24. Устройство трехфазного синхронного генератора. Синхронный генератор принцип работы
Принцип работы и устройство синхронного генератора переменного тока
Генератор (альтернатор) переменного тока предназначен для того, чтобы преобразовывать механическую энергию в электрическую. Его ротор вращается от первичного двигателя, в качестве которого может служить турбина, ДВС, электродвигатель.
Как выглядит синхронный генератор
К синхронным машинам относятся те, у которых ротор имеет одинаковую частоту вращения с магнитным полем:
n = 60∙f/p, где
f – частота сети;
p – количество пар полюсов статора.
Принцип работы
Статор и ротор – главные составные части синхронного генератора (СГ).
Принцип действия синхронного генератора
Как изображено на рисунке, синхронный генератор чаще всего вырабатывает энергию, когда ротор вращается вместе с магнитным полем, линии которого пересекают статорную обмотку, расположенную неподвижно. Поле создаётся от дополнительного возбудителя (дополнительного генератора, аккумулятора и др. источников).
Процесс может происходить наоборот – вращающийся проводник находится в неподвижном магнитном поле. Здесь появляется проблема токосъёма через коллекторный узел. Для генераторов переменного тока небольшой мощности эта схема вполне подходит. Обычно она применяется в передвижных установках.
В СГ вырабатывается ЭДС:
e = 2πBlwDn, где
B – магнитная индукция;
l – длина паза статора;
w – количество витков в статорной обмотке;
D – внутренний диаметр статора.
Основная электроэнергетика построена на напряжении 15-40 кВ. Передача энергии через коллектор СГ затруднительна. К тому же подвижная обмотка подвержена ударным нагрузкам и вращению с переменной скоростью, что создаёт проблемы с изоляцией. Из-за этого, обмотки якоря делают неподвижными, поскольку через них проходит основная энергия. Мощность возбудителя не превышает 5% от общей мощности СГ. Это позволяет проводить ток через подвижный узел.
В машинах переменного тока небольшой мощности (несколько киловатт) ротор изготавливают с постоянными магнитами (неодимовыми и др.). Здесь не требуется установка подвижных контактов, но тогда возникают сложности с регулированием напряжения на выходе.
Устройство генератора
Статор имеет общий принцип действия с асинхронником и мало отличается от него. Его железо собирается из пластин электротехнической стали, разделённых изолирующими слоями. В пазах размещается обмотка переменного тока. Наиболее распространён трёхфазный синхронный генератор. Провода обмоток надёжно крепятся и изолируются, поскольку через них подключается нагрузка.
Ротор выполняется с явно выраженными полюсами или без выступающих полюсов.
Виды полюсов синхронного генератора: а) – выступающие; б – неявно выраженные
Первые делаются для тихоходных машин, например, с гидравлическими турбинами. Для вращающихся с большой скоростью генераторов переменного тока принцип действия заключается в применении более прочных неявно выраженных полюсов.
СГ может работать в режимах двигателя или генератора переменного тока. Важно, какой здесь применяется способ охлаждения. Обычно на валу устанавливаются крыльчатки, охлаждающие ротор с обеих сторон. Воздух перед вентиляцией проходит через фильтр. В замкнутой системе циркулирует один и тот же воздух, проходя через теплообменники.
Более эффективным охлаждающим агентом является водород, в 14,5 раз более лёгкий, чем воздух. Принцип охлаждения у него аналогичный.
Обмотки генератора переменного тока выводятся концами на его распределительную коробку. Для трёхфазных – соединение производится в звезду или в треугольник.
Синхронный генератор преимущественно обеспечивает поддерживание синусоидального переменного напряжения. Это достигается изменением формы полюсных наконечников, а неявнополюсный ротор имеет определённое расположение витков в его пазах.
Реакция якоря
При соединении выхода с внешней нагрузкой в обмотках статора протекает электрический ток. Образующееся магнитное поле накладывается на поле, которое создаёт ротор.
Реакция якоря при разных видах нагрузки
При активной нагрузке ток и ЭДС совпадают по фазам (изображено на рисунке выше – а). Он становится максимальным, если полюса ротора располагаются напротив якорных обмоток. Основной магнитный поток и образующийся от реакции якоря перпендикулярны и при наложении образуют несколько больший результирующий поток, увеличивающий ЭДС.
Индуктивная нагрузка приводит к снижению ЭДС, поскольку потоки направлены встречно (изображено на рисунке выше – б).
Ёмкостная нагрузка вызывает совпадение направлений потоков, в результате чего ЭДС увеличивается.
Увеличение нагрузки приводит к большей реакции якоря, приводящей к изменению выходного напряжения, что нежелательно. На практике этот процесс управляется изменением возбуждения, что снижает степень воздействия реакции якоря на основное поле.
Режимы работы СГ
Нормальные режимы работы характеризуются сколько угодно длительными периодами времени. В их число входят отклонения коэффициентов мощности, выходного напряжения до 5% и частоты до 2,5% от номиналов и т. п. Допуски на отклонения определяются нагревом агрегатов и задаются стандартами или гарантируются производителями.
А нормальные режимы функционирования неприемлемы для продолжительной работы и связаны с появлением перегрузок, с недовозбуждением, переходами в асинхронные режимы. Этот режим работы связан с отклонениями в сети: короткими замыканиями, нагрузками переменного действия, неравномерностью загрузки фаз.
На нормально работающее устройство оказывает влияние подключённая сеть, где нарушения функционирования отдельных потребителей вызывают несимметрию и искажения формы сигнала. Из-за этого могут перегреваться обмотки или конструкция генератора.
Продолжительная работа генератора возможна при различии фазных токов на турбогенераторах до 10% и до 20% на синхронных компенсаторах и гидрогенераторах.
Искажение синусоиды на СГ происходит из-за мощных выпрямителей, преобразователей, электротранспорта и т. д.
Важно для синхронных машин, чтобы нормально работала система охлаждения. Если затраты охлаждающей воды достигают 70% от номинала, срабатывает сигнализация предупреждения. Если расход охладителя снижается наполовину, устройство должно разгружаться за 2 мин, а затем отключаться не более чем за 4 мин.
