Единицы измерения мощности. Мощность тока: единица измерения. Единица измерения ток. Единица измерения мощность электрического тока
Единицы измерения мощности. Мощность тока: единица измерения. Единица измерения ток
Мощность тока в чем измеряется. Единицы измерения мощности. Мощность тока: единица измерения
В чем измеряется мощность электрического тока
Понятие мощности является физической величиной. Она представляет собой соотношение работы, производимой в определенный промежуток времени и сам временной промежуток. С помощью работы может быть измерено изменение энергии. Поэтому, мощность показывает, с какой скоростью преобразуется энергия в какой-либо системе.
Все эти понятия в полной мере относятся и к электрической мощности. Здесь учитывается работа (U), затрачиваемая на перемещение 1-го кулона. Электрический ток (I) учитывает число кулонов, перемещенных в течение одной секунды.
Виды электрической мощности
Исходя из зависимости мощности от силы тока и напряжения, следует вывод, что она может получиться от большого тока и малого напряжения и, наоборот, при малом токе и значительном напряжении. Этот эффект применяется при трансформаторных преобразованиях, когда электроэнергия передается на дальние расстояния.
Электрическая мощность может быть активной или реактивной. В первом случае происходит безвозвратное преобразование данной мощности в другой вид энергии. Для ее измерения применяется ватт, представляющий собой произведение вольта и ампера. При реактивной мощности, из-за появления индуктивности, возникает явление самоиндукции. В результате, электрическая энергия частично возвращается в сеть. При этом, значения тока и напряжения смещаются, вызывая общее отрицательное влияние на электросети. Данный вид мощности измеряется в вольт-амперах реактивных, состоящих из произведения рабочего тока и падения напряжения.
Единица измерения мощности
Мощность является одной из основных единиц, применяемых в электротехнике. Основной единицей измерения служит ватт, отражающий работу в течение определенного времени. На производстве и в бытовых условиях, чаще всего, мощность измеряется в киловаттах, каждый из которых содержит 1000 ватт. Для измерения большого количества мощности используются мегаватты. Как правило, они применяются на различных видах электростанций, вырабатывающих электроэнергию.
Мощность потребителей указывается на специальных табличках или в техническом паспорте устройства. Зная заранее величину этого параметра, можно вычислить и другие показатели электрической сети – напряжение и величину потребляемого тока.
Как определить мощность тока
electric-220.ru
Единицы измерения мощности. Мощность тока: единица измерения
Мощность в физике понимается как отношение совершаемой за определенное время работы к тому промежутку времени, за который она выполняется. Под механической работой подразумевается количественная составляющая воздействия силы на тело, из-за чего последнее перемещается в пространстве.
Можно выразить мощность и как скорость передачи энергии. То есть она показывает работоспособность автоматического аппарата. Благодаря измерению мощности становится понятным, как быстро делается работа.
Единицы измерения мощности
Мощность измеряют в ваттах или джоулях в секунду. Автомобилистам известно измерение мощности в лошадиных силах. Кстати, до появления паровых машин эту величину не измеряли вообще.
Однажды, используя механизм в шахте, инженер Дж. Уайт взялся за его улучшение. Для доказательства своего усовершенствования двигателя он сравнил его с работоспособностью лошадей. Люди использовали их в течение веков. Поэтому любому было нетрудно представить работу тягловой лошади за какой-то промежуток времени.
Наблюдая за ними, Уайт сравнивал модели паровых машин в зависимости от количества лошадиных сил. Он экспериментально вычислил, что мощность одной лошади равна 746 ваттам. Сегодня все уверены, что такое число является явно завышенным, но единицы измерения мощности решили не изменять.
Посредством названной физической величины узнают о производительности, так как при ее увеличении возрастает работа за тот же промежуток времени. Такая стандартизированная единица измерения стала очень распространенной. Ее стали применять в самых разных механизмах. Поэтому, хоть ватты и применяются уже давно, лошадиные силы для многих являются более понятными, чем другие единицы измерения мощности.
Как понимают мощность в бытовых электрических приборах
Мощность, конечно, указывают и в бытовых электрических механизмах. В светильниках используют ее определенные значения, например шестьдесят ватт. Лампочки с большим показателем мощности устанавливать тогда нельзя, так как в противном случае они быстро испортятся. Зато если приобретать не лампы накаливания, а светодиодные или люминесцентные, то они смогут светить с большей яркостью, потребляя при этом маленькую мощность.
Потребление энергии, естественно, прямо пропорционально величине мощности. Поэтому для производителей лампочек всегда есть поле для совершенствования продукта. В настоящее время потребители все больше предпочитают другие варианты, кроме ламп накаливания.
