотношение Ic / I B
    для насыщенного транзистора коэффициент усиления по току меньше FE .
  • Ток эмиттера I E = Ic + I B , но Ic
    намного больше, чем I B , поэтому примерно I E = Ic.

Использование транзистора в качестве переключателя

Когда транзистор используется в качестве переключателя, он должен быть либо ВЫКЛ. , либо полностью ВКЛЮЧЕННЫМ .
Он никогда не должен быть включен частично (со значительным сопротивлением между C и E), потому что в
В этом состоянии транзистор может перегреться и выйти из строя.

В полностью открытом состоянии напряжение V CE на транзисторе почти равно нулю, и транзистор находится в
считается насыщенным , потому что он больше не может пропускать ток коллектора Ic.

Устройство, переключаемое транзистором, называется нагрузкой .

При выборе транзистора для использования в качестве переключателя необходимо учитывать его максимальный ток коллектора.
Ic (макс.) и его минимальное усиление по току ч FE (мин.) .
Номинальные значения напряжения транзистора можно не учитывать при напряжении питания менее 15 В.

transistor and load

Технические данные транзистора

Большинство поставщиков предоставляют данные о транзисторах, которые они продают, например
Быстрая электроника.

Мощность, развиваемая переключающим транзистором, должна быть очень маленькой

Мощность, развиваемая в транзисторе, отображается как тепла , и транзистор будет разрушен, если станет слишком горячим.
Это не должно быть проблемой для транзистора, используемого в качестве переключателя, если он был выбран и настроен правильно, потому что
мощность, развиваемая внутри него, будет очень маленькой.

Мощность (тепло), развиваемая в транзисторе:

Power = Ic × V CE

  • Когда OFF : Ic равно нулю, поэтому мощность равна нулю .
  • Когда полный ВКЛ : V CE почти равен нулю, поэтому мощность очень мала .
Было бы реле лучше транзисторного переключателя?

Транзисторы не могут переключать переменный ток или высокое напряжение (например, электросеть), и они
обычно не лучший выбор для коммутации больших токов (> 5A).Реле подходят для всех этих ситуаций, но учтите, что
транзистор малой мощности может потребоваться для переключения тока катушки реле.
Для получения дополнительной информации, включая преимущества и недостатки,
пожалуйста, смотрите страницу реле.

Защитный диод для нагрузок с катушкой, таких как реле и двигатели

Если транзистор переключает нагрузку с помощью катушки, такой как двигатель или реле,
диод должен быть подключен к нагрузке, чтобы защитить транзистор от
кратковременное высокое напряжение, возникающее при отключении нагрузки.

На схеме показано, как защитный диод подключен к нагрузке «назад», в данном случае катушка реле.

Для этого подходит сигнальный диод типа 1N4148.

Protection diode for a relay

Зачем нужен защитный диод?

Ток, протекающий через катушку, создает магнитное поле, которое внезапно схлопывается.
при отключении тока. Внезапный коллапс магнитного поля вызывает
кратковременное высокое напряжение на катушке, которое может повредить транзисторы и микросхемы.Защитный диод позволяет индуцированному напряжению пропускать кратковременный ток через катушку.
(и диод), поэтому магнитное поле гаснет быстро, а не мгновенно. Это предотвращает
индуцированное напряжение становится достаточно высоким, чтобы вызвать повреждение транзисторов и микросхем.


Не хватает денег на проекты в области электроники?
Продайте свой старый iPhone, iPad, MacBook или другое устройство Apple: macback.co.uk


Подключение транзистора к выходу включения / выключения цифровой ИС

Большинство микросхем не могут обеспечивать большие выходные токи, поэтому может потребоваться использование транзистора.
для переключения большего тока, необходимого для таких устройств, как лампы, двигатели и реле.Микросхема таймера 555 необычна тем, что может обеспечивать относительно большой ток до 200 мА,
достаточно для многих реле и других нагрузок без транзистора.

Резистор базы ограничивает ток, протекающий в базу транзистора, чтобы предотвратить его повреждение.
но он также должен пропускать достаточный базовый ток, чтобы транзистор был полностью насыщен.
при включении.

Транзистор, который не полностью насыщен при включении, может перегреться и выйти из строя.
особенно если транзистор переключает большой ток (> 100 мА).

В следующем разделе объясняется, как выбрать транзистор и базовый резистор для обеспечения полного насыщения.

Переключение нагрузки с другим напряжением питания

Транзистор может использоваться для включения ИС, подключенной к источнику низкого напряжения (например, 5 В)
для переключения тока нагрузки с отдельным источником постоянного тока (например, 12 В).

Два источника питания должны быть связаны. Обычно их соединения 0 В связаны и транзистор NPN
используется на выходе IC. Однако, если на выходе IC используется транзистор PNP, положительные (+) соединения
вместо этого должны быть связаны.

