2.2. Обратный пьезоэлектрический эффект. Обратный пьезоэффект. Обратный пьезоэффект


2.2. Обратный пьезоэлектрический эффект. Обратный пьезоэффект

2. Обратный пьезоэлектрический эффект

Наряду с пьезоэлектрическим эффектом существует и обратное ему явление: в пьезоэлектрических кристаллах возникновение по­ляризации сопровождается механическими деформациями. Поэтому, если на металли­ческие обкладки, укрепленные на кри­сталле, подать электрическое напряжение, то кристалл под действием поля поляри­зуется и деформируется.

Легко видеть, что необходимость су­ществования обратного пьезоэффекта сле­дует из закона сохранения энергии и факта существования прямого эффекта. Рассмотрим пьезоэлектрическую пластин­ку (рис. 5) и предположим, что мы сжима­ем ее внешними силами F. Если бы пьезо­эффекта не было, то работа внешних сил равнялась бы потенциальной энергии упруго деформированной пластинки. При наличии пьезоэффекта на пластинке появляются заряды и возникает электрическое поле, которое заключает в себе дополнительную энергию. По закону сохранения энергии отсюда следует, что при сжатии пьезоэлектрической пластинки совершается большая работа, а значит, в ней возникают дополнительные силы F1, противодействующие сжатию. Это и есть силы обратного пьезоэффекта. Из приведенных рассуждений вытекает связь между знаками обоих эффектов. Если в обоих случаях знаки зарядов на гранях одинаковы, то знаки деформаций различны. Если при сжатии пла­стинки на гранях появляются заряды, указанные на рис. 5, то при создании такой же поляризации внешним полем пластинка будет растягиваться.

Рис .5. Связь прямого и обратного пьезоэлектрических эффектов.

Обратный пьезоэлектрический эффект имеет внешнее сходство с электрострикцией. Однако оба эти явления различны. Пьезоэффект зависит от направления поля и при изменении направ­ления последнего на противоположное изменяет знак. Электрострикция же не зависит от направления поля. Пьезоэффект наблю­дается только в некоторых кристаллах, не обладающих центром симметрии. Электрострикция имеет место во всех диэлектриках как твердых, так и жидких.

Если пластинка закреплена и деформироваться не может, то при создании электрического поля в ней появится дополнительное механическое напряжение Его величина s пропорциональна напряженности электрического поля внутри кристалла:

s=-Е (4)

где  - тот же пьезоэлектрический модуль, что и в случае прямого пьезоэффекта. Минус в этой формуле отражает указанное выше соотношение знаков прямого и обратного пьезоэффектов.

Полное механическое напряжение внутри кристалла складывается из напря­жения, вызванного деформацией, и напряжения, возникшего под влиянием элек­трического поля. Оно равно

s=Cu-E (5)

Здесь С есть модуль упругости при деформации одностороннего растяжения (мо­дуль Юнга) при постоянном электрическом поле. Формулы (51.2) и (52.2) являют­ся основными соотношениями в теории пьезоэлектричества.

При написании формул мы выбирали u и Е в качестве незави­симых переменных и считали D и s их функциями. Это, конечно, необязательно, и мы могли бы считать независимыми переменными другую пару величин, одна из которых — механическая, а другая — электрическая. Тогда мы получили бы тоже два линейных соотношения между u, s, Е и D, но с другими коэффициентами. В за­висимости от типа рассматриваемых задач удобны различные формы записи основ­ных пьезоэлектрических соотношений.

Так как все пьезоэлектрические кристаллы анизотропны, то постоянные , С и  зависят от ориентации граней пластинки относительно осей кристалла. Кроме того, они зависят от того, закреплены боковые грани пластинки или свободны (за­висят от граничных условий при деформации). Чтобы дать представление о поряд­ке величины этих постоянных мы приведем их значения для кварца в случае, ког­да пластинка вырезана перпендикулярно оси Х и ее боковые грани свободны:

=4,5; С=7,8 1010 Н/м2; =0,18 Кл/м2.

Рассмотрим теперь пример применения основных соотношений (4) и (5) Положим, что кварцевая пластинка, вырезанная, как указано выше, растягивает­ся вдоль оси X, причем обкладки, касающиеся граней, разомкнуты. Так как заряд обкладок до деформации был равен нулю, а кварц является диэлектриком, то и после деформации обкладки будут незаряженными. Согласно определению элек­трического смещения это значит, что D=0. Тогда из соотношения (4) следует, что при деформации внутри пластинки появится электрическое поле c напряженностью

E=-(/0)u (6)

Подставляя это выражение в формулу (5), находим для

механического на­пряжения в пластинке

s=Cu-(-(/0)u)=C(1+(2/0C))u (7)

Напряжение, как и в отсутствие пьезоэлектрического эффекта, пропорционально деформации. Однако упругие свойства пластинки теперь характеризуются эффек­тивным модулем упругости

С' == С (1 + 2/0С). (8)

который больше С. Увеличение упругой жесткости вызвано появлением добавоч­ного напряжения при обратном пьезоэффекте, препятствующего деформации. Влияние пьезоэлектрических свойств кристалла на его механические свойства характеризуется величиной

К2=2/0C (9)

Квадратный корень из этой величины (К) называется константой электромехани­ческой связи Пользуясь приведенными выше значениями , С и , находим, что для кварца К2~0.01Для всех других известных пьезоэлектрических кристаллов К2 оказывает также малым по сравнению с единицей и не превышает 0,1.

