Диодный мост – как он работает? 3 фазы диодный мост


Диодный мост схема, принцип работы

В подавляющем большинстве блоков питания для выпрямления переменного электрического тока используются диодные мосты. Рассмотрим диодный мост, схема включает в себя только 4 диода. На принципиальной схеме, диодный мост обозначают как квадрат повернутый на 45 градусов в центре квадрата на одной из диагоналей чертят диод, катод ближе к положительному выходу моста, анод ближе к отрицательному выходу моста. Оставшиеся две вершины квадрата являются входами переменного напряжения.

Рисуя схему моста достаточно помнить, что от каждого входа приходят к «+» выходу два диода, прием анод подключается на вход, а катод на выход. Тоже и с отрицательным выходом, только к выходу подключаются аноды диодов.

Принцип работы диодного моста

Представим, что на вход диодного моста подается переменное напряжение и в текущий момент на верхнем по рисунку входе присутствует положительный потенциал, то диоды VD2 и VD3 откроются так как к к ним приложено положительное напряжение (на рисунке путь тока показан линией красного цвета), а VD1 и VD4 будут заперты обратным напряжением. При обратной полярности входного напряжения ток потечет от нижнего входа через VD4, нагрузку и VD1 (на рисунке путь тока показан синим цветом), а VD2 и VD3 будут заперты обратным напряжением.

Получается положительный выход будет соединен с тем входом диодного моста, на котором в данный момент присутствует положительный потенциал, а отрицательный выход с тем входом на котором отрицательный потенциал.

Трехфазный диодный мост схема

Рассмотренный нами диодный мост используется для однофазного выпрямления, его и называют однофазным мостом. Для выпрямления переменного электрического тока в трехфазных сетях используют трехфазный диодный мост.

Он состоит из 6 диодов, по паре диодов на каждую фазу. В данной схеме, ток протекает от фазы с наибольшим потенциалом, через нагрузку к фазе с наименьшем потенциалом. Оставшаяся фаза ни к чему не подключена. Если в однофазном мосте проводили ток два диода из четырех, то тут тоже проводят ток 2 диода, а 4 при этом заперты.

Диодный мосты выпускаются как законченные компоненты, но если нет в наличии такой детальки, то можно использовать 4 отдельных диода включенных по схеме диодного моста.

Для плат с поверхностным монтажом удобно использовать сдвоенные диоды. Например из двух диодных сборок BAT54S или BAV99 получается полноценный диодный мост.

Зачастую использование двух сборок из двух диодов оказывается дешевле, чем использование диодного моста из четырех диодов в одном корпусе или четырех диодов по отдельности.

hardelectronics.ru

Схемы трёхфазных (многофазных) выпрямителей | Volt-info

Описание

 Трёхфазную (многофазную) систему напряжений можно представить как три однофазных источника переменного напряжения, электрически соединённые между собой одним из выводов. Точка соединения является общим, нулевым выводом. На диаграммах будем изображать напряжения выводов разных фаз относительно общего. Диаграмма изменения напряжения одной фазы во времени представлена на рисунке 1 а). В симметричных многофазных системах однотипные изменения напряжений чередующихся фаз сдвинуты во времени на одинаковый интервал. Этот интервал определяет угол сдвига фаз. В трёхфазной системе он равен 120 градусам. Диаграмма трёхфазной системы напряжений представлена на рисунке 1 б).

Рисунок 1. Диаграммы напряжений одной фазы (а) и трёхфазной системы (б).

 

 По аналогии с однофазными, схемы многофазных выпрямителей делятся на два типа: однополупериодные (рис. 2 и 3) и двухполупериодные (рис. 5 и 6). В однополупериодных схемах при выпрямлении полезное действие на нагрузку оказывает только один полупериод напряжения каждой фазы, и, поскольку фазы распределены по времени и перекрывают друг друга, КПД такого выпрямителя будет незначительно ниже двухполупериодного, но будут заметны пульсации, обусловленные формой кривой напряжения. При использовании двухполупериодной схемы, пульсации выпрямленного напряжения будут заметно меньше.

 

Однополупериодный многофазный выпрямитель

 Принцип работы многофазного однополупериодного выпрямителя (см. схему на рис. 2 и 3) абсолютно идентичен однофазному (см. статью Элементарный выпрямитель на одном диоде). Особенность заключается в том, что рабочие (выпрямленные) полупериоды напряжений накладываются друг на друга с фазным сдвигом по времени (перекрываются) (см. диаграммы на рис. 4 и 7). При этом полученное постоянное напряжение имеет тем меньшие пульсации, чем больше фаз участвует в процессе работы. Наиболее часто применяются трёхфазные источники многофазной системы напряжения, поэтому обычно число фаз не превышает трёх. В схеме однополупериодного трёхфазного выпрямителя, рисунок 2, за время периода полезную работу производят только три рабочих полупериода напряжения. При этом пульсации выпрямленного напряжения будут иметь вид, показанный на рисунке 4 толстой чёрной кривой.

Рисунок 2. Схема трёхфазного однополупериодного выпрямителя.

 

 При увеличении числа фаз, схема усложняется незначительно – просто добавляется диод для каждой дополнительной фазы (рисунок 3). Увеличение числа фаз не имеет значимого практического смысла и в нашем случае может позволить лишь несколько снизить пульсации напряжения на выходе выпрямителя. Например, если увеличить число фаз в два раза (до 6), то пульсации напряжения на выходе будут несколько снижены, а диаграмма напряжений будет напоминать рисунок 7. Но это не имеет практического значения, поскольку того же эффекта можно добиться просто применив схему двухполупериодного выпрямителя, показанного на рисунке 5.

