04.10.2024

Что такое класс напряжения: Классы электрического напряжения

Содержание

Класс напряжения Википедия

Высоковольтная линия электропередачи

Электрическая сеть — совокупность электроустановок, предназначенных для передачи и распределения электроэнергии от электростанции к потребителю.

Классификация электрических сетей

  1. Назначение, область применения
    • Сети общего назначения: электроснабжение бытовых, промышленных, сельскохозяйственных и транспортных потребителей.
    • Сети автономного электроснабжения: электроснабжение мобильных и автономных объектов (транспортные средства, суда, самолёты, космические аппараты, автономные станции, роботы и т. п.). См. также: Бортовая сеть.
    • Сети технологических объектов: электроснабжение производственных объектов и других инженерных сетей.
    • Контактная сеть: специальная сеть, служащая для передачи электроэнергии на движущиеся вдоль неё транспортные средства (локомотив, трамвай, троллейбус, метро).
  2. Масштабные признаки, размеры сети
    • Магистральные сети: сети, связывающие отдельные регионы, страны и их крупнейшие источники и центры потребления. Характерны сверхвысоким и высоким уровнем напряжения и большими потоками мощности (гигаватты).
    • Региональные сети: сети масштаба региона (в России — уровня субъектов Федерации). Имеют питание от магистральных сетей и собственных региональных источников питания, обслуживают крупных потребителей (город, район, предприятие, месторождение, транспортный терминал). Характерны высоким и средним уровнем напряжения и большими потоками мощности (сотни мегаватт, гигаватты).
    • Районные сети, распределительные сети: имеют питание от региональных сетей. Обычно не имеют собственных источников питания, обслуживают средних и мелких потребителей (внутриквартальные и поселковые сети, предприятия, небольшие месторождения, транспортные узлы). Характерны средним и низким уровнем напряжения и небольшими потоками мощности (мегаватты).
    • Внутренние сети: распределяют электроэнергию на небольшом пространстве — в рамках района города, села, квартала, завода. Зачастую имеют всего 1 или 2 точки питания от внешней сети. При этом иногда имеют собственный резервный источник питания. Характерны низким уровнем напряжения и небольшими потоками мощности (сотни киловатт, мегаватты).
    • Электропроводка: сети самого нижнего уровня — отдельного здания, цеха, помещения. Зачастую рассматриваются совместно с внутренними сетями. Характерны низким и бытовым уровнем напряжения и малыми потоками мощности (десятки и сотни киловатт).
  3. Род тока
    • Переменный трёхфазный ток: большинство сетей высших, средних и низких классов напряжений, магистральные, региональные и распределительные сети. Переменный электрический ток передаётся по трём проводам таким образом, что фаза переменного тока в каждом из них смещена относительно других на 120°. Каждый провод и переменный ток в нём называются «фазой». Каждая «фаза» имеет определённое напряжение относительно земли, которая выступает в роли четвёртого проводника.
    • Переменный однофазный ток: большинство сетей бытовой электропроводки, оконечных сетей потребителей. Переменный ток передаётся к потребителю от распределительного щита или подстанции по двум проводам (т.н. «фаза» и «ноль»). Потенциал «нуля» совпадает с потенциалом земли, однако конструктивно «ноль» отличается от провода заземления.
    • Постоянный ток: большинство контактных сетей, некоторые сети автономного электроснабжения, а также ряд специальных сетей сверхвысокого и ультравысокого напряжения, имеющих пока ограниченное распространение.

Принципы работы

Переменный ток

Большинство крупных источников электроэнергии — электростанции — построено с использованием генераторов переменного тока. Кроме того, амплитудное напряжение переменного тока может быть легко изменено при помощи силовых трансформаторов, что позволяет повышать и понижать напряжение в широких пределах. Основные потребители электроэнергии также ориентированы на непосредственное использование переменного тока. Мировым стандартом генерации, передачи и преобразования электроэнергии является использование переменного трёхфазного тока. В России и европейских странах промышленная частота тока равна 50 герц, в США, Японии и ряде других стран — 60 герц.

Переменный однофазный ток используется многими бытовыми потребителями и получается из переменного трёхфазного тока путём объединения потребителей в группы по фазам. При этом каждой группе потребителей выделяется одна из трёх фаз, а второй провод («ноль»), используемый при передаче однофазного тока, является общим для всех групп и в своей начальной точке заземляется.

Классы напряжения

При передаче большой электрической мощности при низком напряжении возникают большие омические потери из-за больших значений протекающего тока. Формула δS = I²R описывает потерю мощности в зависимости от сопротивления линии и протекающего тока. Для снижения потерь уменьшают протекающий ток: при снижении тока в 2 раза омические потери снижаются в 4 раза. Согласно формуле полной электрической мощности S = I×U, для передачи такой же мощности при пониженном токе необходимо во столько же раз повысить напряжение. Таким образом, большие мощности целесообразно передавать при высоком напряжении. Однако строительство высоковольтных сетей сопряжено с рядом технических трудностей; кроме того, непосредственно потреблять электроэнергию с высоким напряжением крайне проблематично для конечных потребителей.