Оценим теперь величину пьезоэлектрического поля. Положим, что к граням кварцевой пластинки, перпендикулярным к оси X, приложено механическое на­пряжение 1 1055 Н/м2. Тогда, согласно (7), деформация будет равна u=1,3 10-6. Подставляя это значение в формулу (6), получаем |E|==5900 В/м=59 В/см. При толщине пластинки, скажем, d==0,5 см напряжение между обкладками будет равно U=Еd~30 В. Мы видим, что пьезоэлектрические поля и напряжения могут быть весьма значительными. Применяя вместо кварца более сильные пьезоэлектрики и используя должным образом выбранные типы деформации, можно полу­чать пьезоэлектрические напряжения, измеряемые многими тысячами вольт.

Пьезоэлектрический эффект (прямой и обратный) широко при­меняется для устройства различных электромеханических преоб­разователей. Для этого иногда используют составные пьезоэлементы, предназначенные для осуществления деформаций разного типа.

На рис.6 показан двойной пьезоэлемент (составленный из двух пластинок), работающий на сжатие. Пластинки вырезаны из крис­талла таким образом, что они одновременно либо сжимаются, либо растягиваются. Если, наоборот, сжимать или растягивать такой пьезоэлемент внешними силами, то между его обкладками появ­ляется напряжение. Соединение пластинок в этом пьезоэлементе соответствует параллельному соединению конденсаторов.

Рис. 6. Двойной пьезоэлемент, работающий на сжатие.

studfiles.net

Обратный пьезоэлектрический эффект - Большая Энциклопедия Нефти и Газа, статья, страница 1

Обратный пьезоэлектрический эффект

Cтраница 1

Обратный пьезоэлектрический эффект ( см. также § 91) - это возникновение деформации в вырезанной определенным образом кварцевой пластинке ( в последнее время вместо кварца применяется титанат бария) под действием электрического поля.  [1]

Обратный пьезоэлектрический эффект заключается в растяжении или сжатии этих кристаллов, помещенных в электрическом поле.  [2]

Обратный пьезоэлектрический эффект наблюдается, когда пьезоэлектрический кристалл помещают в электрическое поле. Этот эфф

xn--90adflmiialse2m.xn--p1ai

Прямой и обратный пьезоэффект, его использование в науке и технике

1. Пьезоэлектрический эффект.

В некоторых кристаллах поляризация может возникнуть и без внешнего поля, если кристалл подвергается механическим деформациям. Это явление, открытое в 1880 г. Пьером и Жаком Кюри, получило название пьезоэлектрического эффекта.

Чтобы обнаружить пьезоэлектрические заряды, на грани кристаллической пластинки накладывают металлические обкладки. При разомкнутых обкладках между ними при деформации появляется разность потенциалов. При замкнутых обкладках на них образуются индуцированные заряды, равные по величине поляризационным зарядам, но противоположные им по знаку, и в цепи, соединяющей обкладки, в процессе деформации возникает ток. Рассмотрим основные особенности пьезоэлектрического эффекта на примере кварца. Кристаллы кварца SiO2 существуют в различных кристаллографических модификациях. Интересующие нас кристаллы (a-кварц) принадлежат к так называемой тригональной кристаллографической системе и обычно имеют форму, показанную на рис.1. Они напоминают шестигранную призму, ограниченную двумя пирамидами, однако имеют еще ряд дополнительных граней. Такие кристаллы характеризуются четырьмя кристаллическими осями, определяющими важные направления внутри кристалла.

Одна из этих осей - Z соединяет вершины пирамид. Три другие X1, Х2, Х3 перпендикулярны к оси Z и соединяют противолежащие ребра шестигранной призмы. Направление, определяемое осью Z, пьезоэлектрически неактивно: при сжатии или растяжении по этому направлению никакой поляризации не происходит. Напротив, при сжатии или растяжении в любом направлении, перпендикулярном к оси Z, возникает электрическая поляризация. Ось Z называется оптической осью кристалла, а оси X1, Х2, Х3 - электрическими или пьезоэлектрическими осями.

Рассмотрим пластинку кварца, вырезанную перпендикулярно к одной из пьезоэлектрических осей X. Ось, перпендикулярную к Z и X, обозначим через Y (рис. 2). Тогда оказывается, что при растяжении пластинки вдоль оси Х на перпендикулярных к ней гранях АВСD и ЕFGН появляются разноименные поляризационные заряды. Такой пьезоэлектрический эффект называется продольным. Если изменить знак деформации, т. е. перейти от растяжения к сжатию, то и знаки поляризационных зарядов изменятся на обратные.

Рис. 1. Кристалл кварца.

Возникновение поляризационных зарядов определенных знаков при данном типе деформации (растяжение или соответственно сжатие) показывает, что концы осей Х неравноправны, и осям Х можно приписать определенные направления (что отмечено на рис. 1 стрелками). Это значит, что при данной деформации знак заряда зависит от того, направлена ли ось Х по внешней нормали к грани или по внутренней. Такие оси с неравноправными концами получили название полярных осей. В отличие от полярных осей Х1, Х2, Х3, концы оси Z совершенно равноправны и она является неполярной осью.

Рис. 2. Кварцевая пластинка, вырезанная перпендикулярно к пьезоэлектрической оси.

Неравноправность концов полярной оси проявляется, конечно, не только в пьезоэлектрическом эффекте, но и в других явлениях. Так, например, скорость химического травления граней, расположенных у разных концов полярной оси, оказывается различной и получающиеся при этом фигуры травления отличаются друг от друга.

Наряду с продольным пьезоэлектрическим эффектом существует также поперечный пьезоэлектрический эффект. Он заключается в том, что при сжатии или растяжении вдоль оси Y возникает поляризация вдоль оси Х и на тех же гранях АВСD и ЕFGН появляются поляризационные заряды. При этом оказывается, что знаки зарядов на каждой грани при сжатии вдоль Y (в поперечном эффекте) такие же, как при растяжении вдоль Х (в продольном эффекте).

Пьезоэлектрический эффект объясняется следующим образом В ионных кристаллах вследствие несовпадения центров положительных и отрицательных ионов имеется электрический момент и в отсутствие внешнего электрического поля. Однако эта поляризация обычно не проявляется, так как она компенсируется зарядами на поверхности. При деформации кристалла положительные и отрицательные ионы решетки смещаются друг относительно друга, и поэтому, вообще говоря, изменяется электрический момент кристалла. Это изменение электрического момента и проявляется в пьезоэлектрическом эффекте.

Рис. 3 качественно поясняет возникновение пьезоэлектрического эффекта в кварце. Здесь схематически показаны проекции положительных ионов Si (заштрихованные кружки) и отрицательных ионов О (светлые кружки) в плоскости, перпендикулярной к оптической оси Z. Этот рисунок не соответствует фактической конфигурации ионов в элементарной ячейке кварца, в которой ионы не лежат в одной плоскости, а их число больше показанного. Он, однако, правильно передает симметрию взаимного расположения ионов, что уже достаточно для качественного объяснения.

Рис. 3, а) соответствует недеформированному кристаллу. На грани A, перпендикулярной к оси X1, имеются выступающие положительные заряды, а на параллельной ей грани В - выступающие отрицательные заряды. При сжатии вдоль оси X1 (рис. 3, б) элементарная ячейка деформируется. При этом положительный ион 1 и отрицательный ион 2 «вдавливаются» внутрь ячейки, отчего выступающие заряды (положительный на плоскости А и отрицательный на плоскости В) уменьшаются, что эквивалентно появлению отрицательного заряда на плоскости А и положительного заряда на плоскости В. При растяжении вдоль оси X1 имеет место обратное (рис. 3, в): ионы 1 и 2 «выталкиваются» из ячейки. Поэтому на грани А возникает дополнительный положительный заряд, а на грани В - отрицательный заряд.

а) б)

в)

Рис. 3. К объяснению пьезоэлектрического эффекта.

Расчеты в теории твердого тела в согласии с опытом показывают, что пьезоэлектрический эффект может существовать только в таких кристаллах, в которых элементарная ячейка не имеет центра симметрии. Так, например, элементарная ячейка кристаллов CsCl (рис. 4) имеет центр симметрии и эти кристаллы не обнаруживают пьезоэлектрических свойств. Расположение же ионов в ячейке кварца таково, что в нем центр симметрии отсутствует, и поэтому в нем возможен пьезоэлектрический эффект.

Рис. 4. Элементарная ячейка кристалла хлористого цезия CsCl.

Величина вектора поляризации Р (и пропорциональная ей поверхностная плотность пьезоэлектрических зарядов о') в определенном интервале изменений пропорциональна величине механических деформаций. Обозначим через и деформацию одностороннего растяжения вдоль оси X:

u=Dd/d, (1)

где d - толщина пластинки, а Dd — ее изменение при деформации. Тогда, например, для продольного эффекта имеем:

P=Px=bu (2)

Величина b называется пьезоэлектрическим модулем. Знак b может быть как положительным, так и отрицательным. Так как и безразмерная величина, то b измеряется в тех же единицах, что и Р, т.е. в Кл/м2. Величина поверхностной плотности пьезоэлектрических зарядов на гранях, перпендикулярных к оси X, равна s'=Рх

Вследствие возникновения пьезоэлектрической поляризации при деформации изменяется и электрическое смещение D внутри кристалла. В этом случае в общем определении смещения под Р нужно понимать сумму Рe+Pu, где Pe oбусловлено электрическим полем, а Рu — деформацией. В общем случае направления Е, Pe и Рu не совпадают и выражение для D получается сложным. Однако для некоторых направлений, совпадающих с осями высокой симметрии, направления указанных векторов оказываются одинаковыми. Тогда для величины смещения можно написать:

D=e0eE+bu, (3)

где Е - напряженность электрического поля внутри кристалла, а e - диэлектрическая проницаемость при постоянной деформации. Соотношение справедливо, например, при деформации одностороннего растяжения (сжатия) вдоль одной из электрических осей X. Оно является одним из двух основных соотношений в теории пьезоэлектричества (второе соотношение приведено).

Пьезоэлектрический эффект возникает не только при деформации одностороннего растяжения, но и при деформациях сдвига.

Пьезоэлектрические свойства наблюдаются, кроме кварца, у большого числа других кристаллов. Гораздо сильнее, чем у кварца, они выражены у сегнетовой соли. Сильными пьезоэлектриками являются кристаллы соединений элементов 2-й и 6-й групп периодической системы (СdS, ZnS), а также многих других химических соединений.

2. Обратный пьезоэлектрический эффект.

Наряду с пьезоэлектрическим эффектом существует и обратное ему явление: в пьезоэлектрических кристаллах возникновение поляризации сопровождается механическими деформациями. Поэтому, если на металлические обкладки, укрепленные на кристалле, подать электрическое напряжение, то кристалл под действием поля поляризуется и деформируется.