Характеристики генератора:
- при холостом ходе, когда обмотка якоря не замкнута, устанавливается зависимость ЭДС от токов возбуждения, а также определяется показатель намагничивания сердечников машины;
- внешняя характеристика – зависимость выходного напряжения от нагрузочных токов;
- регулировочные характеристики, проявляющиеся в зависимости токов возбуждения от нагрузочных при автоматическом поддерживании заданных выходных параметров.
Виды генераторов
Генераторы отличаются способами возбуждения. В автономных установках на транспорте, в авиации, на судах применяется самовозбуждение за счёт остаточного намагничивания. Способ отличается надёжностью и удобством применения. Распространённым вариантом здесь является отбор энергии от статорной обмотки, которая проходит через понижающий трансформатор и полупроводниковый преобразователь ПП, в результате чего на обмотку возбуждения через коллектор поступает постоянный ток (изображено на рисунке ниже – а).
Принцип самовозбуждения синхронного генератора
Другая схема реализует самовозбуждение также путём подачи переменного тока со статорной обмотки через выпрямительный трансформатор ВТ и тиристор ТП в обмотку возбуждения ОВ (изображено на рисунке выше – б). Тиристором автоматически управляет регулятор возбуждения АРВ по сигналам от входа генератора СГ через трансформаторы напряжения ТН и тока ТТ. Блок защиты БЗ не допускает образования на обмотке возбуждения повышенного напряжения и перегрузочного тока.
Другая конструкция содержит дополнительную синхронную или асинхронную машину с возбуждением от статорных обмоток. На рисунке ниже изображена такая система СГ с обмоткой возбуждения ОВ и трёхфазной обмоткой статора. При этом ротор основного генератора имеет общий вал с якорными обмотками возбуждения ОВ1 и ОВ2 дополнительного подвозбудителя ПВ. Ток возбуждения регулируется реостатами r1 и r2. Устройство не уступает по быстродействию установкам с самовозбуждением, но конструкция у него более сложная, а габариты больше.
Система возбуждения с дополнительным генератором
Применяется также бесконтактная система возбуждения, где у СГ нет подвижных контактов для передачи энергии. Щётки с коллектором имеют только подвозбудитель ПВ, который питает пост
Бесконтактная система возбуждения синхронного генератора
оянным током обмотку I возбудителя В.
Видео. Синхронные машины
Можно отметить следующие современные направления в развитии технологии производства синхронных машин:
- улучшение конструкций;
- использование новых материалов, позволяющих уменьшить толщину изоляции и повысить мощность до 10%;
- применения микропроцессоров для контроля состояния машин;
- совершенствование режимов воздушного охлаждения.
elquanta.ru
О принципе работы синхронных генераторов: устройство и конструкция ротора
Электрогенератор (альтернатор) электротока переменного типа предназначается для процедуры преобразования кинетической и потенциальной энергии в электроэнергию. Ротор такой машины приводится в движение, а именно вращается, от двигателя первичного типа, в роли которого могут выступать ДВС (топливные двигатели), электродвигатели, турбины.
Внешний вид производственной синхронной генерирующей машины переменного тока модели СГС-14-100-6
Если альтернатор переменного тока характеризуется тем, что частота вращения его ротора совпадает с частотой вращения магнитного поля, то такие машины называются синхронными. Произвести расчет частоты вращения можно по формуле:
n = 60*f/p, где:
- f – частота тока в электросети;
- p – количество пар статорных полюсов.
Часто многие неосведомленные в области электроустановок люди задаются вопросом о том, какой принцип работы синхронного генератора.
Принцип работы СГ
Конструкция генерирующей машины переменного тока достаточна проста. Статор и ротор – это основные компоненты синхронного генератора (СГ).
Принцип действия синхронного генератора на основе взаимодействия магнитных полей статора и ротора
Синхронный альтернатор, в основном, вырабатывает электроэнергию тогда, когда ротор синхронного генератора движется по кругу вместе с магнитным полем, линии которого встречаются в неподвижной обмотке статора. Поле образуется посредством возбуждения дополнительным устройством, например:
- вспомогательным генератором;
- аккумулятором;
- разнообразными энергетическими преобразователями;
- и другими энергоисточниками.
Стоит отметить, что процесс преобразования энергий в СГ может происходить и по-другому – вращающееся части проводникового элемента могут располагаться в обездвиженном магнитном поле. В этом случае возникает трудность токосъема через щеточно-коллекторный узел электрической машины, какой соединяет ротор с цепями ее неподвижной части. Для генераторных машин невысокой мощности подобная схема может успешно применяться. Зачастую она встречается в установках передвижного типа.
В рассматриваемом генераторе продуцируется электродвижущая сила (ЭДС), расчет которой совершается по формуле:
e = 2*π*B*l*w*Dn, где:
- π – константа;
- B – индукция магнитного поля;
- l – длина паза статорного элемента;
- w – число витков в обмотке статорного компонента;
- Dn – диаметр статора внутри.
Электроэнергетика с такими устройствами построена, в основном, на электронапряжении в диапазоне 15 000-40 000 В. Энергообмен через коллектор альтернатора затруднителен. К тому же обмоточная катушка подвижного типа подвергается ударным нагрузкам большой силы и вращательным движениям с попеременной скоростью, что формирует проблематику с изоляционной составляющей. По этой причине якорные элементы производят обездвиженными, так как именно через них пропускается основная масса энергии.
Мощность устройства-возбудителя обычно не превосходит 4-5% от совокупной производительной мощности синхронного генератора – это дает возможность пропускать электроток через динамический узел.
Для информации. В механизмах переменного тока малой мощности (до нескольких кВт) роторный элемент изготавливается с магнитными деталями постоянного типа (ферритовыми, неодимовыми, полимерными магнитопластами и другими). В них не нужно устанавливать подвижные контакты, однако из-за этого существуют трудности с регулировкой выходного напряжения.