В связи с этим сети разбивают на участки с разным классом напряжения (уровнем напряжения). Трёхфазные сети, передающие большие мощности, имеют следующие классы напряжения[1]:

  • от 750 кВ и выше (1150 кВ, 1500 кВ) — Ультравысокий,
  • 750 кВ, 500 кВ, 400 кВ (европейский стандарт) — Сверхвысокий,
  • 330 кВ (Европа), 220 кВ, 150 кВ (Мурманская область России, юг Украины), 110 кВ (Европа) — ВН, Высокое напряжение,
  • 35 кВ, 33 кВ (Европа), 20 кВ (Европа, сельские сети) — СН-1, Среднее первое напряжение,
  • 10 кВ (Европа, городские сети), 6 кВ, 3 кВ — СН-2, Среднее второе напряжение,
  • 24 кВ, 22 кВ, 18 кВ, 15,75 кВ (наиболее распространённое), 13 кВ, (3 кВ) — напряжение на выводах генераторов
  • 0,69 кВ (европейский промышленный), 0,4 кВ (400/230В — основной стандарт), 0,23 кВ (220/127 В), 110 В (старый европейский, США бытовой) и ниже — НН, низкое напряжение.
  • для безопасной работы с электроинструментом, аппаратами и машинами существуют термины FELV, PELV и SELV. Регламентируются стандартами DIN/VDE 0100-410, BS 7671, BS EN 60335, IEC 61140 Protection against electric shock и IEC 60364-4-41 Low-voltage electrical installations; правилами «AS/NZS 3000 Wiring Rules» и т. д.

Уровень напряжения (иногда «диапазон напряжения» или «тарифный уровень напряжения», или «тарифный уровень (диапазон, класс) напряжения», или «класс напряжения») – это понятие, также используемое:

  • в тарифном регулировании – при установлении тарифов на передачу электроэнергии
  • в применении тарифов на передачу электроэнергии в расчётах за услуги по передаче электроэнергии

По «уровням напряжения» тарифы дифференцируются, то есть различаются по величине. Чем выше «уровень напряжения», тем ниже величина тарифа. Поэтому потребители стремятся подтвердить наиболее высокий «уровень напряжения».

Преобразование напряжения

Преобразование напряжения

Как правило, генераторы источника и потребители работают с низким номинальным напряжением. Потери энергии в линиях прямо пропорциональны квадрату силы тока, поэтому для снижения потерь электроэнергию выгодно передавать на высоких напряжениях. Для этого на выходе от генератора его повышают, а на входе потребителя его понижают при помощи силовых трансформаторов.

Структура сети

Электрическая сеть может иметь очень сложную структуру, обусловленную территориальным расположением потребителей, источников, требованиями надёжности и другими соображениями. В сети выделяют линии электропередачи, которые соединяют подстанции. Линии могут быть одинарными и двойными (двухцепными), иметь ответвления (отпайки). К подстанциям, как правило, подходит несколько линий. Внутри подстанции происходит преобразование напряжения и распределение потоков электроэнергии между подходящими линиями. Для соединения линий и оборудования внутри подстанций используются электрические коммутаторы различных типов.

Для наглядного представления структуры сети используется специальное начертание схемы сети, однолинейная схема, представляющая три провода трёх фаз в виде одной линии. На схеме отображаются линии, секции и системы шин, коммутаторы, трансформаторы, устройства защиты.

Структура сети электроснабжения может динамически изменяться путём переключения коммутаторов. Это необходимо для отключения аварийных участков сети, для временного отключения участков при ремонте. Структура сети также может быть изменена для оптимизации электрического режима сети.

Основные компоненты сети

Сеть электроснабжения характерна тем, что связывает территориально удалённые пункты источников и потребителей. Это осуществляется при помощи линии электропередачи — специальных инженерных сооружений, состоящих из проводников электрического тока (провод — неизолированный проводник, или кабель — изолированный проводник), сооружений для размещения и прокладки (опоры, эстакады, каналы), средств изоляции (подвесные и опорные изоляторы) и защиты (грозозащитные тросы, разрядники, заземление).

Примечания

Ссылки

Класс напряжения Википедия

Высоковольтная линия электропередачи

Электрическая сеть — совокупность электроустановок, предназначенных для передачи и распределения электроэнергии от электростанции к потребителю.

Классификация электрических сетей[ | ]

  1. Назначение, область применения
    • Сети общего назначения: электроснабжение бытовых, промышленных, сельскохозяйственных и транспортных потребителей.
    • Сети автономного электроснабжения: электроснабжение мобильных и автономных объектов (транспортные средства, суда, самолёты, космические аппараты, автономные станции, роботы и т. п.). См. также: Бортовая сеть.
    • Сети технологических объектов: электроснабжение производственных объектов и других инженерных сетей.
    • Контактная сеть: специальная сеть, служащая для передачи электроэнергии на движущиеся вдоль неё транспортные средства (локомотив, трамвай, троллейбус, метро).
  2. Масштабные признаки, размеры сети
    • Магистральные сети: сети, связывающие отдельные регионы, страны и их крупнейшие источники и центры потребления. Характерны сверхвысоким и высоким уровнем напряжения и большими потоками мощности (гигаватты).
    • Региональные сети: сети масштаба региона (в России — уровня субъектов Федерации). Имеют питание от магистральных сетей и собственных региональных источников питания, обслуживают крупных потребителей (город, район, предприятие, месторождение, транспортный терминал). Характерны высоким и средним уровнем напряжения и большими потоками мощности (сотни мегаватт, гигаватты).
    • Районные сети, распределительные сети: имеют питание от региональных сетей. Обычно не имеют собственных источников питания, обслуживают средних и мелких потребителей (внутриквартальные и поселковые сети, предприятия, небольшие месторождения, транспортные узлы). Характерны средним и низким уровнем напряжения и небольшими потоками мощности (мегаватты).
    • Внутренние сети: распределяют электроэнергию на небольшом пространстве — в рамках района города, села, квартала, завода. Зачастую имеют всего 1 или 2 точки питания от внешней сети. При этом иногда имеют собственный резервный источник питания. Характерны низким уровнем напряжения и небольшими потоками мощности (сотни киловатт, мегаватты).
    • Электропроводка: сети самого нижнего уровня — отдельного здания, цеха, помещения. Зачастую рассматриваются совместно с внутренними сетями. Характерны низким и бытовым уровнем напряжения и малыми потоками мощности (десятки и сотни киловатт).
  3. Род тока
    • Переменный трёхфазный ток: большинство сетей высших, средних и низких классов напряжений, магистральные, региональные и распределительные сети. Переменный электрический ток передаётся по трём проводам таким образом, что фаза переменного тока в каждом из них смещена относительно других на 120°. Каждый

Электроснабжение — это… Что такое Электроснабжение?

Высоковольтная линия электропередачи

Электрическая сеть — совокупность подстанций, распределительных устройств и соединяющих их электрических линий, размещенных на территории района, населенного пункта, потребителя электрической энергии [1].

ГОСТ 24291-90 дает следующее определение электрической сети:

Электрическая сеть — совокупность подстанций, распределительных устройств и соединяющих их линий электропередачи, предназначенная для передачи и распределения электрической энергии.

Классификация электрических сетей

Электрические сети принято классифицировать по назначению (области применения), масштабным признакам, и по роду тока.

  1. Назначение, область применения
    • Сети общего назначения: электроснабжение бытовых, промышленных, сельскохозяйственных и транспортных потребителей.
    • Сети автономного электроснабжения: электроснабжение мобильных и автономных объектов (транспортные средства, суда, самолёты, космические аппараты, автономные станции, роботы и т. п.)
    • Сети технологических объектов: электроснабжение производственных объектов и других инженерных сетей.
    • Контактная сеть: специальная сеть, служащая для передачи электроэнергии на движущиеся вдоль неё транспортные средства (локомотив, трамвай, троллейбус, метро).
  2. Масштабные признаки, размеры сети
    • Магистральные сети: сети, связывающие отдельные регионы, страны и их крупнейшие источники и центры потребления. Характерны сверхвысоким и высоким уровнем напряжения и большими потоками мощности (гигаватты).
    • Региональные сети: сети масштаба региона (области, края). Имеют питание от магистральных сетей и собственных региональных источников питания, обслуживают крупных потребителей (город, район, предприятие, месторождение, транспортный терминал). Характерны высоким и средним уровнем напряжения и большими потоками мощности (сотни мегаватт, гигаватты).
    • Районные сети, распределительные сети. Имеют питание от региональных сетей. Обычно не имеют собственных источников питания, обслуживают средних и мелких потребителей (внутриквартальные и поселковые сети, предприятия, небольщие месторождения, транспортные узлы). Характерны средним и низким уровнем напряжения и небольшими потоками мощности (мегаватты).
    • Внутренние сети: распределяют электроэнергию на небольшом пространстве — в рамках района города, села, квартала, завода. Зачастую имеют всего 1 или 2 точки питания от внешней сети. При этом иногда имеют собственный резервный источник питания. Характерны низким уровнем напряжения и небольшими потоками мощности (сотни киловатт, мегаватты).
    • Электропроводка: сети самого нижнего уровня — отдельного здания, цеха, помещения. Зачастую рассматриваются совместно с внутренними сетями. Характерны низким и бытовым уровнем напряжения и маленькими потоками мощности (десятки и сотни киловатт).
  3. Род тока
    • Переменный трёхфазный ток: большинство сетей высших, средних и низких классов напряжений, магистральные, региональные и распределительные сети. Переменный электрический ток передаётся по трём проводам таким образом, что фаза переменного тока в каждом из них смещена относительно других на 120°. Каждый провод и переменный ток в нём называется «фаза». Каждая «фаза» имеет определённое напряжение относительно земли, которая выступает в роли четвёртого проводника.
    • Переменный однофазный ток: большинство сетей бытовой электропроводки, оконечных сетей потребителей. Переменный ток передаётся к потребителю от распределительного щита или подстанции по двум проводам (т. н. «фаза» и «ноль»). Потенциал «нуля» совпадает с потенциалом земли, однако конструктивно «ноль» отличается от провода заземления.
    • Постоянный ток: большинство контактных сетей, некоторые сети автономного электроснабжения, а также ряд специальных сетей сверхвысокого напряжения, имеющих пока ограниченное распространение.

Принципы работы

Электрические сети осуществляют передачу, распределение и преобразование электроэнергию в соответствии с возможностями источников и требованиями потребителей.

Переменный ток

Большинство крупных источников электроэнергии — электростанции — построено с использованием генераторов переменного тока. Кроме того, амплитудное напряжение переменного тока может быть легко изменено при помощи трансформаторов, что позволяет повышать и понижать напряжение в широких пределах. Основные потребители электроэнергии также ориентированы на непосредственное использование переменного тока. Мировым стандартом генерации, передачи и преобразования электроэнергии является использование переменного трёхфазного тока. В России и европейских странах промышленная частота тока равна 50 герц, в США, Японии и ряде других стран — 60 герц.

Переменный однофазный ток используется многими бытовыми потребителями и получается из переменного трёхфазного тока путём объединения потребителей в группы по фазам. При этом каждой группе потребителей выделяется одна из трёх фаз, а второй провод («ноль»), используемый при передаче однофазного тока, является общим для всех групп и в своей начальной точке заземляется.

Классы напряжения

При передаче большой электрической мощности при низком напряжении возникают большие омические потери из-за больших значений протекающего тока. Формула δS = I²R описывает потерю мощности в зависимости от сопротивления линии и протекающего тока. Для снижения потерь уменьшают протекающий ток: при снижении тока в 2 раза омические потери снижаются в 4 раза. Согласно формуле S = IU для передачи такой же мощности при пониженном токе необходимо во столько же раз повысить напряжение. Таким образом, большие мощности целесообразно передавать при высоком напряжении. Однако строительство высоковольтных сетей сопряжено с рядом технических трудностей; кроме того, непосредственно потреблять электроэнергию с высоким напряжением крайне проблематично для конечных потребителей.

В связи с этим сети разбивают на участки с разным классом напряжения (уровнем напряжения). Трёхфазные сети, передающие большие мощности, имеют классы напряжения 1150 кВ, 750 кВ, 500 кВ, 330 и 220 кВ. Сети, передающие средние мощности, имеют классы напряжения 220 кВ, 110 кВ, 35 кВ. Сети, передающие малые мощности, имеют классы напряжения 35 кВ, 20 кВ, 10 кВ, 6 кВ. Сети конечных потребителей имеют класс напряжения 0,4 кВ. Высоковольтные сети постоянного напряжения имеют классы напряжения 800 и 400 кВ.

Преобразование напряжения

Преобразование напряжения

Как правило, генераторы источника и потребители работают с низким номинальным напряжением. Потери энергии в линиях обратно пропорциональны напряжению, поэтому для снижения потерь электроэнергию выгодно передавать на высоких напряжениях. Для этого на выходе от генератора его повышают, а на входе потребителя его понижают при помощи трансформаторов.

Структура сети

Сеть электроснабжения может иметь сложную структуру, обусловленную территориальным расположением потребителей, источников, требованиями надёжности и другими соображениями. В сети выделяют линии электропередачи, которые соединяют подстанции. Линии могут быть одинарными и двойными (двухцепными), иметь ответвления (отпайки). К подстанциям как правило подходит несколько линий. Внутри подстанции происходит преобразование напряжения и распределение потоков электроэнергии между подходящими линиями. Для соединения линий и оборудования внутри подстанций используются электрические коммутаторы различных типов.

Для наглядного представления структуры сети используется специальное начертание схемы сети, однолинейная схема, представляющая три провода трёх фаз в виде одной линии. На схеме отображаются линии, секции и системы шин, коммутаторы, трансформаторы, устройства защиты.

Структура сети электроснабжения может динамически изменяться путём переключения коммутаторов. Это необходимо для отключения аварийных участков сети, для временного отключения участков при ремонте. Структура сети также может быть изменена для оптимизации электрического режима сети.

Основные компоненты сети

Сеть электроснабжения характерна тем, что связывает территориально удалённые пункты источников и потребителей. Это осуществляется при помощи линии электропередачи — специальных инженерных сооружений, состоящих из проводников электрического тока (провод — неизолированный проводник, или кабель — изолированный проводник), сооружений для размещения и прокладки (опоры, эстакады, каналы), средств изоляции (подвесные и опорные изоляторы) и защиты (грозозащитные тросы, разрядники, заземление).

ГОСТ 2.702-75 Правила выполнения электрических схем

Примечания

  1. ГОСТ 19431-84 «Энергетика и электрификация. Термины и определения»

См. также

Wikimedia Foundation.
2010.

Номинальные напряжения электрических сетей | elesant.ru

 

Напряжения электрических сетей

Важнейшей характеристикой любой электрической сети является её номинальное напряжение (U ном.). Именно на это напряжение производится расчет всего оборудования ЭС. Определяется номинальное напряжение электросети переправляемой активной мощностью и протяженностью ЛЭП.

Согласно стандартам принята линейка номинальных межфазных напряжений ЭС (электросети) и ЭП (электроприёмников) до 1000 Вольт, а именно: 220 Вольт, 380 Вольт, 660 Вольт. (гост 21128_75).

Для ЭС и ЭП переменного тока выше 1000 Вольт, установлена следующая линейка межфазных напряжений: 380 В, 3000 В, 6000 В, 10000 В, 20000 В, 35000 В, 110000 В, 150 000 В, 220 000 В, 330 000 В, 500 000 В, 750000 В, 1150000 В. (гост 721_77)

Классы электросетей по напряжению

В таблице видим классы электросетей по напряжению. Как видим сети делятся на: электросети низкого (НН), среднего (СН), высокого (ВН), сверх высокого (СВН), ультра высокого (УВН) напряжений.

tabliza 1

Условия нормальной работы электрической сети

Для стабильной работы электроприёмников, должно соблюдаться следующее правило равенства напряжений: номинальное напряжение электроприемников должно равняться номинальному напряжению электросети. Uном.эп =Uном.сети. Но обеспечить такое равенство, при котором не будет, ни потерь, ни убытков на практике не возможно.

Нагрузка электроприёмников не может быть постоянной, она меняется и отклоняется от номинального значения. Принята допустимая зона отклонения напряжения электроприёмника в ±5%.

Кроме этого, протяженность ЛЭП предполагает потерю напряжения на линии, а это значит, что напряжение у приёмника будет меньше, напряжения у источника. Разница напряжений и будет величина потерь.  Это учитывается при проектировании и по ГОСТ, напряжения (ном.) вырабатываемые генераторами, должны быть на 5% больше необходимого напряжения сети.

Напряжения на обмотках трансформаторов ЭС

Повышающие трансформаторы на первичных обмотках должны иметь напряжение равное напряжению генераторов. Напомню, повышающие трансформаторы стоят сразу после генераторов электроэнергии на ТЭЦ или ГЭС.

Первичные обмотки понижающих трансформаторов по отношению к сети являются потребителями, поэтому напряжение на них должно равняться номинальному напряжению сети.  

Посмотрим на вторичные обмотки трансформаторов. Они, у обоих типов трансформаторов, являются источником напряжения для питаемой электросети. Поэтому, напряжение вторичных обмоток трансформаторов должно быть на 5%, а иногда и на 10% больше нужного напряжения  сети.

Все эти 5-10 % нужны для компенсации падения напряжений в электрической сети. Иллюстрация компенсации и падения напряжения смотрим на эпюре напряжений.

ehpyura naprjazhenij

Вводы

Суммируя всё вышесказанное, делаем выводы:

  • U ген. должно быть на 5% больше U ном. сети;
  • U первичных обмоток повышающих трансф-ов должно совпадать с напряжением генераторов, а следовательно должно быть на 5% больше U ном. сети;
  • U вторичных обмоток повышающих трансф-ов должно быть на 5-10% быть больше U ном. сети;
  • U первичных обмоток понижающих трансф-ов должно равняться U ном. сети;
  • U вторичных обмоток понижающих трансф-ов должно быть на 5-10% быть больше U ном. сети.

©Elesant.ru

Другие статьи раздела: Электрические сети

 

 

Расчетный (тарифный) уровень напряжения электроэнергии, кВ. Определение

Тарифный или расчетный уровень напряжения играет важнейшую роль при определении стоимости электроэнергии и мощности для потребителей. Что вообще такое физический уровень напряжения, а что такое уровень напряжения, определяемый в целях применения тарифов на электроэнергию? Попробуем разобраться в этой статье.

Электрическая энергия, вырабатываемая на крупных электростанциях генераторами (АЭС, ГЭС, ТЭС) подается в электрические сети высокого, сверхвысокого или ультравысокого напряжения — 110, 220, 330, 500, 750 или даже 1150 кВ (киловольт). Далее по таким электрическим сетям электрическая энергия передается на значительные расстояния до понижающих подстанций. Принцип передачи электрической энергии с использованием электрических сетей высокого и сверхвысокого уровней напряжения позволяет значительно снизить потери электрической энергии при ее передаче на большие расстояния.

Обычно энергопринимающие устройства потребителей присоединены к электрическим сетям среднего и низкого уровня напряжения. Однако зачастую многие крупные производственные объекты (заводы и др) присоединены к электрическим сетям высокого напряжения и такие потребители имеют на своем балансе собственные объекты электросетевого хозяйства (подстанции), понижающие уровень напряжения.

Как мы уже ранее неоднократно упоминали на нашем сайте, конечный тариф на электроэнергию для предприятий состоит из нескольких составляющих. В связи с тем, что уровень напряжения может меняться в процессе выработки и передачи электрической энергии потребителю, составляющая конечной цены на электроэнергию для предприятий  — тарифа на услуги по передаче электрической энергии также меняется в зависимости от уровня напряжения, на котором присоединён потребитель к электрическим сетям. Составляющая конечной цены на электроэнергию — тариф на услуги по передаче составляет не менее 40% в конечном тарифе на электроэнергию для предприятия. Следовательно, корректное определение расчетного уровня напряжения — очень важный момент для проведения правильных расчетов с поставщиками электроэнергии. 

Выделяют несколько тарифных уровней напряжения электроэнергии:

Чем выше расчетный уровень напряжения потребителя, тем ниже применяемый поставщиком электроэнергии тариф на оказание услуг по передаче электрической энергии для расчета стоимости поставленной такому потребителю электрической энергии и мощности.  

Следовательно, чем более высокий уровень напряжения в точке присоединения будет у потребителя, тем ниже будут его дальнейшие затраты на оплату электрической энергии поставщикам!

Поэтому правильное определение уровня напряжения играет важную роль для любого потребителя.

Изначально, расчетный (тарифный) уровень напряжения определяется в акте разграничения балансовой принадлежности сторон, который составляется сетевой компанией после окончания процедуры технологического присоединения к электрическим сетям.  Затем, тарифный уровень напряжения транслируется в договор энергоснабжения между потребителем и поставщиком электроэнергии. 

В связи с этим, в отношении новых объектов, еще не подключенных к электрической сети, перед подачей заявки на технологическое присоединение в электросетевую компанию и подписанием договора о технологическом присоединении к электрическим сетям, необходимо внимательно рассчитать все возможные последствия по выбору точки присоединения к электрическим сетям, а также порядок выполнения технических условий на подключение к электросетям (за чей счет будут строиться и кто останется собственником объектов электросетевого хозяйства после подключения). От этого будет зависеть применяемый тарифный уровень напряжения и, соответственно, стоимость электроэнергии.

Кроме того, стоит отметить важность правильного отражения расчетного уровня напряжения в договоре энергоснабжения, заключаемом между потребителем и поставщиком электроэнергии. Если тарифный уровень напряжения в договоре энергоснабжения согласован неверно, то добиться перерасчета стоимости потребленной электроэнергии за предыдущие периоды будет очень проблематично для потребителя. Однако, наша компания имеет богатый опыт по отстаиванию нарушенных прав потребителей. Мы готовы взять на себя решение проблемы с применением неверного тарифного уровня напряжения и вернуть потребителю переплату за предыдущие годы.

Именно поэтому, от того, насколько Вы сможете правильно подать заявку на подключение к электрическим сетям и заключить договор энергоснабжения с энергосбытом, будет зависеть стоимость электрической энергии для Вашего предприятия, компании или организации.     

Значение словосочетания КЛАСС НАПРЯЖЕНИЯ. Что такое КЛАСС НАПРЯЖЕНИЯ?

КЛАСС, -а, м. 1. Разряд, подразделение.

Все значения слова «класс»

НАПРЯЖЕ́НИЕ, -я, ср. 1. Действие по знач. глаг. напрячь—напрягать; действие и состояние по знач. глаг. напрячься—напрягаться. Напряжение голоса. Напряжение внимания.

Все значения слова «напряжение»

  • Но в середине первого класса начались первые сложности, связанные с письменной речью.

  • Ещё учась в средних классах школы, я поняла, что мне хочется больше всего.

  • Нежелание должным образом учитывать трудности, с которыми столкнулся новый рабочий класс, в том числе путём выработки хоть какого-либо механизма народного представительства, привело к революционным событиям.

  • (все предложения)
  • Было время, когда аланка снимала нервное напряжение с помощью сильных средств.

  • Методы релаксации, снимая напряжение мышечной системы, дают возможность осуществлять подобную регуляцию.

  • Однако, со временем чувство новизны притупляется, постоянное внутреннее напряжение переходит в разряд данности будней, приходит иное восприятие, когда очередное открытие уже не вызывает повышенной эмоциональной реакции.

  • (все предложения)

Что такое напряжение и ток?

Что такое напряжение и ток?

Ключевые термины

o Кулон

o Напряжение

o Потенциальная энергия

o Кинетическая энергия

o Вольт

o Текущий

o Ампер (ампер)

Цели

o Узнайте, как измерить электрический заряд

o Определить напряжение и ток относительно электрического заряда

Вы, наверное, слышали о напряжении, токе и мощности в контексте электричества, но вы можете знать или не знать их точного значения.Распространенный язык об электричестве также имеет тенденцию затемнять эти концепции. Таким образом, эта статья предоставит вам научно правильное понимание значения этих критических параметров, облегчая наше дальнейшее обсуждение электронных схем и устройств.

Расчетный сбор

Поскольку электрическая сила является результатом взаимодействия заряда, мы должны сначала уметь количественно оценить заряд, прежде чем мы сможем точно обсудить связанные величины, такие как ток и напряжение.Как мы обсуждали ранее, электроны и протоны — две субатомные частицы, находящиеся в атомах, — заряжены: то есть они обладают определенным качеством, которое вызывает электрическую силу. Оказывается, все электроны (протоны) имеют одинаковое количество отрицательного (положительного) заряда. Электрон и протон несут одинаковую величину заряда величин (или «количество»), но заряд электрона определяется как отрицательный, а заряд протона как положительный. (Обратите внимание, что это произвольное определение — главное, что два типа зарядов противоположны.) Назовем величину заряда в протоне эл.

Единица измерения заряда СИ (Международная система единиц) — это кулонов, , которое определяется как количество заряда, эквивалентное примерно 6,250,000,000,000,000,000 протонов (выраженное в научных обозначениях как ) — огромное число, но не так уж и важно, если учесть, насколько крошечный протон! Конечно, даже при таком определении кулон может показаться вам не таким значимым: давайте просто скажем, что это произвольное количество заряда, которое мы определяем как нашу единицу (так же, как мы могли бы произвольно определить стандарт длины, такой как фут или метр).

Таким же образом 6 250 000 000 000 000 000 электронов эквивалентны одному отрицательному кулону заряда.

Помните, кулон — это просто произвольно определенная величина, которую мы будем использовать как «ярдовый стержень» для измерения заряда.

Напряжение

Если вы посмотрите на батарею, вы заметите, что (помимо размера — AA, D, C и т. Д.) Она определяется ее напряжением: 1.Например, 5 вольт. В других устройствах указывается напряжение, необходимое для работы. Обычные настенные розетки (в Америке) обеспечивают около 120 вольт. Но что такое напряжение ? Напряжение является мерой потенциальной энергии — количества энергии, «хранящейся» в объекте. Давайте попробуем понять это, проиллюстрировав потенциальную энергию в более знакомом контексте: гравитации.

Считайте пол вашей комнаты «уровнем земли» и положите на пол какой-либо предмет (например, мяч).Относительно уровня земли этот мяч не имеет гравитационной потенциальной энергии, потому что, когда вы его отпускаете, он не ускоряется. Теперь удерживайте мяч на некотором расстоянии от пола. Теперь мяч имеет определенную потенциальную энергию, потому что, когда вы его отпускаете, он ускоряется, пока не упадет на пол (в этот момент вся его потенциальная энергия была преобразована гравитацией в кинетическую энергию — энергию движения).

И, как вы, вероятно, знаете, чем выше от земли вы держите мяч, тем быстрее он будет лететь, когда наконец достигнет пола, когда вы его отпустите (игнорируя сопротивление воздуха).

Напряжение очень похоже. Однако вместо масс (таких как шар), испытывающих гравитацию, мы имеем дело с заряженными объектами, которые ощущают электрическую силу. Допустим, у нашего шара 1 кулон (1 Кл) заряда, и что он испытывает электрическую силу, направленную вниз (аналогично гравитации). Мы выберем какую-нибудь точку и назовем ее «уровень земли» (или просто «земля»). Тогда у мяча нет (электрической) потенциальной энергии, когда он находится на уровне земли, но если он отодвигается от уровня земли, он имеет (электрическую) потенциальную энергию — так же, как и в случае силы тяжести.

Но откуда могла взяться такая сила? Напомним, что заряды притягивают или отталкивают друг друга. Допустим, у нас есть металлическая пластина, наполненная избыточными электронами (что придает ей отрицательный заряд). Поместите отрицательно заряженную пластину на «уровень земли». Поскольку положительные и отрицательные заряды притягиваются друг к другу, между шаром и пластиной создается электрическая сила; при отпускании мяч, удерживаемый от пластины, будет ускоряться по направлению к пластине, но при контакте с пластиной мяч останется неподвижным.

Напряжение — это мера этой потенциальной энергии. В частности, напряжение — это количество потенциальной энергии, которую объект имеет в данном месте — относительно некоторого заранее определенного «уровня земли» — на кулон заряда в этом объекте. Итак, возвращаясь к иллюстрации выше, если пластина наполнена большим отрицательным зарядом, напряжение в определенной точке над пластиной увеличится. Точно так же, если на пластине присутствует меньше отрицательного заряда, напряжение в той же точке будет уменьшаться.

Поскольку напряжение определяется уровнем земли и некоторой точкой вдали от земли, напряжение всегда и только значение между или через двух точек. Например, в случае батареи напряжение является мерой потенциальной энергии между одним выводом (концом) батареи и другим. Другими словами, напряжение в любой точке всегда относительно некоторого заранее определенного уровня земли.

Единицей измерения напряжения в системе СИ является (что неудивительно) вольт, , которая определяется как потенциальная энергия одного джоуля на кулон заряда (джоуль, как и кулон, это просто произвольно определенная единица энергии).Для наших целей просто помните, что вольт — это всего лишь мера того, сколько потенциальной энергии заряженный объект имеет в определенном месте относительно земли.

Текущий

Еще одна важная единица — ток, , который намного проще понять, чем напряжение. Проиллюстрируем ток на примере провода (который представляет собой не что иное, как тонкий проводник). Предположим также, что между двумя концами провода существует разность потенциальной энергии (то есть напряжение ), что заставляет положительные заряды перемещаться с одного конца на другой.Мы определим один конец провода как «уровень земли» (или просто «земля»).

