Принцип работы электродвигателя. Принцип работы электродвигателя переменного тока. Физика, 9 класс. Электродвигатель как работает


как он устроен и работает

Электрический двигатель представляет собой особый преобразователь. Это машина, где электрическая энергия преобразуется и переходит в механическую. Принцип действия двигателя основан на электромагнитной индукции. Есть к тому же и электростатические двигатели. Можно без особых дополнений использовать двигатели на других принципах преобразования электричества в перемещении. Но немногие знают, как устроен и как работает электродвигатель.

Принцип работы устройства

В составе электродвигателя переменного тока присутствуют неподвижные и подвижные части. К первым относят:

  • статор;
  • индуктор.

Статор находит применение для машин синхронного и асинхронного типа. Индуктор эксплуатируется в машинах постоянного тока. Подвижная часть состоит из ротора и якоря. Первый применяют для синхронных и асинхронных устройств, тогда как якорь используется для оборудования с постоянными показателями. Функция индуктора лежит на двигателях небольшой мощности. Здесь нередко используют постоянные магниты.

Говоря о том, как устроен электродвигатель, необходимо определить, к какому классу оборудования относится конкретная модель. В конструкции асинхронного двигателя ротор бывает:

  • короткозамкнутым;
  • фазным, то есть с обмоткой.

Последний тип используется, если требуется уменьшить пусковой ток и отрегулировать частоту вращения асинхронного электродвигателя. Обычно речь идет о крановых электродвигателях, повсеместно используемых в крановых установках.

Кран обладает подвижностью и применяется в машинах постоянного тока. Это может быть генератор либо двигатель, а также универсальный двигатель, функционирующие по тому же принципу. Его используют в электроинструменте. Фактически универсальный двигатель — это тот же двигатель с постоянными показателями, в котором происходит последовательное возбуждение. Отличие касается лишь расчётов обмоток. Здесь отсутствует реактивное сопротивление. Оно бывает:

  • емкостным;
  • индуктивным.

Вот почему любой электроинструмент, если из него извлекается электронный блок, сможет работать и на постоянном токе. Но при этом напряжение в сети будет меньше. Принцип действия электродвигателя определяется сообразно тому, из каких компонентов он состоит и для каких целей предназначается.

Работа трехфазного асинхронного двигателя

Во время включения в сеть формируется вращающееся магнитное поле. Оно отмечается в статоре и проникает через короткозамкнутую обмотку ротора. В ней переходит в индукцию. После этого, в соответствии с законом Ампера, ротор начинает вращаться. Частота перемещения этого элемента зависит от частоты питающего напряжения и количества магнитных полюсов, представленных парами.

Разность между частотой вращения ротора и магнитного поля статора выражается в виде скольжения. Двигатель именуют асинхронным, потому что частота вращения магнитного поля у него сообразна с частотой вращения ротора. Синхронный двигатель имеет отличия в конструкции. Ротор дополняется магнитом постоянного типа либо электромагнитом. В нём имеются элементы, такие как для запуска беличья клетка и постоянные магниты. Также их роль могут выполнять электромагниты.

В асинхронном двигателе у магнитного поля статора частота вращения совпадает с аналогичным показателем у ротора. Для включения используют асинхронные электродвигатели вспомогательного типа либо ротор с короткозамкнутой обмоткой. Асинхронные двигатели смогли найти широкое применение во всех технических областях.

Особенно это актуально в отношении трехфазных двигателей, характеризующихся простотой конструкции. Они не только доступны по цене, но и надежнее в сравнении с электрическими. Ухода они не требуют почти никакого. Название асинхронный, присвоенное им, обусловлено несинхронным вращением ротора в таком двигателе. Если отсутствует трехфазная сеть, такой двигатель может включаться в сеть однофазного тока.

В составе статора асинхронного электродвигателя присутствует пакет. В нём имеются лакированные листы электротехнической стали, чья толщина составляет 0,5 мм. У них есть пазы, куда уложена обмотка. Три фазы обмотки соединены друг с другом треугольником или звездой, которые смещены на 120 градусов пространственно.

Если речь идет о роторе электродвигателя, в котором имеются контактные кольца в пазах, здесь отмечается ситуация, похожая на обмотку статора. Это актуально, если он включён звездой либо начальные концы фаз соединены тремя контактными кольцами, зафиксированными на валу. Когда двигатель запущен, можно подключить реостат на фазы обмотки для контроля частоты вращения. После успешного разбега контактные кольца коротко замыкаются, а потому обмотка ротора выполняет те же функции, что и в случае с короткозамкнутым изделием.