Устройство СГ
Статор СГ имеет почти такое же устройство и принцип функционирования, как и у асинхронного варианта. Его железные компоненты компилируются из стальных пластин (сталь применяется электротехнического назначения), которые отделаются друг от друга слоями изоляции. Обмотка переменного электротока располагается в его пазах. Провода обмоток отделяются друг от друга изолирующим слоем и закрепляются надежно, так как через них вводится нагрузка. Ротор может исполняться без выпирающих полюсов либо с ярко выраженными полюсами.
На заметку. Наибольшую популярность имеет трехфазный синхронный генератор, применяемый во многих областях жизнедеятельности человека и предприятий. Однофазные варианты обычно применяется в быту.
Основные типы СГ: а – с ротором, у которого выступают полюса; б – с не явно полюсным ротором
Синхронные генераторы с явно полюсным ротором производятся для тихоходных машин, к примеру, для установок с гидротурбинами. А СГ с не явно полюсными роторами подходят для механизмов переменного тока, вращающихся с высокой скоростью.
Синхронные генерирующие устройства могут работать в двух режимах: двигательном либо генерирующем переменный электроток. Здесь важно то, какой метод охлаждения применяется, так как генерация чего-либо всегда более требовательна. В основном, на вал монтируются крыльчатки, какие охлаждают ротор с двух сторон воздухом, проходящем через фильтрующий элемент. Потоки воздуха в такой системе охлаждения вращаются одни и те же. При работе СГ в усиленном режиме подобная система нежелательна.
Важно! Эффективнее при высоких нагрузках применять в качестве охлаждающего агента водород, какой более чем в 14 раз легче воздуха.
Внутреннее устройство СГ переменного тока
Обмотки рассматриваемого генератора отводятся концами на его распредкоробку. Трёхфазная машина имеет иное соединение обмотки – отвод совершается звездой или треугольником.
Преимущественно все синхронные генерирующие устройства поддерживают синусоидальное переменное электронапряжение. Этого можно достичь посредством изменения формы наконечников на полюсах и особым месторасположением витков в пазах не явно полюсного ротора.
Реакция якоря
В обмотках статорного элемента при присоединении выхода с наружной нагрузкой начинает протекать электроток. Образующееся при этом силовое магнитное поле совмещается с полем, что формируется роторным элементом. Такое взаимодействие полей именуется реакцией якоря.
Реакция якоря в СГ при разнородных видах нагрузки
При активной нагрузке электроток и ЭДС имеют одни и те же фазы. Предельная сила электротока проявляется в тот момент, когда полюса роторного элемента находятся на противоположной стороне от якорных обмоток. Главный магнитный поток и второстепенный поток, который формируется во время реакции якоря, перпендикулярны друг другу, а при сопоставлении формируют увеличенный итоговый поток, что увеличивает в тот момент ЭДС.
Нагрузка индуктивного вида, имея потоки, направленные навстречу друг к другу, наоборот, приводит к значительному снижению электродвижущей силы.
Нагрузка емкостного типа вызывает совмещение потоков, движущихся в одну сторону, итог – увеличение ЭДС.
Любое повышение нагрузки увеличивает влияние реакции якоря на выходное электронапряжение, которое из-за этого изменяется в ту или иную сторону, что крайне нежелательно в электросетях. Практично такой процесс можно контролировать: просто изменять возбудитель, что снизит уровень влияния реакции якоря на главное силовое поле.
Режимы работы СГ
Нормальный режим работы СГ можно охарактеризовать любым числом рабочих периодов, какой угодно длительности, при которых главные параметры не выходят за диапазон допустимых значений. При таком режиме работы допустимы отклонения электронапряжения на выходе и частоты в пределах 4-5% и 2,5% от номинального значения, коэффициентов мощности и тому подобные. Допуски на отклонения задаются нормативными документами и определяются нагревом машин либо же гарантируются фирмой-производителем.
Бытовой топливный синхронный генератор отечественного производства, модель «Интерскол ЭБ-5500» на 5,5 кВт
Нормальные рабочие режимы недопустимы для долгого функционирования устройства при таких обстоятельствах, как перевозбуждение или недовозбуждение, переход в режимы асинхронного типа, перегрузки. На возникновение таких обстоятельств влияют следующие отклонения в электросети:
- неравномерность фазной загрузки;
- короткое замыкание;
- нагрузки попеременного действия.
Стоит отметить, что на нормальное функционирование механизма воздействует подключенная к нему электросеть, в которой любые нарушения работоспособности отдельно взятых источников потребления вызывают искажение формы и несимметрию электросигнала.
Диаграмма мощностей СГ
Важно! Длительная работа генерирующего энергию устройства допустима при разнице токов на фазах турбогенератора до 10% и водяных генераторов, синхронных компенсирующих машин до 15-20%.
Искривление синусоиды на СГ может случаться из-за высокомощных преобразователей, выпрямляющих устройств и прочих.
Необходимо учесть, что нормальное функционирование синхронных устройств возможно только при качественной работе охлаждающей системы. Так, при затратах охлаждающего агента в объеме более 70% от номинального значения, должна срабатывать предупреждающая сигнализация о том, что устройство нужно отключить от сети, в противном случае может произойти выход оборудования из строя. Когда расход охлаждающего агента уменьшается на 50%, то устройство должно разгрузиться порядка двух минут, после чего отключиться за максимум четыре минуты.
Характерные черты СГ
СГ обладают нижеследующими характерными чертами:
- при нулевой нагрузке (холостом ходе), когда якорная обмотка находится в не замкнутом виде, задается зависимость электродвижущей силы от электротоков возбуждения, а также устанавливается значение уровня намагничивания сердечников генератора;
- выходное электронапряжение зависит от нагрузочных электротоков – этот признак является внешней характеристикой СГ;
- регулировочные характеристики синхронной машины проявляются в зависимости возбуждающих электротоков от нагрузочных аналогов при поддерживании установленных параметров на выходе в автоматическом режиме.
Синхронные генераторы нашли широкое применение в промышленности и энергообеспечении, так как имеют простую конструкцию, понятный принцип работы и могут выдерживать кратковременные перегрузки.
