Характеристики электрического поля и его основные свойства. Электрическое поле и его характеристика


Электрическое поле и его характеристики

   Электрические заряды не действуют непосредственно друг на друга. Каждое заряженное тело создает в окружающем пространстве электрическое поле. Это поле вызывает силовое воздействие на другие заряженные тела.

 

 

Главное свойство электрического поля - действие на электрические заряды с некоторой силой. Таким образом, взаимодействие заряженных тел осуществляется благодаря электрическому полю, которое окружает заряженные тела.

 

Электрическое поле, которое окружает заряженное тело, можно исследовать с помощью так называемого пробного заряда - небольшого по величине точечного заряда, не вносит заметного перераспределения исследуемых электрических полей.

 

Для количественного определения электрического поля вводят силовую характеристику электрического поля - напряженность электрического поля.

 

Напряженностью электрического поля называют физическую величину, равную отношению силы, с которой поле действует на положительный пробный заряд, помещенный в данную точку пространства, к величине этого заряда:

E = F / q

 

Напряженность электрического поля - векторная физическая величина. Направление вектора E совпадает в каждой точке пространства с направлением силы, действующей на положительный пробный заряд.

 

Электрическое поле неподвижных и не меняющихся со временем зарядов называют электростатическим.

 

Если с помощью пробного заряда исследуют электрическое поле, созданное несколькими заряженными телами, то результирующая сила будет равна геометрической сумме сил, действующих на пробный заряд со стороны каждого заряженного тела в частности. Итак, напряженность электрического поля, которое создано системой зарядов в некоторой точке пространства, равна векторной сумме напряженностей электрических полей, созданных в той же точке каждым зарядом в частности:

 

E = E1 + E2 + E3 + ...

 

Это свойство электрического поля свидетельствует, что для электрического поля подтверждается принцип суперпозиции.

 

По закону Кулона, напряженность электростатического поля, которое создано точечным зарядом Q на расстоянии r от него, равна по модулю:

 

E = kQ/r2

 

Это поле называют кулоновским.

В кулоновском поле направление вектора E зависит от знака заряда Q:

 

если Q> 0, то вектор E направлен вдоль радиуса от заряда,

если Q <0, то вектор E направлен вдоль радиуса в сторону заряда.

 

Электростатическое поле изображают с помощью силовых линий.

 

Эти линии проводят так, чтобы направление вектора в каждой точке совпадало с направлением касательной к силовым линиям (рис. 1). При изображении электрического поля с помощью силовых линий, их плотность должна быть пропорциональной модулю вектора напряженности электрического поля.

 

Силовые линии кулоновских полей положительного и отрицательного точечных зарядов изображены на рис. 2. Так как электростатическое поле, созданное любой системой зарядов, можно представить как суперпозицию кулоновских полей точечных зарядов, изображенных на рис. 2. Поля изображенные на данном рисунке можно рассматривать как элементарные структурные единицы («кирпичики») любого электростатического поля.

 

Как пример применения принципа суперпозиции полей рассмотрим поле электрического диполя. Электрический диполь - это система двух одинаковых по модулю зарядов разного знака q и-q, росташованих на некотором расстоянии l. На рис. 3 изображен картину силовых линий дипольного поля.

 

Важной характеристикой электрического диполя является так называемый дипольный момент р:

р = lq,

где l - вектор, направленный от отрицательного заряда к положительного.

 

Диполь может служить электрической моделью многих молекул.

 

Электрическим дипольным моментом обладает, например, нейтральная молекула воды (h3O), так как центры двух атомов водорода расположены не на одной прямые с центром атома кислорода, а под углом 105 ° (рис. 4). Дипольный момент молекулы воды p = 6,2 • 10-30 Кл • м.

 

Во многих задачах электростатики нужно по заданному разподилом зарядов определить электрическое поле Е. Пусть, например, нужно найти электрическое поле длинной однородно заряженной нити (рис. 5) на расстоянии R от нее.

 

Рис.5 Электрическое пле безграничного равномерно заряженного стержня.

Поле в точке наблюдения P можно представить как суперпозицию кулоновских полей, которые создают малые элементы Δx нити, с зарядом τΔx, где τ - заряд нити на единицу длины. Задача сводится к суммирования (интегрирования) элементарных полей ΔЕ. Результирующее поле равно:

Е = τ/2πε0 ∙ R.

 

Вектор Е везде направлен вдоль радиуса R. Это следует из симметрии задачи. Уже этот простой пример показывает, что прямой путь определения поля с заданным распределением зарядов приводит к громоздким математических расчетов. В некоторых случаях можно значительно упростить расчеты, если воспользоваться теоремой Гаусса, выражающая фундаментальные свойства электрического поля.

worldofscience.ru

24. Электрическое поле и его характеристики

Эл-кое поле-разновидность материи, посредством которой осущ-ся силовое воздействие на эл-кие заряды нах-ся в этом поле. Силовая хар-ка – напряженность (отношение силы, действующей в данной точке поля на точечный заряд к этому заряду) Е=F/q. Эл-кое поле графически удобно представлять силовыми линиями, касательные к которым совпадают с направлением вектора напряженности в соотв-х точках поля. Энергетическая хар-ка – потенциал. Работа сил электростатического поля не зависит от траектории по которой перемещается заряд в этом поле ( такое поле – потенциальное. Работа сил электростатического поля по перемещению заряда по замкнутой траектории равна нулю. Работа сил электростатического поля не зависит от: траектории заряда, нач и конечн. Точек перемещений, напряженности поля. Разность потенциалов – отношение работы, совершаемой силами поля при перемещении точечного положительного заряда из одной точки поля в другую, к этому заряду: U12 = φ1 – φ2=A\q. Потенциалы в виде эквипотенциальных пов-стей. Силв. линии и эквипотенц. Пов-сти взаимно перпендик. Если поле создано N точечными зарядами, то напр-сть в некоторой точке можно вычислить как векторную сумму напр-стей полей , созд-х каждым зарядом в этой точке отдельно(принцип суперпозиции): E=∑Ni=1Ei , а эл-кий потенциал как алгебр. Суммупотенц-в от каждого заряда.

25. Электрич.диполем наз. систему, сост. из 2 равных, но противополож. по знаку то­чечных электрич. зарядов, расп. на некотором расстоянии друг от друга (плечо диполя). Основной харак-теристикой диполя (рис. 12.5) явл. его электрич. момент (дипольный момент) — вектор, рав­ный произ-нию заряда на плечо диполя l, направленный от от­риц. заряда к полож-ному: Единицей электрич. момента диполя явл. кулон-метр.

Поместим диполь в однород. электрич.поле напряженностью (рис. 12.6).

На каждый из зарядов диполя действуют силы и , эти силы равны по модулю, противоположно направлены и создают момент пары сил. Как видно из рисунка, он равен или в векторной форме :

Таким образом, на диполь в однород. электрич. поле дей-ствует момент силы, зависящий от электрич. момента и ориентации диполя, а также напряженности поля. . Диполь в неоднородном электрическом поле. В неод­нор. электрич. поле вращающее действие тоже имеет место, и диполь ориентир-ся вдоль соответ. линии поля. Однако в этом случае значения сил, д-щих на по­люса диполя (силы F+ и F- на рис. 18.3), не одинаковы, и их сумма не равна нулю.=> возн. результирующая сила, втяг-щая диполь в область более сильного поля..

Результирующая сила зависит от изменения напряженности приходящегося на единицу длины диполя. Обозначим Е+ и Е- модули напряженности поля у положит. и отриц. полюсов. Тогда Т.к. плечо диполя мало, то приближенно можно считать, что где dE/dl — градиент поля. Таким образом, на диполь, который ориентирован вдоль си­ловой линии и имеет момент р, дей-ет сила, втягивающая его в область поля с большей напряж-тью:

Электрическое поле диполя: Сам диполь явл. источником электрич. поля, на­пряженность кот. зависит от дипольного момента р, от ди­электрической прониц-сти среды ε и геометрич. пара­метров. Пусть диполь нах. в непроводящей бесконечной среде и некоторая точка А удалена от его центра на расстояние Обозначим через α угол между вектором р и направ­лением на эту точку. Тогда потенциал, создаваемый диполем в точке Л, опр-ся следующей формулой (рис. 18.4):

Рис: потенциал эл.поля,

созд-го диполем

26. Диполь явл. частным случаем с-мы электрич. заря­дов, облад-щей определ. сим-метрией. Можно указать еще примеры симметр. систем зарядов электрич. мульти-поли. Они бывают разных порядков (l = 0,1,2). Число зарядов мультиполя опр. выра-жением 2l. Так, мультиполем нулевого порядка (2° = 1) явл. одиночный точечный заряд (рис.а), м-лем первого порядка (21 = 2) — диполь, мультиполем II п-ка (22 = 4) — квадруполь (рис.б), м-лем III п-ка (23 = 8) — октуполь (рис. в)

studfiles.net

5.4. Электрическое поле и его характеристики

5.4. Электрическое поле и его характеристики

Заряды взаимодействуют не только при соприкосновении наэлектризованных тел, но и тогда, когда эти тела находятся на расстоянии друг от друга. Вид материи, посредством которой осуществляется взаимодействие электрических зарядов на расстоянии, называется электрическим полем.

Электрическое поле всегда существует вокруг электрического заряда и имеет две характеристики: силовую (напряженность электрического поля в данной точке) и энергетическую (потенциал электрического поля в данной точке).

Напряженность Е электрического поля в какой-либо точке измеряется силой F, с которой поле действует на единичный положительный точечный заряд q, помещенный в эту точку:

Е = F/ q.

Напряженность электрического поля – векторная величина. Направление вектора напряженности совпадает с направлением вектора силы F, действующей в данной точке на положительный заряд.

Потенциалом электрического поля в данной точке называется величина, численно равная значению потенциальной энергии единичного положительного точечного заряда, помещенного в этой точке.

Потенциалы точек электрического поля положительно заряженного тела положительны и уменьшаются по мере удаления от тела, а потенциалы точек электрического поля отрицательно заряженного тела отрицательны и увеличиваются при удалении от тела.

Потенциал наэлектризованного проводника становится тем больше, чем больше электричества сообщается ему.

Если электрическое поле создается несколькими зарядами, расположенными в различных точках пространства, то потенциал в каждой точке поля равен алгебраической сумме потенциалов полей всех зарядов в этой точке.

Разность потенциалов (ϕ 1 – ϕ 2) между двумя точками электрического поля получила название напряжения (U). Напряжение численно равно работе А, которую производят электрические силы при перемещении единичного положительного заряда q между двумя точками:

U = ϕ 1 – ϕ 2 = А / q.

В системе СИ за единицу разности потенциалов (единицу напряжения) принимается один вольт (1 В) – разность потенциалов между двумя точками электрического поля, при которой силы поля, перемещая один кулон электричества из одной точки в другую, совершают работу в один джоуль.

Если электрическое поле однородно, т.е. напряженность во всех точках поля постоянна по величине и направлению, то между напряженностью поля и разностью потенциалов существует взаимосвязь:

E = – U/ L, где L – длина силовой линии однородного электрического поля.

В системе СИ напряженность электрического поля измеряется в единицах вольт/метр (В/м). 1 В/м – это напряженность такого однородного электрического поля, у которого разность потенциалов на концах силовой линии длиной в 1 м равна 1 В.

energetika.in.ua

Основные свойства электрического поля и его характеристики: напряженность, потенциал, индукция

Электрическим полем называется материя, обеспечивающая взаимодействие электрических зарядов в нем. Оно может быть порождено как электрическим зарядом, так и изменяющимся магнитным потоком. В первом случае оно называется электростатическим, во втором — вихревым. Без этого поля не может возникнуть электрический ток, но чтобы знать, как он возникает, следует ознакомиться с основными характеристиками электрческого поля.

Природа явления

Глазами электрическое поле увидеть невозможно: его можно обнаружить по его действию на заряженные тела. При этом такое воздействие не требует прямого касания носителей потенциала, но имеет силовую природу. Так, наэлектризованные волосы будут тянуться к другим предметам.

Наблюдение за электрическими полями показывает, что они работают аналогично гравитационным. Описывается это законом Кулона, который в общем виде выглядит так:

F = q₁ q₂ / 4 π ε ε₀ r ²,

где q₁ и q₂ - величины зарядов в кулонах, ε - диэлектрическая проницаемость среды, ε₀ - электрическая постоянная, равная 8,854*10⁻¹² Ф/м, r — расстояние между зарядами в метрах, а F — сила, с которой заряды взаимодействуют, в ньютонах.

Таким образом, чем дальше от центра, тем меньше будет ощущаться воздействие поля.

Отобразить поле графически можно в виде силовых линий. Их расположение будет зависеть от геометрических характеристик носителя. Различают два вида полей:

  1. Однородное, когда силовые линии расположены параллельно друг другу. Идеальный случай — это бесконечные параллельные заряженные пластины.
  2. Неоднородное, частный случай которого — поле вокруг точечного или сферического заряда; его силовые линии расходятся радиально от центра, если он положительный, и к центру, если отрицательный.

Силовые линии электрического поля, индуцированного электрическим зарядом, незамкнуты. Замкнуты они только у вихревого поля, которое формируется вокруг изменяющегося магнитного потока.

Таковы основные свойства электрического поля. Чтобы ознакомиться с его характеристиками, стоит рассмотреть простейший вариант — электростатическое, которое формируется постоянными и неподвижными зарядами. Для удобства они будут точечными, чтобы их контуры не усложняли расчеты. Пробный заряд, который тоже будет фигурировать в дальнейшем, тоже будет точечным и бесконечно малым.

Основные характеристики

Их можно описать при помощи математических закономерностей, а некоторые — выразить графически. Последние характеристики являются векторными, то есть имеющими направление. Это важно, поскольку при решении практических задач часто приходится оперировать не модулем величины, а проекцией вектора на какую-либо выбранную ось.

Основными параметрами поля являются:

  1. напряженность;
  2. потенциал;
  3. индукция.

Напряженность поля

Это силовая характеристика электрического поля. Величина это векторная, и она характеризует силу, с которой поле воздействует на заряд в конкретной точке. Математически это выражается так:

Ē = F̄/q.

Если подставить сюда формулу закона Кулона, то получим:

Ē = q₀ / 4 π ε ε₀ r ².

Таким образом, в каждой точке поля его напряженность разная, и зависит она от заряда, который оно создает, условий среды и величине, обратно пропорциональной квадрату расстояния до точки.

Если поле создано двумя зарядами, то результирующая напряженность рассчитывается графически — при помощи сложения векторов напряженностей от каждого отдельного источника. Этот способ получил название принципа суперпозиции.

Потенциалы и их разность

Электрическое поле способно совершать работу. Если пробный заряд передвигать в поле, то работа, выполненная эл. полем, будет зависеть от начального и конечного расстояние от пробного заряда до центра эл. поля. Сравнить это можно с человеком, который собрался прыгать с крыши. Пока он находится на высоте десятого этажа, его потенциальная энергия будет равна:

W = -GMm / Rr.

Или если учесть соразмерность земли и человека:

W = mgh.

Пока человек не прыгнул, он обладает потенциальной энергией. Когда же он, наконец, упадет, гравитационное поле совершит работу, численно равную вышеуказанной величине. При этом не учитывается горизонтальное перемещение — эту работу совершал сам покойный.

Электрическое поле работает сходным образом. Пробный заряд q₁, помещенный в него, обладает потенциальной энергией:

W = q₁ q₀ / 4 π ε ε₀ r.

При перемещении в другую точку, когда расстояние r будет иным, поле совершит работу, равную:

A = W₁ - W₂ = q₁ q₀ /4 π ε ε₀ r₁ - q₁ q₀ / 4 π ε ε₀ r₂.

Если из обоих слагаемых выделить параметр, который относится непосредственно к полю, а не к пробному заряду, он будет выглядеть так:

φ₁ = q₀ /4 π ε ε₀ r₁; φ₂ = q₀ / 4 π ε ε₀ r₂.

И вот это φ и называется потенциалом поля в точке. Исходя из всех написанных выше формул, можно выразить эту величину так:

φ ₁ = W₁ / q₁; φ₂ = W₂ / q₁.

Таким образом, работа, которую совершит поле, будет выражена следующим образом:

A = W₁ - W₂ = φ₁ q₁ - φ₂ q₁ = q₁ (φ₁ - φ₂).

Выражение в скобках будет называться разностью потенциалов, или напряжением. Она показывает, какую работу совершит поле по перемещению пробного заряда.

A/q = (φ₁ - φ₂).

Единица этой величины, Дж/Кл, получила название Вольт, в честь ученого Алессандро Вольта. От этой единицы отсчитывают размерность и других величин в электростатике и электродинамике. Например, напряженность поля измеряется в В/м.

Электрическая индукция

Эта величина характеризует электрическое поле, что называется, в чистом виде. В реальности мы имеем дело с полем в различных средах, имеющих определенную диэлектрическую проницаемость. Несмотря на то что для большинства веществ это табличная величина, в ряде случаев она непостоянна, а ее зависимость от параметров среды (температура, влажность и т. д. ) нелинейна.

Такое явление характерно для сегнетовой соли, титаната бария, ниобата лития и ряда других.

Электрическая индукция измеряется в Кл/м ², и ее величина выражается формулой:

D = ε ε₀ E.

Это тоже векторная величина, направление которой совпадает с направлением напряженности.

Статическое и вихревое поле

Как упоминалось в начале статьи, электрическое поле может возникать вокруг переменного магнитного поля. Оно даже создает ток, что может быть достигнуто двумя путями:

  • изменением интенсивности магнитного поля, проходящего сквозь контур проводника в нем;
  • изменением положения самого проводника.

При этом проводнику вовсе не обязательно быть замкнутым — ток в нем все равно будет течь.

Для иллюстрации отличий статического и вихревого поля можно составить таблицу.

Параметр Электростатическое Вихревое
форма силовых линий разомкнутые замкнутые
чем создается неподвижным зарядом переменным магнитным потоком
источник напряженности заряд отсутствует
работа по перемещению в замкнутом контуре нулевая создает ЭДС индукции

Нельзя сказать, что первое и второе поле никак между собой не связаны. Это не так. В реальности работает такая закономерность: неподвижный заряд создает электростатическое поле, которое движет заряд в проводнике; движущийся заряд порождает постоянное магнитное поле. Если заряд движется с непостоянной скоростью и направлением, то магнитное поле становится переменным и создает вторичное электрическое. Таким образом, электрическое поле и его характеристики влияют на возможность возникновения магнитного и его параметры.

220v.guru

Свойства и характеристики электрических полей. Электрическое поле и его характеристика

16. Электрическое поле и его характеристики. Сила Кулона.

Электрическим полем называют вид материи, посредством которой происходит взаимодействие электрических зарядов. Поле неподвижных зарядов называется электростатическим.

Свойства электрического поля:

• порождается электрическим зарядом;

• обнаруживается по действию на заряд;

• действует на заряды с некоторой силой.

Точечный заряд – модель заряженного тела, размерами которого можно пренебречь в условиях

данной конкретной задачи ввиду малости размеров тела по сравнению с расстоянием от него до

точки определения поля.

Пробный заряд – точечный заряд, который вносится в данное электростатическое поле для измерения его характеристик. Этот заряд должен быть достаточно мал, чтобы своим воздействием не нарушить положение зарядов – источников измеряемого поля и тем

самым не изменить создаваемое ими поле.

Электрический диполь – система двух разноименных по знаку и одинаковых по величине точечных зарядов, находящихся на небольшом расстоянии один от другого. Вектор l, проведенный от отрицательного заряда к положительному, называется плечом диполя. Вектор

p = q*l называется электрическим моментом диполя.

Характеристики электрического поля:

1. силовая характеристика – напряженность (Е) – это векторная физическая величина, численно равная отношению силы, действующей на заряд, помещенный в данную точку поля, к величине этого заряда: Е = F/q; [E] = [ 1 Н/Кл ] = [1 В/м ]

Графически электрическое поле изображают с помощью силовых линий –это линии, касательные к которым в каждой точке пространства совпадают с направлением вектора напряженности.

Силовые линии электрического поля незамкнуты, они начинаются на положительных зарядах и заканчиваются на отрицательных:

2. энергетическая характеристика – потенциал j - это скалярная физическая величина, равная отношению потенциальной энергии заряда, необходимой для его перемещения из одной точки поля в другую, к величине этого заряда: j = DЕр/q. [j] = [1 Дж/Кл ] =[1 В ].

Dj = j2 - j1 – изменение потенциала;

U = j1 - j2 - разность потенциалов (напряжение)

Физический смысл напряжения: U = j1 - j2 = А/q - - напряжение численно равно отношению работы по перемещению заряда из начальной точки поля в конечную к величине этого заряда.

U = 220 В в сети означает, что при перемещении заряда в 1 Кл из одной точки поля в другую, поле совершает работу в 220 Дж.

3. Индукция электрического поля. Напряженность электрического поля является силовой характеристикой поля и определяется не только зарядами, создающими поле, но зависит и от свойств среды, в которой находятся эти заряды.

Часто бывает удобно исследовать электрическое поле, рассматривая только заряды и их расположение в пространстве, не принимая во внимание свойств окружающей среды. Для этой цели используется векторная величина, которая называется электрической индукцией или электрическим смещением. Вектор электрической индукции D в однородной изотропной среде связан с вектором напряженности Е соотношением

.

Единицей измерения индукции электрического поля служит 1 Кл/ м2. Направление вектора электрического смещения совпадает с вектором Е. Графическое изображение электрического поля можно построить с помощью линий электрической индукции по тем же правилам, что и для линий напряженности

Графическое изображение электрических полей.

Электрические поля можно изображать графически: при помощи силовых линий или эквипотенциальных поверхностей (которые взаимно перпендикулярны между собой в каждой точке поля.

Силовыми линиями (линиями напряженности) называются линии, касательные в каждой точке к которым совпадают с направлением вектора напряженности в данной точке.

Эквипотенциальные поверхности – это поверхности равного потенциала.

Закон взаимодействия неподвижных точечных электрических зарядов установлен в 1785 г. Ш. Кулоном с помощью крутильных весов, подобных тем, которые (см. § 22) использовались Г. Кавендишем для определения гравитационной постоянной (ранее этот закон был открыт Г. Кавендишем, однако его работа оставалась неизвестной более 100 лет). Точечным называется заряд, сосредоточенный на теле, линейные раз­меры которого пренебрежимо малы по сравнению с расстоянием до других заряжен­ных тел, с которыми он взаимодействует. Понятие точечного заряда, как и материаль­ной точки, является физической абстракцией.

Закон Кулона: сила взаимодействия F между двумя неподвижными точечными зарядами, находящимися в вакууме, пропорциональна зарядам Q1 и Q2 и обратно пропорциональна квадрату расстояния r между ними:

где k — коэффициент пропорциональности, зависящий от выбора системы единиц.

Сила F направлена по прямой, соединяющей взаимодействующие заряды, т. е. является центральной, и соответствует притяжению (F<0) в случае разноименных зарядов и отталкиванию (F>0) в случае одноименных зарядов. Эта сила называется кулоновской силой. В векторной форме закон Кулона имеет вид

(78.1)

где F12 — сила, действующая на заряд Q1 со стороны заряда Q2, r12 — радиус-вектор, соединяющий заряд Q2 с зарядом Q1, r = |r12| (рис. 117). На заряд Q2 со стороны заряда Q1 действует сила F21 = –F12.

В СИ коэффициент пропорциональности равен

Тогда закон Кулона запишется в окончательном виде:

studfiles.net

Электрическое поле основные характеристики | Электрикам

Электрическое поле характеризуется воздействием на электро заряженную частицу с силой пропорциональной заряда частицы и независящей от ее скорости.

Напряжённость

Напряжённость — векторная величина определяющая силу 

действующую на заряженную частицу или тело со стороны электрического поля и численно равная отношению силы к заряду частицы.

Е = F/Q [Н/Кл] или [B/M]

Напряжённость — это основная характеристика электрического поля которая измеряет интенсивность поля.

Направление вектора напряжённости совпадает с направлением силы действующей на частицу с положительным зарядом.

Электрическое поле называется однородным (равномерным) если напряжённость поля во всех точках одинаковое по величине и направлению.

Электрическое напряжение

Электрическое напряжение (U) — это работа (А) совершаемая силой поля по перемещению заряженных частиц между двумя точками поля.

U = A/q  [Дж/Кл] или [В]

Потенциал

Потенциал (φ) — это энергетическая характеристика поля численно равная отношению потенциальной энергии заряженной частицы помещенной в данной точке поля  величине её заряда.

φ = W/Q [В]

Геометрическое место поля с с одинаковым потенциалом называется эквипотенциальной поверхностью.

electrikam.com

Электрическое поле и его характеристики

 

У многих возникают вопросы, что же именно представляет собой электрическое поле? В чём разница между электрическим полем и полем электромагнитным? И самый главный вопрос, как поле может влиять на окружающие предметы и человека, и как можно измерить силу этого воздействия?

Вопросов много для одного понятия, поэтому нужно во всём последовательно разобраться. Для этого лучше всего строго разделить все понятия, что к чему относится.

Электрическое и электромагнит

xn--90adflmiialse2m.xn--p1ai

Электрическое поле и его характеристики.

Электрическое поле и его характеристики.

Электрическое поле — одна из составляющих электромагнитного поля; особый вид материи, существующий вокруг тел иличастиц, обладающих электрическим зарядом, а также при изменении магнитного поля (например, в электромагнитных волнах). Электрическое поле непосредственно невидимо, но может быть обнаружено благодаря его силовому воздействию на заряженные тела.

Напряжённость электрического поля-это отношение силы, действующей на заряд, к величине этого заряда. В электротехнике с помощью напряжённости электрического поля характеризуют его интенсивность. Напряжённость можно назвать основной характеристикой электрического поля, его «силу и мощность.

электрический потенциал – это характеристика электрического поля, которая выражает его напряжённость. Она определяет «потенциал», запас энергии, работу, которую можно будет совершить.

Электрическое напряжение - один из наиболее важных показателей электрической цепи, оно измеряется в Вольтах (В), по нему определяют работу и мощность.

Взаимодействие заряженных тел. Закон Кулона.

Законы взаимодействия атомов и молекул удается понять и объяснить на основе знаний о строении атома, используя планетарную модель его строения. В центре атома находится положительно заряженное ядро, вокруг которого вращаются по определенным орбитам отрицательно заряженные частицы. Взаимодействие между заряженными частицами называется электромагнитным.

Законы взаимодействия неподвижных электрических зарядов изучает электростатика.

Основной закон электростатики был экспериментально установлен французским физиком Шарлем Кулоном и читается так: модуль силы взаимодействия двух точечных неподвижных электрических зарядов в вакууме прямо пропорционален произведению величин этих зарядов и обратно пропорционален квадрату расстояния между ними:

 

где и — модули зарядов, — расстояние между ними, — коэффициент пропорциональности, который зависит от выбора системы единиц, в СИ.

Кулоновская сила направлена вдоль прямой, соединяющей заряженные тела. Она является силоЙ притяжения при разных знаках зарядов и силой отталкивания при одинаковых знаках зарядов.

Конденсаторы и их применение.

Конденсатор представляет собой устройство, способное накапливать электрические заряды. Простейшим конденсатором являются две металлические пластины (электроды), разделенные каким-либо диэлектриком. Конденсатор 2 можно зарядить, если соединить его электроды с источником 1 электрической энергии постоянного тока.

Емкость конденсатора. Свойство конденсатора накапливать и удерживать электрические заряды характеризуется его емкостью. Чем больше емкость конденсатора, тем больше накопленный им заряд, так же как с увеличением вместимости сосуда или газового баллона увеличивается объем жидкости или газа в нем.

1.В радиотехнической и телевизионной аппаратуре – для создания колебательных контуров, их настройки, блокировки, разделения цепей с различной частотой, в фильтрах выпрямителей и т.д.

2.В радиолакационной технике – для получения импульсов большей мощности, формирования импульсов и т.д.

3. В телефонии и телеграфии – для разделения цепей переменного и постоянного токов, разделения токов различной частоты, искрогашения в контактах, симметрирования кабельных линий и т.д.

4. В автоматике и телемеханике – для создания датчиков на емкостном принципе, разделения цепей постоянного и пульсирующего токов, искрогашения в контактах, в схемах тиратронных генераторов импульсов и т.д.

5. В технике счетно-решающих устройств – в специальных запоминающих устройствах и т.д.

6. В электроизмерительной технике – для создания образцов емкости, получения переменной емкости (магазины емкости и лабораторные переменные конденсаторы), создания измерительных приборов на емкостном принципе и т. д.

7. В лазерной технике – для получения мощных импульсов.

Электроизоляционные материалы и их применение.

Электроизоляционные материалы, обладая большим удельным сопротивлением, высоким пробивным напряжением и малой диэлектрической проницаемостью, защищают от электрического тока и разделяют токопроводящие части, находящиеся под разными потенциалами.

Важное свойство всех электроизоляционных материалов – теплопроводность и влагонепроницаемость, для повышения которой необходимо пропитывать материалы синтетическими жидкостями, маслами и компаундами. К абсолютно влагостойким специалисты относят лишь глазурованный фарфор и стекло.

— диэлектрики, которые служат целям электрической изоляции. Фактически электроизоляционные материалы предназначены препятствовать протеканию — безразлично, постоянного и переменного тока.

Применяются электроизоляционные материалы в электротехнических, радиотехнических и электронных приборах и устройствах.

Активная, реактивная и полная мощности в трехфазной цепи. Коэффициент мощности.

Активная мощность

Среднее за период T значение мгновенной мощности называется активной мощностью: В цепях однофазного синусоидального тока гдеU и I — среднеквадратичные значения напряжения и тока, φ — угол сдвига фаз между ними. Для цепей несинусоидального тока электрическая мощность равна сумме соответствующих средних мощностей отдельных гармоник. Активная мощность характеризует скорость необратимого превращения электрической энергии в другие виды энергии (тепловую и электромагнитную). Активная мощность может быть также выражена через силу тока, напряжение и активную составляющую сопротивления цепи r или её проводимость gпо формуле В любой электрической цепи как синусоидального, так и несинусоидального тока активная мощность всей цепи равна сумме активных мощностей отдельных частей цепи, для трёхфазных цепей электрическая мощность определяется как сумма мощностей отдельных фаз. С полной мощностью S активная связана соотношением

В теории длинных линий (анализ электромагнитных процессов в линии передачи, длина которой сравнима с длиной электромагнитной волны) полным аналогом активной мощности является проходящая мощность, которая определяется как разность между падающей мощностью и отраженной мощностью.

[править]Реактивная мощность

Единица измерения — вольт-ампер реактивный (var, вар)

Реактивная мощность — величина, характеризующая нагрузки, создаваемые в электротехнических устройствах колебаниями энергии электромагнитного поля в цепи синусоидального переменного тока, равна произведению среднеквадратичных значений напряжения U и тока I, умноженному на синус угла сдвига фаз φ между ними: (если ток отстаёт от напряжения, сдвиг фаз считается положительным, если опережает — отрицательным). Реактивная мощность связана с полной мощностью S и активной мощностью Рсоотношением: .

Физический смысл реактивной мощности — это энергия, перекачиваемая от источника на реактивные элементы приёмника (индуктивности, конденсаторы, обмотки двигателей), а затем возвращаемая этими элементами обратно в источник в течение одного периода колебаний, отнесённая к этому периоду.

Необходимо отметить, что величина sin φ для значений φ от 0 до плюс 90° является положительной величиной. Величина sin φ для значений φ от 0 до −90° является отрицательной величиной. В соответствии с формулой Q = UI sin φ, реактивная мощность может быть как положительной величиной (если нагрузка имеет активно-индуктивный характер), так и отрицательной (если нагрузка имеет активно-ёмкостный характер). Данное обстоятельство подчёркивает тот факт, что реактивная мощность не участвует в работе электрического тока. Когда устройство имеет положительную реактивную мощность, то принято говорить, что оно её потребляет, а когда отрицательную — то производит, но это чистая условность, связанная с тем, что большинство электропотребляющих устройств (например, асинхронные двигатели), а также чисто активная нагрузка, подключаемая через трансформатор, являются активно-индуктивными.

Синхронные генераторы, установленные на электрических станциях, могут как производить, так и потреблять реактивную мощность в зависимости от величины тока возбуждения, протекающего в обмотке ротора генератора. За счёт этой особенности синхронных электрических машин осуществляется регулирование заданного уровня напряжения сети. Для устранения перегрузок и повышения коэффициента мощности электрических установок осуществляется компенсация реактивной мощности.

Применение современных электрических измерительных преобразователей на микропроцессорной технике позволяет производить более точную оценку величины энергии возвращаемой от индуктивной и емкостной нагрузки в источник переменного напряжения.

Измерительные преобразователи реактивной мощности, использующие формулу Q = UI sin φ, более просты и значительно дешевле измерительных преобразователей на микропроцессорной технике.[источник не указан 124 дня]

[Полная мощность

Единица полной электрической мощности — вольт-ампер (V·A, В·А)

Полная мощность — величина, равная произведению действующих значений периодического электрического тока I в цепи и напряжения U на её зажимах: S = U·I; связана с активной и реактивной мощностями соотношением: где Р — активная мощность, Q — реактивная мощность (при индуктивной нагрузке Q > 0, а при ёмкостной Q < 0).

Векторная зависимость между полной, активной и реактивной мощностью выражается формулой:

Полная мощность имеет практическое значение, как величина, описывающая нагрузки, фактически налагаемые потребителем на элементы подводящей электросети (провода, кабели,распределительные щиты, трансформаторы, линии электропередачи), так как эти нагрузки зависят от потребляемого тока, а не от фактически использованной потребителем энергии. Именно поэтому номинальная мощность трансформаторов и распределительных щитов измеряется в вольт-амперах, а не в ваттах.

Коэффицие́нт мо́щности — безразмерная физическая величина, характеризующая потребителя переменного электрического тока с точки зрения наличия в нагрузке реактивной составляющей. Коэффициент мощности показывает, насколько сдвигается по фазе переменный ток, протекающий через нагрузку, относительно приложенного к ней напряжения.

Численно коэффициент мощности равен косинусу этого фазового сдвига.

КПД двигателя.

Коэффицие́нт поле́зного де́йствия (КПД) — характеристика эффективности системы (устройства, машины) в отношении преобразования или передачи энергии. Определяется отношением полезно использованной энергии к суммарному количеству энергии, полученному системой; обозначается обычно η («эта»). η = Wпол/Wcyм. КПД является безразмерной величиной и часто измеряется в процентах. Математически определение КПД может быть записано в виде:

x 100 %,

где А — полезная работа, а Q — затраченная энергия.

В силу закона сохранения энергии КПД всегда меньше единицы или равен ей, то есть невозможно получить полезной работы больше, чем затрачено энергии.

Режим работы электропривода

Продолжительный номинальный режим работы электропривода. Продолжительным называется режим работы электропривода при неизменной номинальной нагрузке, продолжающейся столько времени, что превышение температуры Т электродвигателя над температурой окружающей среды Т0 достигает установившегося значения. В этом режиме работают вентиляторы, насосы, компрессоры, действующие непрерывно с неизменной нагрузкой.Если машина работает в продолжительном режиме с практически неизменной нагрузкой, то мощность электродвигателя этой машины определится уравнением, приводимым в справочниках соответствующих механизмов. По данным расчета выбирают электродвигатель единой серии ближайшей большей мощности для продолжительного режима работы с учетом исполнения и угловой скорости вала электродвигателя.Кратковременный номинальный режим работы электропривода. Кратковременным называется режим работы электропривода, при котором периоды номинальной нагрузки чередуются с периодами отключения, за время которых электродвигатель успевает охладиться до температуры окружающей среды.ГОСТ предусматривает номинальный кратковременный режим работы электродвигателя продолжительностью 10, 30, 60, 90 мин.В кратковременном режиме работают вспомогательные электроприводы металлорежущих станков, машины малой механизации в промышленности, электрифицированные инструменты, электроприводы машин бытового назначения.Мощность электродвигателя для привода машины, работающей в кратковременном режиме, рассчитывается методом эквивалентных величин (тока, момента) по уравнениям, данные для которых принимают из нагрузочной диаграммы технологической машины.Нагрузочной диаграммой называется график, определяющий зависимость тока, мощности или момента электродвигателя от времени его действия.Определение мощности электродвигателя методом эквивалентного тока возможно в том случае, если нагрузочная диаграмма электродвигателя представлена зависимостью тока от времени.Если магнитный поток электродвигателя постоянный (синхронные, асинхронные и двигатели постоянного тока с параллельным возбуждением), то мощность электродвигателя определится методом эквивалентного момента. Через эквивалентные ток и момент определяют мощность электродвигателя по уравнениям. По данным расчета из каталога выбирают электродвигатель единой серии ближайшей большей мощности для кратковременного режима с периодом нагрузки и с учетом исполнения и угловой скорости вала электродвигателя.Повторно-кратковременный номинальный режим работы электропривода. Повторно-кратковременным называется режим работы электропривода, при котором периоды номинальной нагрузки чередуются периодами отключения электродвигателя. При этом превышение температуры электродвигателя за время периода нагрузки не достигает установившегося значения. А за время периода отключения электродвигатель не успевает охладиться до температуры окружающей среды.Сравнительно большая группа технологических машин работает в повторно-кратковременном режиме. Это подъемно-транспортные машины, прессы, швейные машины, металлообрабатывающие станки, стиральные машины, центрифуги.Повторно-кратковременный режим характеризуется продолжительностью включения электродвигателя — ПВ. Определяют ПВ из нагрузочной диаграммы, как отношение времени нагрузки электродвигателя ко времени цикла.ГОСТ предусматривает номинальный повторно-кратковременный режим работы электродвигателя с ПВ=15, 25, 40, 60% и циклом tц продолжительностью 10 мин. Если цикл превышает 10 мин, то режим работы электродвигателя следует считать продолжительным.Электропривод технологических машин предприятий бытового обслуживания, работающих в повторно-кратковременном режиме, осуществляется асинхронными короткозамкнутыми электродвигателями. Расчет мощности этих электродвигателей методом эквивалентного момента или мощности обеспечит положительные результаты только в том случае, если исключить частый пуск электродвигателя, т. е. считать, что в момент паузы электродвигатель работает в режиме холостого хода.Методы эквивалентного момента и мощности не могут применяться для расчета электродвигателя с частым пуском и работающим в тормозных режимах.При значении ПВ электродвигателя отличного от стандартного, следует делать пересчет мощности электродвигателя на ближайшую номинальную со стандартным ПВ. По данным расчета из каталога выбирают электродвигатель единой серии ближайшей большей мощности для повторно-кратковременного режима, соответствующего ПВ с учетом исполнения и угловой скорости вала электродвигателя.

Среди существующих и особенно необходимых на данный момент видов электроприводов особенно выделяются четыре основные группы: электроприводы, которые приводят в действие противопожарные или противодымные клапаны, а также водные клапаны и, наконец, электроприводы, предназначенные для регуляции систем вентиляции и кондиционирования воздуха, иными словами, для обеспечения функционирования воздушных клапанов.

Каждая из этих групп имеет множество моделей, приспособленных для выполнения определённых функций. Например, воздушные клапаны могут быть оснащены тремя основными моделями электроприводов – для быстрого срабатывания, для стандартного срабатывания, а также специализированные электроприводы, оснащённые возвратной пружиной. Возвратной пружиной могут быть оснащены также противопожарные или же противодымные клапаны. Такая система позволяет автоматически регулировать положение клапан.

Источники Энергии.

ТЕПЛОВАЯ ЭЛЕКТРОСТАНЦИЯ (ТЭС), электростанция, вырабатываю­щая электрическую энергию в результате пре­образования тепловой энергии, выделяю­щейся при сжигании органического топлива.

ГИДРОЭЛЕКТРИЧЕСКАЯ СТАНЦИЯ,гидроэлектростанция (ГЭС), комплекс сооружений и оборудования, посредством которых энергия потока воды преобразуется в электрическую энергию.

Электрическое поле и его характеристики.

Электрическое поле — одна из составляющих электромагнитного поля; особый вид материи, существующий вокруг тел иличастиц, обладающих электрическим зарядом, а также при изменении магнитного поля (например, в электромагнитных волнах). Электрическое поле непосредственно невидимо, но может быть обнаружено благодаря его силовому воздействию на заряженные тела.

Напряжённость электрического поля-это отношение силы, действующей на заряд, к величине этого заряда. В электротехнике с помощью напряжённости электрического поля характеризуют его интенсивность. Напряжённость можно назвать основной характеристикой электрического поля, его «силу и мощность.

электрический потенциал – это характеристика электрического поля, которая выражает его напряжённость. Она определяет «потенциал», запас энергии, работу, которую можно будет совершить.

Электрическое напряжение - один из наиболее важных показателей электрической цепи, оно измеряется в Вольтах (В), по нему определяют работу и мощность.



infopedia.su

Характеристики электрического поля | Онлайн журнал электрика

В статье описаны главные свойства электронного поля: потенциал, напряжение и напряженность.

Что такое электронное поле

Для того, чтоб сделать электронное поле, нужно сделать электронный заряд. Характеристики места вокруг зарядов (заряженных тел) отличаются от параметров места, в каком нет зарядов. При всем этом характеристики места при внесении в него электронного заряда меняются не одномоментно: изменение начинается у заряда и с определенной скоростью распространяется от одной точки места к другой.

В пространстве, содержащем заряд, появляются механические силы, действующие на другие заряды, внесенные в это место. Эти силы есть итог не конкретного деяния 1-го заряда на другой, а деяния через отменно изменившуюся среду.

Место, окружающее электронные заряды, в каком появляются силы, действующие на внесенные в него электронные заряды, именуется электронным полем.

Заряд, находящийся в электронном поле, движется в направлении силы, действующей на него со стороны поля. Состояние покоя такового заряда может быть только тогда, когда к заряду приложена какая-либо наружняя (посторонняя) сила, уравновешивающая силу электронного поля.

Как нарушается равновесие меж посторонней силой и силой поля, заряд опять приходит в движение. Направление его движения всегда совпадает с направлением большей силы.

Для наглядности электронное поле принято изображать так именуемыми силовыми линиями электронного поля. Эти полосы совпадают с направлением сил, действующих в электронном поле. При всем этом договорились проводить столько линий, чтоб их число на каждый 1 см2 площадки, установленной перпендикулярно к линиям, было пропорционально силе поля в соответственной точке.

За направление поля условно принято направление силы поля, действующей на положительный заряд, помещенный в данное поле. Положительный заряд отталкивается от положительных зарядов и притягивается к отрицательным. Как следует, поле ориентировано от положительных зарядов к отрицательным.

Направление силовых линий обозначается на чертежах стрелками. Наукой подтверждено, что силовые полосы электронного поля имеют начало и конец, т. е. они не замкнуты сами на себя. Исходя из принятого направления поля, устанавливаем, что силовые полосы начинаются на положительных зарядах (положительно заряженных телах) и завершаются на отрицательных.

Рис. 1. Примеры изображения электронного поля с помощью силовых линий: а — электронное поле одиночного положительного заряда, б — электронное поле одиночного отрицательного заряда, в — электронное поле 2-ух разноименных зарядов, г — электронное поле 2-ух одноименных зарядов

На рис. 1 показаны примеры электронного поля, изображенного с помощью силовых линий. Необходимо держать в голове, что силовые полосы электронного поля — это только метод графического изображения поля. Большего содержания в понятие силовой полосы тут не вкладывается.

Закон Кулона

Сила взаимодействия 2-ух зарядов находится в зависимости от величины и обоюдного расположения зарядов, также от физических параметров окружающей их среды.

Для 2-ух наэлектризованных физических тел, размеры которых пренебрежимо малы по сопоставлению с расстоянием меж телами, хила взаимодействия математически определяется последующим образом:

где F — сила взаимодействия зарядов в ньютонах (Н), k — расстояние меж зарядами в метрах (м), Q1 и Q2 — величины электронных зарядов в кулонах (к) , k — коэффициент пропорциональности, величина которого находится в зависимости от параметров среды, окружающей заряды.

Приведенная формула читается так: сила взаимодействия меж 2-мя точечными зарядами прямо пропорциональна произведению величин этих зарядов и назад пропорциональна квадрату расстояния меж ними (закон Кулона).

Для определения коэффициента пропорциональности k служит выражение k = 1/(4πεεо).

Потенциал электронного поля

Электронное поле всегда докладывает движение заряду, если силы поля, действующие на заряд, не уравновешиваются какими-либо посторонними силами. Это гласит о том, что электронное поле обладает возможной энергией, т. е. способностью совершать работу.

Перемещая заряд из одной точки места в другую, электронное поле совершает работу, в итоге чего припас возможной энергии поля миниатюризируется. Если заряд перемещается в электронном поле под действием какой-нибудь посторонней силы, действующей навстречу силам поля, то работа совершается не силами электронного поля, а посторонними силами. В данном случае возможная энергия поля не только лишь не миниатюризируется, а, напротив, возрастает.

Работа, которую совершает посторонняя сила, перемещая в электронном поле заряд, пропорциональна величине сил поля, противодействующих этому перемещению. Совершаемая при всем этом посторонними силами работа стопроцентно расходуется на повышение возможной энергии поля. Для свойства поля со стороны его возможной энергии принята величина, именуемая потенциалом электронного поля.

Суть этой величины состоит в последующем. Представим, что положительный заряд находится за пределами рассматриваемого электронного поля. Это означает, что поле фактически не действует на данный заряд. Пусть посторонняя сила заносит этот заряд в электронное поле и, преодолевая сопротивление движению, оказываемое силами поля, переместит заряд в данную точку поля. Работа, совершаемая силой, а означает, и величина, на которую возросла возможная энергия поля, зависит всецело от параметров поля. Как следует, эта работа может охарактеризовывать энергию данного электронного поля.

Энергия электронного поля, отнесенная к единице положительного заряда, помещенного в данную точку поля, и именуется потенциалом поля в данной его точке.

Если потенциал обозначить буковкой φ, заряд — буковкой q и затраченную на перемещение заряда работу — W, то потенциал поля в данной точке выразится формулой φ = W/q.

Из произнесенного следует, что потенциал электронного поля в данной его точке численно равен работе, совершаемой посторонней силой при перемещении единицы положительного заряда из-за пределов поля в данную точку. Потенциал поля измеряется в вольтах (В). Если при переносе 1-го кулона электричества из-за пределов поля в данную точку посторонние силы сделали работу, равную одному джоулю, то потенциал в данной точке поля равен одному вольту: 1 вольт = 1 джоуль / 1 кулон

Напряжение электронного поля

В любом электронном поле положительные заряды передвигаются от точек с более высочайшим потенциалом к точкам с потенциалом более низким. Отрицательные заряды передвигаются, напротив, от точек с наименьшим потенциалом к точкам с огромным потенциалом. B обоих случаях работа совершается за счет возможной энергии электронного поля.

Если нам известна эта работа, т. е. величина, на которую уменьшилась возможная энергия поля при перемещении положительного заряда q из точки 1 поля в точку 2, то просто отыскать напряжение меж этими точками поля U1,2:

U1,2 = A/q,

где А — работа сил поля при переносе заряда q из точки 1 в точку 2. Напряжение меж 2-мя точками электронного поля численно равно работе, которую совершает ноле для переноса единицы положительного заряда из одной точки поля в другую.

Как видно, напряжение меж 2-мя точками поля и разность потенциалов меж этими же точками представляют собой одну и ту же физическую суть. Потому определения напряжение и разность потенциалов сущность одно и то же. Напряжение измеряется в вольтах (В).

Напряжение меж 2-мя точками равно одному вольту, если при переносе 1-го кулона электричества из одной точки поля в другую силы поля совершают работу, равную одному джоулю: 1 вольт = 1 джоуль / 1 кулон

Напряженность электронного поля

Из закона Кулона следует, что величина силы электронного поля данного заряда, действующей на помещенный в этом поле другой заряд, не во всех точках поля схожа. Охарактеризовывать электронное поле в каждой его точке можно величиной силы, с которой оно действует на единичный положительный заряд, помещенный в данной точке.

Зная данную величину, можно найти силу F, действующую на хоть какой заряд Q. Можно написать, что F = Q х Е, где F — сила, действующая со стороны электронного поля на заряд Q, помещенный в данную точку поля, Е — сила, действующая на единичный положительный заряд, помещенный в эту же точку поля. Величина Е, численно равная силе, которую испытывает единичный положительный заряд в данной точке поля, именуется напряженностью электронного поля.

elektrica.info


Видеоматериалы

24.10.2018

Опыт пилотных регионов, где соцнормы на электроэнергию уже введены, показывает: граждане платить стали меньше

Подробнее...
23.10.2018

Соответствует ли вода и воздух установленным нормативам?

Подробнее...
22.10.2018

С начала года из ветхого и аварийного жилья в республике были переселены десятки семей

Подробнее...
22.10.2018

Столичный Водоканал готовится к зиме

Подробнее...
17.10.2018

Более 10-ти миллионов рублей направлено на капитальный ремонт многоквартирных домов в Лескенском районе

Подробнее...

Актуальные темы

13.05.2018

Формирование энергосберегающего поведения граждан

 

Подробнее...
29.03.2018

ОТЧЕТ о деятельности министерства энергетики, ЖКХ и тарифной политики Кабардино-Балкарской Республики в сфере государственного регулирования и контроля цен и тарифов в 2012 году и об основных задачах на 2013 год

Подробнее...
13.03.2018

Предложения организаций, осуществляющих регулируемую деятельность о размере подлежащих государственному регулированию цен (тарифов) на 2013 год

Подробнее...
11.03.2018

НАУЧИМСЯ ЭКОНОМИТЬ В БЫТУ

 
Подробнее...

inetpriem


<< < Ноябрь 2013 > >>
Пн Вт Ср Чт Пт Сб Вс
        1 2 3
4 5 6 7 8 9 10
11 12 13 14 15 16 17
18 19 20 21 22 23 24
25 26 27 28 29 30  

calc

banner-calc

.