Защитное заземление — назначение, принцип действия и монтаж. Принцип заземления


Объясните назначение и принцип действия защитного заземления( со схемами). Принцип заземления

Защитное заземление: принцип работы и схемы

С помощью создания электрического соединения металлических конструкций промышленного и бытового оборудования с землей повышают безопасность в процессе его эксплуатации. Такой метод используется для предотвращения поражения человека электрическим током при возникновении аварийных ситуаций.

На рисунке ниже отображены основные принципы функционирования защитной системы. Даже при использовании качественных автоматических устройств, скорость их отключения будет недостаточной, чтобы полностью исключить возможность поражения человека электрическим током. При наличии заземления будет образована цепь с меньшим сопротивлением. Это снизит вредные воздействия на организм человека до безопасного уровня.

Защитное заземление – необходимый элемент безопасности, предотвращающий поражение электротоком

Принцип работы

Обычно его устанавливают для защиты при возникновении короткого замыкания. Если фазный проводник отсоединится и прикоснется к металлическому шасси установки, то корпус окажется под напряжением.

Правильно созданное защитное заземление образует электрическую цепь, имеющую низкое сопротивление. Именно этот путь является наиболее благоприятным для электрического тока, поэтому случайное прикосновение человека к корпусу не будет опасным (рис. выше).

Надо отметить, что такое устройство одновременно будет выполнять несколько важных функций:

  1. Оно обеспечит защиту и в том случае, когда потенциально опасное напряжение на корпусе образовано не коротким замыканием, а индукционными токами. Такие ситуации возможны в установках с высоким напряжением и там, где допустимо воздействие излучения СВЧ.
  2. При использовании глухозаземленной нейтрали и некоторых других схем подключения в цепи питания при коротком замыкании возникнут продолжительные и большие по амплитуде импульсы, достаточные для срабатывания автоматов, отключающих напряжение.
  3. Если заземленное оборудование подвергнется удару молнии, то такой проводник обеспечит определенную защиту от повреждений.

По этой формуле рассчитывают сопротивление проводника защитной цепи между основной шиной и распределительным щитком: 50 х СЦФН/ НН. СЦФН – сопротивление в цепи ноль-фаза; НН – напряжение номинальное в вольтах.

Чтобы не ошибаться с терминологией, надо понимать действительное значение следующих названий:

  • Рабочим называют заземление, которое выполняет функции второго проводника. Его используют для электрического питания установок, решения иных задач.
  • Упомянутая выше защита от молнии не является целевым предназначением. Для обеспечения безопасности при грозах применяют специально предназначенные для этого устройства. Они рассчитываются на относительно большие величины токов и напряжений.

Схемы подключения

Чтобы выбрать оптимальный вариант необходимо знать, для каких целей применяется защитное заземление в конкретном случае. Ниже рассмотрены разные системы, их особенности, преимущества и недостатки.

Тип TN, с глухозаземленной нейтралью. По этой схеме подключается промышленное и бытовое оборудование, работающее в сетях с напряжением до и выше 1000 V. Нейтраль генератора (трансформатора) источника питания подключается к заземлителю. Устройства потребителей, а точнее корпуса, экраны, шасси, подсоединяют к общему проводнику.

Если электрическая схема создана в соответствии с международными стандартами, то по надписям можно понять следующее. Латинской буквой «N» обозначают «нулевой» проводник, который используется для работы оборудования. Его так и называют, функциональным. «PE» – проводник, использующийся для создания защитной цепи.  Буквами «PEN» обозначают проводник, предназначенный для решения функциональных и защитных задач.

Чаще всего используют следующие схемы. Их наименования отличаются буквой, которую через дефис добавляют к «TN».

Схемы подключения

СистемаПринцип работыПреимущества, недостатки, особенности
CВ системе «С» проводник выполняет рабочие и защитные функции одновременно. В качестве примера можно вспомнить типовое трехфазное электропитание с глухозаземленной нейтралью, являющейся нулевым проводом.Эта схема относительно проста и экономична. Корпуса устройств потребителей подключают непосредственно к нейтрали. Недостатком является утеря защитных свойств, если электрическая цепь разорвана. Такое повреждение нельзя исключить при аварийном повышении тока, нагреве и разрушении проводника. В такой ситуации на корпусе появится опасное напряжение. При использовании таких систем особо тщательно подбирают автоматы, которые должны быстро и надежно отключать питающее напряжение.
SВ этой схеме используются два раздельных нулевых проводника, рабочий и защитный.Несколько проводников увеличивают стоимость системы, но существенно повышают надежность защиты.
C-SЭто – комбинированная система. Генерирующий источник подсоединяется к глухозаземленной нейтрали. К потребителю идут только четыре проводника (трехфазное питание). В объекте недвижимости добавляется защитный проводник «PE». Низкая по сравнению с предыдущим вариантом стоимость сопровождается меньшей надежностью. При повреждении проводника на участке до объекта (или к «PE») защитные функции будут утрачены. В соответствии с действующими нормами при использовании таких систем требуется предотвратить механическое повреждение соответствующих проводников.

Наиболее часто используемые схемы подключения

Достаточно высокие риски возникают при использовании воздушных линий электропередач. Они могут быть повреждены ураганом, иными негативными внешними воздействиями. Для обеспечения высокого уровня безопасности применяют схему TT.

Глухозаземленную нейтраль подсоединяют к генератору. Передача энергии осуществляется по четырем проводам. У потребителя устанавливают автономную систему заземления, к которой подключаются корпуса оборудования.

IT – последняя схема на рисунке. Здесь нейтральный провод генератора (другого источника) изолирован. Корпуса электрических установок заземлены. Подобные решения применяются часто в исследовательских центрах, чтобы паразитные наводки не искажали показания чувствительной аппаратуры.

Виды

Чтобы сопротивление было минимальным, желательно сократить длину защитного проводника. Это обеспечивают с помощью создания заземляющего контура по периметру объекта.

Выносные системы применяют при оснащении установок, которые работают с питающим напряжением до 1 000 V.

Заземлители разделяют также на искусственные и естественные. Это распределение по группам условно, так как в обоих случаях используются металлические части конструкций, находящиеся в земле:

  • В первом – их создают специально, для системы заземления. Такой под

xn--90adflmiialse2m.xn--p1ai

Зачем нужно заземление для дома

Согласно нормам техники безопасности (ТБ) любое работающее электрооборудование должно быть надёжно защищено от возможности попадания опасного потенциала на его корпус. Для выполнения этого требования все металлические и электропроводящие части оборудования должны быть электрически связаны с землёй (заземлены). Так происходит защита человека, животных и электрических приборов от случайных утечек тока.

Назначение и контролируемые параметры

Основное назначение заземления – обеспечение надёжного соединения электропроводящих частей устройств и приборов с металлической конструкцией особой формы, имеющей надёжный контакт с грунтом. Профессионалы называют это сооружение заземлителем. Он представляет собой набор металлических заготовок (труб, отрезков арматуры или профилей), соединённых между собой методом сварки.

