Простые генераторы на микросхемах. Схема простого генератора


Схемы генераторов импульсов | Техника и Программы

   Генераторы импульсов являются важной составляющей многих радиоэлектронных устройств. Простейший генератор импульсов (мультивибратор) может быть получен из двух-каскадного УНЧ (рис. 6.1). Для этого достаточно соединить вход усилителя с его выходом. Рабочая частота такого генератора определяется значениями R1C1, R3C2 и напряжением питания. На рис. 6.2, 6.3 показаны схемы мультивибраторов, полученные простой перестановкой элементов (деталей) схемы, изображенной на рис. 6.1. Отсюда следует, что одну и ту же простейшую схему можно изобразить различными способами.

   

   Рис. 6.1

   

   Рис. 6.2

   Практические примеры использования мультивибратора приведены на рис. 6.4, 6.5.

   На рис. 6.4 показана схема генератора, позволяющего плавно перераспределять длительность или яркость свечения светодиодов, включенных в качестве нагрузки в цепи коллекторов. Вращением ручки потенциометра R3 можно управлять соотношением длительностей свечения светодиодов левой и правой ветвей. Если увеличить емкость конденсаторов С1 и С2, частота генерации понизится, светодиоды начнут мигать. При уменьшении емкости этих конденсаторов частота генерации возрастает, мелькание светодиодов сольется в сплошное свечение, яркость которого будет зависеть от положения ручки потенциометра R3. На основе подобного схемного решения могут быть собраны разнообразные полезные конструкции, например, регулятор яркости светодиодного фонарика; игрушка с мигающими глазами; устройство плавного изменения спектрального состава источника излучения (разноцветные светодиоды или миниатюрные лампочки и светосуммирую-щий экран).

   

   Рис. 6.3

   

   Рис. 6.4

   Генератор переменной частоты (рис. 6.5) конструкции В. Цибульского позволяет получать плавно изменяющееся со временем по частоте звучание [Р 5/85-54]. При включении генератора его частота возрастает с 300 до 3000 Гц за 6 сек (при емкости конденсатора СЗ 500 мкФ). Изменение емкости этого конденсатора в ту или иную сторону ускоряет или, напротив, замедляет скорость изменения частоты. Плавно изменять эту скорость можно и переменным сопротивлением R6. Для того чтобы этот генератор мог выполнять роль сирены, или быть использованным в качестве генератора качающейся частоты, можно предусмотреть схему принудительного периодического разряда конденсатора СЗ. Такие эксперименты можно рекомендовать для самостоятельного расширения познаний в области импульсной техники.

   

   Рис. 6.5

   

   Рис. 6.6

   Управляемый генератор прямоугольных импульсов показан на рис. 6.6 [Р 10/76-60]. Генератор также представляет собой двухкаскадный усилитель, охваченный положительной обратной связью. Для упрощения схемы генератора достаточно соединить эмиттеры транзисторов конденсатором. Емкость этого конденсатора определяет рабочую частоту генерации. В данной схеме для управления частотой генерации в качестве управляемой напряжением емкости использован варикап. Увеличение запирающего напряжения на варикапе приводит к уменьшению его емкости. Соответственно, как показано на рис. 6.7, возрастает рабочая частота генерации.

   

   Рис. 6.7

   Варикап, в порядке эксперимента и изучения принципа работы этого полупроводникового прибора, можно заменить простым диодом. При этом следует учитывать, что германиевые точечные диоды (например, Д9) имеют очень малую начальную емкость (порядка нескольких пФ), и, соответственно, обеспечивают небольшое изменение этой емкости от величины приложенного напряжения. Кремниевые диоды, особенно силовые, рассчитанные на большой ток, а также стабилитроны, имеют начальную емкость 100… 1000 пФ, поэтому зачастую могут быть использованы вместо варикапов. В качестве варикапов можно применить и р-n переходы транзисторов, см. также главу 2.

   Для контроля работы сигнал с генератора (рис. 6.6) можно подать на вход частотометра и проверить границы перестройки генератора при изменении величины управляющего напряжения, а также при смене варикапа или его аналога. Рекомендуется полученные результаты (значения управляющего напряжения и частоту генерации) при использовании разного вида варикапов занести в таблицу и отобразить на графике (см., например, рис. 6.7). Отметим, что стабильность генераторов на RC-элементах невысока.

   

   Рис. 6.8

   

   Рис. 6.9

   На рис. 6.8, 6.9 показаны типовые схемы генераторов световых и звуковых импульсов, выполненные на транзисторах различного типа проводимости. Генераторы работоспособны в широком диапазоне питающих напряжений. Первый из них вырабатывает короткие вспышки света частотой единицы Гц, второй — импульсы звуковой частоты. Соответственно, первый генератор может быть использован в качестве маячка, светового метронома, второй — в качестве звукового генератора, частота колебаний которого зависит от положения ручки потенциометра R1. Эти генераторы можно объединить в единое целое. Для этого достаточно один из генераторов включить в качестве нагрузки другого, либо параллельно ей. Например, вместо цепочки из светодиода HL1, R2 или параллельно ей (рис. 6.8) можно включить генератор по схеме на рис. 6.9. В итоге получится устройство периодической звуковой или светозвуковой сигнализации.