Для правильной эксплуатации и проведения ремонтных работ над СГ переменного тока необходимо знать их принцип работы (одинаковое по частоте вращение ротора и магнитного поля) и устройство. Эти знания пригодятся инженерам производственных предприятий и специалистам в области энергетики, а также обычным людям, которые используют подобную технику в бытовых целях.
Видео
amperof.ru
24. Устройство трехфазного синхронного генератора.
Синхронная машина состоит из двух основных частей — статора и ротора Статор, являющийся неподвижной частью машины, по конструкции аналогичен статору асинхронного двигателя. Трехфазная обмотка статора выполнена с таким же числом полюсов, как и ротора Ротор — вращающаяся часть машины — представляет собой систему полюсов, на которых расположена обмотка возбуждения. Ротор служит для создания основного магнитного потока. По конструкции различают роторы с явно и неявно выраженными полюсами.
Ротор с явно выраженными полюсами (рис 62,а) состоит из стального вала, роторной звезды и полюсов возбуждения с полюсными катушками, укрепленными на ободе роторной звезды.
При больших частотах вращения (3 тыс об/мин), исходя из соображений механической прочности, ротор выполняют неявнопо-люсным (рис 62,6) с выфрезерованнымн на его поверхности продольными пазами, в которые закладывают обмотку возбуждения.
На валу ротора устанавливают контактные кольца, к которым присоединяют выводы обмотки возбуждения. Кольца надежно изолируют от вала и друг от друга. К кольцам прилегают щетки,
укрепленные в щеткодержателях, образуя скользящпй контакт. Через скользящий кон- такт обмотка возбуждения подключается к источнику постоянного тока. При подключе нии обмотки возбуждения вращающегося ротора к источнику постоянного тока создается вращающийся вместе с ротором магнитный поток Ф, пересекающий трехфазную обмотку статора и по закону электромагнитной индукции в каждой фазной обмотке образуется наводящий э д с.
Э д с статора составляет симметричную трехфазную э д с, и при подключении к обмотке статора симметричной нагрузки эта обмотка нагружается симметричной системой токов. Машина при этом работает в режиме генератора
Как и все электрические машины, синхронные машины обратимы. У синхронных машин частота вращения п ротора равна частоте вращения n1 магнитного поля статора.
25. Принцип работы трехфазного синхронного генератора.
Синхронными называются электрические машины, частота вращения которых связана постоянным соотношением с частотой сети переменного тока, в которую эта машина включена. Синхронные машины служат генераторами переменного тока на электрических станциях, а синхронные двигатели применяются в тех случаях, когда нужен двигатель, работающий с постоянной частотой вращения. Синхронные машины обратимы, т.е. они могут работать и как генераторы, и как двигатели, хотя в конструкциях современных синхронных генераторов и двигателей имеются небольшие, но практически весьма существенные отличия. Синхронная машина переходит от режима генератора к режиму двигателя в зависимости от того, действует ли на ее вал вращающая или тормозящая механическая сила. В первом случае она получает на валу механическую, а отдает в сеть электрическую энергию, а во втором случае она потребляет из сети электрическую энергию, а отдает на валу механическую энергию.
Основной магнитный поток синхронного генератора, создаваемый вращающимся ротором, возбуждается посторонним источником-возбудителем, которым обычно является генератор постоянного тока небольшой мощности, установленный на общем валу с синхронным генератором. Постоянный ток от возбудителя подается на ротор через щетки и контактные кольца, установленные на валу ротора.
На валу ротора устанавливают контактные кольца, к которым присоединяют выводы обмотки возбуждения. Кольца надежно изолируют от вала и друг от друга. К кольцам прилегают щетки,
укрепленные в щеткодержателях, образуя скользящий контакт. Через скользящий контакт обмотка возбуждения подключается к источнику постоянного тока. При подключении обмотки возбуждения вращающегося ротора к источнику постоянного тока создается вращающийся вместе с ротором магнитный поток, пересекающий трехфазную обмотку статора и по закону электромагнитной индукции в каждой фазной обмотке образуется наводящий э д с.
Э д с статора составляет симметричную трехфазную э д с, и при подключении к обмотке статора симметричной нагрузки эта обмотка нагружается симметричной системой токов. Машина при этом работает в режиме генератора.
Как и все электрические машины, синхронные машины обратимы. У синхронных машин частота вращения ротора равна частоте вращения магнитного поля статора.
studfiles.net
Принцип работы синхронного генератора переменного тока: видео — Asutpp
Основной принцип работы генератора переменного тока так же прост, как и таковой в генераторе постоянного тока. И в первом, и во втором случае, здесь действует закон Фарадея об электромагнитной индукции, согласно которому электрический ток индуцируется в проводнике магнитного поля вследствие относительного движения между этим проводником и магнитным полем. Для понимания принципа работы такого генератора следует представить некий прямоугольный виток, размещенный между двумя противоположными магнитными полюсами, как показано ниже.
Принцип работы генератораСкажем, одновитковая петля ABCD может вращаться относительно оси a-b. Предположим, что эта петля начинает вращаться по часовой стрелке. После поворота на 90°, токопроводящая жила (токоотвод) AB петли находится в зоне S-полюса, а CD – N-полюса. В этом положении, тангенциальное движение проводника AB перпендикулярно линии магнитного потока от полюса N к S. Следовательно, скорость разъединения потока силовых линий проводника AB максимальна, и индуцированный ток сфокусирован в AB проводнике; а его направление можно теперь определить при помощи так называемого правила «правой руки» или «буравчика» Флемминга. Согласно данному правилу, электрический ток направлен от А к В. В то же самое время, проводник CD подпадает под воздействие полюса N; и в соответствии с вышеуказанным правилом, мы получим направление индуцированного тока от С до D.
Правило «буравчика» – ФлеммингаТеперь, после вращения по часовой стрелке на 90°, виток ABCD приходит в вертикальное положение, как показано ниже. В этом положении, тангенциальное движение проводника AB и CD параллельно линии магнитного потока. Следовательно, будет иметь место разъединение потока силовых линий, то есть не будет тока в проводнике вообще. По ходу того, как виток ABCD переходит из горизонтального положения в вертикальное, угол между линиями потока (и направление движения проводника) уменьшается от 90° до 0°, и, таким образом, индуцированный ток в витке сводится к абсолютному нулю от его максимального значения.
Правило «правой руки» ФлеммингаПосле очередного вращения по часовой стрелке на 90°, виток снова оказывается в горизонтальном положении; поэтому проводник AB попадает под влияние N-полюса, а CD – S-полюса. Но если мы снова применим правило «правой руки» Флемминга, то мы увидим, что наведенный (индуцированный) ток в проводнике AB идет от точки В к A, в то время как наведенный ток в проводнике CD – от D до C. Так как в данной позиции виток меняет горизонтальное положение на вертикальное, ток в проводниках доходит до своего максимального значения. Это означает, что ток циркулирует достаточно близко в витке от точки В к А, от А до D, от D до С и от С до А.
В общем, мы можем наблюдать реверс предыдущего горизонтального положения, когда ток циркулирует A → B → C → D → A. При дальнейшем переходе витка в вертикальное положение, ток снова уменьшается до показателя 0. Таким образом, если виток продолжает вращаться, то ток в витке продолжает чередовать свое направление. Во время каждого полного оборота витка, электрический ток в нем постепенно достигает своего максимального значения, а затем сводится к нулю; и наоборот, в противоположном направлении дело снова доходит до показателя 0 и так далее.
Как видите, переменный ток совершает одну полную синусоиду (колебание/волну) во время каждого оборота на 360° в витке, вращаясь внутри магнитного поля. Вот мы и разложили по полочкам фактический принцип работы генератора переменного тока.
Теперь разъединяем петлю и соединяем два ее конца с тяговыми контактными кольцами генератора и постоянными втулками на каждом контактном кольце. Если соединить два терминала внешней нагрузки с этими двумя втулками кондуктора, то мы получим переменный ток в нагрузке. Это и есть элементарная модель генератора.
Поняв простейший принцип работы генератора, теперь можно рассмотреть основной принцип его эксплуатации. Как мы уже знаем, магнитное поле является стационарным, а проводники (якорь электрической машины/ротор) вращаются. Но в целом и на практике, в структуре генератора проводники секций якоря являются стационарными, а полевые магниты вращаются между ними. Ротор генератора или синхронный генератор механически соединен с валом/осью или лопатками турбины, которые при вращении на синхронной скорости и вследствие силы способны привести к разъединению проводников секций якоря магнитного поля, расположенных на статоре. Как прямое следствие этого, ЭДС и ток начинают поступать через эти проводники, которые сначала идут в одном направлении в первой половине цикла, а затем в другом направлении во второй половине цикла, с определенным временным лагом 120° для каждой обмотки, как показано на рисунке ниже.
3 фазы генерируемого напряженияБлагодаря такому физическому явлению, существует возможность направлять поток энергии из генератора 3φ в распределительные электрические станции как для бытовых, так и для промышленных нужд.
www.asutpp.ru
90. . Принцип действия синхронного генератора
Синхронная машина состоит из двух основных частей: неподвижной - статора и вращающейся - ротора, и имеет две основные обмотки. Одна обмотка подключается к источнику постоянного тока. Протекающий по этой обмотке ток создает основное магнитное поле машины. Эта обмотка располагается на полюсах и называется обмоткой возбуждения. Иногда у машин небольшой мощности обмотка возбуждения отсутствует, а магнитное поле создается постоянными магнитами. Другая обмотка является обмоткой якоря. В ней индуктируется основная ЭДС машины. Она укладывается в пазы якоря и состоит из одной, двух или трех обмоток фаз. Наибольшее распространение в синхронных машинах нашли трехфазные обмотки якоря.
В синхронных машинах чаще всего находит применение конструкция, при которой, обмотка якоря располагается на статоре, а обмотка возбуждения - на роторе (рис. 1). Синхронные машины небольшой мощности иногда имеют обращенное исполнение, когда обмотка якоря располагается на роторе, а обмотка возбуждения - на полюсах статора (рис. 2). В электромагнитном отношении обе конструкции равноценны.
Рассмотрим принцип действия синхронного генератора. Если через обмотку возбуждения протекает постоянный ток, то он создает постоянное во времени магнитное поле с чередующейся полярностью. При вращении полюсов и, следовательно, магнитного поля относительно проводников обмотки якоря в них индуктируются переменные ЭДС, которые, суммируясь, определяют результирующие ЭДС фаз.
Если на якоре уложены три одинаковые обмотки, магнитные оси которых сдвинуты в пространстве на электрический угол, равный 120°, то в этих обмотках индуктируются ЭДС, образующие трехфазную систему. Частота индуктируемых в обмотках ЭДС зависит от числа пар полюсов р и частоты вращения ротора п:
Векторная диаграмма синхронной машины в режиме генератора
Поток ротора направим влево по оси абсцисс (рис. 3.4). Вектор ЭДС, индуктируемой потоком ротора, отстает от него на 90 градусов. Вектор тока статораотстает от векторана угол ψ, определяемый выражением:
, |
xH и RH - индуктивное и активное сопротивление цепи нагрузки генератора.
Чтобы определить положение вектора , опустим из конца вектораперпендикуляр на направление вектора. На этом перпендикуляре, чтобы вычесть изреактивное напряжение, отложим это реактивное напряжение вниз. Затем влево из полученной точки, параллельно векторуотложим активное напряжение. Соединив полученную точку с началом координат, мы найдем вектор напряжения. Соединив ту же точку с концом вектора, получим треугольник внутренних падений напряжения генератора с гипотену
диаграмма синхронного двигателя
Будем считать, что возбуждение машины при переходе от генераторного режима к двигательному осталось неизменным, и поэтому сохраним в диаграмме двигателя, как и в диаграмме генератора, ту же длину вектора , но отложим теперьотстающим отна угол θ. Направление вектораопределяется условием. Чтобы определить направление векторапродолжим(полученное вычитанием из векторавектора) и на эту прямую опустим перпендикуляр из начала координат и отложим на нем. Теперьотстает отболее чем на 90 градусов. Положительную мощность токсоздает не с, а с напряжением сети. Векторы потоковистроим каждый под углом 90 градусов к вектору индуктируемой ими ЭДС (т е. ки).
Режим двигателя устойчив при изменении θ в пределах от 0 до -90 и неустойчив при θ<-90 градусов, когда возрастание θ не увеличивает, а уменьшает вращающий момент. Если механический тормозящий момент, приложенный к валу двигателя, превзойдет максимальное значение вращающего электромагнитного момента Мэ.м.max, то произойдет выпадение двигателя из синхронизма - ротор постепенно уменьшит скорость и, наконец, остановится, ЭДС в обмотке уменьшится до 0, а токи достигнут весьма больших значений, во много раз превышающих номинальные.
Для явнополюсной машины
Для неявнополюсной Xd=Xq
Q=*cosθ-
На электрических станциях применяют трехфазные синхронные генераторы переменного тока высокого и низкого напряжений.
Слово синхронный обозначает — одновременный. Это значит, что одновременно и в строгой математической зависимости с изменением оборотов изменяется частота тока Эта зависимость определяется формулой
где п1 — число оборотов генератора в минуту,f1 — частота тока генератора(гц), р — число пар полюсов в роторе генератора Синхронный генератор состоит из неподвижной части —статора, в пазах которого помещается трехфазная обмотка переменного тока, и вращающейся части —ротора, который представляет собой электромагнит (рис. 163).
Обмотки возбуждения ротора питаются через щетки и кольца постоянным током от возбудителя — машины постоянного тока или какого-нибудь выпрямителя
Ротор синхронного генератора, находящийся внутри статора, вращают первичным двигателем, при этом магнитное поле ротора пересекает витки трехфазной обмотки статора и индуктирует в них э. д. с. переменного тока.
В некоторых конструкциях синхронных генераторов обмотки полюсов неподвижны и укреплены на станине, а вращается трехфазная обмотка переменного тока, выполняемая в пазах стального цилиндра, набранного из листов электротехнической стали. Переменный ток в этом случае снимают с колец, т. е. скользящим контактом, что является недостатком таких генераторов. Широкого распространения эти типы генераторов но нашли.
§ 2. Устройство синхронных генераторов
Статор синхронного генератора состоит из чугунной станины — корпуса, внутри которого находится сердечник статора, собранный из отдельных листов электротехнической стали, изолированной между собой лаком или
тонкой бумагой. В пазы сердечника укладывают обмотку статора из медного изолированного провода (рис. 164).
Роторы синхронных генераторов бывают двух типов — явнополюсными и неявнополюсными.
Явнополюсными выполняют роторы синхронных генераторов с небольшим числом оборотов, обычно соединяемых с тихоходными гидротурбинами, и генераторов небольшой и средней мощности (рис. 165).
Роторы неявнополюсные применяют в генераторах с большим числом оборотов (3000 об/мин) и большой мощности, обычно соединяемых на одном валу с паровыми турбинами, называют эти генераторы турбогенераторами
Сердечники полюсов большей частью изготовляют из литой стали, а башмаки — иногда из отдельных листов электротехнической стали. Обмотку полюсов выполняют из медных изолированных проводов. Для получения синусоидально изменяющейся э. д. с. необходимо иметь
синусоидальное распределение магнитной индукции в воздушном зазоре. Это достигается неравномерностью воздушного зазора между наконечником полюса и сталью статора: по краям полюсов воздушный зазор больше, чем под серединой полюса (рис. 167).
На вал генератора надевают два кольца, изолированных от него, к которым присоединяют выводы обмотки возбуждения ротора, их называют контактными кольцами. На контактные кольца устанавливают щетки, а к щеткам подводят постоянный ток от возбудителя.
Чаще всего в качестве возбудителя применяют машину постоянного тока, которую называют машинным возбудителем, а в последнее время используют для возбуждения твердые или механические выпрямители.
У большего количества синхронных машин возбудитель расположен на одном валу с генератором (рис. 168), а в последних конструкциях возбудитель располагают сверху статора синхронной машины (рис. 169). Отечественной электропромышленностью выпускаются синхронные генераторы различной мощности горизонтальные и вертикальные.
Генераторы мощностью до 400 ква и более выпускаются на напряжение 400/230в и начиная с мощности 400ква на напряжение 6300в.
Горизонтальные генераторы типа СГ (С — синхронный, Г — генератор) выпускаются с машинным возбудителем, с возбуждением от твердых выпрямителей (СГС), с возбуждением от механических выпрямителей (СГТ) и другие.
Вертикальные гидрогенераторы типа ВГС (В — вертикальный, Г — гидрогенератор, С — синхронный) выпускаются мощностью от 250 до 4800 ква с машинными возбудителями
Выпускаются синхронные генераторы для сопряжения с дизелями на одном валу типа СГД — мощностью до 1000 ква
в первом случае получит ускорение, и отдаваемая им на сеть активная мощность увеличится, во втором случае ротор получит замедление, тогда мощность генератора уменьшится.
Для изменения реактивной мощности генератора изменяют его возбуждение.
studfiles.net
Синхронный генератор
Электротехническим устройством специального использования, работающим в автономном режиме от механического двигателя, является синхронный генератор. Прибор нашел применение в частном хозяйстве. Он используется для выработки электротока промышленной частоты. Кроме того, изобретение работает как генератор тока сварочного оборудования. Машина синхронного действия монтируется в дизельные и бензиновые электростанции.
Синхронный генератор. Устройство
Электрическая машина состоит из:
1. Статора.
2. Ротора.
3. Обмоток генератора.
4. Системы токового компаундирования.
5. Переключателя обмотки статора.
6. Выпрямителя сварочного тока.
7. Кабелей.
8. Сварочного устройства.
9. Обмоток ротора.
10. Регулируемого источника тока (постоянного).