Надёжность функционирования такой системы зависит от общего сопротивления цепочки заземления, образуемой соединительными шинами и самой конструкцией заземлителя. Чем меньше значение этой величины – тем более безопасной будет эксплуатация оборудования или приборов, для которых предусматривается защита. В процессе обустройства заземляющего контура подбором соответствующей формы конструкции стараются искусственно увеличить площадь контакта её элементов с землёй.

Того же эффекта удаётся достичь, если умышленно повысить процентное содержание солей в почвах, имеющих непосредственный контакт с металлическими частями заземлителя. Указанные меры способствуют снижению сопротивления стеканию тока в землю, что гарантирует надёжность работы всего контура заземления в целом.

С целью контроля значения этого показателя организуется техническое обслуживание заземляющих систем, предполагающее обязательный замер указанного параметра. При обнаружении значительных отклонений от требований ПУЭ производится изъятие и ремонт заземляющих устройств, по окончании которого сопротивление растеканию проверяется повторно. Подобные же действия предпринимаются и в тех случаях, когда необходимо повысить эффективность защиты особо опасных участков электрооборудования.

Принцип работы

Принцип действия заземления заключается в снижении потенциала оказавшейся под напряжением точки соприкосновения с токопроводящей частью до уровня, безопасного для человека. Фактически, в момент попадания опасного напряжения на корпус оборудования, близкий к нулю потенциал заземлителя переносится в эту точку и на какое-то время создаёт безопасные для работы условия.

За это время должно сработать автоматическое устройство защиты от утечек (УЗО) и окончательно отключить линию питающего напряжения, на которой возникла аварийная ситуация.

В процессе изготовления заземляющего устройства должны выполняться особые требования, обеспечивающие надёжный контакт металлических поверхностей с частицами почвы. Для повышения электропроводности вокруг погружаемой в землю металлической конструкции заземления создаётся зона с высокой удельной проводимостью. Проводимость повышается за счёт непосредственного химического воздействия на почву. Одним из вариантов такого воздействия является применение упоминавшейся ранее соли.

Все рассмотренные меры способствуют тому, что заземлённое основание защитной конструкции обеспечивает надёжное стекание тока в почву. Помимо преднамеренного соединения корпусов электрооборудования с заземлённой конструкцией, рассмотренный выше принцип реализуется и в ряде аварийных ситуаций, связанных с непосредственным замыканием фазы на землю.

Обустройство в частном доме

Отдельные владельцы загородного жилья нередко задаются вопросом о том, а нужно ли заземление в деревянном доме? Ответ на него можно найти в основных положениях действующих нормативов (в ПУЭ, например), где указанная защитная мера оговаривается как обязательная. Более того, оказывается, что изготовить надёжную заземляющую конструкцию в частном доме намного проще, чем в городском многоквартирном строении.

И действительно, для обустройства заземления в загородной местности достаточно выбрать неподалёку от дома удобное для размещения заземлителя место и подвести к нему медную шину.

Сделать это в городских условиях не представляется возможным, поскольку наличие надёжного заземлителя в границах дома не предусматривается строительными нормативами (СНиП). В указанной ситуации остаётся довольствоваться заземлением на стороне питающей подстанции, удалённой на значительные расстояния и не обеспечивающей по этой причине требуемой эффективности защиты.

Длительная эксплуатация электрооборудования в границах загородного дома без заземления чревата большими неприятностями для его хозяина. Опасность ситуации объясняется тем, что в любой момент возможно попадание высокого потенциала на металлические части бытовой техники (как правило, вследствие пробоя изоляции проводки).

Довольно часто в загородных хозяйствах используется силовое оборудование, работающее от трёхфазного источника питания, эффективное заземление питающих цепей которого считается обязательным.

Ремонт заземляющих устройств (ЗУ)

В процессе длительной эксплуатации заземления наблюдается коррозия отдельных узлов металлической конструкции и частичное отклонение электрических параметров от номинала. Чаще всего это случается по причине разрушения защитного покрытия заземления под воздействием грунтовых солей с последующим коррозийным разрушением самого металла.

Устройство заземления в таком состоянии уже непригодно к длительной эксплуатации в качестве снижающей опасный потенциал конструкции, поскольку сопротивление поражённых ржавчиной мест существенно возрастает. Одновременно с этим снижаются токи утечки на землю, вследствие чего заземляющий контур теряет часть своих защитных свойств.

Любой специалист в подобной ситуации вправе заявить, что такое устройство нуждается в капитальном ремонте, предполагающем замену его поражённых частей на новые детали. При этом возможен вариант, согласно которому часть разрушенных элементов заземления и мест сварки может быть восстановлена без их замены. Для этого необходимо проделать следующие операции:

  • сначала обнаруженные следы ржавчины на металлических частях заземления тщательно очищаются посредством наждачной бумаги или химическим путём;
  • вслед за этим очищенные от ржавчины места обезжириваются растворителем подходящего типа;
  • после высыхания растворителя на поверхность металла наносится слой грунтовки ГФ-18;
  • и в заключении, когда грунтовка полностью просохнет – подготовленные поверхности окрашиваются защитной эмалью чёрного цвета.

Обратите внимание! При использовании химических методов очистки на поражённые места накладывается кусочек мягкой ткани, смоченный в специальном растворе, предназначенном для удаления следов коррозии.

По завершении ремонта вся конструкция заземляющего контура подвергается контрольному обследованию, в процессе которого производится измерение его электрического сопротивления. Для этих целей используются специальные контрольные устройства, называемые измерителями заземления (тип М416).

Область применения таких приборов распространяется не только на устройства заземления. С их помощью можно контролировать любые низкоомные цепи, а также с высокой точностью определять коэффициент удельного сопротивления грунта в точке заземления (ρ).

Техническое освидетельствование систем заземления

В целях контроля текущего состояния УЗ его конструкция периодически проверяется на предмет соответствия характеристик нормативным требованиям.

Указанная проверка предполагает проведение следующих операций:

  • визуальный осмотр открытых частей устройства;
  • обследование контактов между отдельными составляющими контура заземления;
  • измерение его активного сопротивления;
  • выборочное обследование размещённых в земле частей заземлителя со вскрытием грунта в этих местах.

В случае необходимости при испытаниях УЗ специалистами измеряется напряжение прикосновения и другие параметры распределительных заземляющих цепей.

Помимо этого, в комплект эксплуатируемого УЗ должен входить паспорт, в котором обязательно указывается дата ввода изделия в эксплуатацию, его рабочая схема, а также информация о текущем техническом состоянии системы.

Обратите внимание! Визуальное обследование открытых частей УЗ, как правило, проводится в соответствии с заранее утверждённым графиком ТО.Для устройств, эксплуатируемых в условиях повышенной влажности, а также подвергающихся постоянным механическим воздействиям периодичность проведения таких проверок должна оговариваться особо.