Выбор транзистора и базового резистора для цифрового выхода ИМС

Следуйте этому пошаговому руководству, чтобы выбрать подходящий транзистор для подключения к выходу включения / выключения.
цифровой ИС (логический вентиль, счетчик, PIC, микроконтроллер и т. д.) для переключения нагрузки, такой как лампа, двигатель или реле.
Данные о транзисторах можно получить у большинства поставщиков, например см.
Быстрая электроника.

1. Выберите правильный тип транзистора, NPN или PNP

Вы хотите, чтобы нагрузка включалась, когда выход IC высокий? Или когда он или низкий?

  • Для включения, когда на выходе ИС высокий уровень используйте NPN-транзистор .
  • Для включения, когда на выходе IC низкий уровень , используйте транзистор PNP .

Транзисторы NPN и PNP подключаются по-разному, как показано на схемах ниже, но
Расчеты и требуемые свойства одинаковы для обоих типов транзисторов.

NPN transistor switch

Транзисторный переключатель NPN
нагрузка включена, когда выход IC высокий

PNP transistor switch

Транзисторный переключатель PNP
нагрузка включена, когда выход IC низкий

2.Узнайте напряжение питания и характеристики нагрузки.

Для определения требуемых свойств транзистора вам необходимо знать следующие значения:

  • Vs = напряжение питания нагрузки.
  • R L = сопротивление нагрузки (например, сопротивление катушки реле).
  • Ic = ток нагрузки (= Vs / R L ).
  • Максимальный выходной ток микросхемы — см. Техническое описание микросхемы.
    Если вы не можете найти эту информацию, примите низкое значение, например 5 мА.
  • Vc = напряжение питания IC (обычно это Vs, но оно будет другим, если IC и нагрузка имеют отдельные источники питания).

Примечание: не путайте IC (интегральная схема) с Ic (ток коллектора).

3. Определить требуемые свойства транзистора

Выберите транзистор правильного типа (NPN или PNP из шага 1), чтобы удовлетворить следующие требования:

  • Максимальный ток коллектора Ic (макс.) транзистора должен быть больше тока нагрузки:
    Ic (макс)> напряжение питания Vs
    сопротивление нагрузки R L
  • Минимальный коэффициент усиления по току транзистора h FE (мин) должен быть не менее 5
    умноженный на ток нагрузки Ic, деленный на максимальный выходной ток IC.

    ч FE (мин)> 5 × ток нагрузки Ic
    макс. IC current
4. Определите значение для базового резистора R B

Базовый резистор (R B ) должен пропускать ток, достаточный для обеспечения работы транзистора.
полностью насыщен при включении, и хорошо бы увеличить ток базы (I B ) примерно в пять раз
значение, которое просто насыщает транзистор.Используйте формулу ниже, чтобы найти подходящее сопротивление для R B и выбрать ближайшее стандартное значение.

R B = 0,2 × R L × h FE (см. Примечание)

Примечание: Если ИС и нагрузка имеют разные напряжения питания, например 5 В для ИС
но 12 В для нагрузки используйте формулу ниже для R B :

R B = Vc × h FE , где Vc — напряжение питания
IC
5 × Ic
5.Проверьте, нужен ли вам защитный диод

Если включаемой и выключаемой нагрузкой является двигатель, реле или соленоид (или любое другое устройство с катушкой):
диод должен быть подключен к нагрузке, чтобы защитить транзистор от короткого замыкания.
высокое напряжение, возникающее при отключении нагрузки. Обратите внимание, что диод подключен «наоборот», как показано на рисунке.
на диаграммах выше.

Пример

Выход из КМОП-микросхемы серии 4000 необходим для работы реле с
100 ohm, включается, когда выход IC высокий.Напряжение питания составляет 6 В как для ИС, так и для нагрузки. ИС может обеспечивать максимальный ток 5 мА.

  • Требуется транзистор NPN , потому что катушка реле должна быть включена, когда выход IC высокий.
  • Ток нагрузки = Vs / R L = 6/100 = 0,06 A = 60 мА, поэтому транзистор должен иметь Ic (макс.)> 60 мА .
  • Максимальный ток от ИС составляет 5 мА, поэтому транзистор должен иметь ч FE (мин)> 60
    (5 × 60 мА / 5 мА).
  • Выберите транзистор малой мощности общего назначения BC182 с Ic (макс.) = 100 мА
    и ч FE (мин) = 100 .
  • R B = 0,2 × R L × h FE
    = 0,2 × 100 × 100 = 2000 ohm,
    поэтому выберите R B = 1k8 или 2k2 .
  • Для катушки реле требуется защитный диод .

Rapid Electronics: транзисторы


Использование транзистора в качестве переключателя с датчиками

На схемах ниже показано, как подключить LDR (датчик освещенности) к транзистору, чтобы
светочувствительный переключатель цепи на светодиоде. Есть две версии: одна включается в темноте, другая при ярком свете.Переменный резистор регулирует чувствительность. Для переключения светодиода можно использовать любой транзистор малой мощности общего назначения.