Ток — это не что иное, как количество заряда, проходящего через провод. В частности, мы определяем ток в определенной точке: ток — это количество кулонов заряда, проходящих через эту точку в секунду.

Во многих случаях более сильная электрическая сила (то есть более высокое напряжение) производит более высокий ток, потому что заряды быстрее тянутся к земле.

Единицей измерения тока в системе СИ является ампер (иногда просто ампер ), которая определяется как поток в 1 кулон в секунду, также обозначаемый как 1А.

Практическая задача : Ниже показана простая электрическая схема с напряжениями, определенными в различных точках. В какой из этих точек кулон заряда будет иметь наибольшую потенциальную энергию?

Электрон (отрицательный заряд)

Решение: Напряжение — это мера потенциальной энергии.Кулон заряда, помещенный в точку A, будет иметь 12 джоулей потенциальной энергии; если его поместить в точку B, он имеет 3 джоуля потенциальной энергии. В «электрическом смысле» эти точки находятся на разных расстояниях от земли, что приводит к разным электрическим потенциальным энергиям, так же как мяч, удерживаемый на разной высоте, имеет разные гравитационные потенциальные энергии. Для простой принципиальной схемы, показанной выше, кулон заряда будет иметь наибольшую потенциальную энергию в точке A.

P ractice Проблема: Провод в электрической цепи имеет ток 3 А (3 А).Сколько кулонов заряда проходит через каждую точку провода каждую секунду?

Решение: Как мы обсуждали выше, ампер (ампер) — это ток, эквивалентный 1 кулону в секунду. Таким образом, 3 ампера равны 3 кулонам в секунду. Таким образом, в любой точке провода, проводящего ток 3А, каждую секунду проходит 3 кулона.

.

Что такое единица измерения напряжения? — Определение и единица измерения напряжения в системе СИ

Единица измерения напряжения в системе СИ

Единица измерения напряжения в системе СИ — вольт и обозначается буквой v. Вольт — производная единица измерения электродвижущей силы или электрического потенциала в системе СИ. Таким образом, благодаря этому вольт можно определить несколькими способами.

Вольт можно определить как «электрический потенциал, присутствующий вместе с проводом, когда электрический ток в один ампер рассеивает мощность в 1 ватт (Вт).

В = Вт / А

Кроме того, вольт можно выразить как разность потенциалов, которая существует между двумя точками в электрической цепи, которая передает энергию в 1 джоуль (Дж) на кулон заряда, протекающего по цепи.

В = потенциальная энергия / заряд

В = Дж / Кл = кг м² / А с³

Его также можно выразить как ампер-раз в Ом, джоуль на кулон или ватт на ампер.

В = AΩ = Вт / А (энергия на единицу заряда) = Дж / Кл (мощность на единицу тока)

Это также может быть выражено в единицах СИ,

1 V = 1 кг м² с⁻³ A⁻¹ (Один килограмм-метр в квадрате в секунду в кубе на ампер)

Ниже приведены некоторые другие электрические блоки

9006 4

Ватт

Источник напряжения — это в основном устройство, которое используется в электрических цепях с фиксированной разностью потенциалов на обоих концах.Источником напряжения может быть батарея или любой другой источник с фиксированной разностью потенциалов и постоянным током. На принципиальных схемах источник напряжения изображен, как показано на рисунке ниже.

(изображение будет скоро загружено)

В случае, если концы источника напряжения подключены к цепи, имеющей несколько резисторов, вольтметров и т. Д., Тогда формируется полная цепь, и теперь может течь ток от одного конца до другого. А если ток течет, то на обоих выводах источника напряжения он одинаковый.

Источник напряжения — это часть полной цепи, которая может создавать электродвижущую силу. Электродвижущая сила обозначается символом ε. Единица электродвижущей силы такая же, как и напряжение, то есть вольт. Здесь вольт равен джоуля на кулон (Дж / Кл). В случае идеального источника электродвижущая сила равна разности напряжений,

ε = V = IR

Реальные источники, такие как батареи, не считаются идеальными источниками, поскольку они имеют некоторый источник внутреннего сопротивления.Если r обозначает внутреннее сопротивление аккумулятора, то разница напряжений на аккумуляторе составляет

В = ε -Ir

Это также можно назвать напряжением на клеммах аккумулятора. Когда полная цепь сделана с использованием резистора с сопротивлением R, тогда протекающий через него ток можно найти с помощью уравнения:

В = IR

IR = ε -Ir

IR + Ir = ε

I (R + r) = ε

I = (R + r) / ε

Таким образом, ток равен электродвижущей силе источника, деленной на полное сопротивление, присутствующее в цепи.

.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *

Электрический параметр

SI ед.

Simen

G или ひ

Емкость

Фарад

C

Индуктивность

Генри

L или H

Напряжение

Вольт

В или E

Мощность

Вт

Частота

Гц

Гц

Сопротивление

Ом

R или Ω