   Генератор импульсов (рис. 6.10), выполненный на составном транзисторе (п-р-п и р-п-р), не содержит конденсаторов (в качестве частотозадающего конденсатора использован пьезокерамиче-ский излучатель BF1). Генератор работает при напряжении от 1 до 10 Б и потребляет ток от 0,4 до 5 мА. Для повышения громкости звучания пьезокерамического излучателя его настраивают на резонансную частоту подбором резистора R1.

   

   Рис. 6.10

   

   Рис. 6.11

   На рис. 6.11 показан достаточно оригинальный генератор релаксационных колебаний, выполненный на биполярном лавинном транзисторе.

   Генератор содержит в качестве активного элемента транзистор микросхемы К101КТ1А с инверсным включением в режиме с «оборванной» базой. Лавинный транзистор может быть заменен его аналогом (см. рис. 2.1).

   Устройства (рис. 6.11) часто используют для преобразования измеряемого параметра (интенсивности светового потока, температуры, давления, влажности и т.д.) в частоту при помощи резистивных или емкостных датчиков.

   При работе генератора конденсатор, подключенный параллельно активному элементу, заряжается от источника питания через резистор. Когда напряжение на конденсаторе достигает напряжения пробоя активного элемента (лавинного транзистора, динистора или т.п. элемента), происходит разряд конденсатора на сопротивление нагрузки, после чего процесс повторяется с частотой, определяемой постоянной RC-цепи. Резистор R1 ограничивает максимальный ток через транзистор, препятствуя его тепловому пробою. Времязадающая цепь генератора (R1C1) определяет рабочую область частот генерации. В качестве индикатора звуковых колебаний при качественном контроле работы генератора используют головные телефоны. Для количественной оценки частоты к выходу генератора может быть подключен частотомер или счетчик импульсов.

   Устройство работоспособно в широком интервале изменения параметров: R1 от 10 до 100 кОм (и даже до 10 МОм), С1 — от 100 пФ до 1000 мкФ, напряжения питания от 8 до 300 В. Потребляемый устройством ток обычно не превышает одного мА. Возможна работа генератора в ждущем режиме: при замыкании базы транзистора на землю (общую шину) генерация срывается. Преобразователь-генератор (рис. 6.11) может быть использован и в режиме сенсорного ключа, простейшего Rx-и Сх-метра, перестраиваемого широкодиапазонного генератора импульсов и т.д.

   Генераторы импульсов (рис. 6.12, 6.13) также выполнены на лавинных транзисторах микросхемы К101КТ1 типа п-р-п или К162КТ1 типа р-п-р, динисторах, или их аналогах (см. рис. 2.1). Генераторы работают при напряжении питания выше 9 Б и вырабатывают напряжение треугольной формы. Выходной сигнал снимается с одного из выводов конденсатора. Входное сопротивление следующего за генератором каскада (сопротивление нагрузки) должно в десятки раз превышать величину сопротивления R1 (или R2). Низкоомную нагрузку (до 1 кОм) можно включать в коллекторную цепь одного из транзисторов генератора.

   

   Рис. 6.12

   

   Рис. 6.13

   

   Рис. 6.14

   Довольно простые и часто встречающиеся на практике генераторы импульсов (блокинг-генераторы) с использованием индуктивной обратной связи показаны на рис. 6.14 [А. с. СССР 728214], 6.15 и 6.16. Такие генераторы обычно работоспособны в широком диапазоне изменения напряжения питания. При сборке блокинг-генераторов необходимо соблюдать фазировку выводов: при неправильном подключении «полярности» обмотки генератор не заработает.

   

   Рис. 6.15

   

   Рис. 6.16

   Подобные генераторы можно использовать при проверке трансформаторов на наличие межвитковых замыканий (см. главу 32): никаким иным методом такие дефекты не могут быть выявлены.

   

Литература: Шустов М.А. Практическая схемотехника (Книга 1), 2003 год

nauchebe.net

Кое-что из радиотехники » Простые генераторы на микросхемах

  На одном транзисторе и одном элементе логической микросхемы можно собрать импульсный генератор (Рис.1).