Синхронный генератор используется в режимах: генератора тока 50 Гц., сварочного синхронного генератора, прибора с повышенной частотой. Изобретение дает возможность создавать малогабаритные электрические агрегаты универсального применения. Синхронный генератор приводит в действие оборудование в местах с отсутствием централизованных электросетей. Его можно использовать в фермерских хозяйствах вдали от населенных пунктов.
Характеристики синхронного генератора рассчитаны на создание электрогенератора с новыми потребительскими возможностями. Это значит, что при реализации данного изобретения, одно и то же устройство можно эксплуатировать как источник электропитания частотой 50 Гц и более, а также как поставщик тока, выпрямленного для дуговой сварки, он наделен круто подающей внешней характеристикой рабочей зоны. При этом обеспечиваются сварочные свойства, не уступающие трехобмоточным коллекторным сварочным генераторам постоянного тока.
Как работает синхронный генератор?
Принцип действия основан на электромагнитной индукции. Происходит преобразование энергии механической в электрическую. Электромашина работает как генератор (в его режиме). При этом частоты вращений магнитных полей статора и ротора одинаковые. На обмотки ротора подается напряжение, образуется магнитное поле. Вращаясь, оно проникает через обмотку статора и образует в ней ЭДС.
Ротор бывает фазного и короткозамкнутого типа, в зависимости от вида обмотки. Вспомогательная обмотка статора создает вращающееся магнитное поле. Оно индуцирует магнитное поле на роторе, которое наводит ЭДС. В момент запуска электрической станции ротор создает магнитное поле слабого напряжения. С усилением оборотов, ЭДС в обмотке возбуждения увеличивается. Обмоточное напряжение проникает на ротор через авторегулировочный блок. Контроль над выходящим напряжением осуществляется за счет изменения магнитного поля. Стабильность обеспечивается изменением магнитного поля ротора регулированием тока в его обмотке. Такой метод регулировки обеспечивает стабилизацию выходного напряжения прибора.
Преимущества и недостатки синхронного генератора
К первым относится постоянство исходящего напряжения. Минусом является возможность перегрузки при повышенной нагрузке. Регулятор может повысить силу тока в обмотке ротора. К недостаткам генератора синхронного типа можно также причислить наличие щеточного устройства. С течением времени оно будет нуждаться в обслуживании. В наше время этот недостаток удалось устранить.
Современные генераторы синхронного типа выпускают без щеточного узла. Оборудование нового поколения имеет длительный срок службы, надежность в работе в трудных условиях производства. Встроенные датчики и электроника обеспечивают функционирование в режиме реального времени. Новейшие технологические решения обеспечивают синхронному генератору высокую эффективность. Продукцию используют в промышленности и в оборудовании судов.
fb.ru
Синхронный генератор. Устройство и принцип работы
Генераторы переменного тока служат для преобразования механической энергии первичных двигателей в электрическую. В качестве первичного двигателя применяются: паровая турбина ( система паровая турбина – генератор называется турбогенератором), водяная турбина (гидрогенератор), двигатель внутреннего сгорания (дизель- генератор), электрический двигатель ( двигатель – генератор).
Синхронной машиной называется машина, скорость вращения магнитного поля которой равно скорости ротора
(9-17)
Машина обратима и может работать как генератор, так и как двигатель. Однако наибольшее распространение они получили как генераторы переменного тока, которые устанавливают на всех современных электростанциях.
Генератор, как и всякая электрическая машина, состоит из неподвижной части – статора и вращающейся части – ротора. Часто ту часть машины, которая создает магнитное поле, называют индуктором, а ту часть машины, где располагается обмотка, в которой индуцируется эдс, называют якорем.
В основе работы синхронных генераторов лежит явление электромагнитной индукции. ЭДС, которая индуцируется в рабочей обмотке
.
Принципиально безразлично, будет ли движущийся проводник пересекать неподвижное магнитное поле или, наоборот, подвижное магнитное поле будет пересекать неподвижный проводник, поэтому конструктивно синхронные генераторы могут быть двух видов. В первом из них якорь неподвижен, а индуктор вращается (рис.111 а), во втором – наоборот (рис.111б).
а б
Рис. 111
Маломощные и низковольтные генераторы (однофазные и трехфазные) часто используются в передвижных станциях и могут работать по схеме рис. б. В этих генераторах рабочая обмотка часто выполняется на роторе, а на внутренней поверхности статора устраивается полюсная система с явно выраженными полюсами. Подключение генератора к внешней нагрузке осуществляется через скользящие токосъемы( щетки с кольцами на оси ротора).
Современные генераторы, как составная часть силовой электроэнергетики, стр ояться на высокое напряжение 15-40кВ. Снимать такие высокие напряжения с вращающейся рабочей обмотки при помощи щеточно – коллекторного узла затруднительно. Кроме того, обмотку высокого напряжения, которая при вращении ротора испытывает толчки и вибрации, очень трудно изолировать. Этим объясняется, что в современных генераторах обмотку якоря располагают на неподвижной части машины – статоре, а обмотку возбуждения (магнитные полюсы) располагают на роторе.
Схема двухполюсного синхронного генератора этого типа дана на рис. а. На статор машины намотаны три обмотки с одинаковым количеством витков, сдвинутые на угол 1200. Буквами Н и К отмечены начала и концы каждой обмотки. Магнитное поле создается обмоткой, намотанной на роторе. Через щетки и кольца к концам этой обмотки подается постоянное напряжение от специального источника питания. Ротор при помощи первичного двигателя приводится во вращение; его магнитное поле пересекает обмотки статора и в них индуктируются синусоидальные эдс.