Спортивная мощность
Единицы измерения мощности известны не только в связи с использованием механизмов. Понятие мощности можно отнести и к животным, и к людям. К примеру, можно посчитать эту величину, когда спортсмен кидает мяч или другой инвентарь, получая ее в результате установления прикладываемой силы, расстояния и времени ее применения.
Можно воспользоваться даже компьютерными программами, с помощью которых показатель вычисляется в результате сделанного определенного количества упражнений и введения параметров.
Приборы измерения
Динамометры — это специальные устройства, с помощью которых измеряется мощность. Их используют также для определения силы и вращающего момента. Приборы применяют в самых разных областях промышленности. К примеру, именно они покажут мощность двигателя. Для этого мотор извлекают из автомобиля и подсоединяют к динамометру. Но есть устройства, которые способны вычислить искомое даже через колесо.
В спорте и медицине динамометры тоже находят широкое распространение. На тренажерах часто имеются датчики, которые подключены к компьютеру. С помощью них и производятся все измерения.
Мощность в ваттах
Джеймс Ватт изобрел паровую машину, и с 1889 года единица измерения мощности электрического тока стала ваттом, а в международную систему измерен
xn--90adflmiialse2m.xn--p1ai
Электрическая мощность - это... Что такое Электрическая мощность?
Электри́ческая мо́щность — физическая величина, характеризующая скорость передачи или преобразования электрической энергии.
Мгновенная электрическая мощность
Мгновенной мощностью называется произведение мгновенных значений напряжения и силы тока на каком-либо участке электрической цепи.
По определению, электрическое напряжение — это отношение работы электрического поля, совершенной при переносе пробного электрического заряда из точки A в точку B, к величине пробного заряда. То есть можно сказать, что электрическое напряжение равно работе по переносу единичного заряда из точки А в точку B. Другими словами, при движении единичного заряда по участку электрической цепи он совершит работу, численно равную электрическому напряжению, действующему на участке цепи. Умножив работу на количество единичных зарядов, мы, таким образом, получаем работу, которую совершают эти заряды при движении от начала участка цепи до его конца. Мощность, по определению, — это работа в единицу времени. Введём обозначения: U — напряжение на участке A-B (принимаем его постоянным на интервале Δt), Q — количество зарядов, прошедших от А к B за время Δt. А — работа, совершённая зарядом Q при движении по участку A-B, P — мощность. Записывая вышеприведённые рассуждения, получаем:
Для единичного заряда на участке A-B:
Для всех зарядов:
Поскольку ток есть не что иное, как количество зарядов в единицу времени, то есть по определению, в результате получаем:
Полагая время бесконечно малым, можно принять, что величины напряжения и тока за это время тоже изменятся бесконечно мало. В итоге получаем следующее определение мгновенной электрической мощности:
мгновенная электрическая мощность p(t), выделяющаяся на участке электрической цепи, есть произведение мгновенных значений напряжения u(t) и силы тока i(t) на этом участке:
Если участок цепи содержит резистор c электрическим сопротивлением R, то
Дифференциальные выражения для электрической мощности
Мощность, выделяемая в единице объёма, равна:
В линейном изотропном приближении:
В линейном анизотропном приближении (например, в монокристалле или жидком кристалле, а также при наличии эффекта Холла):
Мощность постоянного тока
Так как значения силы тока и напряжения постоянны и равны мгновенным значениям в любой момент времени, то мощность можно вычислить по формуле:
Для пассивной линейной цепи, в которой соблюдается закон Ома, можно записать:
Если цепь содержит источник ЭДС, то отдаваемая им или поглощаемая на нём электрическая мощность равна:
где — ЭДС. |
Если ток внутри ЭДС противонаправлен градиенту потенциала (течёт внутри ЭДС от плюса к минусу), то мощность поглощается источником ЭДС из сети (например, при работе электродвигателя или заряде аккумулятора), если сонаправлен (течёт внутри ЭДС от минуса к плюсу), то отдаётся источником в сеть (скажем, при работе гальванической батареи или генератора). При учёте внутреннего сопротивления источника ЭДС выделяемая на нём мощность прибавляется к поглощаемой или вычитается из отдаваемой.
Мощность переменного тока
В переменном электрическом поле формула для мощности постоянного тока оказывается неприменимой. На практике наибольшее значение имеет расчёт мощности в цепях переменного синусоидального напряжения и тока.
Для того, чтобы связать понятия полной, активной, реактивной мощностей и коэффициента мощности, удобно обратиться к теории комплексных чисел. Можно считать, что мощность в цепи переменного тока выражается комплексным числом таким, что активная мощность является его действительной частью, реактивная мощность — мнимой частью, полная мощность — модулем, а угол φ (сдвиг фаз) — аргументом. Для такой модели оказываются справедливыми все выписанные ниже соотношения.