 Рисунок 3. Схема многофазного однополупериодного выпрямителя.

 Рисунок 4. Пульсации выпрямленного напряжения однополупериодным трёхфазным выпрямителем.

 

Трёхфазный двухполупериодный выпрямитель

фактически является модификацией своего однофазного предшественника. При увеличении количества фаз, с каждой последующей фазой в схему будет добавляться два полуплеча диодного моста в виде двух диодов (рисунок 6).

 Рисунок 5. Схема трёхфазного двухполупериодного выпрямителя.

 Рисунок 6. Схема многофазного двухполупериодного выпрямителя.

 

 При работе двухполупериодного трёхфазного выпрямителя в работе участвуют 6 рабочих полупериодов напряжения. На выходе такого выпрямителя напряжение имеет несколько меньшие пульсации (рис. 7), чем однополупериодного.

 Рисунок 7. Пульсации выпрямленного напряжения двухполупериодным трёхфазным выпрямителем.

volt-info.ru

Выпрямители тока часть 2. Виды однофазных и трехфазных схем

Продолжаем рассматривать выпрямители тока, их различные схемы сборки. Всевозможные схемы обеспечивают применение таких устройств в разных отраслях промышленности и в быту.

Производство и передача электроэнергии чаще всего выполняется на переменном токе, так как трансформация напряжения является наиболее простым способом. Но, довольно весомая часть выработанной электрической энергии применяется в виде постоянного тока, даже для транспортировки на значительные расстояния. Эта доля составляет около 30% от всей произведенной электроэнергии.

Выпрямители тока: двухтактная схема

В устройствах низкого напряжения используют однофазный двухтактный выпрямитель с нулевым отводом обмотки. Это дает возможность снизить потери и количество диодов в два раза. Однако при этом коэффициент использования трансформатора намного ниже, размеры прибора больше, в отличие от однофазного устройства.

Обязательным компонентом такого прибора является трансформатор, у которого имеется две низковольтные обмотки. По сути дела, подключение к средней точке делает выпрямитель двухфазным, так как образуются две ЭДС, которые равны между собой по значению, а направлены в разные стороны. В результате схема подключения заключается в том, что равные напряжения на выходе обмотки сдвинуты от средней точки по фазе на 180 градусов.

К анодам диодных вентилей присоединены вторичные обмотки, на которых напряжение находятся в противофазе, вследствие чего ток по диодам протекает по очереди в определенных полупериодах напряжения.

Отличием прибора со средней точкой от простого исполнения является протекание выпрямленного тока в обоих полупериодах. Но каждая половина обмотки нагружена током в одном полупериоде. Подмагничивание сердечника отсутствует, так как магнитные силы направлены во встречном направлении.

Мостовая схема

Характерна повышенным коэффициентом применения трансформатора. Вследствие этого, ее использование целесообразно в устройствах высокой мощности с напряжением на выходе в сотни вольт. Пульсации в такой схеме аналогичны предыдущей схеме.

Действие мостовой схемы практически не имеет отличий от предыдущей схемы, кроме того, что используются два вентиля вместо одного. Они соединены по последовательной схеме. Для полупериода применяется полностью вся обмотка. Это увеличивает эффективность применения трансформатора.

Преимуществом схемы моста является пониженное обратное напряжение, малые размеры, высокий коэффициент использования трансформатора. К недостатку можно отнести значительное падение напряжения на вентилях.

Напряжение на выходе при активной нагрузке представлено в виде однополярных полуволн. Это возникает из-за поочередного открывания диодов.

По аналогии кривых udдля приборов со средней точкой и мостовых схем, работают такие же формулы напряжений:

Вследствие этого пульсации остаются такими же. Ток Id разделяется на равные части между вентилями. Обратное напряжение на два непроводящих диода подается в одно время на диапазоне проводимости других диодов, его наибольшая величина вычисляется амплитудой напряжения u2:

Нагрузочный ток проходит в обоих полупериодах как во вторичной обмотке. Действующий ток вторичной обмотки вычисляется:

Это объясняется тем, что ток синусоидальный. Поэтому трансформатор выполнен с одной вторичной обмоткой.

Если учесть, что трансформатор оснащен одной вторичной обмоткой, то габаритная мощность двух обмоток одинакова, а суммарная габаритная мощность Sгаб совпадает с мощностью первичной обмотки, которая рассматривалась выше, и равна 1,23 Рd.

Выпрямительный диодный мост в различных источниках изображают по-разному. Чаще всего это делают упрощенно.

Диодный мост

Такую условность применяют для упрощения внешнего вида схемы. Диодная сборка состоит из четырех диодов с равными характеристиками. Они расположены в одном корпусе, что является технологичным решением. Такая сборка занимает незначительное место на монтажной плате.

В последнее время популярны селеновые и кенотронные выпрямители тока, которые применяются для радиоаппаратуры. В выпрямительных мостах все больше используют полупроводниковые диоды на основе германия.

Трехфазные выпрямители тока

Приборы, способные выпрямлять 3-фазное напряжение переменного тока, имеют Трансформатор с первичной обмоткой, состоящей из 3-х отдельных обмоток, соединенных по схеме треугольника или звезды. Схема выпрямляющего устройства для трехфазной сети используется чаще всего для подключения нагрузки большой и средней мощности.