Статор. Статор ничем не отличается от статора асинхронной машины. В его обмотке действием вращающегося магнитного поля ротора наводится эдс, подаваемая во внешнюю цепь генератора. Такая конструкция генератора позволяет устранить скользящие контакты в цепи нагрузки генератора (обмотка статора соединяется с нагрузкой непосредственно) и надежно изолировать рабочую обмотку от корпуса машины, что весьма существенно для современных генераторов, изготавливаемых на большие мощности при высоких напряжениях. Основной магнитный поток синхронного генератора, создаваемый вращающимся ротором, возбуждается от постороннего источника питания. Постоянный ток от источника проходит через обмотку ротора через два кольца и две неподвижных щетки, установленные на валу генератора. Мощность такого источника питания равна 0,25 – 1% от номинальной мощности синхронного генератора. Номинальное напряжение 115-350В.
Ротор. По свой конструкции роторы генераторов делятся наявнополюсные (тихоходные) (рис. 112а) инеявнополюсные(высокоскоростные) (рис.112 б). Число пар полюсов ротора обусловлено
а б
Рис. 112
скоростью его вращения. При частоте генерируемой эдс 50Гц неявнополюсной ротор быстроходной машины – турбогенератора, вращающийся со скоростью 3000об/мин, имеет одну пару полюсов, тогда как явнополюсной ротор тихоходного гидрогенератора, вращающийся со скоростью от 50 до 750об/мин, имеет число пар полюсов соответственно от 60 до 4.
Работа генератора под нагрузкой. Реакция якоря. Если к зажимам работающего генератора подключить внешнюю нагрузку, то в обмотках статора возникает электрический ток, который создает свое магнитное поле – поток статора. Это магнитное поле накладывается на основное магнитное поле ротора, создаваемое обмоткой возбуждения, ослабляет или усиливает его. Это воздействие поля статора на основное магнитное поле называетсяреакцией якоря.
Рассмотрим реакцию якоря при различных по характеру нагрузках.
Рис. 113
В случае активной нагрузки, при которой ток совпадает по фазе с эдс, максимум тока наступит в тот момент, когда оси полюсов ротора будут находиться напротив обмоток якоря (рис.113 а). Это так называемая поперечная реакция якоря: потоки статора и роторавзаимно перпендикулярны. В результате векторного сложения этих потоков результирующий магнитный поток генератора несколько увеличивается и смещается в пространстве, - следовательно, эдс генератора возрастает.
В случае чисто индуктивной нагрузки ток отстает от эдс по фазе на К моменту максимального значения тока в обмотке А-Х ротор должен быть повернуть на 900по часовой стрелке (рис.113 б). Магнитные потокиинаправлены встречно и результирующий магнитный поток генератора равен их разности. Такая реакция якоря уменьшает эдс генератора.
В случае чисто емкостной нагрузки ток нагрузки генератора опережает по фазе эдс на , - следовательно, ротор генератора еще не дошел 900до вертикального положения, а ток в обмотке А-Х уже имеет максимальное значение (рис.113 в). Потокииимеют одинаковое направление, увеличивают результирующий магнитный поток, а это приводит к увеличению эдс генератора.
Очевидно, что реакция якоря будет тем значительней, чем больше ток нагрузки. Таким образом, реакция якоря в синхронном генераторе приводит к изменениям магнитного потока и эдс, что является крайне нежелательным, так как изменение значения и характера нагрузки приводит к изменению напряжения на зажимах генератора.
На практике при всяком изменении нагрузки с помощью автоматики изменяют ток возбуждения; этим ослабляют влияние реакции якоря.
Для снятия различных характеристик синхронного генератора можно использовать схему рис.114 а.
Характеристика холостого хода. Эта характеристика представляет зависимость индуктированной в статоре эдс Е от тока возбуждения при разомкнутой внешней цепи машины
E=f(iB) приn=nниI= 0.
а б в
Рис. 114
Генератор приводится во вращение с синхронной скоростью, соответствующей номинальной частоте генератора. Изменяют при помощи реостата ток возбуждения, отмечая показания амперметра в цепи возбуждения. По показаниям вольтметра, включенного на зажимы обмотки статора, определяют величину индуктированной эдс Е. Характеристика холостого хода показана на рис. 114б. Прямолинейная часть характеристики указывает на пропорциональность между магнитным потоком (током возбуждения) и индуктированной эдс. В дальнейшем магнитная система генератора насыщается, кривая изгибается, т.е. при значительном увеличении тока возбуждения индуктированная эдс растет очень медленно.
Внешняя характеристика. Зависимость напряжения на зажимах генератораUот тока нагрузкиIпри постоянных значениях тока возбужденияiB, коэффициента мощностиcosφи скоростиnвращения дается внешней характеристикой (рис. в)
U=f(I).
На рис.114 в даны внешние характеристики генератора для различных видов нагрузки.
Изменение напряжения с нагрузкой происходит вследствие реакции якоря и падения напряжения в обмотке статора.
При индуктивной нагрузке реактивный ток размагничивает машину и напряжение при увеличении тока нагрузки уменьшается.
При емкостной нагрузке напряжение генератора с увеличением тока нагрузки повышается вследствие действия продольно – намагничивающей реакции якоря.
Номинальный режим нагрузки выбирается таким, чтобы при cosφ= 0,8 изменения напряжения не превышали 35 - 45% от номинального (кривая 1).
studfiles.net
Видеоматериалы
Опыт пилотных регионов, где соцнормы на электроэнергию уже введены, показывает: граждане платить стали меньше
Подробнее...С начала года из ветхого и аварийного жилья в республике были переселены десятки семей
Подробнее...Более 10-ти миллионов рублей направлено на капитальный ремонт многоквартирных домов в Лескенском районе
Подробнее...Актуальные темы
ОТЧЕТ о деятельности министерства энергетики, ЖКХ и тарифной политики Кабардино-Балкарской Республики в сфере государственного регулирования и контроля цен и тарифов в 2012 году и об основных задачах на 2013 год
Подробнее...Предложения организаций, осуществляющих регулируемую деятельность о размере подлежащих государственному регулированию цен (тарифов) на 2013 год
Подробнее...
КОНТАКТЫ
360051, КБР, г. Нальчик
ул. Горького, 4
тел: 8 (8662) 40-93-82
факс: 8 (8662) 47-31-81
e-mail:
Этот адрес электронной почты защищен от спам-ботов. У вас должен быть включен JavaScript для просмотра.