Активная мощность
Единица измерения — ватт (W, Вт).
Среднее за период T значение мгновенной мощности называется активной мощностью: В цепях однофазного синусоидального тока где U и I — среднеквадратичные значения напряжения и тока, φ — угол сдвига фаз между ними. Для цепей несинусоидального тока электрическая мощность равна сумме соответствующих средних мощностей отдельных гармоник. Активная мощность характеризует скорость необратимого превращения электрической энергии в другие виды энергии (тепловую и электромагнитную). Активная мощность может быть также выражена через силу тока, напряжение и активную составляющую сопротивления цепи r или её проводимость g по формуле В любой электрической цепи как синусоидального, так и несинусоидального тока активная мощность всей цепи равна сумме активных мощностей отдельных частей цепи, для трёхфазных цепей электрическая мощность определяется как сумма мощностей отдельных фаз. С полной мощностью S активная связана соотношением
В теории длинных линий (анализ электромагнитных процессов в линии передачи, длина которой сравнима с длиной электромагнитной волны) полным аналогом активной мощности является проходящая мощность, которая определяется как разность между падающей мощностью и отраженной мощностью.
Реактивная мощность
Единица измерения — вольт-ампер реактивный (var, вар)
Реактивная мощность — величина, характеризующая нагрузки, создаваемые в электротехнических устройствах колебаниями энергии электромагнитного поля в цепи синусоидального переменного тока, равна произведению среднеквадратичных значений напряжения U и тока I, умноженному на синус угла сдвига фаз φ между ними: (если ток отстаёт от напряжения, сдвиг фаз считается положительным, если опережает — отрицательным). Реактивная мощность связана с полной мощностью S и активной мощностью Р соотношением: .
Физический смысл реактивной мощности — это энергия, перекачиваемая от источника на реактивные элементы приёмника (индуктивности, конденсаторы, обмотки двигателей), а затем возвращаемая этими элементами обратно в источник в течение одного периода колебаний, отнесённая к этому периоду.
Необходимо отметить, что величина sin φ для значений φ от 0 до плюс 90° является положительной величиной. Величина sin φ для значений φ от 0 до −90° является отрицательной величиной. В соответствии с формулой Q = UI sin φ, реактивная мощность может быть как положительной величиной (если нагрузка имеет активно-индуктивный характер), так и отрицательной (если нагрузка имеет активно-ёмкостный характер). Данное обстоятельство подчёркивает тот факт, что реактивная мощность не участвует в работе электрического тока. Когда устройство имеет положительную реактивную мощность, то принято говорить, что оно её потребляет, а когда отрицательную — то производит, но это чистая условность, связанная с тем, что большинство электропотребляющих устройств (например, асинхронные двигатели), а также чисто активная нагрузка, подключаемая через трансформатор, являются активно-индуктивными.
Синхронные генераторы, установленные на электрических станциях, могут как производить, так и потреблять реактивную мощность в зависимости от величины тока возбуждения, протекающего в обмотке ротора генератора. За счёт этой особенности синхронных электрических машин осуществляется регулирование заданного уровня напряжения сети. Для устранения перегрузок и повышения коэффициента мощности электрических установок осуществляется компенсация реактивной мощности.
Применение современных электрических измерительных преобразователей на микропроцессорной технике позволяет производить более точную оценку величины энергии возвращаемой от индуктивной и емкостной нагрузки в источник переменного напряжения.
Измерительные преобразователи реактивной мощности, использующие формулу Q = UI sin φ, более просты и значительно дешевле измерительных преобразователей на микропроцессорной технике.[источник не указан 124 дня]
Полная мощность
Единица полной электрической мощности — вольт-ампер (V·A, В·А)
Полная мощность — величина, равная произведению действующих значений периодического электрического тока I в цепи и напряжения U на её зажимах: S = U·I; связана с активной и реактивной мощностями соотношением: где Р — активная мощность, Q — реактивная мощность (при индуктивной нагрузке Q > 0, а при ёмкостной Q < 0).
Векторная зависимость между полной, активной и реактивной мощностью выражается формулой:
Полная мощность имеет практическое значение, как величина, описывающая нагрузки, фактически налагаемые потребителем на элементы подводящей электросети (провода, кабели, распределительные щиты, трансформаторы, линии электропередачи), так как эти нагрузки зависят от потребляемого тока, а не от фактически использованной потребителем энергии. Именно поэтому номинальная мощность трансформаторов и распределительных щитов измеряется в вольт-амперах, а не в ваттах.
Комплексная мощность
Мощность, аналогично импедансу, можно записать в комплексном виде:
где — комплексное напряжение, — комплексный ток, — импеданс, * — оператор комплексного сопряжения.Модуль комплексной мощности равен полной мощности S. Действительная часть равна активной мощности Р, а мнимая — реактивной мощности Q с корректным знаком в зависимости от характера нагрузки.
Неактивная мощность
Неактивная мощность (пассивная мощность)[источник не указан 172 дня] — это мощность нелинейных искажений тока, равная корню квадратному из разности квадратов полной и активной мощностей в цепи переменного тока. В цепи с синусоидальным напряжением неактивная мощность равна корню квадратному из суммы квадратов реактивной мощности и мощностей высших гармоник тока[источник не указан 172 дня]. При отсутствии высших гармоник неактивная мощность равна модулю реактивной мощности.
Под мощностью гармоники тока понимается произведение действующего значения силы тока данной гармоники на действующее значение напряжения[источник не указан 172 дня].
Наличие нелинейных искажений тока в цепи означает нарушение пропорциональности между мгновенными значениями напряжения и силы тока, вызванное нелинейностью нагрузки, например когда нагрузка имеет реактивный или импульсный характер. При линейной нагрузке сила тока в цепи пропорциональна мгновенному напряжению, вся потребляемая мощность является активной. При нелинейной нагрузке увеличивается кажущаяся (полная) мощность в цепи за счёт мощности нелинейных искажений тока, которая не принимает участия в совершении работы[источник не указан 172 дня]. Мощность нелинейных искажений не является активной и включает в себя как реактивную мощность, так и мощность прочих искажений тока. Данная физическая величина имеет размерность мощности, поэтому в качестве единицы измерения неактивной мощности можно использовать В∙А (вольт-ампер) или вар (вольт-ампер реактивный). Вт (ватт) использовать нежелательно, чтобы неактивную мощность не спутали с активной.
Связь неактивной, активной и полной мощностей
Величину неактивной мощности обозначим N. Через i обозначим вектор тока, через u — вектор напряжения. Буквами I и U будем обозначать соответствующие действующие значения:
Представим вектор тока i в виде суммы двух ортогональных составляющих ia и ip, которые назовём соответственно активной и пассивной. Поскольку в совершении работы участвует только составляющая тока, коллинеарная напряжению, потребуем, чтобы активная составляющая была коллинеарна напряжению, то есть ia = λu, где λ — некоторая константа, а пассивная — ортогональна, то есть Имеем
Запишем выражение для активной мощности P, скалярно умножив последнее равенство на u:
Отсюда находим
Выражение для величины неактивной мощности имеет вид где S = U I — полная мощность.
Для полной мощности цепи справедливо представление, аналогичное выражению для цепи с гармоническими током и напряжением, только вместо реактивной мощности используется неактивная мощность:
Таким образом, понятие неактивной мощности представляет собой один из способов обобщения понятия реактивной мощности для случая несинусоидальных тока и напряжения. Неактивная мощность иногда называется реактивной мощностью по Фризе.
Измерения
- Для измерения электрической мощности применяются ваттметры и варметры, можно также использовать косвенный метод, с помощью вольтметра и амперметра.
- Для измерения коэффициента реактивной мощности применяют фазометры
- Государственный эталон — ГЭТ 153-86 Государственный специальный эталон единицы электрической мощности в диапазоне частот 40-2500 Гц. Институт-хранитель: ВНИИМ
Мощность некоторых электрических приборов
В таблице указаны значения мощности некоторых потребителей электрического тока:
Лампочка фонарика | 1 |
Лампа люминесцентная бытовая | 5…30 |
Лампа накаливания бытовая | 25…150 |
Холодильник бытовой | 15…200 |
Электропылесос | 100…2 000 |
Электрический утюг | 300…2 000 |
Стиральная машина | 350…2 000 |
Электрическая плитка | 1 000…2 000 |
Сварочный аппарат бытовой | 1 000…5 500 |
Двигатель трамвая | 45 000…50 000 |
Двигатель электровоза | 650 000 |
Электродвигатели прокатного стана | 6 000 000…9 000 000 |
Большинство бытовых приборов рассчитаны на напряжение 220 В, но на разную силу тока. Поэтому мощность потребителей электроэнергии разная.
Литература
- ГОСТ 8.417-2002 Единицы величин
- ПР 50.2.102-2009 Положение о единицах величин, допускаемых к применению в Российской Федерации
- Бессонов Л. А. Теоретические основы электротехники. — М: Высшая школа, 1984.
- Гольдштейн Е. И., Сулайманов А. О., Гурин Т. С. Мощностные характеристики электрических цепей при несинусоидальных токах и напряжениях. ТПУ, — Томск, 2009, Деп. в ВИНИТИ, 06.04.09, № 193—2009. — 146 с.
Дополнительная литература
- Агунов М. В., Агунов А. В. Об энергетических соотношениях в электрических цепях с несинусоидальными режимами // Электричество, 2005, № 4, С. 53-56.
- Агунов М. В., Агунов А. В., Вербова Н. М. Новый подход к измерению электрической мощности // Промышленная энергетика, 2004, № 2, С. 30-33.
- Агунов М. В., Агунов А. В., Вербова Н. М. Определение составляющих полной мощности в электрических цепях с несинусоидальными напряжениями и токами методами цифровой обработки сигналов // Электротехника, 2005, № 7, С. 45-48.
- Агунов А. В. Неактивные составляющие полной мощности в автономных электротехнических системах судостроения. Автореферат диссертации на соискание ученой степени кандидата технических наук. СПб., СПбГМТУ, 1997, 20 с.
- Агунов М. В. Энергетические процессы в электрических цепях с несинусоидальными режимами и их эффективность. Кишинев-Тольятти: МолдНИИТЭИ, 1997, 84 с.
- Агунов М. В., Агунов А. В. Об энергетических соотношениях в электрических цепях с несинусоидальными режимами // Электричество, 2005, № 4, С. 53-56.
- Агунов А. В. Управление качеством электроэнергии при несинусоидальных режимах. СПб., СПбГМТУ, 2009, 134 с.
- Агунов М. В., Агунов А. В., Вербова Н. М. Новый подход к измерению электрической мощности // Промышленная энергетика, 2004, № 2, С. 30-33.
- Агунов А. В. Статический компенсатор неактивных составляющих мощности с полной компенсацией гармонических составляющих тока нагрузки // Электротехника, 2003, № 2, С. 47-50.
Ссылки
См. также
dic.academic.ru
Вопрос 2. Электрический ток (определение, сила тока, единицы измерения, направление тока, плотность тока), работа и мощность тока. Единицы измерения работа и мощность электрического тока
Вопрос 2. Электрический ток (определение, сила тока, единицы измерения, направление тока, плотность тока), работа и мощность тока.
Электрический ток— направленное движение электрических зарядов под действием электрического поля. Для того чтобы шёл ток, нужна замкнутая цепь, которая состоит из источников электрической энергии, приёмников электроэнергии и соединительных проводов.
За направление тока принимают направление движения положительного заряда. Поэтому во внешней цепи ток направлен от зажима “+” к зажиму “–”, внутри источника — наоборот.
Сила тока— количество электричества, прошедшее через поперечное сечение проводника за 1 секунду.
— для постоянного тока
— для переменного тока (ток равен скорости изменения заряда)
Плотность тока:
Работа и мощность тока
При прохождении тока проводник нагревается и совершается работа:
—работатока
—мощностьтока
Вопрос 3. Источники напряжения и тока (определение, условно графическое обозначение, взаимное преобразование). Примеры источников напряжения и тока.
Электрическую энергию получают путём преобразования химической, механической и других видов энергии.
Устройство, которое даёт в цепь энергию, называется источником.
Различают источник напряжения и источник тока.
Источник напряжения— источник, ЭДС которого не зависит от сопротивления нагрузки.
Батареи, аккумуляторы, сеть — примеры источников напряжения.
Схемное изображение источника напряжения:
Источник тока— источник, ток которого не зависит от сопротивления нагрузки.
Источниками тока являются электронные лампы, транзисторы.
Схемное изображение источника тока:
На практике источник тока можно получить, если к источнику напряжения подключить очень большое внутренне сопротивление.
Можно при расчётах преобразовать источник напряжения в эквивалентный источник тока, если ток источника тока рассчитать по формуле
и внутренне сопротивление источника напряжения, включенное последовательно, включить к источнику тока параллельно.
Схема с источником напряжения:
Схема с эквивалентным источником тока:
Вопрос 4. Классификация электрических сигналов (простые и сложные, периодические и непериодические, детерминированные и случайные). Способы представления сигналов (математическая модель, временная, спектральная и векторная диаграммы). Дискретный и сплошной спектры.
Классификация электрических сигналов:
Периодические и непериодические
Периодические сигналыповторяются через определённый промежуток времени.
Непериодические сигналыпоявляются один раз и больше не повторяются.
Детерминированные и случайные
Детерминированные сигналы— сигналы, которые можно описать с помощью функции времени.
Случайные сигналы— сигналы, мгновенные значения которых заранее не может быть предсказано.
Простые и сложные
Простые сигналы— сигналы, токи и напряжения которых имеют одну частоту (синусоида).
Сложные сигналы— сигналы, которые состоят из суммы токов и напряжений нескольких частот.
Способы представления сигнала:
Математическая модель— уравнение, которое описывает форму сигнала.
— уравнение гармонического сигнала
Временная диаграмма— график зависимости мгновенных значений переменной от времени
Векторная диаграмма: строится только для гармонического сигнала.
Спектральная диаграмма— зависимость амплитуды гармонических сигналов от частоты.
Вопрос 5. Основные параметры детерминированных периодических сигналов (период, угловая и циклическая частота, амплитуда, размах, мгновенное и действующее значения, скважность). Примеры периодических сигналов различной формы.
Основные параметры детерминированных периодических сигналов:
Мгновенное значение— значение переменной в любой момент времени:
Максимальное (амплитудное) значение— наибольшее из мгновенных значений:
Размах сигнала— разность между максимальным и минимальным значениями сигнала:
Действующее значение переменного тока— такой постоянный ток, который за время равное периоду, выделяет сопротивлението же количество тепла, что и переменный ток:
Все приборы показывают действующие значения. Для гармонического сигнала максимальные и действующие значения связаны формулой:
Период— наименьший промежуток времени, через который значения переменной повторяются:
Циклическая частота— количество колебаний переменной за 1 с:
Угловая частота
Примеры периодических сигналов разной формы:
Сигнал, не изменяющийся во времени (постоянное напряжение или ток)
Гармонический сигнал
Изменяется по закону косинуса или синуса
Сигнал треугольной формы
Сигнал пилообразной формы
Сигнал прямоугольной формы
Биполярный импульс
Однополярный импульс
— длительность импульса
Скважность:
(безразмерная величина)
Скважность— отношение периода к длительности импульса.
Ток на выходе однополупериодного выпрямителя
Ток на выходе двухполупериодного выпрямителя
Вопрос 6. Двухполюсники и четырехполюсники, коэффициент передачи четырехполюсника по напряжению, току, мощности. Логарифмические единицы измерения коэффициента передачи. Понятие о воздействие и отклике.
Двухполюсник— участок цепи, который имеет 2 зажима:
Четырёхполюсник— участок цепи, который имеет 2 входных и 2 выходных зажима:
Коэффициент передачи по напряжению— отношение напряжения на выходе к напряжению на входе четырёхполюсника:
Коэффициент передачи по току — отношение тока на выходе к току на входе четырёхполюсника:
Коэффициент передачи по мощности— отношение мощности на выходе к мощности на входе четырёхполюсника:
Коэффициент передачи по напряжению может измеряться в логарифмических единицах:
Сигнал, который поступает в цепь, называется воздействие, а который получается в результате воздействия, называетсяотклик.
studfiles.net
Работа электрического тока - Основы электроники
Протекая по цепи электрический ток совершает работу. Опять сравним протекание электрического тока с потоком воды в трубе. Если этот поток направить, например, на лопасти генератора, то поток будет совершать работу, вращая генератор. Таким же образом электрический ток совершает работу, протекая по проводнику. И эта работа тем больше, чем больше сила тока и напряжение в цепи.
Таким образом, работа электрического тока, совершаемая на участке цепи, прямо пропорциональна силе тока в цепи, напряжению на этом участке и времени действия тока. Работа электрического тока обозначается латинской буквой A.
Формула работы электрического тока имеет вид:
A = I*U*t
Произведение I*U есть не что иное, как мощность электрического тока.
Тогда формула работы электрического тока примет вид:
A = P*t
Работа электрического тока измеряется в ваттсекундах или
xn----7sbeb3bupph.xn--p1ai
назовите 4 основные единицы измерения электрического тока: -)
P — мощность тока — (ватт) , U — напряжение между концами проводника — (вольт) , I — сила тока — (ампер) , R — сопротивление проводника — (Ом) Ампер, единица силы электрического тока, – одна из шести основных единиц системы СИ. Ампер – сила неизменяющегося тока, который при прохождении по двум параллельным прямолинейным проводникам бесконечной длины с ничтожно малой площадью кругового поперечного сечения, расположенным в вакууме на расстоянии 1 м один от другого, вызывал бы на каждом участке проводника длиной 1 м силу взаимодействия, равную 2Ч10-7 Н. Силой тока называется величина, которая равна отношению электрического заряда, прошедшего через поперечное сечение проводника, к времени его протекания. Единицей измерения заряда является кулон (Кл) , время измеряется в секундах (с) . В этом случае единица силы тока выражается в Кл/с. В 1992 г. в качестве государственного первичного эталона силы постоянного электрического тока в диапазоне 10-16 . .30 А утвержден эталон, позволяющий значительно повысить точность воспроизведения и передачи размера единицы силы тока (1 мА и 1А) с использованием косвенных измерений силы тока I = U/r, причем размер единицы электрического напряжения U – вольт – воспроизводиться с помощью квантового эффекта Джозефсона, а размер единицы электрического сопротивления r – Ом – с помощью квантового эффекта Холла. Второй комплекс воспроизводит силу постоянного электрического тока в диапазоне 10-16. . 10-9 А. Его основу составляет многозначительная мера силы тока, включающая меру линейно изменяющегося электрического напряжения с набором герметизированных конденсаторов (C0), прибора для измерения напряжения (Ud), прибора для измерения времени (Td) и компенсирующего (сравнивающего) устройства. <a rel="nofollow" href="http://www.kipis.ru/info/index.php?ELEMENT_ID=6738" target="_blank">http://www.kipis.ru/info/index.php?ELEMENT_ID=6738</a> Эталон единицы силы постоянного электрического тока h ttp://<a rel="nofollow" href="/" title="603356:##:http://www.nolik.ru/systems/gost.htm" target="_blank" >[ссылка заблокирована по решению администрации проекта]</a> ГОСТ 8.417-2002. ЕДИНИЦЫ ВЕЛИЧИН
вопрос некоректный. электрический ток измеряется в амперах.
длина, ширина, высота, прозрачность!
Ампер (Си) , дин^0.5*см/с, оно же СГСЭq (СГСЭ) , био (СГСБ).. . А что еще? СГСМ? О, точно, еще статампер.
ватт ампер вольт ом
Ну если я тебя правильно понял, то обычно электрики оперируют с такими понятиями, как частота, напряжение, сила тока и мощность. По крайней мере, пока я работал диспетчером в РЭСе, я в основном пользовался ими, они чаще всего используются на практике, остальное, больше, для теоретических расчетов.
киловатт - я точно знаю
touch.otvet.mail.ru
Единицы измерения мощности. Мощность тока: единица измерения
Мощность в физике понимается как отношение совершаемой за определенное время работы к тому промежутку времени, за который она выполняется. Под механической работой подразумевается количественная составляющая воздействия силы на тело, из-за чего последнее перемещается в пространстве.
Можно выразить мощность и как скорость передачи энергии. То есть она показывает работоспособность автоматического аппарата. Благодаря измерению мощности становится понятным, как быстро делается работа.
Единицы измерения мощности
Мощность измеряют в ваттах или джоулях в секунду. Автомобилистам известно измерение мощности в лошадиных силах. Кстати, до появления паровых машин эту величину не измеряли вообще.
Однажды, используя механизм в шахте, инженер Дж. Уайт взялся за его улучшение. Для доказательства своего усовершенствования двигателя он сравнил его с работоспособностью лошадей. Люди использовали их в течение веков. Поэтому любому было нетрудно представить работу тягловой лошади за какой-то промежуток времени.
Наблюдая за ними, Уайт сравнивал модели паровых машин в зависимости от количества лошадиных сил. Он экспериментально вычислил, что мощность одной лошади равна 746 ваттам. Сегодня все уверены, что такое число является явно завышенным, но единицы измерения мощности решили не изменять.
Посредством названной физической величины узнают о производительности, так как при ее увеличении возрастает работа за тот же промежуток времени. Такая стандартизированная единица измерения стала очень распространенной. Ее стали применять в самых разных механизмах. Поэтому, хоть ватты и применяются уже давно, лошадиные силы для многих являются более понятными, чем другие единицы измерения мощности.
Как понимают мощность в бытовых электрических приборах
Мощность, конечно, указывают и в бытовых электрических механизмах. В светильниках используют ее определенные значения, например шестьдесят ватт. Лампочки с большим показателем мощности устанавливать тогда нельзя, так как в противном случае они быстро испортятся. Зато если приобретать не лампы накаливания, а светодиодные или люминесцентные, то они смогут светить с большей яркостью, потребляя при этом маленькую мощность.
Потребление энергии, естественно, прямо пропорционально величине мощности. Поэтому для производителей лампочек всегда есть поле для совершенствования продукта. В настоящее время потребители все больше предпочитают другие варианты, кроме ламп накаливания.
Спортивная мощность
Единицы измерения мощности известны не только в связи с использованием механизмов. Понятие мощности можно отнести и к животным, и к людям. К примеру, можно посчитать эту величину, когда спортсмен кидает мяч или другой инвентарь, получая ее в результате установления прикладываемой силы, расстояния и времени ее применения.
Можно воспользоваться даже компьютерными программами, с помощью которых показатель вычисляется в результате сделанного определенного количества упражнений и введения параметров.
Приборы измерения
Динамометры — это специальные устройства, с помощью которых измеряется мощность. Их используют также для определения силы и вращающего момента. Приборы применяют в самых разных областях промышленности. К примеру, именно они покажут мощность двигателя. Для этого мотор извлекают из автомобиля и подсоединяют к динамометру. Но есть устройства, которые способны вычислить искомое даже через колесо.
В спорте и медицине динамометры тоже находят широкое распространение. На тренажерах часто имеются датчики, которые подключены к компьютеру. С помощью них и производятся все измерения.
Мощность в ваттах
Джеймс Ватт изобрел паровую машину, и с 1889 года единица измерения мощности электрического тока стала ваттом, а в международную систему измерений величину включили в 1960 году.
В ваттах может измеряться не только электрическая, но и тепловая, механическая или любая другая мощность. Также нередко образуются кратные и дольные единицы. Их называют с добавлением к исходному слову различных префиксов: "кило", "мега", "гига" и др.:
- 1 киловатт равен тысяче ватт;
- 1 мегаватт равен миллиону ватт и так далее.
Киловатт-час
В международной системе СИ нет такой еденицы измерения, как киловатт-час. Этот показатель является внесистемным, введенным для учета израсходованной электрической энергии. В России действует ГОСТ 8.417-2002 с регламентацией, где единица измерения мощности электрического тока непосредственно обозначается и применяется.
Данную единицу измерения рекомендуется использовать для учета израсходованной электрической энергии. Она является самой удобной формой, с помощью которой получают приемлемые результаты. Кратные единицы здесь также могут применяться при необходимости. Они выглядят аналогично ваттам:
- 1 киловатт-час равен 1000 ватт-час;
- 1 мегаватт-час равен 1000 киловатт-час и так далее.
Полное наименование пишется, как уже видно, через дефис, а краткое — через точку (Вт·ч, кВт·ч).
Как обозначается мощность в электроприборах
Общепринято указывать упомянутый показатель прямо на корпусе электрического прибора. Возможными обозначениями являются:
- ватт и киловатт;
- ватт-час и киловатт-час;
- вольт-ампер и киловольт-ампер.
Наиболее универсальным обозначением является использование таких единиц, как ватт и киловатт. При их наличии на корпусе прибора можно сделать вывод о том, что на данном оборудовании развивается указанная мощность.
Часто в ваттах и киловаттах измеряют механическую мощность электрических генераторов и моторов, тепловую мощность электрических нагревательных приборов и т. д. Так обозначается в основном мощность тока, единица измерения в приборе которого ориентирована в первую очередь на количество полученного тепла, а расчеты принимаются во внимание уже вслед за ним.
Ватт-час и киловатт-час показывают потребляемую мощность за данную единицу времени. Часто эти обозначения можно увидеть на бытовых электрических приборах.
В международной системе СИ есть единицы измерения электрической мощности, являющиеся эквивалентными ватту и киловатту - это вольт-ампер и киловольт-ампер. Такое измерение приводится для показания мощности переменного тока. Их применяют в технических расчетах тогда, когда важны электрические показатели.
Такое обозначение больше всего соответствует требованиям электротехники, где приборы, работающие с переменным током, имеют как активную, так и реактивную энергию. Поэтому электрическая мощность определяется суммой этих составляющих. Часто в вольт-амперах обозначают мощность таких приборов, как трансформаторы, дроссели, и других преобразователей.
При этом производитель самостоятельно выбирает, какие единицы измерения ему указывать, тем более что в случае маломощного оборудования (коим являются, например, бытовые электрические приборы) все три обозначения, как правило, совпадают.
загрузка...
buk-journal.ru
Видеоматериалы
Опыт пилотных регионов, где соцнормы на электроэнергию уже введены, показывает: граждане платить стали меньше
Подробнее...С начала года из ветхого и аварийного жилья в республике были переселены десятки семей
Подробнее...Более 10-ти миллионов рублей направлено на капитальный ремонт многоквартирных домов в Лескенском районе
Подробнее...Актуальные темы
ОТЧЕТ о деятельности министерства энергетики, ЖКХ и тарифной политики Кабардино-Балкарской Республики в сфере государственного регулирования и контроля цен и тарифов в 2012 году и об основных задачах на 2013 год
Подробнее...Предложения организаций, осуществляющих регулируемую деятельность о размере подлежащих государственному регулированию цен (тарифов) на 2013 год
Подробнее...
КОНТАКТЫ
360051, КБР, г. Нальчик
ул. Горького, 4
тел: 8 (8662) 40-93-82
факс: 8 (8662) 47-31-81
e-mail:
Этот адрес электронной почты защищен от спам-ботов. У вас должен быть включен JavaScript для просмотра.