По методу подключения диодов к выходной обмотке схемы разделяют на мостовые с изолированной нулевой точкой, и нулевые со средней точкой обмотки.

Применяя специальные схемы подключения вторичной обмотки и выпрямителя, в общем, получают выпрямленное напряжение с количеством импульсов, кратным трем, за один период. При повышении количества импульсов в напряжении на выходе прибора, можно значительно уменьшить габариты фильтрующих элементов. 3-фазные выпрямители тока создают равномерную нагрузку на линию питания, и имеют повышенный процент использования трансформатора.

Трехфазная нулевая схема

В такую схему включен трансформатор. Выводы обмоток по схеме подключены к анодам трех диодов. Потребляющая нагрузка соединена с общей точкой катодов диодов.

На диаграмме показано действие идеального 3-фазного выпрямителя, имеющего среднюю точку на выходной обмотке, подключенную к нагрузке. В такой идеальной схеме, где не учитывается индуктивность обмоток, а вентили считаются идеальными, при переходе тока между вентилями, их коммутация осуществляется мгновенно, и в любое время ток проходит по одному диоду, имеющему самый большой потенциал.

В трехфазном устройстве выпрямления, нагрузочный ток со средней точки обмотки образуется фазным напряжением этой обмотки. За один период напряжения по каждой вторичной обмотке один раз проходит ток одной полярности. При этом диапазон проводимости одного вентиля равен 120 градусам.

Открытый диод подает напряжение соответствующей фазы к потребляющей нагрузке. В итоге на нагрузку действует импульсное однополярное напряжение, которое является участком напряжений фаз вторичных обмоток, и имеющее тройные импульсы за один период.

Достоинства
  • Малое количество вентилей.
  • Незначительное падение напряжения на диодах, вследствие чего возможно применение этой схемы для выравнивания низких напряжений при высоких мощностях более 0,5 киловатт.
  • Высокая частота импульсов выходного напряжения, так как имеется три частоты на трех фазах сети. Иногда это дает возможность применять такую схему без фильтрации.
Недостатки
  • Повышенное обратное напряжение на вентилях.
  • Малый коэффициент использования трансформатора из-за эффекта подмагничивания.

Однако такие недостатки нулевой схемы не ограничивают использование выпрямителя в определенных областях, и нашли определенную популярность.

Трехфазная мостовая схема

Позволяет наилучшим образом использовать трансформатор по его мощности, имеет малое обратное напряжение на вентилях и повышенную частоту импульсов выходного напряжения. Мостовая 3-фазная схема стала популярной в широком интервале мощностей и напряжений.

В мостовой трехфазной схеме имеется мост выпрямления, состоящий из шести диодов, соединенных двумя группами последовательно. Одна из групп – катодная, так как диоды соединены катодами, а вторая анодная. Питание на нагрузку подается от точек соединения анодов и катодов диодов. Обмотки допускается соединять треугольником или звездой.

Каждая группа вентилей устройства работает по принципу, подобному схеме прибора со средней точкой, на выходе среднее напряжение повышается в 2 раза.

Если рассматривать отличия двух последних схем, то в схеме со средней точкой нагрузочный ток создается фазным напряжением, в отличие от мостовой схемы, в которой ток нагрузки создается при воздействии линейного напряжения. Здесь нагрузочный ток проходит по двум диодам: одному с максимальным потенциалом анода по отношению к нулевой точке, другому – с минимальным потенциалом катода. Другими словами, в состоянии проводимости будут такие два вентиля моста, которые имеют максимальное линейное напряжение в сторону проводимости.

За один период напряжения осуществляется шесть коммутаций диодов, поэтому схема функционирует в шесть тактов. Такую схему называют шестиимпульсной. В результате выходное напряжение выпрямителя содержит шестикратные импульсы, однако угол проводимости отдельного диода равен углу 120 градусов.

График тока вторичной обмотки зависит от токов двух диодов, подключенных к этой фазе. Один из диодов состоит в анодной группе, а другой – в катодной. Выходной ток переменный, с промежутком между пульсациями 60 градусов, при закрытых двух диодах этой фазы. Подмагничивания сердечника в этой схеме нет.

Похожие темы:

 

electrosam.ru

Что такое диодный мост, принцип работы и способ проверки

Важно! Поскольку мы знаем, что для питания большинства электросхем нужно полярное напряжение – в блоках питания приборов происходит замена переменного тока на постоянный.

Происходит это в два или три этапа:С помощью диодной сборки переменный ток превращается в пульсирующий. Это уже выпрямленный график, однако, для нормального функционирования схемы такого качества питания недостаточно.

Для сглаживания пульсаций, после моста устанавливается фильтр. В простейшем случае – это обычный полярный конденсатор. При необходимости увеличить качество – добавляется дроссель.

После преобразования и сглаживания, необходимо обеспечить постоянную величину рабочего напряжения.

Для этого, на третьем этапе устанавливаются стабилизаторы напряжения.

И все же, первым элементом любого блока питания является диодный мост.

Он может быть выполнен как из отдельных деталей, так и в моно корпусе.

Первый вариант занимает много места и сложнее в монтаже.

Есть и преимущества:такая конструкция стоит недорого, легче диагностируется, и в случае выхода из строя одного элемента – меняется только он.

Вторая конструкция компактна, исключены ошибки в монтаже. Однако стоимость несколько выше, чем у отдельных диодов и невозможно отремонтировать один элемент, приходится менять весь модуль.

Принцип работы диодного моста

Вспомним характеристики и назначение диода. Если не вдаваться в технические детали – он пропускает электрический ток в одном направлении, и закрывает ему путь в противоположном.

Этого свойства уже достаточно для того, чтобы собрать простейший выпрямитель на одном диоде.

Элемент просто включается в цепь последовательно, и каждый второй импульс тока, идущий в противоположном направлении — отрезается.

Такой способ называется однополупериодным, и у него есть множество недостатков:

Очень сильная пульсация, между полупериодами возникает пауза в подаче тока, равная длине половины синусоиды.

В результате отрезания нижних волн синусоиды, напряжение уменьшается вдвое. При точном измерении уменьшение оказывается больше, поскольку потери есть и в диодах.

Способность снижать напряжение вдвое при его выпрямлении, нашла применение в ЖКХ.

Жильцы многоквартирных подъездов, устав менять постоянно перегорающие лампочки – оснащают их диодами.

При включении последовательно, снижается яркость свечения и лампа «живет» гораздо дольше.

Правда сильное мерцание утомляет глаза, и такой светильник годится лишь для дежурного освещения.

Для уменьшения потерь, применяется соединение четырех элементов.

Двухполупериодный диодный мост, схема работы:

В каком бы направлении не протекал переменный ток на вводных контактах, выход диодного моста обеспечивает неизменную полярность на его выходных контактах.

Частота пульсаций такого соединения ровно в два раза выше частоты переменного тока на входе.

Поскольку плечи моста не могут одновременно пропускать ток в обоих направлениях – обеспечивается стабильная защита схемы.

Даже если у вас в устройстве перегорел диодный мост – короткого замыкания или скачка напряжения не будет.

Надежность мостовой схемы проверена десятилетиями. Защита от перенапряжения на входе гарантируется трансформатором.

От перегрузки спасает стабилизатор на выходе. Пробивает диодный мост лишь в случае использования бракованных деталей, или в автомобиле, где схема подвергается постоянным нагрузкам.

Как работает диодный мост при минимальном напряжении?

Падение напряжения в диодном мосту составляет до 0,7 вольт. При использовании обычной элементной базы в низковольтных схемах, иногда падение напряжения составляет до 50% от номинала блока питания. Такая погрешность недопустима.

Для обеспечения работы блоков питания с напряжением от 1,5 вольт до 12 вольт – используются диоды Шоттки.

При прямом протекании тока, падение напряжения на одном кристалле составляет не более 0,3 вольта. Умножаем на четыре элемента в мосту – получается вполне приемлемое значение потерь.

Кроме того, если проверить мультиметром диодный мост Шоттки на уровень помех – вы получите значение, недостижимое для кремниевых p-n диодов.

Еще одно достоинство, обусловленное отсутствием p-n перехода – способность работать на высокой частоте.

Поэтому выпрямители сверх высокочастотного напряжения делают исключительно на диодах этого типа.Однако у диодов Шоттки есть и недостатки. При воздействии обратного напряжения, пусть даже кратковременном – элемент выходит из строя.

Проверка диодного моста мультиметром показывает, что именно эта причина имеет необратимые последствия.

Обычный германиевый или кремниевый элемент с p-n переходом самостоятельно восстанавливаются после переполюсовки.

Поэтому мосты на диодах Шоттки применяются только в низковольтных блоках питания и при наличии защиты от обратного напряжения.

Что делать, если есть подозрения на поломку моста?

Выпрямитель собран на обычной элементной базе, поэтому мы расскажем, как в домашних условиях проверить диодный мост мультиметром.

На иллюстрации видно, как протекает ток по мосту. Принцип тестирования такой же, как при проверке одиночных диодов.

Смотрим по справочнику, какие выводы модуля соответствуют переменному входу или полярному выходу – и выполняем прозвонку.

Как прозвонить диодный мост без выпаивания из схемы?

Поскольку ток в обратном направлении через диод не течет, неправильные результаты проверки говорят о пробое моста.

Извлекать мост нет необходимости, остальные элементы блока питания не оказывают влияния на измерение.

Итог: Любой из вас сможет как самостоятельно собрать диодный мост, так и отремонтировать его в случае поломки. Достаточно иметь элементарные навыки в электротехнике.

Смотрите видео: как мультиметром проверить диодный мост генератора вашего автомобиля.

Подробный рассказ о том как проверить диодный мост мультиметром в этом видео сюжете

obinstrumente.ru

Диодный мост | Практическая электроника

Словосочетание «диодный мост» образуется от слова «диод». Следовательно, диодный мост  должен состоять из диодов. Но если в диодном мосту есть диоды, значит, в одном направлении диод будет пропускать электрический ток, а в другом нет. Это свойство диодов мы использовали, чтобы определить их работоспособность. Кто не помнит, как мы это делали, тогда вам сюда. Поэтому мост из диодов используется, чтобы из переменного напряжение получать постоянное напряжение.

 

Немного теории

Вот схема диодного моста:

Иногда в схемах его обозначают  еще так:

Как мы с вами видим, схема состоит из четырех диодов. Для того, чтобы схемка диодного моста работала корректно, мы должны правильно соединить диоды и правильно подать на них переменное напряжение. Слева мы видим два значка «~».  На эти два вывода мы подаем переменное напряжение, а снимаем постоянное напряжение с других двух выводов обозначенных значками «+» и «-«.  Диодный мост также называют диодным выпрямителем.

Для выпрямления переменного напряжения в постоянное можно использовать один диод для выпрямления, но не желательно. Давайте рассмотрим  рисунок, как все это будет выглядеть:

Переменное напряжение изменяется со временем. Диод срезает отрицательную полуволну, оставляя только положительную полуволну, что мы и видим на рисунке выше.  А вся прелесть этой немудреной схемки состоит в том, что мы получаем постоянное напряжение из переменного. Вся проблема в том, что мы теряем половину мощности переменного напряжения. Ее тупо срезает диод.

Чтобы исправить эту ситуацию, была разработана схемка диодного моста. Диодный мост «переворачивает» отрицательную полуволну, превращая ее в положительную полуволну, тем самым мощность у нас сохраняется. Прекрасно не правда ли?

На выходе  диодного моста у нас появляется постоянное пульсирующее напряжение с частой в 100 Герц. Это в два раза больше, чем частота сети.

Переходим к практике

Давайте же на практике рассмотрим, как работает диод и диодный мост.

Для начала возьмем простой диод.

Я его выпаял из блока питания компа. Катод можно легко узнать по серебристой полоске. Почти все производители показывают катод полоской или точкой.

Чтобы наши опыты были безопасными, я взял понижающий трансформатор, который из 220 В трансформирует 12 В. Кто не знает, как он это делает, можете прочитать в статье устройство трансформатора.

На первичную обмотку цепляем 220 Вольт, со вторичной обмотки снимаем 12 Вольт. Мультик показывает чуть больше, так как ко вторичной обмотке  не подцеплена никакая нагрузка. Трансформатор работает на  так называемом «холостом ходу».

Давайте же рассмотрим осциллограмму, которая идет со вторичной обмотки транса. Максимальную амплитуду напряжения  нетрудно посчитать. Если не помните как рассчитать, можно глянуть статейку Осциллограф. Основы эксплуатации. 3,3х5= 16.5В  — это максимальное значение напряжения.  А если разделить максимальное значение амплитуда на корень из двух, то получим где то 11.8 Вольт. Это и есть действующее значение напряжения. Осцилл не врет, все ОК.

Еще раз повторюсь, можно было использовать и 220 Вольт, но 220 Вольт  — это не шутки, поэтому я и понизил переменное напряжение.

 

Припаяем к одному концу  вторичной обмотки трансформатора наш диод.

Цепляемся снова щупами осцилла

Смотрим на осциллограмму

А где же нижняя часть изображения? Ее срезал диод. Диод оставил только верхнюю часть, то есть ту, которая положительная.

 

Находим еще  три таких диода и спаиваем диодный мост.

Цепляемся ко вторичной обмотке трансформатора по схеме диодного моста.

С двух других  концов снимаем постоянное пульсирующее напряжение щупами осцилла и смотрим на осциллограмму

Вот, теперь порядок, и мощность у нас никуда не пропала :-).

Чтобы не заморачиваться с диодами, разработчики все четыре диода вместили в один корпус. В результате, получился очень компактный и удобный радиоэлемент — диодный мост. Думаю, вы догадаетесь, где импортный, а где советский ))).

 

 

Например, на советском диодном мосте показаны контакты,  на которые  надо подавать переменное напряжение ( значком » ~ «), и показаны контакты, с которых  надо снимать постоянное пульсирующее напряжение («+» и «-«)

 

Давайте проверим импортный диодный мост. Для этого цепляем два его контакта к переменке, а с двух других контактов снимаем показания на осцилл.

А вот  и осциллограмма:

Значит, импортный диодный мост исправен и работает, как полагается.

 

Трехфазный диодный мост

Выше мы рассмотрели диодный мост для однофазного напряжения, но существуют также диодные мосты и для трехфазного напряжения. Такой трехфазный диодный мост также называется трехфазным выпрямителем. Он собирается по так называемой схеме Ларионова и состоит из 6 диодов:

В основном трехфазные диодные мосты используются в промышленности и выглядят примерно вот так:

Как вы могли заметить, такой трехфазный выпрямитель имеет пять выводов. Три вывода на фазы и с двух выводов мы будем снимать постоянное пульсирующее напряжение.

Резюме

Диодный мост (выпрямитель) используется для преобразования переменного тока в постоянный.

Существуют две разновидности диодного моста. Диодный мост для однофазного напряжения и диодный мост для трехфазного напряжения.

Диодный мост используется почти во всей радиоаппаратуре, которая кушает напряжение из сети, будь то простой телевизор или даже зарядка от сотового телефона. Проверяется диодный мост исправностью всех его диодов. Как проверить диод, можете прочитать в этой статье.

www.ruselectronic.com

Схема диодного моста выпрямителя

Диодный мост — простейшая схема, которая преобразует переменный ток в постоянный. Она используется практически во всей современной электронике, поэтому грамотный мастер должен понимать принцип работы диодного моста и уметь его ремонтировать. В российских розетках частота тока 50 Герц, и чтобы выровнять его для работы оборудования и применяют это нехитрое устройство.

Принцип работы

Давайте разберем, как работает данное устройство. Оно собирается из диодов — элементов, пропускающих ток в одну сторону. Современные диоды являются полупроводниковыми устройствами небольшого размера — в этой статье мы не будем разбирать их особенности и маркировку, а поговорим только о том, как работает диодный мост.

Состав и принцип работы диода

У диода имеется два контакта — анод и катод. Ток течет от анода к катоду практически с нулевым сопротивлением. Но если ситуация меняется и ток подается на катод, то противоположное сопротивление не дает ему пробиться через элемент (ток практически равен нулю и в большинстве случаев им можно пренебречь). Схему работы вы можете увидеть на приведенном выше рисунке.

Упрощенная схема

Вы уже знаете, что такое диодный мост, поэтому рассмотрим простейший принцип его работы. Когда переменный ток попадает на анод Uвх, оно проходит через положительные полупериоды, тогда как отрицательные полностью удаляются. При этом выходное напряжение, обозначенное с правой стороны под аббревиатурой Uвых, не является выпрямленным, хоть и проходит в одном направлении. Его частота равна тем же 50 Герц, или 50 пикам в секунду.

Чтобы сгладить эти пики к схеме подключается конденсатор высокой емкости. Получается выпрямительный диодный мост — на пике конденсатор заряжается, а на падении отдает заряд в сеть. Это позволяет частично сгладить график частоты и выровнять его, выведя на постоянное значение.

Подобная схема соединения диода и конденсатора носит название однополупериодной и не является достаточной для выравнивания тока в современных устройствах. У нее есть серьезные недостатки:

  1. Нормально выровнять пульсации до настоящей прямой невозможно.
  2. У схемы довольно малый коэффициент полезного действия.
  3. Нерациональное использование трансформатора, чересчур большой вес устройства.

Эти системы сегодня практически не используют или применяют их для маломощных устройств. Более логичные и надежные схемы называются двухполупериодными. Их основное достоинство — возможность инвертировать нижние волны в верхние. Именно подобные системы и называют диодным мостом.

Классический диодный мост

Стандартная схема диодного моста выпрямителя содержит в себе вместо одного диода и конденсатора четыре диода, объединенных изображенным на рисунке способом. Его можно условно разбить на два полупериода. В каждом полупериоде находится два диода, работающих в одном направлении, и два — запрещающих проход тока. Положительное напряжение приходит на анод VD1, отрицательное на катод VD3. Данные диоды открываются, а VD2 и VD4 — закрываются.

Когда положительный полупериод заменяется на отрицательный, происходит смена работоспособности. Положительное напряжение приходит на анод VD2, отрицательное — на катодный выход VD4. Происходит смена направлений, но ток идет в нужном направлении. Получается, что в подобной схеме частота возрастает в два раза, за счет чего удается добиться лучшего сглаживания, используя идентичный с первой схемой конденсатор. Благодаря этому возрастает коэффициент полезного действия устройства и падают возможные потери.

Принцип работы классического моста

Изучая, как собрать диодный мост, не забывайте о том, что не обязательно спаивать его из четырех микроэлементов и подбирать соответствующий конденсатор. В большинстве случаев можно приобрести готовое решение в магазине, с подобранными параметрами и известными характеристиками. Достоинства подобной сборки в маленьких размерах, единых тепловых режимах и небольшом весе. Основной недостаток в том, что если выходит из строя один элемент, то приходится менять весь узел.

Трехфазный мост

Теперь, когда вы знаете, для чего нужен диодный мост и что он собой представляет, рассмотрим более сложную трехфазную схему, выдающую пульсирующий ток. Он максимально близок к постоянному и подходит для использования в приборах, требующих стабильную подачу. Вход этой системы присоединяется к источнику, подающему трехфазное питание (разумеется речь идет о переменном токе). Это может быть трансформатор или генератор. На выходе системы оказывается практически идеальный постоянный ток, который можно легко сгладить.

Схема выпрямителя

Чтобы сделать качественный двухполупериодный выпрямитель из схемы подключения диодного моста с конденсатором, изучите наш рисунок. В данном случае выпрямляется ток, который снимается с понижающей трансформаторной обмотки. Выравнивание происходит за счет электролитического конденсатора на 5-10 тысяч микрофарад, заряжающегося и отдающего заряд в сеть. В схему также введен дополнительный резистор, который выпрямляет ток при холостой работе. Чем выше нагрузка, тем меньше напряжение на выходе, поэтому к нему подсоединяют стабилизатор на классических транзисторах.

Используя наши схемы, вы легко разберетесь, как сделать диодный мост и как им пользоваться. Мы рекомендуем приобретать уже готовые устройства, чтобы сэкономить место и не заниматься подбором значений.

Интересное по теме:

Facebook

Twitter

Вконтакте

Одноклассники

Google+

knigaelektrika.ru

Диодный мост – энциклопедия VashTehnik.ru

Диодный мост – конструкция, позволяющая выпрямить ток результативно. Диодный мост считается двухполупериодным выпрямителем.

Диод, мосты и трудности выпрямления тока

Первоначально диодами называли электронные лампы с двумя электродами. Нагретый катод испускал электроны, способные лететь в единственном направлении – на анод. А в обратном направлении ток не тек. Это позволяло отсечь часть периода переменного напряжения. В результате ток становился выпрямленным.

Недостаток конструкции очевиден – часть времени, половину интервала, схема бездействует. По указанной причине создать высокую эффективность сложно. Говорим не о КПД, скорее, затрагиваем общую мощность. Напряжение в сети ограничено по номиналу, требуется действенно использовать имеющееся. Если повышать потребление через единственный диод, он перегреется и сгорит. Здесь на помощь приходит диодный мост.

Конструкция моста на схеме

Конструкции, рассмотренные в статье, как раз направлены на улучшение определённых свойств. Иначе давно применялся бы диодный мост единственной конфигурации. Известный диодный мост на четырёх вентилях далеко не единственный по простой причине — предназначен для работы с одной фазой напряжения. Это ущербный вариант, поставляемый в наши дома из целей экономии проводов, и в промышленности не применяется.

Начнём с Николы Тесла. Этот человек первым придумал вращающееся магнитное поле. Прежде переменный ток использовался, но при помощи единственной фазы озвученное явление создать нельзя. Внутри двигателя нужно, чтобы поле вращалось. Единственная фаза физически обеспечить это не в силах. Никола Тесла изобрёл асинхронный двигатель, со множеством полюсов. Отметим, что коллекторные разновидности моторов способны работать от переменного и постоянного тока, но рекомендуется избегать конструкций с постоянными магнитами. Ротор и статор собираются из медных обмоток. Полагаем, что в 19 веке подобных разновидностей двигателей не было.

Вернёмся к фазам. Изобретя асинхронный (индукционный) двигатель переменного тока, Никола Тесла попутно отметил в патенте возможность дальнейшего увеличения фаз, но дальше не пошёл. Позднее Доливо-Добровольский доказал, что гораздо результативнее использовать три фазы. Сегодня промышленные конструкции используют этот вариант. Заметим, любой двигатель может работать на потребление и генерацию тока, читатели поймут, что однофазный диодный мост не станет идеальным решением. Это ущербный, урезанный вариант для бытовой техники. Не более.

Бортовые системы несут в составе генератор на три фазы, это самая результативная конструкция сегодня из возможных. Используется уже схема Ларионова. Так достигается наилучшее соотношение экономии и эффективности. Неплохими характеристиками обладают выпрямительные схемы Миткевича. Школьные и ВУЗовские курсы физики имеют упрощённую структуру ввиду слишком сильного развития науки: невозможно за семестр вместить в головы учащихся всю информацию.

Диодный мост Гретца для бытовой техники не считается единственно возможным. Известны варианты на три фазы, гораздо более распространенные, чем кажется изначально. Диоды по конструкции и характеристикам сильно отличаются друг от друга. Это обусловливает специфику применения. Допустим, силовые разновидности мощные, но несут большие потери. Потому в выходных цепях импульсных блоков питания применяются диоды Шоттки с малым падением напряжения на p-n-переходе.

Конструкции диодных мостов

Единственная конструкция диодного моста не в силах обеспечить всех потребностей. Поэтому в автомобилях применяются схемы Ларионова. Сейчас обсудим конструкции, вначале проясним, почему диодный мост так называется. В 1833 году предложена схема для измерения сопротивления, основанная на выравнивание потенциала средних выводов двух ветвей:

  1. Четыре сопротивления соединяются в квадрат (по одному на сторону геометрической фигуры).
  2. К двум углам подаётся питающее напряжение от аккумулятора или другого источника.
  3. С двух других углом снимаются показания любым регистратором напряжения или тока.

Смысл работы заключается в том, чтобы при помощи потенциометра показания индикатора обратить в нуль. Тогда говорят — наступило равновесие моста. В то время (до публикации законов Кирхгофа) уже знали, что падение напряжение на двух резисторах пропорционально их величине, значит, справедливо, что: R1/R2 = R3/Rx, где R2 – потенциометр, R1 и R3 – постоянные сопротивления известного номинала, Rx – исследуемый элемент. Потом из простой пропорции находится искомая величина.

Мостовой схему в англоязычной литературе называют по причине, что между двумя ветвями электрической цепи, состоящих из сопротивлений R1, R2 и R3, Rx, соответственно, перекинуты перемычка — измерительный прибор. Людям это напомнило мост, схему назвали соответственно.

Диодный мост Гретца

В 1897 году журнал Elektronische Zeitung (часть 25) опубликовал заметку Лео Гретца об исследовании диодного моста. Отдельные читатели решили, что указанный человек стал изобретателем устройства. Поныне (на 2016 год) русский домен Википедии продолжает утверждать неоспоримый факт. В действительности изобретателем диодного моста Гретца стал польский электротехник Карол Поллак. Авторам обзора не удалось найти биографии учёного мужа на русском языке. Неудивительно, что о патенте под номером 96564 от 14 января 1896 года мало известно.

Схема диодного моста

Из рисунка видно объяснение названия схемы — диодный мост, налицо все признаки:

  1. Две ветки из диодов по центру закорочены цепью нагрузки.
  2. Питание переменным током подаётся к двум сторонам квадрата.
  3. На выходе присутствует постоянное напряжение.

К недостаткам схемы относится факт: падение напряжение на p-n-переходе удваивается. В любой момент времени ток проходит через пару диодов, а не один, как в случае однополупериодного выпрямителя. При большом вольтаже потерями возможно пренебречь, чтобы схема не сгорела, её снабжают большими изрезанными металлическими радиаторами. Автомобилисты уже поняли, о чем речь, простым смертным заметим, что для бытовой техники это не всегда справедливо (радиатор отсутствует). Причина не в мощности в цепи легковой машины. Скорее, при постоянном напряжении 12 В бортовой сети высоким оказывается ток, указанный факт приводит к столь сильному выделению тепла.

Поясним. По закону Джоуля-Ленца теплота от протекания электрического тока пропорциональна квадрату величины тока. В низковольтных цепях по этой причине приходится медные провода делать толстыми. Это причина, почему промышленное напряжение выше 12 В. В силовых линиях идут киловольты, что помогает снизить сечение кабелей и сэкономить на материалах. Для преобразования между линиями служит трансформатор, он, как правило, стоит на входе любого бытового прибора.

Это нужно, чтобы быстро создать номиналы напряжений, близкие к требуемым. Особенно ярко утверждение прослеживается на примере телевизоров с электронно-лучевой трубкой. Трансформатор на входе несёт множество выходных обмоток по числу цепей. Остаётся только выпрямить ток при необходимости, что позволяет снизить сложность аппаратуры. Для этого после выходной обмотки трансформатора ставится диодный мост Гретца (речь идёт об однофазных сетях 220 В).

В современных импульсных блоках питания по-другому. Диодный мост ставится прямо после входного фильтра, потом выпрямленное напряжение нарезается на тиристорном (транзисторном) ключе на высокочастотные импульсы, подаваемые на трансформатор. Это позволяет многократно уменьшить размеры сердечника и обмоток. Посмотрите на адаптер для сотового телефона: внутри стоит импульсный трансформатор. По размеру не сравнить с блоком питания телевизора. Порекомендуем обратить внимание на системный блок персонального компьютера, где источник выдаёт не менее 350 Вт. Этого хватит для телевизора с электронно-лучевой трубкой.

Схема моста Гретца

После импульсного трансформатора снова стоит выпрямитель. Иногда это диодный мост на базе диодов Шоттки с низким падением напряжения на p-n-переходе. Вспомним о перечисленных ранее недостатках. Для низких выходных напряжений импульсного блока питания применение диодных мостов невыгодно, удваивается количество вентилей. В результате потери выше, что закономерно снижает КПД. Дополнительным фактором считается выделение тепла: при низких напряжениях приходится использовать радиаторы при большом сопротивлении p-n-перехода.

Сопротивление p-n-перехода

Диодные мосты Гретца де-факто являются доминирующими сегодня в бытовых приборах. Сделаем маленькое отступление по поводу сопротивления p-n-перехода.

Как известно, характеристика диода напоминает в положительной части оси абсцисс параболу. Неважна форма, важен факт, что в любой точке графика становится возможным найти сопротивление. Потребуется просто поделить напряжение на ток. Получается, сопротивление диода зависит от приложенного вольтажа и в типичном случае постоянно меняется. Найдём аналогично действующему значению напряжения (220 В) среднюю цифру и для этого параметра. От неё зависят потери. Чем сопротивление p-n-перехода ниже, тем лучше. Поэтому выгодно использовать диоды Шоттки.

Однофазные выпрямители по схеме Миткевича

Схема не смотрится мостом, за исключением отдельных черт сходства. Из рисунка видно, что нагрузка словно закорачивает ветви обмотки трансформатора и диодов. Это уже натяжка. Так любую цепь можно назвать мостом. В любой момент времени у схемы Миткевича работает половина конструкции. Вторая заперта.

Аналогичное говорится про диодный мост Гретца, но здесь утверждение распространяется на обмотку трансформатора, чего нельзя отметить в предыдущем случае.

Трёхфазные выпрямители

Выпрямитель Ларионова (см. рисунок) мостом не считается, хотя так его упорно называют водители. Известны две разновидности конструкции, по терминологии трёхфазных линий называемые звезда и треугольник. Автомобилисты чаще контактируют с первым вариантом, где напряжением чуть выше, а потери меньше. Это обусловлено соображениями экономичности.

Параллельная и последовательная схемы

Выпрямители Миткевича и Ларионова

Известна схема, дающая упомянутой сто очков форы. Это истинный диодный мост, параллельное либо последовательное соединение трёх полных диодных мостов.

vashtehnik.ru


Видеоматериалы

24.10.2018

Опыт пилотных регионов, где соцнормы на электроэнергию уже введены, показывает: граждане платить стали меньше

Подробнее...
23.10.2018

Соответствует ли вода и воздух установленным нормативам?

Подробнее...
22.10.2018

С начала года из ветхого и аварийного жилья в республике были переселены десятки семей

Подробнее...
22.10.2018

Столичный Водоканал готовится к зиме

Подробнее...
17.10.2018

Более 10-ти миллионов рублей направлено на капитальный ремонт многоквартирных домов в Лескенском районе

Подробнее...

Актуальные темы

13.05.2018

Формирование энергосберегающего поведения граждан

 

Подробнее...
29.03.2018

ОТЧЕТ о деятельности министерства энергетики, ЖКХ и тарифной политики Кабардино-Балкарской Республики в сфере государственного регулирования и контроля цен и тарифов в 2012 году и об основных задачах на 2013 год

Подробнее...
13.03.2018

Предложения организаций, осуществляющих регулируемую деятельность о размере подлежащих государственному регулированию цен (тарифов) на 2013 год

Подробнее...
11.03.2018

НАУЧИМСЯ ЭКОНОМИТЬ В БЫТУ

 
Подробнее...

inetpriem


<< < Ноябрь 2013 > >>
Пн Вт Ср Чт Пт Сб Вс
        1 2 3
4 5 6 7 8 9 10
11 12 13 14 15 16 17
18 19 20 21 22 23 24
25 26 27 28 29 30  

calc

banner-calc

.