Легко видеть, что необходимость существования обратного пьезоэффекта следует из закона сохранения энергии и факта существования прямого эффекта. Рассмотрим пьезоэлектрическую пластинку (рис. 5) и предположим, что мы сжимаем ее внешними силами F. Если бы пьезоэффекта не было, то работа внешних сил равнялась бы потенциальной энергии упруго деформированной пластинки. При наличии пьезоэффекта на пластинке появляются заряды и возникает электрическое поле, которое заключает в себе дополнительную энергию. По закону сохранения энергии отсюда следует, что при сжатии пьезоэлектрической пластинки совершается большая работа, а значит, в ней возникают дополнительные силы F1, противодействующие сжатию. Это и есть силы обратного пьезоэффекта. Из приведенных рассуждений вытекает связь между знаками обоих эффектов. Если в обоих случаях знаки зарядов на гранях одинаковы, то знаки деформаций различны. Если при сжатии пластинки на гранях появляются заряды, указанные на рис. 5, то при создании такой же поляризации внешним полем пластинка будет растягиваться.

mirznanii.com

Обратный пьезоэффект - Большая Энциклопедия Нефти и Газа, статья, страница 4

Обратный пьезоэффект

Cтраница 4

В прямом пьезоэффекте происходит превращение механической энергии в электрическую, в обратном пьезоэффекте - преобразование электрической энергии в механическую. Поэтому пьезоэлектрические приборы называют электромеханическими преобразователями. Ими являются все электроакустические приборы.  [46]

В устройстве феррикон [16] применен эффект электрически управляемого изменения толщины керамической пластины ( обратный пьезоэффект) и используется мелкозернистая сегнетокера-мика. Исходным состоянием для записи является такое, при котором все векторы поляризации доменов выстроены электрическим полем вдоль нормали к плоскости пластины. На освещаемом участке происходит переориентация доменов, и результатом записи являются локальные изменения толщины керамической пластины.  [47]

Она состоит из двух пьезокристаллических кристаллов, один из которых ( основан на обратном пьезоэффекте) служит для генерации ультразвуковых колебаний, а второй ( основан на прямом пьезоэффекте) - для приема ультразвука, рассеянного кровью.  [49]

Импульс ультразвуковых механических колебаний, посылаемых в контролируемое изделие, создается в пьезопреобразователе за счет обратного пьезоэффекта. Для этого на пьезоэлемент пьезопреобразова-теля подается короткий электрический импульс, вырабатываемый генератором зондирующих импульсов. Отраженный от донной поверхности или от дефекта механический импульс УЗК принимается тем же или другим пьезопреобразователем, работающим в режиме приема, и преобразовывается посредством прямого пьезоэффекта в электрический сигнал. Далее сигнал, усиленный с помощью усилителя, подается на вертикальные отклоняющие элементы экрана, определяющие положение луча на экране дефектоскопа по высоте.  [51]

Мы уже видели, что для колеблющейся кварцевой пластины имеется определенный предел механической прочности; из-за обратного пьезоэффекта, приводящего к деформации пластины, нельзя прикладывать к ней сколь угодно большое электрическое напряжение.  [53]

Действие пьезоэлектрических излучателей и стабилизаторов частоты, изготовляемых обычно из кварца и титаната бария, основано на обратном пьезоэффекте. По аналогии с прямым пьезоэффектом различают продольный и поперечный обратные пьезоэффекты.  [55]

Коэффициент d ( пьезомодуль) у одного и того же диэлектрика одинаков как для прямого, так и для обратного пьезоэффекта. В качестве пьезоэлектрических применяются материалы с ярко выраженными пьезосвой-ствами: пьезоэлектрические монокристаллы и пьезокера-мика. Обычная сегнетокерамика как изотропная среда не обладает пьазосвойствами. В итоге векторы спонтанной поляри-зованности доменов внешним полем ориентируются, из изотропного тела керамика превращается в анизотропное, обладающее устойчивой остаточной поляризованно-стью РО, направление которой определена поляризующим полем. Это приводит к появлению пьезоэффекта.  [57]

При подаче управляющего напряжения определенной полярности на вывод 4 пьезокерамическая пластина 6 растягивается, а пластина 7 сжимается нз-за обратного пьезоэффекта.  [58]

Из того факта, что линейный электрооптический эффект возможен только в кристаллах пьезоэлектриков, следует, что линейный электрооптический эффект и обратный пьезоэффект осуществляются в кристалле параллельно друг другу. Последнее обстоятельство требует при описании электрооптического эффекта учитывать пьезооп-тический эффект: изменение оптических констант за счет деформаций, вызванных обратным пьезоэлектрическим эффектом.  [59]

При подаче электрического тока на грани такого кристалла с помощью специальных электродов его размеры будут меняться с частотой, равной частоте тока - в этом и состоит обратный пьезоэффект.  [60]

Страницы:      1    2    3    4    5

www.ngpedia.ru

Пьезоэлектрический эффект обратный - Энциклопедия по машиностроению XXL

Пьезоэлектрический эффект пьезоэффект), открытый французскими физиками братьями Пьером и Полем-Жаном Кюри в 1880 г., представляет собой появление электрических зарядов на поверхностях некоторых кристаллов при воздействии на них механических усилий прямой пьезоэлектрический эффект ) и деформацию кристаллов при воздействии на него электрического поля обратный пьезоэлектрический эффект ). Обратный пьезоэффект, в отличие от электрострикции (стр. 1G0), является н е ч е т н ы м эффектом, т. е. при изменении знака приложенного к кристаллу электрического напряжения имеет место и изменение знака деформации (т. е. происходит либо растяжение, либо сжатие). Кристаллические вещества, в которых наблюдается пьезоэлектрический эффект, называются пьезоэлектриками.  [c.250] Пьезоэлектрические материалы. В приборах акустического контроля чаще всего используют контактные преобразователи, принцип работы которых основан на пьезоэлектрическом эффекте. Активный элемент такого преобразователя изготовляют из материала, обладающего пьезоэлектрическими свойствами. Прямым пьезоэлектрическим эффектом называют появление в некоторых веществах электрической поляризации под действием приложенных к ним механических напряжений или деформаций. Обратный пьезоэлектрический эффект заключается в возникновении механического напряжения и деформации в пьезоматериале, помещенном в электрическом поле. Обратный пьезоэффект используют для излучения, а прямой — для приема акустических колебаний.  [c.60]

В ультразвуковых дефектоскопах используются пьезоэлектрические эффекты некоторых кристаллов, например кварца и титаната бария, выражающиеся в том, что под действием механических колебаний (в данно.м случае колебаний ультразвуковой волны) на обкладках кристаллической пластинки появляется переменное электрическое напряжение (электрические заряды переменного знака). Ультразвуковые колебания преобразуются, таким образом, в электрические (так называемый прямой пьезоэлектрический эффект). Наоборот, при подводе к пластинке переменного электрического напряжения от генератора высокой частоты, пластинка сжимается и растягивается соответственно колебаниям приложенного напряжения, т. е. она начинает излучать ультразвуковые волны (обратный пьезоэлектрический эффект).  [c.362]

Если к пьезоэлектрической пластине подвести переменное напряжение, то возникает обратный пьезоэлектрический эффект, проявляющийся в изменении размеров пластины, которое происходит с частотой приложенного напряжения.  [c.503]

Щуп через тонкий слой машинного масла передает звуковые колебания трубе. Ультразвуковой луч направленно пронизывает трубу, претерпевая на своем пути многократные преломления. Он перемещается по трубе до тех пор, пока не встретит на пути границу отражения, которой могут быть подкладное кольцо сварного шва, неровности нижнего корневого валика при сварке труб без подкладных колец или дефект в сварном шве или в самой трубе. Отразившись от границы раздела, луч возвращается обратно в излучатель и вызывает колебание пластинки титаната бария. Проявляется обратный пьезоэлектрический эффект механические колебания пластинки преобразовываются в электрические. Они передаются в приемный усилитель, а затем поступают на экран электроннолучевой трубки,  [c.230]

В простейшем случае кварцевый резонатор представляет собой конструктивно обособленную электромеханическую резонансную колебательную систему, активный (т. е. совершающий колебания) элемент которой изготовлен из монокристалла кварца [13]. Для построения систем самовозбуждения кварцевых резонаторов используют прямой и обратный пьезоэлектрический эффекты, благодаря чему указанные системы получаются весьма простыми как в конструктивном, так и в схемном отношении.  [c.444]

Другая группа ФВП, находящих широкое применение в современной информационной технике, — объемные резонаторы на базе пьезоэлектрической керамики (типа ЦТС-22 и др.). Для построения систем самовозбуждения здесь также используют прямой и обратный пьезоэлектрический эффект. Резонаторы этого типа применяют в различных частотных фильтрах и дискриминаторах, в звукозаписывающей и звуковоспроизводящей аппаратуре, в качестве излучателей ультразвука и т. д.  [c.444]

В практике ультразвуковой дефектоскопии металлов применяют ультразвуковые колебания частотой от 0,5—0,8 до 5 МГц. Для получения ультразвука таких частот используются генераторы электрических колебаний, являющиеся источниками переменного тока, и специальные излучатели. Основной частью излучателя является пьезоэлектрический преобразователь, представляющий собой пластину, изготовленную из монокристалла кварца или из кристаллических соединений — титаната бария, сульфата лития, цирконат-титаната свинца и других, обладающих пьезоэлектрическим эффектом. Пьезоэлектрический эффект заключается в появлении электрического заряда на гранях кристалла при приложении механического напряжения— прямой эффект. Существует и обратный эффект—приложение электрического поля вызывает механическую деформацию расширения или сжатия в зависимости от знака поля.  [c.117]

Основой преобразователя является пьезоэлектрический элемент из мате- риала, обладающего обратным пьезоэлектрическим эффектом, т. е. способностью изменения размеров при помещении в электрическое поле.  [c.340]

Увеличение постоянной кристаллической решетки с, наблюдаемое на начальной стадии освещения, связано с макродеформацией центральной части освещенной области. Одной из причин наблюдаемой макродеформации может быть обратный пьезоэлектрический эффект, возникающий под действием электрического поля, появляющегося в результате фотогальванического эффекта [191. Максимальное поле фотогальванического эффекта в НЛ Fe имеет величину В/см, которое вследствие  [c.317]

Обратный пьезоэлектрический эффект состоит в том, что пластинка, вырезанная определенным образом из кристалла кварца (или другого анизотропного кристалла), под действием электрического поля сжимается или удлиняется в зависимости от направления поля. Если поместить такую пластину между обкладками плоского конденсатора, на которые подается переменное напряжение, то пластина придет в вынужденные колебания. Эти колебания приобретают наибольшую амплитуду, когда частота изменений электрического напряжения совпадает с частотой собственных колебаний пластины. Колебания пластины передаются частицам окружающей среды (воздуха или жидкости), что и порождает ультразвуковую волну.  [c.405]

Некоторые материалы (например, керамики) обладают свойством изменять свои размеры в электрическом поле. Это явление, получившее название электрострикции, отличается (внешне) от обратного пьезоэлектрического эффекта тем, что изменение размеров зависит только от напряженности приложенного поля, но не зависит от его знака. К числу подобных материалов относятся титанат бария и титанат-цирконат свинца.  [c.406]

Существуют прямой и обратный пьезоэлектрические эффекты.  [c.335]

Обратный пьезоэлектрический эффект заключается в возникновении механического напряжения в кристалле под действием приложенного к нему Электрического поля.  [c.335]

Прямой пьезоэлектрический эффект — это возникновение электрических зарядов на гранях пьезоэлектрической пластинки при ее деформации. Если к такой пьезоэлектрической пластинке подвести электрический заряд, она изменит свои размеры (обратный пьезоэлектрический эффект).  [c.58]