Если транзистор переключает нагрузку с помощью катушки (например, двигателя или реле) вместо светодиода, вы должны включить
защитный диод поперек нагрузки.

Если переменный резистор находится между + Vs и базой, вы должны добавить резистор с фиксированным номиналом не менее
ohm (10к ohm
в примере ниже) для защиты транзистора, когда переменный резистор уменьшен до нуля, в противном случае чрезмерная база
ток разрушит транзистор.

transistor and LDR circuit 1

Светодиод загорается, когда LDR не горит не светится

transistor and LDR circuit 2

Светодиод загорается при яркости LDR

Обратите внимание, что переключающее действие этих простых схем не очень хорошее, потому что
будет промежуточная яркость, когда транзистор будет частично на (не насыщенный).
В этом состоянии транзистор может перегреться, если он не коммутирует небольшой ток.
Нет проблем с небольшим током светодиода, но больший ток лампы, двигателя или реле может вызвать перегрев.

Другие датчики, например термистор,
могут использоваться с этими схемами, но для них может потребоваться другой переменный резистор.
Вы можете рассчитать приблизительное значение переменного резистора (Rv), используя
мультиметр для определения минимального и максимального значений
сопротивления датчика (Rmin и Rmax), а затем по этой формуле:

Значение переменного резистора:
Rv = квадратный корень из (Rmin × Rmax)

Например, LDR: Rmin = 100 ohm,
Rmax = 1M ohm,
поэтому Rv = квадратный корень из (100 × 1M)
= 10k ohm.

Вы можете сделать намного лучшую схему переключения с датчиками, подключенными к подходящему
IC (чип). Действие переключения будет намного резче без частичного включения.



Транзисторный инвертор (НЕ затвор)

transistor inverter circuit


Дарлингтон пара

Пара Дарлингтона — это два транзистора, соединенных вместе так, что ток, усиленный первым, усиливается.
далее вторым транзистором.

Пара ведет себя как один транзистор с очень высоким коэффициентом усиления по току, так что
для включения пары требуется лишь крошечный базовый ток.

Коэффициент усиления по току пары Дарлингтона (h FE ) равен двум индивидуальным коэффициентам усиления
(h FE1 и h FE2 ), умноженные вместе — это дает паре очень высокий коэффициент усиления по току, например 10000.

Коэффициент усиления тока пары Дарлингтона:
ч FE = h FE1
× h FE2

Обратите внимание, что для включения пары Дарлингтона должно быть 0,7 В на обоих переходах база-эмиттер, которые
соединены последовательно так 1.Для включения требуется 4В.

Rapid Electronics: транзисторы Дарлингтона

Darlington pair

Транзисторы Дарлингтона

пары Дарлингтона доступны в виде корпуса «транзистор Дарлингтона» с тремя выводами
(B, C и E)
эквивалентно стандартному транзистору.

Вы также можете сделать свою собственную пару Дарлингтона из двух обычных транзисторов.
TR1 может быть маломощным, но TR2 может потребоваться высокая мощность.
Максимальный ток коллектора Ic (max) для пары такой же, как Ic (max) для TR2.

Цепь сенсорного переключателя

Пара Дарлингтона достаточно чувствительна, чтобы реагировать на небольшой ток, проходящий через
Ваша кожа, и его можно использовать для изготовления сенсорного переключателя , как показано на схеме.

Для этой схемы, которая просто зажигает светодиод, два транзистора могут быть любыми
транзисторы малой мощности.

100к ohm
резистор защищает транзисторы, если контакты соединены куском провода.

touch switch circuit

Схема сенсорного переключателя


Rapid Electronics
любезно разрешили мне использовать их изображения на этом веб-сайте, и я очень благодарен за их поддержку.У них есть широкий ассортимент компонентов, инструментов и материалов для электроники, и я рад
рекомендую их как поставщика.


Следующая страница: Емкость | Исследование


Политика конфиденциальности и файлы cookie

Этот сайт не собирает личную информацию.
Если вы отправите электронное письмо, ваш адрес электронной почты и любая личная информация будет
используется только для ответа на ваше сообщение, оно не будет передано никому.
На этом веб-сайте отображается реклама, если вы нажмете на
рекламодатель может знать, что вы пришли с этого сайта, и я могу быть вознагражден.Рекламодателям не передается никакая личная информация.
Этот веб-сайт использует некоторые файлы cookie, которые классифицируются как «строго необходимые», они необходимы для работы веб-сайта и не могут быть отклонены, но они не содержат никакой личной информации.
Этот веб-сайт использует службу Google AdSense, которая использует файлы cookie для показа рекламы на основе использования вами веб-сайтов.
(включая этот), как объяснил Google.
Чтобы узнать, как удалить файлы cookie и управлять ими в своем браузере, пожалуйста
посетите AboutCookies.org.

клуб электроники.info © Джон Хьюс 2020

Веб-сайт размещен на Tsohost

.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *