какое должно быть, в чем измеряется, как проверить и нормализовать
Постоянное и оптимальное давление в трубах отопления необходимо для того, чтобы теплоноситель постоянно циркулировал по системе, проходя через все радиаторы. Этот параметр должен поддерживаться в заданных пределах как для поддержания в помещениях комфортной температуры, так и для предотвращения поломки, разрушения отдельных элементов или всей системы в целом. Рассмотрим значение этого понятия, основные параметры автономного и центрального отопления, правила монтажа системы, проблемы и способы их устранения.
В чем измеряется давление в трубах?
Этот показатель измеряется в паскалях и в атмосферах. Наиболее часто используется вторая шкала. Для обогрева объектов различного предназначения и высоты применяются индивидуальные подходы.
Так, нормой считается:
- автономный котел — 1,5-2 атмосферы;
- дома 3-5 этажей — 2-4 атмосферы;
- девятиэтажные здания — 5-7 атмосфер;
- высотные строения — 10 атмосфер;
- подземные подающие магистрали — 12 атмосфер.
Регулировка давления проводится с помощью автоматических и ручных клапанов, расширительных баков, регуляторов и предохранительных мембран. Контроль состояния отопительной системы осуществляется манометрами, установленными на трубах с определенным интервалом.
Как правило, контрольные приборы монтируются на входе в здание и в его самой высокой точке.
На что влияет давление в трубах?
Далеко не все осознают, насколько важно поддержание нужного напора в трубопроводе, по которому движется теплоноситель.
Создаваемое в системе давление определяет такие показатели:
- Температуру в помещении. Если жидкость движется по магистрали медленно, то она не попадает в теплообменники. Кроме этого, до достижения поворотного участка контура она успевает сильно остыть.
- Наличие воздушных пробок. При недостаточном напоре образуются воздушные пузыри, препятствующие циркуляции. В результате прекращается ток воды по всему стояку.
- Целостность трубопровода. При чрезмерном напоре происходит разрыв прокладок, срыв резьбы на фитингах и разрушение батарей. Просмотр видео поможет наглядно представить последствия нарушения технологии отопления зданий и сооружений.
При снижении скорости тока теплоносителя увеличиваются расход энергии на нагрев, что приводит к росту материальных расходов.
Виды давления в системе отопления
Различают несколько типов давления, которое поддерживается в отопительной системе. Все они берутся в расчет при планировании строительства, эксплуатации и обслуживании магистрали.
Остановимся конкретно на видах:
- Статическое. Оно не зависит от того, с какой силой работает насос и температуры жидкости. Показатель определяется объемом воды находящимся в системе, то есть гравитационным воздействием на стенки магистрали столба жидкости.
- Динамическое. Оно создается напорными нагнетателями, подающими теплоноситель в трубопровод. Кроме этого, напор создается за счет такого явления как конвекция. Регулировка динамического давления осуществляется шаровыми кранами и другими приспособлениями.
- Максимальное. Указывает на предельную прочность системы. Его превышение недопустимо, так как приводит к возникновению аварийной ситуации. Учитывая то, что температура теплоносителя близка к точке кипения, прорыв трубопровода представляет угрозу не только для интерьера, но для жизни и здоровья людей.
Как правило, в летний период вода из системы отопления многоквартирного дома сливается для проведения регламентных работ, установки котлов, замены батарей и стояков.
Какое должно быть нормальное давление
Под понятием «нормальное» подразумевается показатель, при котором образуется оптимальная циркуляция теплоносителя и не возникает угроза возникновения аварийной ситуации. Каждый элемент системы отопления имеет расчетную прочность и устойчивость к определенной температуре.
Существуют такие критерии нормального давления (в атмосферах):
- стальные трубы без шва —20;
- стальные трубы со швом —16;
- полипропиленовые армированные изделия — 5;
- алюминиевые радиаторы — 6;
- панельные батареи — 9;
- чугунные секции — 15.
Во всех случаях перед принятием решения о замене радиаторов, обвязки и стояков в квартире необходимо проконсультироваться со специалистами.
Целесообразно приобретать изделия, рассчитанные на двойное динамическое давление. Это нужно потому, что гидродинамические удары в системе не являются редкостью при неисправностях насосного оборудования.
Нормы и требования ГОСТ и СНИП
Требования к системам отопления изложены в СНиП 2.04.05-91 с изменениями от 21 января 1994 г. N 18-3, 15 мая 1997 г. N 18-11 и 22 октября 2002 г. N 137.
ГОСТ и СНиП регламентируют такие положения относительно системы отопления:
- климатические и метеорологические условия;
- уровень шума и вибрации оборудования;
- ремонтопригодность магистрали;
- безопасность конструкции;
- площадь и объем помещений;
- экономическое обоснование;
- устойчивость материала к коррозии;
- использование изделий разрешенных для строительства;
- количества тепла на единицу площади.
СНиП рекомендует использовать в качестве теплоносителя воду с присадками или без. Применение других материалов допускается в случае наличия расчетов экономического обоснования.
Заполнение магистрали токсичными жидкостями запрещается.
Минимальное давление
Под этим понятием подразумевается такой напор, при котором поддерживается продвижение теплоносителя по магистрали. При этом должно обеспечиваться его поступление в каждый радиатор, независимо от этажа. Данное значение необходимо знать для проверки системы на герметичность после ее сборки, обслуживания или замены отдельных деталей.
Причины перепадов давления
Предпосылок к возникновению этого явления несколько. Перепады возникают в магистралях, установленных в частных домах и многоэтажных строениях.
Причины снижения и критического повышения напора в трубопроводе могут быть следующими:
- Засорение магистрали. Со временем на ее внутренних стенках образуется известковый налет. Стальные конструкции меняют свои параметры из-за коррозии. Нередко в трубопровод попадают куски прокладок, мусор и пакля.
- Сбой в работе насосного оборудования. Речь идет об отказе автоматики или резком изменении напряжения в сети. Нагнетательная система может выйти из строя полностью, что приводит к полному отсутствию напора и прекращению циркуляции теплоносителя.
- Протечки и прорывы. Происходит утечка воды, снижается динамическое и статическое давление, система, если не оснащена обратным клапаном, теряет теплоноситель и заполняется воздухом.
Как показывает практика, ухудшение циркуляции воды по трубопроводу возникает по причине субъективного фактора.
В многоэтажных домах некоторые совладельцы прикручивают краны подачи с целью сэкономить на оплате коммунальных услуг.
Как бороться с перепадами давления
Падение или рост давления приводит к снижению или повышению температуры в помещении, что вызывает ухудшение самочувствия у людей, изменения влажности воздуха, появление грибка и плесени.
Существуют такие методы поддержания оптимальных параметров работы отопительной системы:
- Обнаружение и ликвидация протечек. Найти их можно путем визуального осмотра всей обвязки и батарей. Ликвидация осуществляется самостоятельно наложением хомутов или специалистами. Если прорыв произошел внутри стены, то целесообразно сделать обводной канал, чтобы не портить отделку.
- Засоры, накипь и налет устраняются механическим способом. Трубы прочищаются ершиком или в них заливается специальная жидкость. В квартирах с автономным отоплением целесообразно использовать присадки для смягчения воды.
- Отрегулировать напор в каждом радиаторе. Для этого на них устанавливаются манометры и регуляторы. Таким образом выравнивается давление на каждой батарее, независимо от уровня, на котором она установлена.
Как поднять давление
Сделать это можно несколькими способами. В некоторых случаях может потребоваться помощь профессионалов.
Достижение данной цели осуществляется следующими путями:
- Установкой вспомогательного насоса. Такой подход выбирается для многоэтажного частного дома. Выбирается агрегат с минимальным уровнем шума, чтобы не нарушать комфортность жителей.
- Отключением невостребованных теплообменников. В домах есть комнаты, которые пустуют и не нуждаются в прогреве. Если их перекрыть, то насосная система обеспечит нужный напор для остальных комнат.
- Настройкой давления отдельно для каждого радиатора. Так производится распределение горячей воды в зависимости от потребностей владельцев недвижимости.
Во всех случаях целесообразно установить на каждом стояке краны для стравливания воздуха.
Проверка герметичности
Данное мероприятие проводится после монтажа трубопровода, его ремонта, модернизации и перед началом каждого отопительного сезона. Во время пробного запуска в системе создается давление, минимум в 1,5 раза превышающее расчетное динамическое.
Проверка герметичности магистрали проводится в такой последовательности:
- Внешний осмотр. Обследуются обвязка, батареи, фитинги и котел. Признаками протечки являются следы потеков и ржавчина.
- Холодный этап. Подается вода, стравливается воздух, давление повышается до минимального рабочего значения. Система выдерживается в таком состоянии не менее 30 минут.
- Горячий этап. Проводится после соединение трубопровода с котлом. В магистрали создается максимальный напор, теплоноситель нагревается до максимального значения.
Проверка герметичности должна выполняться под постоянным контролем. Если мероприятие прошло успешно, то систему можно вводить в эксплуатацию.
Заключение
Создание и поддержание нужного давления в системе отопления необходимо для продления срока ее службы, создания в доме комфортного микроклимата и снижения расходов на оплату счетов. Достичь нужных показателей можно с помощью периодического тестирования магистрали, установки современных приборов регулировки и контроля.
Загрузка…
статическое испытательное давление в городской системе отопления, зачем делать расчет при перед испытанием, фото и видео примеры
Содержание:
1. Зачем давление в системе
2. Виды рабочего давления в отопительной конструкции
3. Показатели нормального давления
4. Испытательное давление
5. Проверка герметичности системы отопления
Теплоснабжающая конструкция большого многоэтажного дома представляет собой сложный механизм, способный эффективно функционировать при условии соблюдения множества параметров элементов, входящих в него. Одним из них считается рабочее давление в системе отопления. От этого значения зависит не только качество передаваемого воздуху тепла, но также надежное и безопасное функционирование обогревательного оборудования.
Давление в системе теплоснабжения многоэтажных зданий должно отвечать определенным требованиям и нормам, установленным и прописанным в СНиПах. При наличии отклонений от требуемых значений возможно возникновение серьезных проблем, вплоть до невозможности эксплуатировать отопительную систему.
Зачем давление в системе
Многих потребителей интересует, зачем давление в системе отопления и что от него зависит. Дело в том, что оно оказывает непосредственное влияние на эффективность и качество обогрева помещений дома. Благодаря рабочему напору удается добиться наибольшей производительности теплоснабжающей системы по причине гарантированного поступления теплоносителя в трубопроводы и радиаторы в каждую квартиру многоэтажного дома.
Постоянное и стабильное давление в городской системе отопления позволяет сократить потери тепла и доставлять теплоноситель к потребителям почти такой же температуры, как и при нагреве воды в теплоагрегате котельной (прочитайте также: «Температура теплоносителя в системе отопления: нормы»).
Виды рабочего давления в отопительной конструкции
Напор в конструкции обогрева многоэтажного строения бывает нескольких видов:
- Статическое давление системы отопления является показателем того, с каким усилием объем жидкости в зависимости от высоты воздействует на трубопроводы и радиаторы. При этом при проведении расчетов уровень напора на поверхности жидкости равен нулю.
- Динамическое давление возникает в процессе движения жидкого теплоносителя по трубам. Оно воздействует на трубопровод и радиаторы изнутри.
- Допустимое (максимальное) рабочее давление в системе отопления – это параметр нормального и безаварийного функционирования теплоснабжающей конструкции.
Показатели нормального давления
Во всех отечественных многоэтажных домах, построенных как несколько десятков лет тому назад, так и в новостройках, система обогрева функционирует по закрытым схемам при помощи принудительного передвижения теплоносителя. Идеальными считаются условия эксплуатации, когда работает система отопления под давлением, равным 8-9,5 атмосферы. Но в старых домах в теплоснабжающей конструкции может наблюдаться потеря давления, а соответственно показатели напора снижаться до отметки 5 -5,5 атмосферы. Читайте также: «Что такое перепад давления в системе отопления».
Выбирая трубы и радиаторы для замены их в квартире, расположенной в многоэтажном доме, следует учитывать начальные показатели. Иначе отопительное оборудование будет работать нестабильно и даже возможно полное разрушение схемы теплоснабжения, которая стоит немалых денег.
То, какое давление в отопительной системе многоэтажного здания должно быть, диктуют стандарты и другие регулирующие документы.
Как правило, достичь необходимых параметров по ГОСТу невозможно, поскольку на рабочие показатели оказывается влияние со стороны разных факторов:
- Мощность оборудования, необходимого для подачи теплоносителя. Параметры давления в отопительной системе многоэтажки определяются на теплопунктах, где происходит нагрев теплоносителя для подачи через трубы в радиаторы.
- Состояние оборудования. И на динамическое, и на статическое давление в теплоснабжающей конструкции непосредственно влияет уровень износа элементов котельной таких, как генераторы теплоты и насосов. Немаловажное значение имеет расстояние от дома до теплопункта.
- Диаметр трубопроводов в квартире. Если при проведении ремонта своими руками владельцы квартиры установили трубы большего диаметра, чем на входном трубопроводе, то произойдет снижение параметров давления.
- Расположение отдельной квартиры в многоэтажке. Безусловно, необходимое значение напора определяют, согласно нормам и требованиям, но на практике немало зависит от того, на каком этаже находится квартира и ее расстояние от общего стояка. Даже когда жилые комнаты располагаются недалеко от стояка, натиск теплоносителя в угловых помещениях всегда ниже, поскольку там часто имеется крайняя точка трубопроводов.
- Степень износа труб и батарей. Когда элементы отопительной системы, расположенные в квартире, прослужили не один десяток лет, то некоторого снижения параметров оборудования и производительности не избежать. Когда имеют место подобные проблемы, желательно изначально произвести замену изношенных труб и радиаторов и тогда удастся избежать аварийных ситуаций.
Испытательное давление
Жильцам многоквартирных домов известно, каким образом коммунальные службы совместно со специалистами энергетических компаний проверяют давление теплоносителя в отопительной системе. Обычно они до начала отопительного сезона подают в трубы и батареи теплоноситель под напором, величина которого приближается к критическим отметкам.
Используют давление при испытании системы отопления для того, чтобы протестировать работоспособность всех элементов теплоснабжающей конструкции в экстремальных условиях и выяснить, насколько эффективно будет передаваться тепло от котельной в многоэтажный дом.
Когда подается испытательное давление системы отопления нередко ее элементы приходят в аварийное состояние и требуют ремонта, поскольку изношенные трубы начинают протекать и в радиаторах образуются пробоины. Избежать подобных неприятностей поможет своевременная замена устаревшего отопительного оборудования в квартире.
При проведении испытаний контроль параметров выполняют при помощи специальных приборов, установленных в самой низкой (обычно это подвал) и самой высокой (чердачное помещение) точках многоэтажки. Все произведенные замеры в дальнейшем анализируют специалисты. При наличии отклонений необходимо обнаружить неполадки и немедленно их устранить.
Проверка герметичности системы отопления
Для обеспечения эффективной и надежной работы системы обогрева, не только проверяют давление теплоносителя, но и тестируют оборудование на герметичность. Как это происходит, видно на фото. В результате можно проконтролировать наличие протечек и предотвратить поломку оборудования в самый ответственный момент.
Проверку герметичности осуществляют в два этапа:
- испытание с использованием холодной воды. Трубопроводы и батареи в многоэтажном здании наполняют теплоносителем, не нагревая его, и замеряют показатели давления. При этом его значение в течение первых 30 минут не может составить менее стандартных 0,06 МПа. Через 2 часа потери не могут быть более 0,02 МПа. При отсутствии порывов отопительная система многоэтажки дальше будет функционировать без проблем;
- испытание с применением горячего теплоносителя. Отопительную систему тестируют до начала отопительного периода. Воду подают под определенным сдавливанием, его значение должно быть наиболее высоким для оборудования.
Чтобы добиться оптимального значения давления в системе отопления расчет схемы ее обустройства лучше всего доверить специалистам-теплотехникам. Сотрудники таких фирм не только могут произвести соответствующие испытания, но еще и промоют все ее элементы.
Тестирование проводят перед началом запуска отопительного оборудования, иначе цена ошибки бывает слишком дорогостоящей, а, как известно, аварию устранить при минусовых температурах довольно сложно.
От параметров давления в схеме теплоснабжения многоэтажного дома зависит, насколько комфортно можно проживать в каждой комнате. В отличие от собственного домовладения с автономной системой обогрева в многоэтажке у владельцев квартир не имеется возможность самостоятельно регулировать параметры отопительной конструкции, в том числе температуру и подачу теплоносителя.
Но жильцы многоэтажных домов при желании могут установить такие измерительные приборы как манометры в подвале и в случае малейших отклонений давления от нормы сообщать об этом в соответствующие коммунальные службы. Если после всех предпринятых действий потребители по-прежнему недовольны температурой в квартире, возможно, им следует подумать над организацией альтернативного отопления.
Как правило, напор в трубопроводах отечественных многоэтажных зданий не превышает предельные нормы, но все же установка индивидуального манометра не будет лишней.
Единицы измерения давления
Значение давления может отсчитываться от 0 (абсолютное давление) или от атмосферного (избыточное давление). Если давление измеряется в технических атмосферах, то абсолютное давление обозначается как «ата», а избыточное — как «ати», например 9 ата,
Единицы измерения производительности по газу
Другие публикации
|
|
Зачем нужен датчик давления в узле учета
В двух словах — потому что давление теплоносителя участвует в формуле подсчета тепловой энергии.
Как именно?
Тепловая энергия Q рассчитывается путем умножения массы теплоносителя, проходящего через систему отопления (М), на разницу
его энтальпий на входе и выходе из системы.
Q = M⋅(h2 – h3)
Энтальпия h измеряется в калориях на грамм и обозначает энергию теплоносителя, которую можно преобразовать в теплоту.
Энтальпия зависит от температуры и давления теплоносителя, причем точной формулой эту зависимость описать нельзя — ее
значение определяется по специальным таблицам.
Масса теплоносителя определяется путем произведения его объема на плотность:
M = V⋅ρ
На плотность теплоносителя также влияет его давление и температура. И также как энтальпию, плотность определяют
по таблицам или с помощью сложных приблизительных вычислений.
Теплосчетчик не может замерить ни массу, ни энтальпии проходящей через него среды, но может — объем (V) и температуры
на подаче (t1) и обратке (t2).
С такими исходными данными кол-во теплоты можно оценить приблизительно, основываясь
на нескольких допущениях:
- принять плотность воды за 1000 кг/м3, т.к. она действительно близка к этому значению при
любых вариантах температуры и давления, которые можно предположить в системах теплоснабжения; - энтальпия теплоносителя при конкретной температуре приблизительно равнa этой температуре и при
перепадах давления изменяется незначительно.
Таким образом первоначальную формулу для вычисления тепловой энергии можно преобразовать так:
Q = M⋅(h2 – h3) ≈ V⋅(t1 — t2)
С одной стороны, погрешность вычислений по преобразованной формуле невелика, но по правилам учета — недопустима.
Если строго подходить к вопросу вычисления теплоты, то получается, без информации о давлении теплосчетчик работать не может.
Тем не менее, тысячи теплосчетчиков по всей стране принимались в эксплуатацию и исправно работали без датчиков давления.
Действительно ли необходим датчик давления в теплосчетчике
Давление в системах теплоснабжения положено поддерживать на определенном, более-менее стабильном уровне.
Если значения этого давления не измерять, а задать постоянной величиной, то погрешность измерения теплоты укладывается
в интервал, прописанный в «правилах учета», правда только для систем с тепловой нагрузкой менее 0,5 Гкал/час. Как правило,
в таких системах стоят теплосчетчики диаметром до 100мм.
В эти приборы заложены алгоритмы определения энтальпии и плотности при давлении, принимаемом за константу.
В данном случае важно квалифицированное задание констант давления для подачи и обратки — они д.б. максимально близки
к проектному и ли расчетному значениям и выражены в правильных единицах измерения (МПа и кгс/см2). Если давление
выражено в Мпа, то для перевода в кгс/см2 его значение умножают на 10,1972.
При неверной настройке погрешность вычислений может быть очень большая, и не факт, что в пользу потребителя.
Как работают европейские теплосчетчики
В некоторых европейских станах является приемлемым расчет количествава теплоты по упрощенной формуле
(Q ≈ V⋅(t1 — t2) ) , однако в приборах, работающих по такому алгоритму введен
специальный уточняющий коэффициент Штюка для коррекции погрешности вычислений.
Все поправочные коэффициенты, схожесть значений энтальпии и температуры выведены опытным путем.
Могут ли данные, полученные таким образом являться достаточно достоверными, чтобы являть собой основу для
финансовых расчетов, ради точности которых изначально и были введены теплосчетчики?
Почему в России европейский опыт не прижился
Расхождение значений, полученных обоими методами, может быть незначительным на определенном временном отрезке.
Но накапливаясь годами, в финансовом выражении может обернуться предметом споров между теплоснабжающими организациями
и их клиентами.
Узаконивание в правилах учета тепловой энергии состава теплосчетчика призвано защитить потребителей и
поставщиков
тепловой энергии от возможных спорных ситуаций.
С метрологической и юридической точки зрения теплосчетчик с датчиками давления имеет явные преимущества.
Какой вариант лучше для потребителя?
Что скорее возникнет у потребителя — сомнения в достоверности методов расчетов или недовольство обязательной
покупкой дополнительного оборудования в виде датчиков давления, без которых, вроде как, вполне можно обойтись?
Окупит ли экономия на точности измерений стоимость дополнительно установленных датчиков давления?
Теоретический ответ вряд ли удовлетворит.
Чтобы дать ответ, основанный на практике, потребовалось бы оснастить узлы учета несколькими теплосчетчиками:
- отечественными с датчиками давления
- отечественными без дополнительных датчиков, в которых давления задаются константами
- европейскими приборами, которые не используют в расчетах значения давлений.
и сравнить результаты их измерений в долговременной перспективе.
Проведение подобных экспериментов маловероятно из-за их высокой стоимости и сомнительной целесообразности,
т.к. на сегодняшний день оборудование всех узлов теплоучета датчиками давления — ОБЯЗАТЕЛЬНО в соответствии
с постановлением Правительства РФ № 1034 от 18.11.2013г. Исключение — узлы учета в системах теплопотребления с
тепловой нагрузкой до 0.1Гкал/час.
СИСТЕМ ТЕПЛОСНАБЖЕНИЯ — Студопедия
Пьезометр стоится на основании данных гидравлического расчета о потерях давления на участках тепловой сети, он дает наглядную картину давлений в тепловой сети и в абонентских установках (рис. 6.1). На графике в определенном масштабе наносится рельеф местности, высоты присоединяемых местных систем (зданий), величины напоров (давлений). При этом условно принимают, что отметки прокладки труб тепловой сети, насосов и нагревательных приборов на первом этаже зданий совпадают с отметкой поверхности земли. Линия условного нулевого уровня (ЛНУ) может быть проведена на любой высоте, однако практически более удобно за нуль принять отметку самой низкой точки системы теплоснабжения.
Различают полные, располагаемые и пьезометрические напоры. Полные напоры отсчитываются от общей ЛНУ. Они не отражают действительного давления в трубопроводах, т.к. не учитывают зависимость давлений от геодезических отметок системы. Но с их помощью удобно производить построение графика и определить (по графику) пьезометрические и располагаемые напоры.
Пьезометрические напоры отсчитываются от оси трубопровода в данной точке. Они учитывают геодезические отметки точек системы (равны разности полного напора и геодезической отметки) и поэтому отражают действительные давления в системе.
Располагаемым напором называется разность между напорами в подаче и обратке в данной точке системы. Он может быть определен по разности как полных, так и пьезометрических напоров.
Режим, при наличии циркуляции воды в системе, называется динамическим, а при отсутствии циркуляции (при выключенных сетевых насосах) – статическим.
При статическом режиме давления в подаче и обратке одинаковы и на пьезометре этот режим выражается горизонтальной линией.
Естественное статическое давление устанавливается по давлению в наивысшей точке системы теплоснабжения. При температуре воды менее 100 оС линия статического давления будет проходить на отметке наивысшего уровня воды в системе.
Искусственное статическое давление, обеспечиваемое специальными подпиточными насосами (у источника) может поддерживаться на любом заданном уровне.
Рис. 6.1. Пьезометрический график участка тепловой сети: ОК – распо-
лагаемый напор в точке А; МК – полный напор в подаче в
точке А; МО – полный напор в обратке в точке А; NК – пьезо-
метрический напор в подаче в точке А; NО – пьезометричес-
кий напор в обратке в точке А
Постоянное статическое давление поддерживается подпиточными насосами. Конфигурация пьезометра не зависит от рельефа местности. Пьезометрические линии всегда имеют уклон по ходу воды, причем величина уклона зависит от Rл, а следовательно и от расхода.
Для нормальной и надежной работы системы теплоснабжения давления в ней должны поддерживаться в определенных пределах.
Рис. 6.2.
Ни одна крупная система теплоснабжения не может быть правильно запроектирована и в дальнейшем нормально эксплуатироваться без рассмотрения режимов давления во всех ее звеньях – в источнике, тепловой сети и абонентских установках.
Чрезмерно высокие давления приведут к аварийным повреждениям оборудования. В то же время пониженные давления могут вызвать подсос воздуха в систему, «оголение» верхних точек системы от воды, нарушение циркуляции. При воде с температурой выше 100 оС из-за недостаточного давления возможно вскипание воды, сопровождаемое гидравлическими ударами.
Режим давлений в системе теплоснабжения должен удовлетворять следующим требованиям:
1. Во всех точках системы должно поддерживать избыточное давление (выше атмосферного) для защиты системы от подсоса воздуха. В качестве минимального значения принимают 5 м.в.ст.
Для соблюдения указанного требования пьезометр обратки должен проходить выше отметки прокладки трубопровода тепловой сети и местных систем. Пьезометр на абонентских вводах по обратке должен быть выше местных систем отопления, т.е:
(рис. 6.3).
Рис. 6.3.
Это условие должно проверяться при режиме с наименьшими давлениями в обратке тепловой сети.
В открытых системах теплоснабжения такой режим будет при максимальном водоразборе из обратки.
Кроме того, для открытых систем теплоснабжения должен обеспечиваться требуемый напор в точке водоразбора. В системе горячего водоснабжения напор тепловой сети должен преодолеть геометрическую высоту системы горячего водоснабжения и потери давления в трубах плюс должен оставаться свободный напор на излив воды из крана.
Система горячего водоснабжения:
2. Давление на всасе сетевых насосов должно быть не ниже 5 -10 м.в.ст (рис 6.4).
Рис. 6.4.
3. Давления не должны превышать допустимые по прочности оборудования: Нmax < Ндоп. Ндоп зависит от типа применяемых труб, арматуры и оборудования. Для систем отопления с чугунными радиаторами – 60 м.в.ст.; со стальными радиаторами – 100 м.в.ст.; с конвекторами – 160 м.в.ст., подогреватели горячей воды (местные) – 100 м.в.ст.; (сетевые) – 140 м.в.ст.; водогрейные котлы – 250 м.в.ст.; трубопроводы тепловой сети – 160 м.в.ст.
В ряде случаев на ТЭЦ пьезометр располагается выше допустимого давления для сетевых подогревателей. В этом случае на ТЭЦ предусматривают 2 группы последовательно включенных насосов (рис. 6.5).
Рис. 6.5.
Насос СН1 создает в системе напор, необходимый для компенсации гидравлических потерь в подогревателе сетевой воды. Насос СН2 создает напор, необходимый для компенсации гидравлических потерь в водогрейном котле, тепловой сети и абонентских установках.
Самым уязвимым звеном во всей системе теплоснабжения по допустимому давлению являются местные установки системы отопления. Давление в подаче дросселируется на вводе шайбой или элеватором. Поэтому давления в системе отопления определяются величиной давления в обратке: (рис. 6.6).
4. Давления должны обеспечивать невскипание воды. При температуре воды более 100 оС должно обеспечиваться невскипание воды в тепловой сети и абонентских установках, работающих на перегретой воде. Для этого давления должны быть больше давления насыщенных водяных паров при данной температуре воды:
; .
Рис. 6.6.
При Т = 150 оС Рн > 5 ата; при Т = 130 оС Рн > 2,8 ата; при Т = 105 оС Рн > 1,25 ата. В тепловой сети Т > 100 оС характерно только для подачи: Нп > Нн.
В трубах поверхности нагрева водогрейных котлов температура воды может быть выше температуры воды, выходящей из котла. Поэтому для предупреждения локального вскипания воды в котлах требуемое давление в них выше, чем для тепловых сетей. Необходимое минимальное давление в котлах определяют по температуре насыщения, превышающую расчетную температуру на 30 оС: Тнас = Т1р + 30 оС. Давление на входе в котел должно быть больше давления на выходе на величину гидравлических потерь.
5. Располагаемые напоры на абонентских вводах должны быть не менее расчетных потерь давления в местных системах (рис.6.7): ; для элеваторного присоединения системы отопления: .
При последовательном включении бойлеров горячей воды должно дополнительно учитываться их сопротивление, которое обычно принимают 6 – 8 м.в.ст.
6. Статическое давление в системе выбирается из условия заполнения всей системы на 5 м.в.ст.
Рис. 6.7. Рис. 6.8.
Пьезометрический график | Пьезометрический график теплосети
Здравствуйте! Для того, чтобы построить пьезометрический график, или как я его называю, график давлений, необходимо:
1. Схема тепловой сети, с разветвлениями по участкам. На схеме должны быть указаны диаметры трубопроводов, их протяженность, номера участков и др.данные.
2. Профиль магистрали (условно принимают отметку земли).
3. Гидравлический расчет тепловой сети. Это вообще ключевой момент. Про гидравлический расчет теплосети я писал в этой статье.
4. Высота зданий по теплотрассе.
5. Напор концевого абонента тепловой сети.
В последнем, пятом пункте напор у концевого абонента принимается, как правило, равным необходимому располагаемому напору перед элеватором (для графика 150/70 °C – не менее 15 м.в.ст., для графика 130/70 °C — не менее 12 м.в.ст.). Необходимый напор умножается на коэффициент 1,5. Если есть вероятность и перспектива дальнейшего строительства зданий, то необходимый напор принимают не менее 20 м.в.ст.
Если все вышеприведенные исходные данные у вас есть, то можно начинать составление пьезометрическиго графика. Пьезометрический график (рис.1) состоит из следующих элементов:
1. Линия давлений в подаче
2. Линия давлений в обратке
3. Линия статического давления
Вот здесь то и пригодятся результаты гидравлического расчета тепловой сети, так как уклоны в линии подачи, и в линии обратки характеризуют падение давления в теплосети. И чем больше цифровые значения падения давления, тем круче линия графика давления (пьезометрического графика).
Линия, замыкающая подачу и обратку у концевого потребителя, отображает необходимый потребный напор, и принимается из исходных данных.
Линия, замыкающая линию подачи и обратки в начале тепловой сети (от теплоисточника) означает суммарное падение давления подачи и обратки и концевого ввода (напор у вывода из теплоисточника).
Линия давлений обратки пьезометрического графика должна быть достаточно высокой, это говорит о наполнении местных систем теплоснабжения зданий. Также она не должна пересекать здания на графике. Это — условие бесперебойности теплоснабжения. Но одновременно минимальная линия давлений пьезометрического графика в обратке должна быть такой, чтобы не повредились чугунные радиаторы отопления. Об этом чуть ниже по тексту.
Выполнение всех этих условий очень зависит от рельефа и от высоты зданий по теплотрассе. Ввиду этого начальную точку линии давлений зачастую приходится искать методом подбора.
Если профиль местности достаточно спокойный, то построение пьезометрического графика начинают с нейтральной точки. Нейтральную точку у всасывающего патрубка сетевого насоса принимаем так, чтобы обратка магистрали теплосети располагалась на 3-5 м.в.ст. выше, чем наиболее высоко расположенное здание.
Какими же требованиями к режимам давлений в тепловой сети следует руководствоваться при построении пьезометрического графика? Рассмотрим два режима давлений в тепловой сети. А именно, динамический — режим, когда работают сетевые насосы. И статический режим — когда сетевые насосы выключены. При динамическом режиме необходимо выполнение следующих требований.
Для обратного трубопровода:
1. Давление в обратке должно быть выше статического давления в местных системах отопления, а значит линия обратки должна располагаться на графике выше любого из зданий, и с запасом на 3 — 5 м.в.ст.
2. Максимальное давление должно быть не выше 60 м.в.ст. Это необходимо для того, чтобы не разрушались чугунные ралиаторы отопления.
3. Минимальное давление должно быть не меньше 5 м.в.ст. Это необходимо для того, чтобы не происходил подсос воздуха в трубопровод теплоснабжения, и не происходил разрыв циркуляции во внутренних системах теплоснабжения и коррозия.
Для подающего трубопровода:
Минимальное давление принимаем из условия невскипания теплоносителя в теплосети:
при t1 = 130 °С — 18 м.в.ст.
при t1 = 140 °С — 27 м.в.ст.
при t1 = 150 °С — 39 в.ст.
Рассмотрим теперь статистический режим. Это режим для линии статического давления. Как известно, статическое давление создается при помощи подпиточного насоса. Это давление обеспечивает заполнение внутренних систем отопления даже при остановке сетевых насосов. Следовательно, в межотопительный период в тепловой сети и местных внутренних системах отопления должно быть давление выше статического, для того, чтобы не было попадания воздуха и коррозии трубопроводов.
Значит, минимальное давление должно быть не меньше высоты самого высокого здания. Плюс запас по давлению 3 — 5 м.в.ст. Максимальное же давление принимаем 60 м.в.ст. Если давление будет больше, то есть вероятность разрушения радиаторов отопления. Особенно это касается чугунных радиаторов.
Пропускная способность трубопроводов водяных тепловых сетей. Трубы Ду25-Ду1400. Тонн/час, м3, Гкал/час при температурных графиках 150-70, 130-70, 95-70 °C |
Условный диаметр трубопровода | Пропускная спрособность в т/час ≈ м/час при удельной потере давления на трение Δh в (кгс/м2)/м 1ксг/м2=10Па=1мм.в.ст. | Условный диаметр трубопровода | Пропускная способность в Гкал/час при температурных графиках в °C, 1 Гкал/час=1,17 МВт | ||||||||||||||
150-70°C | 130-70°C | 95-70°C | |||||||||||||||
5 | 10 | 15 | 20 | 5 | 10 | 15 | 20 | 5 | 10 | 15 | 20 | 5 | 10 | 15 | 20 | ||
25 | 0,45 | 0,68 | 0,82 | 0,95 | 25 | 0,04 | 0,05 | 0,07 | 0,08 | 0,03 | 0,04 | 0,05 | 0,06 | 0,011 | 0,017 | 0,02 | 0,024 |
32 | 0,82 | 1,16 | 1,42 | 1,54 | 32 | 0,07 | 0,09 | 0,11 | 0,12 | 0,05 | 0,07 | 0,08 | 0,09 | 0,02 | 0,029 | 0,025 | 0,028 |
40 | 1,38 | 1,94 | 2,4 | 2,75 | 40 | 0,11 | 0,15 | 0,19 | 0,22 | 0,08 | 0,12 | 0,14 | 0,16 | 0,035 | 0,05 | 0,06 | 0,07 |
50 | 2,45 | 3,5 | 4,3 | 4,95 | 50 | 0,2 | 0,28 | 0,34 | 0,4 | 0,15 | 0,21 | 0,26 | 0,3 | 0,06 | 0,09 | 0,11 | 0,12 |
65 | 5,8 | 8,4 | 10,2 | 11,7 | 65 | 0,47 | 0,67 | 0,82 | 0,94 | 0,35 | 0,51 | 0,61 | 0,7 | 0,15 | 0,21 | 0,25 | 0,29 |
80 | 9,4 | 13,2 | 16,2 | 18,6 | 80 | 0,75 | 1,05 | 1,3 | 1,5 | 0,56 | 0,79 | 0,97 | 1,1 | 0,23 | 0,33 | 0,4 | 0,47 |
100 | 15,6 | 22 | 27,5 | 31,5 | 100 | 1,25 | 1,75 | 2,2 | 2,5 | 0,93 | 1,32 | 1,65 | 1,9 | 0,39 | 0,55 | 0,68 | 0,79 |
125 | 28 | 40 | 49 | 56 | 125 | 2,2 | 3,2 | 3,9 | 4,5 | 1,7 | 2,4 | 2,9 | 3,4 | 0,7 | 1 | 1,23 | 1,4 |
150 | 46 | 64 | 79 | 93 | 150 | 3,7 | 5,1 | 6,3 | 7,5 | 2,8 | 3,8 | 4,7 | 5,6 | 1,15 | 1,6 | 1,9 | 2,3 |
175 | 79 | 112 | 138 | 157 | 175 | 6,3 | 9 | 11 | 12,5 | 4,7 | 6,7 | 8,3 | 9,4 | 1,9 | 2,8 | 3,4 | 3,9 |
200 | 107 | 152 | 186 | 215 | 200 | 8,6 | 12 | 15 | 17 | 6,4 | 9,1 | 11 | 13 | 2,7 | 3,8 | 4,7 | 5,4 |
250 | 180 | 275 | 330 | 380 | 250 | 14 | 22 | 26 | 30 | 11 | 16 | 20 | 23 | 4,6 | 6,7 | 8,3 | 9,6 |
300 | 310 | 430 | 530 | 600 | 300 | 25 | 34 | 42 | 48 | 19 | 26 | 32 | 36 | 8 | 11 | 13 | 15 |
350 | 455 | 640 | 790 | 910 | 350 | 36 | 51 | 63 | 73 | 27 | 40 | 47 | 55 | 11 | 16 | 19 | 23 |
400 | 660 | 930 | 1150 | 1320 | 400 | 53 | 75 | 92 | 106 | 40 | 56 | 69 | 79 | 17 | 23 | 29 | 33 |
450 | 900 | 1280 | 1560 | 1830 | 450 | 72 | 103 | 125 | 147 | 54 | 77 | 93 | 110 | 23 | 32 | 39 | 46 |
500 | 1200 | 1690 | 2050 | 2400 | 500 | 96 | 135 | 164 | 192 | 72 | 102 | 123 | 114 | 30 | 42 | 51 | 60 |
600 | 1880 | 2650 | 3250 | 3800 | 600 | 150 | 212 | 260 | 304 | 113 | 159 | 195 | 228 | 47 | 66 | 81 | 95 |
700 | 2700 | 3800 | 4600 | 5400 | 700 | 216 | 304 | 368 | 432 | 162 | 228 | 276 | 324 | 68 | 95 | 115 | 135 |
800 | 3800 | 5400 | 6500 | 7700 | 800 | 304 | 443 | 520 | 615 | 228 | 324 | 390 | 460 | 95 | 135 | 162 | 191 |
900 | 5150 | 7300 | 8800 | 10300 | 900 | 415 | 585 | 705 | 825 | 310 | 437 | 527 | 617 | 129 | 182 | 219 | 257 |
1000 | 6750 | 9500 | 11600 | 13500 | 1000 | 540 | 760 | 930 | 1080 | 405 | 570 | 658 | 810 | 169 | 237 | 274 | 337 |
1200 | 10700 | 15000 | 18600 | 21500 | 1200 | 855 | 1200 | 1490 | 1750 | 640 | 900 | 1100 | 1290 | 265 | 375 | 458 | 537 |
1400 | 16000 | 23000 | 28000 | 32000 | 1400 | 1280 | 1840 | 2240 | 2560 | 960 | 1380 | 1680 | 1920 | 400 | 575 | 700 | 800 |
3 вида давления и единиц со всего мира
Несколько простых для запоминания формул давления
Последнее обновление 22 февраля 2020 г.
Что такое давление?
По определению, давление описывается как величина силы, приложенной перпендикулярно к поверхности на единицу площади.
Его можно рассчитать по следующей формуле:
P =
F
А
где: | P | = | Давление |
Ф | = | Результирующая сила | |
А | = | Поверхность, на которую действует сила |
Атмосферное давление на поверхности жидкости
Как физически создается давление?
Один из способов взглянуть на давление — это увидеть его как результат веса всех уложенных друг на друга молекул на поверхности.Этот подход лучше всего подходит для твердых и жидких тел.
Сплошной блок своим весом создает давление на поверхность.
На рисунке выше показана поверхность с твердым блоком наверху.
Каждая молекула этого блока имеет вес, потому что на нее действует гравитация. Поскольку вес — это сила, направленная вниз, каждая молекула будет оказывать небольшое усилие на поверхность.
Результирующая сила всех этих малых сил создает давление.
При использовании этого подхода для газов можно утверждать, что молекулы газа не складываются, поскольку они свободно плавают.Итак, как они могут воздействовать на эту поверхность?
Чтобы разобраться с этим аргументом, мы должны взглянуть на давление с другой точки зрения.
Молекулы создают давление на поверхность при каждом ударе
Молекулы газа находятся в постоянном движении. Когда они двигаются, у них есть импульс и кинетическая энергия. Часто они будут сталкиваться друг с другом и с поверхностью объекта.
При каждом столкновении с поверхностью молекулы передают импульс этой поверхности.Это создает силу, перпендикулярную этой поверхности.
Сумма сил всех этих сталкивающихся молекул создает давление.
Какие бывают типы давления?
Существует три различных типа давления:
- абсолютное давление
- манометрическое давление
- перепад давления
Разница между этими тремя точками — это исходная точка, выбранная в качестве нулевой точки на шкале.Для абсолютного давления идеальный вакуум был
выбирается в качестве контрольной точки, а для манометрического давления контрольной точкой является атмосферное давление. Для перепада давления там
не является фиксированной точкой отсчета, потому что сравниваются два разных давления.
На следующем рисунке показаны различные типы давления. Начальная точка каждой стрелки совпадает с
выбранный ориентир. Обратите внимание, что абсолютное давление и дифференциальное давление всегда положительны, в то время как относительное (манометрическое) давление также может быть незначительным.
отрицательный.В последнем случае мы также называем это частичным вакуумом. Теоретически максимальный частичный вакуум составляет -1 013 бар, что соответствует идеальному вакууму.
Измерение давления — это, в принципе, всегда сравнение давлений между двумя разными
места.
Для абсолютного давления сравнение проводится между точками с определенным давлением.
и другое место в абсолютном вакууме.
Аналогично для относительного (манометрического) давления, когда сравнение будет проводиться с местом при нормальном давлении.
атмосферное давление (1013 мбар на уровне моря).
При измерении перепада давления сравниваются давления между двумя случайными точками.
Приборы для измерения давления специально разработаны для измерения этих трех различных типов
давление и, следовательно, могут быть соответственно классифицированы.
Абсолютное давление
Измерение чего-либо осуществляется путем сравнения с хорошо известной точкой отсчета. Для абсолютного давления
ориентиром является идеальный вакуум. Эта точка была выбрана, потому что это самый низкий из возможных
давление.В частности, никакого давления нет.
Идеальный вакуум означает, что все частицы удалены из замкнутого объема. В этом томе
который тогда полностью опустеет, давление не может быть.
Как уже было сказано, абсолютное давление всегда положительное число. Отрицательные числа невозможны, потому что
ниже идеального вакуума нет давления.
Манометрическое давление (относительное давление)
Вместо того, чтобы сравнивать измеренное давление с идеальным вакуумом, мы теперь сравним его с
стандартное атмосферное давление на уровне моря.Последний
составляет 1013,25 мбар (14,696 фунтов на кв. дюйм).
Разница между абсолютным и избыточным давлением, измеренная одновременно в одном и том же месте,
всегда составляет около 1 бара (14,50 фунтов на кв. дюйм).
Манометрическое давление, иногда также называемое относительным давлением , может принимать как положительные, так и отрицательные значения. Для положительных значений это
называется избыточное давление . Тогда измеренное давление выше стандартного атмосферного.
давление и равно абсолютному давлению минус атмосферное давление.
P o = P абс — P атм
Если измеренное манометрическое давление отрицательное, оно называется разрежение или частичное
вакуум . Таким образом, измеренное давление ниже стандартного атмосферного давления и составляет
находится путем вычитания абсолютного давления из атмосферного.
P u = P атм — P абс
Отметив, что это частичный вакуум, нам не нужно использовать знак минус.Если пылесос
работает при абсолютном давлении 0,8 бар, можно также сказать, что он работает при разрежении 0,2 бар.
Дифференциальное давление
Иногда необходимо измерить разницу давлений между двумя разными точками.
Когда одна или другая точка является точкой отсчета, например идеальный вакуум или эталон
атмосферное давление, оно называется перепадом давления.
Теоретически можно утверждать, что абсолютное и манометрическое давление равны дифференциальному давлению.
так как мы также измеряем разницу давления между двумя точками.Однако перепад давления составляет всего лишь
что-то сказать о разнице давления между двумя точками. Он не дает информации о
уровень давления в каждой из этих двух точек.
Например, перепад давления в 3 бара между точками A и B ничего не говорит о величине
давления в точках A и B, и ничего не говорится о том, какая точка находится под самым высоким давлением.
Есть ли другие виды давления?
Все типы давления, которые мы обсуждали до сих пор, основаны на выборе между двумя стандартными
контрольные точки или сравнение двух давлений.
Однако существуют определенные виды давления, которым дано определенное название, чтобы обозначить значение
давления. Вот некоторые примеры стандартных давлений:
- Давление вакуума
- Атмосферное давление
- Гидростатическое давление
- Динамическое давление
Это не имеет ничего общего с их отношением к определенному типу давления, поскольку все они могут быть
выражается как один из трех типов давления.
Итак, других типов нет.Есть только другие давления с конкретным названием.
Ниже приводится описание этих общих удельных давлений.
Давление вакуума
Строго говоря, вакуум — это пространство, в котором абсолютное давление равно нулю. Этого можно добиться только
если все частицы удалены из этого пространства. Другими словами, пространство действительно пустое. Идеальный пылесос
возможно только теоретически. Технически невозможно удалить все частицы в замкнутом объеме.
Вакуум не обязательно должен быть идеальным, чтобы его можно было назвать вакуумом. На практике вакуум будет только частично
достигнуто. Поэтому его также называют частичным вакуумом. В общем, мы говорим о вакууме, когда
давление ниже атмосферного.
Высокий вакуум означает, что абсолютное давление очень низкое.
Для создания вакуума используется вакуумный насос. С помощью этого насоса частицы, находящиеся внутри
закрытый объем будет высосан в максимально возможной степени.Производительность вакуумного насоса определяет уровень
вакуума.
Примером вакуумного насоса, который довольно часто используется в промышленности, является вакуумный насос с жидкостным кольцом.
Эксцентрик вращается в корпусе насоса, не производя
контакт с этим кожухом. Вода впрыскивается в корпус насоса, но недостаточна для полного заполнения
насос. За счет центробежного ускорения вода образует жидкое кольцо у внутренней стенки насоса.
кожух. Если впрыскивается достаточное количество воды, жидкое кольцо будет обеспечивать хорошее уплотнение между крыльчаткой.
и корпус насоса.Поскольку рабочее колесо расположено эксцентрично, ячейки разных размеров
возникают между лопатками. Эти ячейки образуют камеры сжатия. Где клетки самые большие,
частицы газа всасываются, и там, где ячейки самые маленькие, они вытесняются
вне. С этим типом насоса может быть достигнуто максимальное абсолютное значение 33 мбар (0,4786 фунт / кв. Дюйм абс.).
Вакуумный насос
Атмосферное давление
Атмосферное давление, которое иногда называют барометрическим давлением, возникает из-за
вес всех молекул в атмосфере.Накопление молекул в воздухе гарантирует, что
самое высокое давление возникает в нижней части атмосферы.
Однако атмосферное давление — это не постоянная, а переменная величина. Условия в
Атмосфера нашей Земли постоянно меняется. Под воздействием солнца воздух нагревается,
ночью снова остывает. Влажность зависит от погоды. Плотность воздуха
изменения зонами высокого или низкого давления. Все эти влияющие факторы гарантируют, что
атмосферное давление никогда не остается неизменным в одном месте.
Для измерения манометрического давления это приводит к проблеме, поскольку
измеренное давление сравнивается с атмосферным давлением.
Для получения однозначного измерения манометрического давления стандартное атмосферное давление
был введен. В качестве ориентира было выбрано среднее атмосферное давление на уровне моря,
который соответствует следующим условиям:
Выражается в единицах СИ |
---|
P атм = 1013,25 мбара |
t = 15 ° C |
ρ = 1,226 кг / м³ |
r = 287,1 Дж / (кг · К) |
Выражается в общепринятых единицах |
---|
P атм = 14 696 фунтов на кв. Дюйм |
t = 59 ° F |
ρ = 0,002377 снарядов / фут³ |
r = 1716,49 фут-фунт / снаряд ° R |
P атм : абсолютное давление |
t : температура |
ρ : плотность |
r : удельная газовая постоянная |
Гидростатическое давление
Термин «гидростатическое давление» в основном используется в жидкостях.Это давление при данном
Глубина в жидкости вызвана весом столба жидкости над ней.
Гидростатическое давление будет зависеть от плотности жидкости, гравитационной постоянной и
высота столба жидкости.
Гидростатическое давление является типом манометрического давления и может быть рассчитано по следующей формуле:
P Hydro = ρgh
Если также принять во внимание атмосферное давление над поверхностью жидкости, находим
общее давление :
P tot = P атм + ρgh
Поскольку атмосферное давление теперь учитывается в уравнении, мы имеем в виду идеальный вакуум и
таким образом, полное давление становится абсолютным давлением.
Динамическое давление
Динамическое давление — один из членов уравнения Бернулли. Для несжимаемых жидкостей это уравнение говорит, что для устойчивых
Для потока вдоль линии тока сумма энергии давления, кинетической энергии и потенциальной энергии остается постоянной.
Динамическое давление — это часть уравнения, которая представляет кинетическую энергию.
Это давление, которое создается кинетической энергией молекул жидкости при протекании, например, по трубе.
Динамическое давление можно выразить следующей формулой:
q =
1
2
ρv 2
где: | q | = | Динамическое давление |
ρ | = | Массовая плотность жидкости | |
в | = | Скорость потока |
Установки давления на нескольких континентах
Во всем мире давление выражается в разных единицах измерения.
В, мы
используют систему СИ в качестве юридического стандарта. Все физические количества продуктов должны быть в
соответствует европейской директиве 80/181 / EEC (метрическая директива ЕС) и выражается в соответствии с
эта система. Таким образом, давление выражается в Па (Паскаль) или бар , где
1 бар = 10 5 Па. Старые устройства, такие как mH 2 O (метр водяного столба) или
mmHg (миллиметры ртутного столба) нельзя использовать в Европейском Союзе с 31 декабря 1977 года.
В Соединенном Королевстве до сих пор часто используется фунтов на квадратный дюйм ( psi),
14,5 фунтов на квадратный дюйм ≈ 1 бар, но теперь все больше и больше переключается на бар
блок давления. В той степени, в которой теперь он в основном заменяет фунты на квадратный дюйм в качестве первичной единицы давления.
В Соединенных Штатах фунты на квадратный дюйм по-прежнему являются основной единицей измерения давления. Почти все
манометры показывают давление в фунтах на квадратный дюйм.
В Азии, особенно единицы МПа, (мегапаскаль) и кг / см², (килограммы на квадратный сантиметр)
используются.
В таблице ниже вы найдете несколько других единиц и их коэффициенты пересчета в кПа и
бар.
Шт. | кПа | бар |
---|---|---|
1 кПа | 1 | 0,01 |
1 МПа | 1000 | 10 |
1 бар | 100 | 1 |
1 мбар | 0,1 | 0,001 |
1 атм | 101,32500 | 1,01325 |
1 мГн 2 O | 9,80665 | 0,0980665 |
1 мм рт. Ст. | 0,133322368 | 0,00133322368 |
1 фунт / кв. Дюйм | 6,89475729 | 0,0689475729 |
1 дюйм H 2 O | 0,249082 | 0,00249082 |
1 кг / см² | 98,0665 | 0,980665 |
Как единица давления соотносится с типом давления
Выражение давления в основных единицах измерения, таких как Па, бар на кв. Дюйм, не имеет особого смысла, если вы этого не сделаете.
знать, к какому типу давления относится.
Иногда можно угадать тип давления, исходя из контекста, но обычно сомнения остаются. Если вы догадались
неправильно могут возникнуть серьезные ошибки.
Таким образом, всегда рекомендуется указывать тип давления после единицы измерения, что означает, что слова «абсолютное»,
«Манометр» или «дифференциал» следует писать после единицы давления. Тогда давление может быть выражено, например, как
бар ман. или фунт / кв. Дюйм абс. .
Часто вы встретите единицы давления, за которыми следует суффикс, например, «g», «a» или «d» (или написанные заглавными буквами), как в
бар изб. , фунт / кв. Дюйм или кПаД , где «g» означает манометр, «a» — абсолютный, а «d»
для дифференциала.Суффикс также иногда указывается в скобках, например бар (изб.) .
Хотя эти суффиксы все еще широко используются, они устарели и больше не поддерживаются международными стандартами.
Связанные темы
.
Тепло, работа и энергия
Тепло (энергия)
Единица измерения тепла (или энергии) в системе СИ составляет джоуль (Дж) .
С разницей температур
Другими единицами измерения тепла являются британская тепловая единица — Btu (количество тепла, необходимое для подъема 1 фунта воды на 1 o F ) и Калорийность (количество тепла, чтобы поднять 1 грамм воды на 1 o C ( или 1 K )).
калорий определяется как количество тепла, необходимое для изменения температуры одного грамма жидкой воды на один градус Цельсия (или один градус Кельвина).
1 кал = 4,184 Дж
1 Дж = 1 Вт · с
= (1 Вт · с) (1/3600 ч / с)
= 2,78 10 -4 кВт · ч
Тепловой поток (мощность)
Теплопередача только в результате разницы температур называется тепловым потоком . Единицы СИ для теплового потока: Дж / с или ватт (Вт) — то же, что и мощность. Один ватт определяется как 1 Дж / с .
Удельная энтальпия
Удельная энтальпия — это мера полной энергии в единице массы. Обычно используются единицы СИ: Дж / кг или кДж / кг .
Термин относится к общей энергии, обусловленной давлением и температурой текучей среды (например, воды или пара) в любой момент времени и при любых условиях.Точнее говоря, энтальпия — это сумма внутренней энергии и работы, совершаемой под действием приложенного давления.
Тепловая мощность
Тепловая мощность системы составляет
- количество тепла, необходимое для изменения температуры всей системы на один градус .
Удельная теплоемкость
Удельная теплоемкость (= удельная теплоемкость) — это количество тепла, необходимое для изменения температуры на одну единица массы вещества на на один градус .
Удельная теплоемкость может быть измерена в Дж / г K, Дж / кг K , кДж / кг K, кал / гK или БТЕ / фунт o F и более .
Никогда не используйте табличные значения теплоемкости, не проверив единицы фактических значений!
Удельную теплоемкость для обычных продуктов и материалов можно найти в разделе «Свойства материала».
Удельная теплоемкость — постоянное давление
Энтальпия — или внутренняя энергия — вещества зависит от его температуры и давления.
Изменение внутренней энергии относительно изменения температуры при фиксированном давлении — это удельная теплоемкость при постоянном давлении — c p .
Удельная теплоемкость — постоянный объем
Изменение внутренней энергии относительно изменения температуры при фиксированном объеме — это удельная теплоемкость при постоянном объеме — c v .
Если давление не очень высокое, работой, выполняемой приложением давления к твердым телам и жидкостям, можно пренебречь, а энтальпия может быть представлена только компонентом внутренней энергии.Можно сказать, что теплота с постоянным объемом и постоянным давлением равна.
Для твердых и жидких веществ
c p = c v (1)
Удельная теплоемкость представляет собой количество энергии, необходимое для подъема 1 кг вещества к 1 o C (или 1 K) , и ее можно рассматривать как способность поглощать тепло. Единицы измерения удельной теплоемкости в системе СИ: Дж / кг · К (кДж / кг, o C) .Вода имеет большую удельную теплоемкость 4,19 кДж / кг o C по сравнению со многими другими жидкостями и материалами.
- Вода — хороший теплоноситель!
Количество тепла, необходимое для повышения температуры
Количество тепла, необходимое для нагрева объекта с одного температурного уровня на другой, можно выразить как:
Q = c p m dT ( 2)
, где
Q = количество тепла (кДж)
c p = удельная теплоемкость (кДж / кг · К)
м = масса (кг )
dT = разница температур между горячей и холодной стороной (K)
Пример воды для отопления
Учитывайте энергию, необходимую для нагрева 1.0 кг воды от 0 o C до 100 o C при удельной теплоемкости воды 4,19 кДж / кг o C :
Q = (4,19 кДж / кг o C ) (1,0 кг) ((100 o C) — (0 o C))
= 419 (кДж)
Работа
Работа и энергия с технической точки зрения — одно и то же, но работа — это результат, когда направленная сила (вектор) перемещает объект в одном направлении.
Объем выполненной механической работы можно определить с помощью уравнения, полученного из ньютоновской механики
Работа = Приложенная сила x Расстояние, перемещенное в направлении силы
или
W = F l (3)
, где
W = работа (Нм, Дж)
F = приложенная сила (Н)
l = длина или пройденное расстояние (м)
Рабочий стол также может быть описано как произведение приложенного давления и вытесненного объема:
Работа = Приложенное давление x Вытесненный объем
или
W = p A l (3b)
, где
p = приложенное давление (Н / м 2 , Па)
A = под давлением площадь (м 2 )
l = длина или расстояние, на которое зона давления перемещается под действием приложенной силы (м)
Пример — Работа, выполняемая силой
Работа, выполняемая силой 100 Н перемещение тела 50 м можно рассчитать как
W = (100 Н) (50 м)
= 5000 (Нм, Дж)
Единица измерения — джоуль, J, который определяется как количество работы, выполненной, когда сила 1 ньютон действует на расстоянии 1 м в направлении силы.
1 Дж = 1 Нм
Пример — Работа под действием силы тяжести
Работа, выполненная при подъеме массы 100 кг на высоте 10 м может быть рассчитана как
W = F г ч
= mgh
= (100 кг) (9,81 м / с 2 ) (10 м)
= 9810 (Нм, Дж)
, где
F г = сила тяжести — или вес (Н)
г = ускорение свободного падения 9.81 (м / с 2 )
h = высота (м)
В британских единицах измерения единичная работа выполняется при весе 1 фунт f (фунт-сила) является поднял вертикально против силы тяжести на расстояние 1 фут . Единица называется фунт-фут .
Поднят объект массой 10 снарядов 10 футов . Проделанную работу можно рассчитать как
W = F г h
= m g h
= (10 пробок) (32.17405 фут / с 2 ) (10 футов)
= 3217 фунтов f футов
Пример — Работа, связанная с изменением скорости
Работа, выполненная при массе 100 кг ускоряется от от скорости 10 м / с до скорости 20 м / с можно рассчитать как
W = (v 2 2 — v 1 2 ) м / 2
= ((20 м / с) 2 — (10 м / с) 2 ) (100 кг) / 2
= 15000 (Нм, Дж)
где
v 2 = конечная скорость (м / с)
v 1 = начальная скорость (м / с)
Energy
Energy — это способность делать работа (перевод с греческого — «работа внутри»).Единицей измерения работы и энергии в системе СИ является джоуль, определяемый как 1 Нм .
Движущиеся объекты могут выполнять работу, потому что обладают кинетической энергией. («кинетический» означает «движение» по-гречески).
Количество кинетической энергии, которой обладает объект, можно рассчитать как
E k = 1/2 мВ 2 (4)
, где
m = масса объекта (кг)
v = скорость (м / с)
Энергия положения уровня (запасенная энергия) называется потенциальной энергией.Это энергия, связанная с силами притяжения и отталкивания между объектами (гравитация).
Полная энергия системы складывается из внутренней, потенциальной и кинетической энергии. Температура вещества напрямую связана с его внутренней энергией. Внутренняя энергия связана с движением, взаимодействием и связыванием молекул внутри вещества. Внешняя энергия вещества связана с его скоростью и местоположением и является суммой его потенциальной и кинетической энергии.
.
Давление
Давление в жидкости определяется как
«нормальная сила на единицу площади, действующая на воображаемую или реальную плоскую поверхность в жидкости или газе»
Уравнение давления может быть выражено как :
p = F / A (1)
где
p = давление (фунт / дюйм 2 (psi), фунт / фут 2 (psf), Н / м 2 , кг / мс 2 (Па))
F = сила (Н) 1)
A = площадь (в 2 , ft 2 , m 2 )
1) В британско-английской инженерной системе особое внимание следует уделять силовой единице.Базовая единица измерения массы — снаряд, а единица измерения силы — фунт ( фунтов ) или фунт силы ( фунтов, фунтов, ).
Абсолютное давление
Абсолютное давление — p abs — измеряется относительно абсолютного нулевого давления — давления, которое будет иметь место при абсолютном вакууме. Все расчеты, связанные с газовым законом, требуют, чтобы давление (и температура) выражались в абсолютных единицах.
Манометрическое давление
Манометр часто используется для измерения разницы давлений между системой и окружающей атмосферой. Это давление часто называется манометрическим давлением и может быть выражено как
p g = p s — p атм (2)
где
p g = манометрическое давление (Па, фунт / кв. Дюйм)
p с = давление в системе (Па, фунт / кв. Дюйм)
p атм = атмосферное давление (Па, фунт / кв. Дюйм)
Атмосферное давление
Атмосферное давление — это давление в окружающем воздухе на поверхности земли или «близко» к ней.Атмосферное давление зависит от температуры и высоты над уровнем моря.
Стандартное атмосферное давление
Стандартное атмосферное давление ( атм, ) обычно используется в качестве справочного материала при перечислении плотностей и объемов газа. Стандартное атмосферное давление определяется на уровне моря при 273 o K (0 o C) и составляет 1,01325 бар или 101325 Па (абсолютное) . Иногда используется температура 293 o K (20 o C) .
В британских единицах стандартное атмосферное давление составляет 14,696 фунтов на квадратный дюйм.
- 1 атм = 1,01325 бар = 101,3 кПа = 1,013 10 5 Па = 14,696 фунтов на кв. Дюйм ( фунт / дюйм / дюйм 2 ) = 760 мм рт. Ст. = 10,33 м вод. Ст. = 1013 мбар = 1,0332 кг f / см 2 = 33,90 футов H 2 O
Единицы давления
Поскольку 1 Па — это малая единица измерения давления, широко используется единица измерения гектопаскаль (гПа), особенно в метеорологии.Единица измерения килопаскаль (кПа) обычно используется при проектировании технических приложений, таких как системы отопления, вентиляции и кондиционирования, трубопроводные системы и т. Д.
- 1 гектопаскаль = 100 Паскаль = 1 миллибар
- 1 килопаскаль = 1000 Паскаль
Некоторые уровни давления
- 10 Па — давление ниже 1 мм водяного столба — приблизительно давление, оказываемое массой 10 г на 1 см 2 площадь
- 10 кПа — давление ниже 1 м водяного столба или падение давления воздуха при движении с уровня моря до 1000 высота м
- 10 МПа — давление сопла в шайбе «высокого давления»
- 10 ГПа — давление, достаточное для образования алмазов
Некоторые альтернативные единицы давления
- 1 бар — 100000 Па
- 1 миллибар — 100 Па
- 1 атмосфера — 101325 Па
- 1 мм рт. Ст. — 133 Па
- 1 дюйм рт. Ст. — 3386 Па
A торр (часто используется в вакуумных приложениях) назван в честь Торричелли и представляет собой давление, создаваемое столбом ртути высотой 1 мм — равно 1/760 th атмосферы.
- 1 атм = 760 торр = 14,696 фунтов на квадратный дюйм
фунтов на квадратный дюйм (фунтов на квадратный дюйм) обычно использовался в Великобритании, но теперь заменен почти во всех странах, кроме США, на единицы СИ. Поскольку атмосферное давление составляет 14,696 фунтов на квадратный дюйм — столб воздуха на площади в один квадратный дюйм от поверхности Земли до космоса — весит 14,696 фунтов .
Штанга (бар) обычно используется в промышленности.Один бар составляет 100000 Па , и для большинства практических целей его можно приблизить к на одну атмосферу , даже если
1 бар = 0,9869 атм
Есть 1000 миллибар (мбар) в бар bar , стандартная единица измерения в метеорологии и погодных приложениях.
1 миллибар = 0,001 бар = 0,750 торр = 100 Па
Связанные мобильные приложения из Engineering ToolBox
— бесплатные приложения для автономного использования на мобильных устройствах.
.
STP — стандартные температура и давление и NTP
Поскольку температура и давление воздуха варьируются от места к месту, для сравнения испытаний и документации химических и физических процессов необходим стандартный справочник.
Примечание! Существует множество альтернативных определений стандартных стандартных условий температуры и давления. Поэтому следует осторожно использовать определения STP, NTP и другие определения. Всегда важно знать эталонную температуру и эталонное давление для фактического используемого определения.
STP — стандартные температура и давление
STP обычно используется для определения стандартных условий температуры и давления, которые важны для измерений и документирования химических и физических процессов:
- STP — Стандартные температура и давление — определяется IUPAC (Международный союз чистой и прикладной химии) в виде воздуха при температуре 0 o C (273,15 K, 32 o F) и 10 5 паскалей (1 бар).
- STP — обычно используется в британской системе единиц и системе единиц США — как воздух при 60 o F (520 o R, 15.6 o C ) и 14,696 фунтов на квадратный дюйм (1 атм, 1,01325 бар абс.)
- также называется «1 стандартная атмосфера»
- В этих условиях объем 1 моля газа составляет 23,6442 литра.
- Эти условия чаще всего используются для определения термина объема Sm 3 (стандартный кубический метр)
Примечание! Предыдущее определение STP IUAPC для 273,15 K и 1 атм (1,01325 10 5 Па) больше не используется.Тем не менее,
- Эти условия по-прежнему наиболее часто используются для определения объема. Нм 3 (нормальный кубический метр)
- В этих условиях объем 1 моля газа составляет 22,4136 литров.
1 Па = 10 -6 Н / мм 2 = 10 -5 бар = 0,1020 кп / м 2 = 1,02×10 -4 м H 2 O = 9,869×10 -6 атм = 1,45×10 -4 фунтов на кв. Дюйм (фунт-сила / дюйм 2 )
NTP — нормальная температура и давление
NTP обычно используется в качестве стандартного условия для тестирования и документирования производительности вентиляторов:
- NTP — Нормальная температура и давление — определяется как воздух при 20 o C (293.15 K, 68 o F) и 1 атм ( 101,325 кН / м 2 , 101,325 кПа, 14,7 фунтов на кв. Дюйм, 0 фунтов на кв. Дюйм, 29,92 дюйма ртутного столба, 407 дюймов H 2 O, 760 торр). Плотность 1,204 кг / м 3 (0,075 фунта на кубический фут)
- В этих условиях объем 1 моля газа составляет 24,0548 литра.
Пример — Повышение давления вентилятора
Вентилятор, который создает статическое давление 3 дюйма H 2 O (хорошее среднее значение) — увеличит абсолютное давление воздуха на
((3 дюйма H 2 O) / (407 дюймов H 2 O)) (100%) = 0.74%
SATP — стандартные температура и давление окружающей среды
SATP — стандартные температура и давление окружающей среды также используется в химии в качестве эталона:
- SATP — стандартные температура и давление окружающей среды является эталоном с температурой 25 oС C (298,15 K) и давление 101,325 кПа.
- В этих условиях объем 1 моля газа составляет 24,4651 литра.
ISA — Международная стандартная атмосфера
ISA — Международная стандартная атмосфера используется в качестве ссылки на летно-технические характеристики воздушного судна:
- ISA — Международная стандартная атмосфера определяется как 101.325 кПа, 15 o C и влажность 0%.
Стандартная атмосфера ИКАО
Стандартная модель атмосферы, принятая Международной организацией гражданской авиации (ИКАО):
- Атмосферное давление: 760 мм рт. Ст. = 14,7 фунт-сила / кв.дюйм
- Температура: 15 o C = 288,15 K = 59 o F
.