Наиболее распространенным является способ, основанный на явлении пьезоэлектрического эффекта. Физическая сущность этого эффекта заключается в том, что при механическом растяжении или сжатии на поверхности пластин некоторых твердых материалов появляются электрические заряды противоположного знака - возникает прямой пьезоэффект наоборот, при подаче на поверхность пластин переменных электрических зарядов пластина начинает сжиматься и разжиматься — имеет место обратный пьезоэффект. Такими свойствами обладает ряд природных и искусственных материалов кварц, турмалин, сегнетова соль, титанат бария, цирконат-тита-нат свинца (ЦТС) и др. Схема возникновения прямого и обратного пьезоэффекта приведена на рис. 9.4.  [c.147]

Узкие направленные пучки ультразвуковых колебаний для целей дефектоскопии получают при помощи пьезоэлектрических пластин кварца или титаната бария (пьезодатчика). Эти кристаллы, помещенные в электрическое поле, дают обратный пьезоэлектрический эффект, т. е. преобразует электрические колебания в механические. Таким образом, пьезокристаллы под действием переменного тока высокой частоты (0,8—2,5 Мгц) становятся источником ультразвуковых колебаний и создают направленный пучок ультразвуковых волн в контролируемую деталь.  [c.274]

Это явление называют обратным пьезоэлектрическим эффектом. Так как Р = бц (е — 1) Е, то  [c.228]

Из того факта, что линейный электрооптический эффект возможен только в кристаллах пьезоэлектриков, следует, что линейный электрооптический эффект и обратный пьезоэффект осуществляются в кристалле параллельно друг другу. Последнее обстоятельство требует при описании электрооптического эффекта учитывать пьезооптический эффект изменение оптических констант за счет деформаций, вызванных обратным пьезоэлектрическим эффектом. Изменение поляризационных констант при приложении электрического поля к кристаллу, не связанное с обратным пьезоэлектрическим эффектом (т. е. пьезооптическим эффектом), составляет истинный линейный электрооптический эффект. Таким образом, истинный линейный электрооптический эффект есть результат только прямого воздействия электрического поля на заряды диэлектрика, состоящего в перераспределении плотности электронных оболочек образующих его частиц. Под ложным линейным электрооптическим эффектом будем понимать изменения поляризационных констант, обусловленные обратным пьезоэлектрическим эффектом (через пьезооптический эффект).  [c.192]

Преобразование электрических колебаний в механические связано с использованием пьезоэлектрического эффекта. Установлено, что при растяжении и сжатии некоторых кристаллов— кварца, титаната бария, цирконата свинца и других материалов — на их поверхностях возникают электрические заряды. Внесение пьезоэлектрического кристалла в электрическое поле, силовые линии которого совпадают с направлением его пьезоэлектрической оси, вызывает растяжение или сжатие кристалла (обратный  [c.73]

Магнитострикция, так же как и обратный пьезоэлектрический эффект, заключается в изменении размеров некоторых материалов под действием магнитного или соответственно электрического поля. Так, например, цилиндр из нержавеющей стали уменьшает свою длину в сильном магнитном поле (магнитострикция), а пластинка, вырезанная из кристалла кварца, изменяет свои размеры в электрическом поле (пьезоэлектрический эффект). Меняя магнитное или электрическое поле с частотой ультразвуков, создаются соответственной частоты ультразвуковые колебания вследствие изменения размеров тела, находящегося в этом поле.  [c.139]

Кроме того, некоторые биологические материалы, например компактная костная ткань, являются пьезоэлектрическими материалами, т. е. их переменное механическое нагружение вызывает возникновение в них электрического поля. Установлено, что как переменное нагружение (из-за анизотропии материала и неоднородности кости), так и дополнительное электрическое поле способствуют интенсификации процессов обмена веществ. Именно на этом, с учетом обратного пьезоэлектрического эффекта и особенностей биомеханического поведения костной ткани, основывается ряд эффективных методов стимуляции образования нового костного вещества. Здесь следует добавить, что  [c.480]

Некоторые кристаллы (кварц, турмалин, сегнетова соль и др.) дают пьезоэлектрический эффект под действием упругой деформации на поверхности кристалла появляются электрические заряды (прямой пьезоэффект) и наоборот, под действием электрического поля они испытывают упругие деформации — сжимаются или растягиваются в зависимости от направления поля (обратный пьезоэф( )ект). Поэтому, если пластинку, вырезанную из пьезоэлектрического кристалла, поместить между обкладками конденсатора, к которому подводится переменное электрическое напряжение, то в пластинке будут возникать переменные упругие деформации, т. е. будут происходить вынужденные механические колебания. Но сама пластинка, как и всякое упругое тело, обладает собственными частотами колебаний, зависящими от  [c.744]

Пьезоэлектрики — кристаллические диэлег.трики, не имеющие центра симметрии, в которых под действпе.м механических напряжений возникает электрическая поляризация (прямой пьезоэлектрический эффект), а под действием внешнего электрического поля — механическая деформация (обратный пьезоэлектрический эффект). Таким образом, с помощью пьезоэлектриков можно преобразовывать электрические сигналы в механические и наоборот. Между поверхностной плотностью заряда (/, образующегося при прямом пьезоэффекте на поверхности поляризованного кристалла, и механическим напряжением а существует прямо пропорциональная зависимость q = do, причем знаки зарядов на электродах пьезоэлемента зависят от направления механических напряжений (сжатие — растяжение). Механическая деформация и в такой же зависимости находится с напряженностью внешнего электрического поля Е при обратном пьезоэффекте u = dE, а характер деформации (сжатие или растяже-  [c.557]

Исследования взаимодействия упругих и температурных полей явились началом углубленного изучения и других сопряженных физических процессов и в первую очередь таких, как электроупругость и магнитоупругость. Интерес к сопряженным электроупругим процессам в сплошных средах связан с широким применением в различных областях техники устройств, работа которых основана на использовании явления пьезоэффекта. Открытый братьями Кюри пьезоэлектрический эффект состоит в том, что при деформировании некоторых анизотропных кристаллов на их поверхности появляются электрические заряды. Имеет место также и обратный пьезоэффект, который состоит в возникновении внутренних напряжений при действии электрического поля. Данное явление существенно связано с симметрией  [c.235]

В серийно выпускаемых ультразвуковых дефектоскопах для излучения и приема ультразвука чаще всего используют пьезопластины, обладающие пьезоэлектрическим эффектом. Прямой пьезоэффект состоит в появлении электрических зарядов на обкладках пьезопластины в результате ее деформации. Обратный пьезоэффект заключается в деформации пьезопластины под действием приложенного электрического поля. Обычно используют деформации растяжения —сжатия пластины по толщине. Обратный пьезоэффект, вызывающий такую деформацию, применяют для излучения продольных волн, а прямой пьезоэффект, связанный с деформацией по толщине, —для приема этих волн. Для возбуждения и приема поперечных волн используют деформацию сдвига по толщине. В этом случае для передачи деформации от пластины к изделию используют густые смазочные материалы, так как через жидкотекучие вещества поперечные волны практически не проходят. В качестве такой передающей среды используют нетвердеющие эпоксидные смолы.  [c.133]

В УЗ дефектоскопии в качестве источников и приемников ультразвука используют материалы, обладающие пьезоэлектрическим эффектом, который заключается в появлении электрического заряда на гранях кристалла материала при приложении механического напряжения (прямой пьезоэффект). При воздействии механических колебаний на пластину из пьезоматериала (пьезопластину) между ее поверхностями возникает переменная электродвижущая сила. Существует и обратный пьезоэффект, заключающийся в деформации (изменении размеров) пластины под действием электрического поля. Характер деформации определяется полярностью приложенного напряжения если напряжение переменное, то размеры пластины изменйются с частотой приложенного поля. Таким образом, с помощью пьезопластины можно преобразовывать УЗ колебания в электрические и наоборот. Впервые пьезоэлектрические свойства были обнаружены у горного хрусталя — одной из разновидностей кварца.  [c.23]

Если дипольные моменты изменяются вследствие теплового расширения при нагревании диэлектрика, то возникновение при этом внешнего электрического поля называется пироэлектрическим эффектом. Возникновение же внешнего электрического поля из-за изменения дипольных моментов кристалла за счет механической деформации (изменение расстояния между положительными и отрицательными зарядами за счет деформации) называется пьезоэлектрическим эффектом (существуют прямой и обратный эффекты). Наряду с этим имеют место и такие явления, как выделение тепла при воздействии электрического поля электрокало-рический эффект), выделение тепла при индуцировании дипольных моментов [теплота поляризации).  [c.473]

Ультразвуковая дефектоскопия (УЗД) - один из наиболее эффективных методов неразрушающего контроля. Дефектоскопия основана на принципе передачи и приема ультразвуковых импульсов, отражаемых от дефекта, расположенного в металле. Высокочастотные звуковые воЛны распространяются по сечению контролируемой детали или узла направлешо и без заметного затухания, а от противоположной поверхности, контактирующей с воздухом, полностью отражаются. Для возбуждения и приема колебаний используются прямой и обратный пьезоэлектрический эффекты титаната бария (кварца). Генератор электрических ультразвуковых колебаний возбуждает пьезоэлектрический излучатель (передающий щуп), который через слой жидкости связан с поверхностью детали. Механические колебания, полученные от действия переменного магнитного поля на пьезоэлектрическую пластинку излучателя, распространяются по толще металла и достигают противоположной стороны сечения. Отражаясь, возвращаются и через жидкую среду возбуждают в пьезоэлектрическом приемнике (приемном щупе) электрические колебания, которые после усиления высвечивают на индикаторе характер прохождения колебаний. Если препятствий, мешающих прохождению колебаний, не оказалось, амплитуды прямого и отраженного импульсов одинаковы. При наличии дефекта импульсных пиков будет три, причем отраженный от дефекта - меньший (рис. 4.4). Во время работы дефектоскопа колебания возбуждаются не непрерывно, а короткими импульсами. Существует несколько тапов дефектоскопов и наборов щупов.  [c.157]

Наиб, широко используются два метода эксперим. исследования ЭМЛП. Первый из них заключается в генерации эл.-магн. полем короткого УЗ-импульса, к-рый, отражаясь от противоположных граней образца, создаёт последовательность затухающих эхо-сигналов. Регистрация этих сигналов осуществляется либо той же катушкой индуктивности за счёт эффекта обратного ЭМАП, либо пьезоэлектрическими преобразователями или магчшпострик-ционными преобразователями. Второй метод предполагает исследование резонансных особенностей поверхностного импеданса Z при установлении стоячих упругих волн в образцах правильной формы—пластинах, стержнях и т, д.  [c.538]

Приращения поляризационных констант, характеризующие оптическую индикатрису вещества, и Гци — коэффициенты линейного электрооптического эффекта — полярные тензоры, формально тождественные тензору обратного пьезоэффекта. Поэтому при рассмотрении линейного электрооптического эффекта, наблюдаемого только в пьезоэлектрических кристаллах и поляризованных текстурах, необходимо учитывать вклад в измеряемый полный эффект вторичного или ложного электрооптического эффекта, на деле являющегося пьезооптическим эффектом, обусловленным прису1цим конкретной электрооптической среде обратным пьезоэлектрическим эффектом. Чистый или первичный линейный электрооптический эффект наблюдается в зажатом кристалле, у которого запрещены деформации при наложении поля соответственно в свободном кристалле измеряется сумма первичного и вторичного эффектов. Вклад вторичного эффекта в полный особенно велик у поляризованных сегнетоэлектриков с большим коэффициентом электромеханической связи. Он может достигать десятков процентов, резко возрастать при использовании электрооптического кристалла в полосах частот, близких к частотам механических резонансов и их гармоник. Это способствует значительному уменьшению управляющих напряжений в подобных режимах.  [c.199]

Получение ультразвука. Для получения ультразвука используются три явления обратный пьезоэлектрический эффект, маг-ттострикция и электрострикция.  [c.405]

Регистрация ультразвука осуществляется приемным преобразователем, действие которого основано либо на прямом пьезоэлектрическом эффекте, либо на явлении, обратном электро-стрнкции. При сжатии кварцевой пластины (или пластины из керамики) на ее параллельных плоскостях появляются разноименные за1ряды, г. е. создается разность потенциалов, которая зависит от сжимающегося давления. Действие кварцевого и электрострикционного керамического приемного преобразователя таково звуковые волны оказывают переменное давление на поверхность пластины, что приводит к появлению на ее поверхности переменной разности потенциалов, которая и фиксируется электрической частью приемного устройства.  [c.406]

Для возбуждения ультразвуковых колебаний используют свойства кристаллов титаната бария, цирконат-ти-таната свинца, кварца и некоторых других пьезоэлектрических материалов преобразовывать подведенный к ним переменный электрический ток в механические колебания и наоборот. Эти свойства пьезоэлектрических пластин называют соответственно обратным и прямым пьезоэлектрическим эффектом (рис. 34).  [c.62]

Метод этектроакустических аналогий основан иа том, что характеристики акустической колебателыюй системы можно сопоставить с определенными эквивалентными параметрами электрической колебательной цепи и для решения задач ультраакустнки использовать затем известные уравнения и результаты электродинамики [69, 70]. Такой метод значительно упрощает, например, анализ собственных и вынужденных акустических колебаний слоя (пластины) при условии излучения им ультразвука в прилегающую среду с конечным волновым сопротивлением. Поскольку же для излучения и приема ультразвука преимущественно используются электроакустические преобразователи, в которых электрическая энергия непосредственно преобразуется в акустическую и наоборот (например, на основе прямого и обратного пьезоэлектрического эффекта), то метод электроакустических аналогий вообще широко и плодотворно используется в ультраакустике для расчета таких преобразователей, и с ним поэтому стоит познакомиться.  [c.183]

Таким образом, амплитуду колебаний пластинки, излучающей ультразвук в резонансных условиях, можно легко рассчитать, ная ее добротность и статическую деформацию, например вследствие обратного пьезоэлектрического эффекта Акустическая же добротность излучающей пластинки определяется просто отношением удельных волновых сопрогивле-ний ее материала и внешней среды. Общий вид частотных зависимостей величин и Л приведен на рис. 58 для разных добротностей (при малых добротностях максимум Хтак смещается несколько влево от резонансной частоты Oq).  [c.194]

Влияние пьезоэлектрического эффекта иа скорость распространения ультразвуковых волн в кристаллах можно выявить, учтя то добавоч1юе механическое напряжение, которое возникает под действием индуцированного звуком электрического поля Е. Для этого воспользуемся уравнением обратного пьезоэффекта (1061  [c.267]

Изучение пьезоэффекта очень быстро показало, что это явление сводится к электрпческо поляризации некоторых кристаллов, вызываемой механическими напряжениями или деформациями. Такой эффект позднее был назван прямым пьезоэлектрическим эффектом в отличие от вскоре после этого открытого обратного пьезоэлектрического эффекта, состоящего в механическом деформировании некоторых кристаллов под действием внешнего электрического поля.  [c.114]

mash-xxl.info


Видеоматериалы

24.10.2018

Опыт пилотных регионов, где соцнормы на электроэнергию уже введены, показывает: граждане платить стали меньше

Подробнее...
23.10.2018

Соответствует ли вода и воздух установленным нормативам?

Подробнее...
22.10.2018

С начала года из ветхого и аварийного жилья в республике были переселены десятки семей

Подробнее...
22.10.2018

Столичный Водоканал готовится к зиме

Подробнее...
17.10.2018

Более 10-ти миллионов рублей направлено на капитальный ремонт многоквартирных домов в Лескенском районе

Подробнее...

Актуальные темы

13.05.2018

Формирование энергосберегающего поведения граждан

 

Подробнее...
29.03.2018

ОТЧЕТ о деятельности министерства энергетики, ЖКХ и тарифной политики Кабардино-Балкарской Республики в сфере государственного регулирования и контроля цен и тарифов в 2012 году и об основных задачах на 2013 год

Подробнее...
13.03.2018

Предложения организаций, осуществляющих регулируемую деятельность о размере подлежащих государственному регулированию цен (тарифов) на 2013 год

Подробнее...
11.03.2018

НАУЧИМСЯ ЭКОНОМИТЬ В БЫТУ

 
Подробнее...

inetpriem


<< < Ноябрь 2013 > >>
Пн Вт Ср Чт Пт Сб Вс
        1 2 3
4 5 6 7 8 9 10
11 12 13 14 15 16 17
18 19 20 21 22 23 24
25 26 27 28 29 30  

calc

banner-calc

.