Подводя итоги всему сказанному, можно отметить следующую особенность работы конструкции заземления. С целью повышения эффективности защиты от поражения электричеством в питающих цепях обязательно наличие заземляющего устройства. Оно реагирует на малейшие утечки тока на землю через тело человека.

При этом связка «заземление плюс зануление» металлических корпусов приборов и оборудования позволяет достичь высокой эффективности защиты. Устройство заземления обеспечивает мгновенность отключения питания при случайном повреждении или пробое изоляции.

evosnab.ru

Использование защитного заземления и отличие его от зануления

Устройство защитного заземления – способ, электротехнического присоединения защитного проводника с нетоковедущими корпусами электроустановок, подвергаемые действию токов короткого замыкания фазного электротока. Защитный контур, главной задачей которого, является предохранение нанесения электротравм, связанных, с пиковыми значениями тока при коротком замыкании.

Для понимания сути устройства, следует знать основные теоретические вопросы.

Основные цели, задачи заземления

Основной задачей защитного заземления, согласно требованиям ГОСТа – предупреждение воздействия на людей пиковыми токами при КЗ и отведения напряжения с корпусов электроустановок через устройство заземления в грунт. Все меры принимаются для предупреждения возможностей получения электротравм.

Принцип действия защитного зануления и заземления – понижение до минимального уровня силы тока и поражающих факторов при прикосновении к короткозамкнутым деталям электроприборов и установок. При этом происходит понижение уровня напряжения на корпусах защищенных приборов, потенциалы выравниваются в связи с ростом этой величины на поверхности до уровня равного потенциала оборудования с земляным проводом.

Областью применения являются трехфазное оборудование и цепи. Они должны оборудоваться глухозаземленной нейтралью при напряжении ниже 1000. В, при большем напряжении цепи выбирается любой способ проведения нейтрального провода.

Основной целью устройства защиты является снижение уровня напряжения до безопасного значения на корпусе оборудования и контуре защиты, а также снижение силы тока, идущего через корпус человека при касании участка под напряжением. Номинальное значение напряжения цепи переменного тока свыше 380 В и значении постоянного тока в 440 В – такие электрические цепи подлежат обязательному оснащению заземлением, особенно при особо опасных условиях и местах повышенной опасности.

Обязательно должны заземляться устройство с металлическим корпусом:

  • станки;
  • приборы;
  • корпуса электрощитовых;
  • пульты управления механизмами;
  • металлический корпус кабеля и муфт;
  • металлические трубы для укладки проводов.

При КЗ фазного провода на корпуса устройств, и касании человека их рукою, через его тело проходит опасный по величине электрический ток. При заземлении, основная часть напряжения уйдет на контур, потому, что его сопротивление меньше чем человеческого тела.

Отличие рабочего заземления от защитного

Рабочее заземление. Принцип работы – это выполнение соединения с землей несколько отдельно стоящих объектов электросхемы здания. Это могут быть нейтраль обмотки генератора, и других различных устройств. Оно предназначено для обеспечения правильной работы электроустановки, независимо от условий его применения. Осуществление этого вида защиты происходит, непосредственно соединяя заземляемые корпуса электроустановок с заземлителями.

Достаточно редко, рабочее заземление может проводиться с помощью специализированных приспособлений – это могут быть пробивные предохранители, резисторы.

Защитное зануление и заземление, как указывалось выше, выполнение работ по электрическому соединению с металлическими нетоковедущими частями устройств. При этом основной работой защитного контура, является предохранение нанесения электротравм при касании человеком корпуса оборудования, потому, что ток с него отводится на заземляющий контур, сопротивление которого меньше чем сопротивление человеческого тела.

Поэтому отличием этих двух защитных устройств, является принцип их работы. Если рабочее уравнивает потенциалы, то защитное отводит ток на заземляющий контур, как правило, по глухозаземленной нейтрали. Но при оснащении своего помещения любым из видов защиты, наибольшая эффективность работы, будет достигаться при условии, что токи короткого замыкания не будут увеличиваться в связи с уменьшением уровня сопротивления заземлителя.

Еще о чем следует помнить. Ни один заземляющий контур не сможет выполнить работу автоматов отключения тока и устройства защитного отключения при утечках тока. А также эти приборы, не смогут выполнить свою работу надежно, без защитного заземления.

Требования к защитному заземлению

Защитное заземление – это наиболее жесткое устройство, чем зануление цепи. Здесь предусмотрена прокладка отдельной шины, довольно небольшого уровня сопротивления, которая идет к системе заземлителей, забитых в землю в виде треугольника. Расчет защитного заземления, требует знания множества формул и наличия множества исходных данных. Поэтому принято для жилого фонда применять типовые проекты контура заземления для каждого региона.

Установка зануления предусматривает прокладку шины нейтрали или любого другого способа отвода тока в однофазной цепи. При этом, значения сопротивлений каждого проводника зануления до подстанции или питающего трансформатора, складываясь, образуют значение сопротивления защитного устройства. Эта величина может изменяться, но требования к защитному заземлению и занулению, предусматриваю общее значение максимально возможного уровня сопротивления цепи.

Бытовое заземление

Как правило, системы электроснабжения, должны иметь сопротивление защитного заземления, должно быть от 4 Ом, до 30 Ом. Для обустройства, как правило, применяют стальные уголки и полоса шириной 40 мм. Предусматривают использование медной шины, достаточного сечения, согласно ГОСТу. Это обязательное требование. При использовании защитного проводника с медным проводом 0,5 мм2 нам не хватит и 100 метров провода для достижения критического значения. Наиболее строгие требования предъявляются при обслуживании участков:

  1. Установки, с напряжением цепи до 1000. В, оснащаются устройством, сопротивление которого, не должно превышать 0,5 Ома. Значение заземленного контура измеряют при помощи специального измерительного прибора – измерителем сопротивления. Это измерение проводится двумя дополнительными заземлителями. Разведя их на определенное расстояние, выполняем замер, затем сдвигая электрод, проводим несколько замеров. Самый худший результат принимается за номинальное значение.
  2. Для обслуживания цепи трансформатора, других источников питания, при величинах напряжения от 220 В до 660 В – величина сопротивления заземления должна быть от 2 Ом до 8 Ом.

Производственное защитное заземление

Использование дополнительных мер для выравнивания величин потенциала – это основная «обязанность» применения защитного обустройства производственных мощностей. Для достижения надежной защиты, все металлические детали конструкций и устройств, а коммуникационные трубопроводы подсоединяются на заземляющий проводник. В жилых помещениях, так следует оборудовать ванные комнаты и стальной водопровод, канализацию, и трубы отопления. В наше время пускай и редко, но они встречаются. На промышленных объектах заземляют:

  • приводы электрических машин;
  • корпуса каждой электроустановки, находящейся в помещении;
  • коммуникации металлических труб, металлоконструкции;
  • защитные оплетки электрокабелей , с напряжением постоянного тока до 120 В;
  • электрощитовые, различные корпуса системы электропроводки.

Детали, не требующие защиты:

  • металлические корпуса приборов и оборудования, установленных на стальной платформе, главное – обеспечение надежного контакта между ними;
  • разнообразные участки с металлической арматурой, установленная на деревянных конструкциях, исключение составляют объекты, где защита распространяется и на эти объекты;
  • корпуса электрооборудования, имеющие 2, 3 классы безопасности;
  • при вводе в здание электропроводки, с напряжением не выше 25 В, и прохода их сквозь стену из диэлектриков.

В заключение необходимо отметить.

Защитное заземление применяется в сетях переменного тока до 1кВ с глухозаземленной нейтралью, свыше этого значения напряжения со всеми видами проведения нейтрального провода.

После монтажа каждого из видов защиты, необходимо выполнить проверку величины сопротивления защиты. После этого составляется акт проверки. Замеры, проводят летом и зимой, в это время грунт имеет наибольшее сопротивление.

Проверку жилого фонда рекомендуется проводить раз в год. Помните о необходимости оснащения щитовой автоматами размыкателями цепи и защитным устройством от утечек тока.

evosnab.ru

Системы заземления: виды, описание, монтаж

Основная причина необходимости заземления в электрических сетях — это безопасность. Когда все металлические части электрооборудования заземлены, тогда, даже в случае с нарушенной изоляцией, на его корпусе не будут создаваться опасные напряжения, им воспрепятствуют надежные системы заземления.

Задачи для заземляющих систем

Главные задачи систем безопасности, работающих на принципе заземления:

  1. Безопасность для жизни человека, с целью защиты от поражения электрическим током. Предусматривает альтернативный путь прохождения аварийного тока, чтобы он не нанес повреждение пользователю.
  2. Защиты зданий, машин и оборудования в условиях сбоя электросети, чтобы открытые токопроводящие части оборудования не достигли смертельного потенциала.
  3. Защита от перенапряжения из-за удара молнии, который может привести к опасным высоким напряжениям в электрической распределительной системе или от непреднамеренного контакта человека с линиями высокого напряжения.
  4. Стабилизация напряжения. Существует много источников электроэнергии. Каждый трансформатор можно рассматривать, как отдельный источник. У них должна быть общая доступная точка сброса негативной энергии. Земля является единственной такой токопроводящей поверхностью для всех источников энергии, поэтому она была принята в качества универсального стандарта для сброса тока и напряжения. Если бы не было такой общей точки, то чрезвычайно трудно было бы обеспечить безопасность в энергосистеме в целом.

Требования к системе заземления:

  • Она должна иметь альтернативный путь для протекания опасного тока.
  • Отсутствие опасного потенциала на открытых токопроводящих частях оборудования.
  • Должна иметь низкий импеданс, достаточный для обеспечения необходимого тока через предохранительное устройство, чтобы он отключил питание (<0,4 сек).
  • Должна иметь хорошую коррозионную стойкость.
  • Должна быть способной рассеивать большой ток короткого замыкания.

Описание систем заземления

Процесс соединения металлических частей электрических аппаратов и оборудования с массой земли металлическим устройством, имеющим незначительное сопротивление, называется заземлением. При заземлении токоведущие части приборов непосредственно соединены с землей. Заземление обеспечивает обратный путь для тока утечки и, следовательно, защищает оборудование энергосистемы от повреждений.

Когда неисправность возникает в оборудовании, во всех трех его фазах образуется дисбаланс тока. Заземление разряжает ток повреждения на землю и, следовательно, восстанавливает рабочий баланс системы. У этих защитных систем есть несколько преимуществ, таких как устранение перенапряжения через разрядку ее на землю. Заземление обеспечивает безопасность оборудования и повышает надежность обслуживания.

Метод зануления

Зануление означает подключение несущей части оборудования к земле. Когда неисправность возникает в системе, создается опасный потенциал на внешней поверхности оборудования, и любой человек или животное, случайно прикоснувшись к поверхности, могут получить удар током. Зануление сбрасывает опасные токи на землю и, следовательно, нейтрализует токовый удар.

Оно также защищает оборудование от молниеносных ударов и обеспечивает путь разряда от разрядников и других гасящих устройств. Это достигается путем соединения частей установки с землей заземляющим проводником или электродом в тесном контакте с почвой, размещенной на некотором расстоянии ниже уровня грунта.

Разница между заземлением и занулением

Одним из основных различий между заземлением и занулением является то, что при заземлении несущая токопроводящая часть соединена с землей, тогда как при занулении поверхность приборов соединяются с землей. Другие различия между ними объясняются ниже в виде сравнительной таблицы.

Сравнительная таблица

Основы для сравнения

Заземление

Зануление

Определение

Токопроводящая часть соединена с землей

Корпус оборудования подключен к земле

Местонахождение

Между нейтралью оборудования и землей

Между корпусом оборудования и землей, который помещен под земную поверхность

Нулевой потенциал

Не имеет

Есть

Защита

Защитить оборудование энергосистемы

Защитить человека от поражения электрическим током

Путь

Указывается путь возврата к текущему заземлению

Разряжает электрическую энергию на землю

Типы

Три (сплошное сопротивление)

Пять (труба, плита, заземление электрода, заземление и зануление)

Цвет провода

Черный

Зеленый

Использование

Для балансировки нагрузки

Для предотвращения поражения электрическим током

Примеры

Нейтраль генератора и силового трансформатора подключенная к земле

Корпус трансформатора, генератора, двигателя и т. д. подключен к земле

Защитные провода TN

Данные типы систем заземления имеют одну или несколько непосредственно заземленных точек от источника энергии. Открытые проводящие части установки подключаются к этим точкам с помощью защитных проводов.

В мировой практике используется двухбуквенный код.

Используемые буквы:

  • T (французское слово Terre означает «земля») - прямое соединение точки с землей.
  • I - ни одна точка не подключена к земле из-за высокого импеданса.
  • N - прямое подключение к нейтрали источника, который, в свою очередь, подключен к земле.

Основываясь на сочетании этих трех букв, существуют виды систем заземления: TN, TN-S, TN-C, TN-CS . Что это означает?

В системе заземления типа TN одна из точек источника (генератор или трансформатор) подключается к земле. Эта точка обычно является точкой звезды в трехфазной системе. Корпус подключенного электрического устройства подключается к земле через эту точку заземления со стороны источника.

На рисунке выше: PE - Акроним для Protective Earth - это проводник, который соединяет открытые металлические части электрической установки потребителя с землей. N называется нейтральным. Это проводник, соединяющий звезду в трехфазной системе с землей. По этим обозначениям на схеме, сразу понятно, какая система заземления относится к системе TN.

Нейтральная линия TN-S

Это система, имеющая отдельные нейтральные и защитные проводники по всей схеме электроустановок.

Защитный проводник (PE) представляет собой металлическое покрытие кабеля, питающего установки или отдельный проводник.

Все открытые проводящие части с установкой подключены к этому защитному проводнику через основную клемму установки.

Система TN-C-S

Это типы систем заземления система, в которых нейтральные и защитные функции объединены в один проводник системы.

В системе заземления нейтрали TN-CS, также известной как Protective Multiple Earthing, проводник PEN называется объединенным проводником нейтральной и заземленной частей.

Проводник PEN системы питания заземлен в нескольких точках, а заземляющий электрод расположен на месте установки потребителя или рядом с ним.

Все открытые проводящие части с установкой соединены проводником PEN с помощью главной заземляющей клеммы и нейтральной клеммы и связаны друг с другом.

Защитная схема TT

Это система защитного заземления, имеющая одну точку источника энергии.

Все открытые проводящие части с установкой, которые соединены с заземленным электродом, электрически не зависят от источника земли.

Изолирующая система IT

Система защитного заземления, не имеющая прямого соединения между токоведущими частями и землей.

Все открытые проводящие части с установкой, которые соединены с заземленным электродом.

Источник либо подключен к земле через сознательно введенный импеданс системы, либо изолирован от земли.

Конструкции защитных систем

Соединение между электроприборами и устройствами с заземляющей пластиной или электродом через толстый провод с низким сопротивлением для обеспечения безопасности называется заземлением или занулением.

Система заземления или зануления в электрической сети работает в качестве меры безопасности для защиты жизни людей, а также оборудования. Основная цель — обеспечить альтернативный путь для прохождения опасных потоков, чтобы можно было избежать несчастные случаи из-за поражения электрическим током и повреждения оборудования.

Металлические части оборудования заземлены или подключены к земле, и если по какой-либо причине изоляция оборудования не срабатывает, то высокие напряжения, которые могут присутствовать во внешнем покрытии оборудования, будут иметь путь сброса на землю. Если оборудование не заземлено, это опасное напряжение может быть передано любому, кто его коснется, что приведет к поражению электрическим током. Цепь замыкается, и предохранитель немедленно срабатывает, если токоведущий провод касается заземленного корпуса.

Существует несколько способов исполнения системы заземления электроустановок, таких как заземление провода или полосы, пластины или штока, заземление занулением или через водопровод. Наиболее распространенными методами являются зануление и устройство пластины.

Заземляющий мат

Заземляющий мат изготавливается путем соединения количества стержней через медные провода. Это уменьшает общее сопротивление схемы. Эти системы электрических заземлений помогают ограничить потенциал земли. Заземляющий мат в основном используется в месте, где должен быть испытан большой ток повреждения.

При проектировании заземляющего мата принимаются во внимание следующие требования:

  1. В случае неисправности напряжение не должно быть опасным для человека при касании токопроводящей поверхности оборудования электрической системы.
  2. Постоянный ток короткого замыкания, который может протекать в заземляющий мат, должен быть довольно большим для работы защитного реле.
  3. Сопротивление грунта низкое, чтобы ток утечки протекал через него.
  4. Конструкция заземляющего мата должна быть такой, чтобы ступенчатое напряжение было меньше допустимого значения, которое будет зависеть от удельного сопротивления грунта, необходимой для изоляции неисправной установки от человека и животных.

Электродная противотоковая защита

При такой системе заземления здания любой провод, стержень, труба или пучок проводников помещается горизонтально или вертикально в грунт рядом с защитным объектом. В распределительных системах заземляющий электрод может состоять из стержня длиной около 1 метра и располагаться в вертикальном положении в земле. При изготовлении подстанций используется заземляющий мат, а не отдельные стержни.

Трубный контур токозащиты

Это наиболее распространенная и лучшая система заземления электроустановок по сравнению с другими системами, подходящими для тех же условий земли и влаги. В этом способе оцинкованная сталь и перфорированная труба с расчетной длиной и диаметром расположены вертикально на постоянно влажной почве, как показано ниже. Размер трубы зависит от текущего тока и типа почвы.

Как правило, размер трубы для системы заземления дома имеет диаметр 40 мм и 2,5 метра в длину для обычной почвы или большей длины в случае сухой и каменистой почвы. Глубина, при которой труба должна быть зарыта, зависит от влажности грунта. Обычно труба располагается вглубь на 3,75 метра. Дно трубы окружено небольшими кусками кокса или древесного угля на расстоянии около 15 см.

Альтернативные уровни угля и соли используются для увеличения эффективной площади земли и, соответственно, для уменьшения сопротивления. Другая труба диаметром 19 мм и минимальной длиной 1,25 метра соединена в верхней части трубы GI через редуктор. Летом уменьшается влажность почвы, что приводит к увеличению сопротивления земли.

Таким образом, выполняются работы по цементному бетонированному основанию, чтобы поддерживать доступность воды летом и иметь землю с необходимыми защитными параметрами. Через воронку, соединенную с трубой диаметром 19 мм, можно добавить 3 или 4 ведра воды. Провод заземления либо GI, либо полоса провода GI с достаточным поперечным сечением для безопасного удаления тока переносится в трубу GI диаметром 12 мм на глубине около 60 см от земли.

Пластинчатое заземление

В этом устройстве системы заземления заземляющая пластина из меди размером 60 см × 60 см × 3 м и оцинкованного железа размером 60 см × 60 см × 6 мм погружается в землю с вертикальной поверхностью на глубине не менее 3 м от уровня земли

Защитная плита вставляется во вспомогательные слои древесного угля и соли с минимальной толщиной 15 см. Провод заземления (GI или медный провод) плотно крепится болтами к заземляющей пластине.

Медная пластина и медная проволока обычно не используются в защитных схемах из-за их более высокой стоимости.

Подключение заземления через водопровод

В этом типе GI или медный провод соединяются с водопроводной сетью с помощью стальной связующей проволоки, которая закрепляется на медном свинце, как показано ниже.

Водопровод состоит из металла и расположен ниже поверхности земли, т. е. непосредственно соединен с землей. Поток тока через GI или медный провод непосредственно заземляется через водопровод.

Расчет сопротивления заземляющего контура

Сопротивление одиночной полосы стержня, зарытого в землю, составляет:

R = 100xρ / 2 × 3,14 × L (loge (2 x L x L / W x t)), где:

ρ - устойчивость почвы (Ω ом),

L - длина полосы или проводника (см),

w - ширина полосы или диаметра проводника (см),

t - глубина захоронения (см).

Пример: Рассчитайте сопротивление заземляющей полосы. Провод диаметром 36 мм длиной 262 метра на глубине 500 мм в грунте, сопротивление земли составляет 65 Ом.

R - сопротивление заземляющего стержня в Вт.

r - Сопротивление грунта (Омметр) = 65 Ом.

Измеритель l - длина стержня (см) = 262 м = 26200 см.

d - внутренний диаметр стержня (см) = 36 мм = 3,6 см.

h - глубина скрытой полосы / стержня (см) = 500 мм = 50 см.

Сопротивление заземляющей полосы / проводника (R) = ρ / 2 × 3,14 x L (loge (2 x L x L / Wt))

Сопротивление заземляющей полосы / проводника (R) = 65 / 2 × 3,14 x 26200 x ln (2 x 26200 x 26200 / 3,6 × 50)

Сопротивление заземляющей полосы / проводника (R) = 1,7 Ом.

Для вычисления количества заземляющего стержня можно применять правило большого пальца.

Примерное сопротивление электродов Rod / Pipe можно рассчитать, используя сопротивление стержневых/трубных электродов:

R = K x ρ / L, где:

ρ - сопротивление земли в Омметре,

L - длина электрода в измерителе,

d - диаметр электрода в измерителе,

K = 0,75, если 25 <L / d <100.

K = 1, если 100 <L / d <600.

K = 1,2 o / L, если 600 <L / d <300.

Число электродов, если найти формулу R (d) = (1,5 / N) x R, где:

R (d) - требуемое сопротивление.

R - сопротивление одиночного электрода

N - количество электродов, установленных параллельно на расстоянии от 3 до 4 метров.

Пример: рассчитать сопротивление заземляющей трубы и количество электродов для получения сопротивления 1 Ом, резистивность грунта от ρ = 40, длина = 2,5 метра, диаметр трубы = 38 мм.

L / d = 2,5 / 0,038 = 65,78, так что K = 0,75.

Сопротивление электродов трубы R = K x ρ / L = 0,75 × 65,78 = 12 Ω

Один электрод — сопротивление - 12 Ом.

Для получения сопротивления 1 Ом общее количество требуемых электродов = (1,5 × 12) / 1 = 18

Факторы, влияющие на сопротивление земли

Код NEC требует минимальной длины заземляющего электрода длиной 2,5 метра для контакта с почвой. Но есть некоторые факторы, которые влияют на сопротивление земли защитной системы:

  1. Длина/глубина заземляющего электрода. Увеличение длины вдвое снижает сопротивление поверхности до 40 %.
  2. Диаметр заземляющего электрода. Удвоенное увеличение диаметра заземлителя снижает сопротивление грунту только на 10 %.
  3. Количество заземляющих электродов. Для повышения эффективности устанавливаются дополнительные электроды на глубину основных заземляющих электродов.

Строительство защитных электросистем жилого дома

В настоящее время земляные конструкции являются предпочтительным методом заземления, особенно для электрических сетей. Электричество всегда следует по пути наименьшего сопротивления и отводит максимальный ток от цепи в заземляющие ямы, предназначенные для уменьшения сопротивления, в идеале до 1 Ом.

Для достижения этой цели:

  1. Площадь 1,5 м х 1,5 м выкапывается на глубину до 3 м. Яма наполовину заполняется смесью древесного угольного порошка, песка и соли.
  2. GI-пластина 500 мм х 500 мм х 10 мм помещается в середину.
  3. Устанавливают соединения между заземляющей пластиной для системы заземления частного дома.
  4. Остальная часть ямы заполняется смесью угля, песка, соли.
  5. Для подключения заземляющей пластины к поверхности можно использовать две полосы GI с поперечным сечением 30 мм х 10 мм, но предпочтительной является 2,5-дюймовая труба GI с фланцем в верхней части.
  6. Кроме того, верхняя часть трубы может быть покрыта особым устройством, чтобы предотвратить проникновение грязи и пыли и засорение заземляющей трубы.

Монтаж системы заземления и преимущества:

  1. Древесный угольный порошок является отличным проводником и предотвращает коррозию металлических деталей.
  2. Соль растворяется в воде, что значительно увеличивает проводимость.
  3. Песок позволяет пропускать воду через всю яму.

Чтобы проверить эффективность ямы, убедитесь, что разность напряжений между ямой и нейтралью сетевого питания составляет менее 2 вольт.

Сопротивление ямы должно поддерживаться на уровне менее 1 Ом, расстояние до 15 м от защитного проводника.

Электрический удар

Электрический удар (электрошок) возникает, когда две части тела человека контактируют с электрическими проводниками цепи, которая имеет разные потенциалы и создает разницу потенциалов по всему телу. Тело человека имеет сопротивление, и когда оно соединено между двумя проводниками при разном потенциале, цепь образуется через тело, и будет поступать ток. Когда человек контактирует только с одним проводником, цепь не образуется, и ничего не происходит. Когда человек контактирует с проводниками цепи, независимо от того, какое в нем есть напряжение, всегда имеется вероятность получения травмы от электротока.

Оценка риска удара молнии для жилых домов

Некоторые дома имеют больше шансов привлечь молнию, чем другие. Они увеличиваются в зависимости от высоты здания и близости к другим домам. Близость определяется как тройное расстояние от высоты дома.

Для того, чтобы определить, насколько уязвимым является жилой дом для ударов молнии, можно использовать такие данные:

  1. Низкий риск. Одноуровневые частные жилые дома в близком окружении других домов одинаковой высоты.
  2. Средний риск. Двухуровневый частный дом, окруженный домами с подобными высотами или окруженный домами меньших высот.
  3. Высокий риск. Изолированные дома, которые не окружены другими структурами, двухэтажными домами или домами с меньшей высотой.

Независимо от вероятности удара молнии, правильное использовании важных компонентов молниезащиты поможет защитить любой жилой дом от таких повреждений. Системы молниезащиты и заземления требуются в жилом доме, чтобы удар молнии отводился в землю. Система обычно включает в себя заземленный стержень с медным соединением, который установлен в грунте.

При установке схемы молниезащиты в доме выполните следующие требования:

  1. Наземные электроды должны иметь длину не менее половины 12 мм и на 2,5 м в длину.
  2. Рекомендуется использовать медные соединения.
  3. Если на участке системы каменистая почва или расположены инженерные подземные линии, запрещается использование вертикального электрода, необходим только горизонтальный проводник.
  4. Он должен быть углублен на расстоянии не менее 50 см от земли и простираться не менее чем на 2,5 м от дома.
  5. Системы заземления частного дома должны быть взаимосвязаны с использованием проводника того же размера.
  6. Соединительные элементы для всех подземных систем металлических трубопроводов, таких как водопроводные или газовые трубы, должны быть расположены в пределах 8 м от дома.
  7. Если все системы уже были соединены до установки молниезащиты, требуется только привязать ближайший электрод к системе водопроводов.

Все люди, живущие или работающие в жилых, общественных зданиях постоянно находятся в тесном контакте с электрическими системами и оборудованием и должны быть надежно защищены от опасных явлений, которые могут возникнуть из-за коротких замыканий или очень высоких напряжений от разряда молнии.

Для достижения этой защиты системы заземления электрических сетей должны быть спроектированы и установлены в соответствии со стандартными государственными требованиями. По мере развития электротехнических материалов требования надежности защитных устройств повышаются.

fb.ru

Что такое заземление и для чего оно предназначено

Для того, чтобы обеспечить надежную защиту при работе под напряжением, производится заземление электроустановок. Защитное заземление это преднамеренное электрическое соединение корпуса установки с заземляющим устройством. По принципу действия все заземление разделяется на два типа. Оно может выполняться в виде защитного заземления и зануления, у которых функция совершенно одинаковая, заключающаяся в защите людей от воздействия электрического тока, в случае прикосновения к корпусу или другим частям при нарушенной изоляции.

Суть защитного заземления

При устройстве защитного защемления, осуществляется преднамеренное соединение частей электроустановок и заземляющего устройства. Таким образом, обеспечивается электробезопасность при случайном прикосновении к тем или иным частям, оказавшимся под напряжением. Данная ситуация, как правило, возникает при пробое изоляции, когда возникает напряжение между корпусом и фазой. При наличии заземления, ток не будет представлять опасности, поскольку в качестве проводника будет выступать защитное заземление, у которого очень низкое сопротивление.

Основными составными частями заземления служит непосредственно заземлитель и заземляющие проводники. Заземлители могут быть естественными и искусственными. В первом случае, это металлические конструкции, имеющие надежное соединение с землей. Заземлители искусственного происхождения представляют собой стальные стержни, трубы или уголки, длина которых должна быть не менее 2,5 м. Они забиваются в землю и соединяются между собой с помощью приваренной проволоки или стальных полос. Чтобы заземление было более эффективным, необходимо снизить его сопротивление, путем увеличения числа искусственных заземлителей.

Устройство защитного зануления

Суть защитного зануление состоит в преднамеренном электрическом соединении определенных частей электроустановок, имеющих глухозаземленную нейтраль с нулевым проводом.

Как правило, такие электроустановки не находятся под нормальным напряжением. В этих случаях, любая фаза, замыкающаяся на корпус, приводит к ее короткому замыканию с нулевым проводом. Возникает ток с очень большим значением, поэтому, оборудование должно быть быстро и полностью отключено. Именно в этом и состоит основная функция зануления. Вся конструкция защитного зануления состоит из нулевого рабочего и нулевого защитного проводника.

electric-220.ru

47. Назначение и принцип действия защитного заземления

Защитное заземление – преднамеренное электрическое соединение с землей металлических нетоковедущих частей, которые могут оказаться под напряжение вследствие замыкания на корпус. Назначение заземления – устранение опасности поражения электротоком в случае соприкосновения к корпусу.

Защитным устройством называется совокупность заземлителя и заземляющих проводников. Заземлителем называется проводник или совокупность металлически соединенных между собой проводников, находящихся в соприкосновении с землей.

В зависимости от места размещения заземлителя относительно оборудования различают два типа заземляющих устройств: выносное и контурное.

Выносное характеризуется размещением заземлителя за пределами площадки, на которой размещено оборудование или сосредоточено в части этой площадки. Его используют в установка до 1000 В.

Контурное характеризуется размещение электродов по контуру площадки, на которой находится оборудование.

Различают заземлители искусственные, предназначенные исключительно для целей заземления и естественные – находящие в земле металлические предметы иного назначения. В качестве искусственных применяют вертикальные и горизонтальные. Вертикальные – стальные трубы диаметром 5-6 см или прутковая сталь, диаметром не менее 10 мм. Для связи вертикальных и в качестве самостоятельных применяют полосовую сталь сечением 4*12 мм и сталь круглого сечения диаметром не менее 6 мм.

Работа заземления зависит от типа грунта, типа и размера проводника, климатических условий.

48. Назначение и принцип действия защитного зануления

Зануление – преднамеренное электрическое соединение металлических нетоковедущих частей электроустановки, могущих оказаться под напряжением с глухозаземленной нейтралью. Проводник, обеспечивающий указанные соединения называется нулевым защитным проводником.

Назначение зануления – устранение опасности поражения током в случае прикосновения к корпусу. Принцип действия – превращение замыкания на корпус в короткое замыкание с целью вызвать большой ток, способный обеспечить срабатывание защиты (плавкие предохранители и тд) и автоматически отключить поврежденную установку от сети. И снижает напряжение зануленных металлических нетоковедущих частей.

49.Назначение и принцип действия защитного отключения

Защитным отключением называется система за­щиты, обеспечивающая безопасность путем отключения аварий­ного участка или сети в целом при возникновении замыкания на корпус или непосредственно на землю, с временем действия не более 0,1—0,2 с. Основными элементами защитного отключения являются прибор защитного отключения и автоматический выключатель. Основные требования следующие:

- высокая чувствительность – способность реагировать на малые изменения;

- малое время отключение;

- селективносить действия – избирательность – способность отключать от сети лишь поврежденные объекты;

- способность осуществлять самоконтроль исправности;

- достаточная надежность – постоянная готовность к действию.

studfiles.net

Защитное заземление - что это такое и для чего предназначено?

Защитное заземление относится к категории специальных работ, производимых с целью преднамеренного электрического подсоединения не токоведущих металлов, оказывающихся под высоким напряжением, к грунту или его эффективным эквивалентам.

Что это такое?

Итак, что называется защитным заземлением. Традиционно процесс заземления представляет собой объединение любой точки электросети или оборудования, а также электрических установок с устройствами заземляющего типа. Данный вид устройств является совокупностью одного или сразу нескольких эффективных заземляющих элементов и специальных проводников, пригодных для заземления.

Защитные заземлители в виде одного элемента или совокупности проводящих частей, чаще всего прибывают в стандартном электрическом контакте с грунтом. К важным конструкционным особенностям заземлителя относится количество проводящих частей, их длина и тип размещения электродов, что рассчитывается в зависимости от предъявляемых к заземлителю требований и способностей земли выполнять защиту от электрического тока.

Заземление частного дома

Применяемые в настоящее время защитные заземлители бывают не только естественными, но и искусственного типа. Первый вариант является наиболее распространенным, и чаще всего бывает представлен:

  • водопроводными трубами, проложенными в грунтах;
  • конструкциями построек из металла, имеющих достаточное соединение с грунтом;
  • кабельными оболочками из металла, за исключением алюминиевых проводов;
  • обсадными трубами, установленными внутри артезианских скважин.

Категорически нельзя применять для заземления трубопроводные системы, заполненные газом или любой горючей жидкостью, а также трубы, применяемые на тепловых трассах.

Заземлитель естественного типа подсоединяется к сети заземления минимум в паре мест.

Все используемые на сегодняшний день искусственные защитные заземлители могут быть представлены:
  • стальными трубами, диаметр которых составляет 30-50 мм при толщине стенок в 3,5 мм и длине 200-300 см;
  • стальными полосами, имеющими толщину в 0,4 см и более;
  • стальным уголком толщиной в 0,4 см и более;
  • стальными прутами, имеющими диаметр в 1 см и более, при длине около 10-11 м.

Следует отметить, что применение искусственных заземлителей в грунтах агрессивного типа, включая излишне кислые или щелочные почвы, сопровождается коррозийными изменениями металлов. Именно поэтому заземлители в таких почвах должны быть представлены медью, омедненными или оцинкованными элементами.

При выборе искусственного заземлителя нужно избегать использования алюминиевых кабельных оболочек и голых алюминиевых проводников, потому что под воздействием почвы происходит окисление.

При проведении электропроводки важным шагом является монтаж заземления. В статье расскажем о том, для чего нужен провод заземления и как его выбрать.

Инструкция по тестированию диода мультиметром приведена тут.

Схему подключения УЗО без заземления смотрите в этой статье. Можно ли исключить заземление?

Назначение

Рассмотрим, для каких целей применяется защитное заземление. На сегодняшний день, к основным сферам применения традиционной системы защитного заземления относятся:

  • использование электрических установок с напряжением не выше 1 тыс. V, внутри сети с заизолированной централью токового источника;
  • использование электрических установок с напряжением свыше 1 тыс. V, внутри сетей с заизолированной или глухо-заземленной централью токового источника.

Общая схема молниезащиты дома

Согласно установленным нормативам ГОСТ-12.1.030-8, защитным заземлением должны обладать все электрические установки в условиях:

  • номинальных показателей напряжения, равного 380 V или больше;
  • переменных токовых величин, равных показателям 440 V или больше;
  • любого постоянного тока.

Обязательным является эффективное защитное заземление всех металлических элементов электрической установки или оборудования, которые доступны для людей, а также не обладают другими видами надежной защиты.

Особое внимание уделяется защитному заземлению при номинальном напряжении в пределах 42-380 V, переменных показателей — в диапазоне 110-440 V и при постоянном токе, если работы осуществляются в зоне повышенной опасности.

Применение защитных заземляющих схем предупреждает поражение человека электрическим током в результате случайного прикосновения к электроприборам.

Принцип действия

Главным действием является снижение показателей напряжения при прикосновении к корпусу электрических приборов до безопасных для жизни и здоровья величин, что обуславливается малым сопротивлением заземлителя.

Таким образом, основное защитное воздействие системы заземления базируется на паре принципов, представленных:

  • Снижением до безопасных показателей разности потенциалов, которые возникают между подлежащим заземлению токопроводящим прибором и токопроводящими предметами, обладающими естественным типом заземления.
  • Токоотводом утечки в результате контакта токопроводящего предмета, подлежащего заземлению и фазной жилы кабеля. Грамотно спроектированная система при проявлении токовой утечки вызывает немедленное срабатывание устройств защиты или УЗО.

Системы, имеющие глухо-заземлённую нейтраль, характеризуются стандартным срабатыванием предохранителя в результате попадания фазного потенциала на поверхность с заземлением.

Принципиальная схема заземления

Как показывает практика, наибольшую эффективность система заземления показывает исключительно в комплексе с установкой УЗО-приборов. При таких условиях значительные нарушения в изоляции потенциала на заземлённом предмете не превышают безопасные величины.

Нужно помнить, что только правильно составленная схема подключения устройства защитного отключения и заземления позволяет выполнить отключение неисправного участка в сети за максимально короткое время.

Устройство защитного заземления

Главный элемент представлен заземляющим контуром, состоящим из электродов металлического типа, которые размещаются внутри земли.

Чаще всего электроды являются стержнями, уголками, трубами или листами, которые рассеивают токовые величины, а показатели эффективности такого процесса напрямую зависят от качественных характеристик грунта и климатических особенностей.

Заземление в линию

Прежде чем приступить к самостоятельному обустройству эффективной системы заземления, требуется правильно определиться с параметрами электрической проводимости грунта и уровнем сопротивления:

  • для глинистых грунтов — 20 Ом х М;
  • для песчаных грунтов — 10-60 Ом х М;
  • для садового грунта — 40 Ом х М;
  • для гравийного грунта — 300 Ом х М.

Правильное устройство заземления является необходимым условием при использовании сетей электрического снабжения, включая частные домовладения и квартиры.

Заземление треугольник

Такая не слишком сложная система безопасного пользования электричеством позволяет предотвратить поражение током.

Подсоединение корпуса к заземлителю может осуществляться при помощи стального провода с сечением в 2,4 см. Внутри грунта элементы соединяются стальной шиной с сечением 5,0-12,0 см, а также медным проводом с сечением в 2,5 см.

Следует отличать механизм защитного заземления от защитного зануления, так как в первом случае выполняется подсоединение корпуса и других деталей оборудования к выбранным вариантам заземлителя.

Монтаж защитного заземления

В процессе самостоятельного монтажа системы защитного заземления, на треугольном контуре надежно фиксируется проводник заземляющего типа.

Особенностью установки электродов является отсутствие покрытия в виде диэлектрических антикоррозионных составов.

В этом случае допускается только нанесение лака на свариваемые участки.

Особые требования предъявляются также к проводнику, который протягивается от контура до электрической установки:

  • высокие показатели прочности;
  • гарантированная долговечность;
  • устойчивость к коррозийным изменениям.

В качестве проводников рекомендуется применять стальные ленты размерами 0,5х3,0 см или металлические стержни диаметром не менее 1,0 см. При незначительных нагрузках может также применяться традиционная катанка.

Схема монтажа заземления

В соответствии с современными требованиями и стандартами, электрическая проводка внутри жилых зданий производится трёхжильными кабелями, в которых один из проводов является заземляющим. Защиту требуется подключать на участках от контура до корпуса эксплуатируемого электрического прибора.

Все электрические розетки и вилки приборов должны в обязательном порядке иметь специальные заземляющие контакты, подсоединяемые с корпусу.

Попадание фазы на прибор в условиях нарушения изолирующего слоя, сопровождается возникновением токовой утечки, в результате чего срабатывает УЗО или защитные автоматы.

Видео на тему

proprovoda.ru


Видеоматериалы

24.10.2018

Опыт пилотных регионов, где соцнормы на электроэнергию уже введены, показывает: граждане платить стали меньше

Подробнее...
23.10.2018

Соответствует ли вода и воздух установленным нормативам?

Подробнее...
22.10.2018

С начала года из ветхого и аварийного жилья в республике были переселены десятки семей

Подробнее...
22.10.2018

Столичный Водоканал готовится к зиме

Подробнее...
17.10.2018

Более 10-ти миллионов рублей направлено на капитальный ремонт многоквартирных домов в Лескенском районе

Подробнее...

Актуальные темы

13.05.2018

Формирование энергосберегающего поведения граждан

 

Подробнее...
29.03.2018

ОТЧЕТ о деятельности министерства энергетики, ЖКХ и тарифной политики Кабардино-Балкарской Республики в сфере государственного регулирования и контроля цен и тарифов в 2012 году и об основных задачах на 2013 год

Подробнее...
13.03.2018

Предложения организаций, осуществляющих регулируемую деятельность о размере подлежащих государственному регулированию цен (тарифов) на 2013 год

Подробнее...
11.03.2018

НАУЧИМСЯ ЭКОНОМИТЬ В БЫТУ

 
Подробнее...

inetpriem


<< < Ноябрь 2013 > >>
Пн Вт Ср Чт Пт Сб Вс
        1 2 3
4 5 6 7 8 9 10
11 12 13 14 15 16 17
18 19 20 21 22 23 24
25 26 27 28 29 30  

calc

banner-calc

.