При включении питания на выходе микросхемы DD1 появляется логическая <1>. Напряжение с выхода микросхемы заряжает один из конденсаторов С1 — С7 ( в зависимости от положения переключателя диапазонов S1 ) по цепи: выход микросхемы ( вывод 3 ), резистор R4, конденсатор, открытый переход транзистора VT1. Постоянная времени заряда С1 — 7 (R4 + Rбэ). По окончании отрицательное напряжение на левой по схеме обкладке конденсатора закрывает транзистор, и конденсатор начинает перезаряжаться, т.к. на выходе микросхемы устанавливается низкий уровень напряжения. Сопротивление закрытого транзистора велико и перезаряд происходит по цепи: левая обкладка конденсатора, резистор R2, резистор R1, источник питания, микросхема DD1. На выходе микросхемы, на конденсаторе и, следовательно, на базе транзистора напряжение меняется. Как только на базе появится напряжение +0,5 … 0,7 В, транзистор открывается, на входе DD1 появляется низкий потенциал, на выходе — высокий и весь цикл повторяется

 

ОСНОВНЫЕ ПАРАМЕТРЫ

 

  Диапазон генерируемых колебаний, Гц …………………………………..   0,2 … 5х105

  Скваженность импульсов ……………………………………………………….     2 … 1000

   Стабильность частоты при изменении напряжения питания

   на ±5 % не хуже, %   ………………………………………………………………..       8 … 10

На Рис.2 показана схема аналогичного генератора, позволяющая получить импульсы высокочастотных колебаний. Генератор ВЧ колебаний ( 18 МГц ) собран на элементах DD1.2 — DD1.4, его запускают импульсы с частотой 300 Гц, получаемые от генератора, собранного на транзисторе VT1 и элементе D1.1.

При подключении такого генератора к телевизору появляются шесть горизонтальных полос и слышен фон звуковой частоты.

Э. П. Борноволоков, В. В. Фролов. «РАДИОЛЮБИТЕЛЬСКИЕ СХЕМЫ». Киев, «ТЕХНИКА» 1985г, стр. 212

 

Поделиться ссылкой:

Похожее

admarkelov.ru

СХЕМА ГЕНЕРАТОРА НИЗКОЧАСТОТНОГО СИГНАЛА

Функциональный генератор - это несомненно полезный инструментом в радиолюбительской лаборатории, простейший нужно иметь под рукой всегда, так как с ним заметно упрощается настройка и проверка многих устройств, особенно звуковоспроизводящих. Для его создания есть много разных схем в Интернете, некоторые более сложные и мощные, некоторые очень простые - пара транзисторов. Предлагаемая схема и не сложная, и выдаёт достаточно качественный сигнал, со всеми сопутствующими регулировками, поэтому решено было сделать её.

Схема генератора НЧ сигнала

Генератор может выдавать прямоугольный сигнал с регулировкой частоты и ширины импульса. Амплитуда может быть также изменена при помощи пайки резисторов на разные значения в делителе напряжения на выходе, может это немного трудоемко, но если он будет использоваться в цифровых проектах, с микросхемами, то там не очень нужна регулировка амплитуды. В любой момент можете поставить переменный резистор.

Генератор строится на основе двух элементах 1A и 1B, это классическая схема используется во многих других похожих схемах. Переключатель С1 и конденсаторы С1-С8 выбирают частоту. Тут чем больше емкость, тем ниже частота генерации. Выставляя выключатель в разные состояние, мы можем выбрать какие подключены конденсаторы и соответственно выходная частота. Конечно же можно и тут ввести плавную регулировку резистором, только нужно было именно так сделать. Регулятор R2-R4, диоды D1, D2 меняют ширину импульса.

Элементы CD4093 IC1C, IC1D - это буфер. Делитель напряжения R5 - R6 может быть использован для уменьшения амплитуды сигнала. На осциллографе при испытаниях видно, что сигнал отличный с минимальными шумами. Напряжение питания устройства согласно паспорту к данной микросхеме. Можно например брать 5 В от USB, оформив генератор сигнала НЧ в виде небольшой коробочки с соответствующим штекером под USB гнездо.

   Инструменты радиолюбителя

 

elwo.ru


Видеоматериалы

24.10.2018

Опыт пилотных регионов, где соцнормы на электроэнергию уже введены, показывает: граждане платить стали меньше

Подробнее...
23.10.2018

Соответствует ли вода и воздух установленным нормативам?

Подробнее...
22.10.2018

С начала года из ветхого и аварийного жилья в республике были переселены десятки семей

Подробнее...
22.10.2018

Столичный Водоканал готовится к зиме

Подробнее...
17.10.2018

Более 10-ти миллионов рублей направлено на капитальный ремонт многоквартирных домов в Лескенском районе

Подробнее...

Актуальные темы

13.05.2018

Формирование энергосберегающего поведения граждан

 

Подробнее...
29.03.2018

ОТЧЕТ о деятельности министерства энергетики, ЖКХ и тарифной политики Кабардино-Балкарской Республики в сфере государственного регулирования и контроля цен и тарифов в 2012 году и об основных задачах на 2013 год

Подробнее...
13.03.2018

Предложения организаций, осуществляющих регулируемую деятельность о размере подлежащих государственному регулированию цен (тарифов) на 2013 год

Подробнее...
11.03.2018

НАУЧИМСЯ ЭКОНОМИТЬ В БЫТУ

 
Подробнее...

inetpriem


<< < Ноябрь 2013 > >>
Пн Вт Ср Чт Пт Сб Вс
        1 2 3
4 5 6 7 8 9 10
11 12 13 14 15 16 17
18 19 20 21 22 23 24
25 26 27 28 29 30  

calc

banner-calc

.