Современная классификация

По принципу формирования вращающего момента двигатели электрического типа делят на магнитоэлектрические и гистерезисные. Последняя группа отличается тем, что вращающий момент здесь формируется вследствие гистерезиса при чрезмерном намагничивании ротора. Такие двигатели не считаются классическими и не так распространены в промышленности. Наибольшее распространение получили магнитоэлектрические модификации, которые делятся на две большие группы, согласно потребляемой энергии. Это двигатели переменного и постоянного тока. Выпускаются также универсальные модели, которые способны питаться обоими видами электрического тока.

Основные особенности

Было бы правильно называть эти устройства электрическими нефазными. Это обусловлено тем, что фазы переключаются здесь непосредственно в двигателе. За счет этого мотор питается постоянным, как и переменным типами тока, с одинаковым успехом. Эта группа делится по способу переключения фаз и присутствию обратной связи. Они бывают вентильными и коллекторными.

Что касается типа возбуждения, коллекторные двигатели подразделяют на модели с самовозбуждением, моторы с независимым возбуждением от постоянных магнитов и электромагнитов. Первый тип, в свою очередь, классифицируется на моторы с последовательным, параллельным, смешанным возбуждением.

Бесколлекторные, или вентильные изделия, работают от электричества. В них переключение фаз происходит посредством специального электроблока, носящего название инвертора. Процесс этот может оснащаться обратной связью, когда пускают в ход датчик положения ротора либо без обратной связи. Такое устройство можно фактически позиционировать, как аналог асинхронного устройства.

Агрегаты пульсирующего тока

Такой двигатель является электрическим, и питание у него осуществляется пульсирующим электротоком. Конструкционные особенности его схожи с аналогичными особенностями у устройств постоянного тока. Конструктивные отличия его от двигателя с постоянными показателями состоят в присутствии шихтованных вставок для выпрямления переменного тока. Используют его на электровозах со специальными установками. Характерной особенностью является наличие компенсационной обмотки и значительного количества пар полюсов.

Модификации переменного тока

Двигатель представляет собой устройство, питание которого происходит с переменным током. Агрегаты эти бывают асинхронными и синхронными. Различие состоит в том, что в асинхронных машинах магнитодвижущая сила статора перемещается со скоростью вращения ротора. У асинхронного оборудования всегда наблюдается разница между скоростью вращения магнитного поля и ротора.

Синхронный электродвигатель работает от переменного тока. Ротор здесь вращается сообразно движению магнитного поля питающего напряжения. Синхронные электродвигатели делятся на модификации с обмотками возбуждения, с постоянными магнитами, а также на реактивные модификации, гистерезисные, шаговые, гибридные реактивные типы устройств.

Выделяют и так называемый реактивно-гистерезисный тип. Выпускают также модели с шаговыми агрегатами. Здесь определённое положение ротора фиксируется подачей питания на определенные зоны обмотки. Переход в другое положение достигается посредством снятия напряжения с одних обмоток и перемещения его в другие области. Вентильные реактивные модели электрического типа формируют питание обмоток посредством полупроводниковых элементов. Асинхронное устройство имеет частоту вращения ротора, отличную от частоты вращающегося магнитного поля. Она создается питающим напряжением. Такие модели получили на сегодня наибольшее распространение.

Универсальное коллекторное оборудование

Такой агрегат может работать на переменном и постоянном токе. Изготавливают его с последовательной обмоткой возбуждения при показателях мощности до 200 Вт. Статор выполняется из особой электротехнической стали. Обмотка возбуждения осуществляется при постоянном показателе напряжения полностью и частично при переменном показателе. Номинальное напряжение для переменного электротока составляют 127 и 220 В, аналогичные показатели для постоянного параметра равны 110 и 220 В. Находят применение в электроинструментах и бытовых аппаратах.

То, как работает электродвигатель, зависит от его принадлежности к тому или иному типу оборудования. Модификации переменного тока с питанием от промышленной сети 50 Гц не дают получить частоту вращения больше 3000 оборотов в минуту. Вот почему для получения значительных частот используют коллекторный мотор электрического типа. Он к тому же легче и меньше по размерам, нежели устройства с переменными показателями с аналогичной мощностью.

В их отношении используют специальные передаточные механизмы, преобразующие кинематические параметры механизма до приемлемых. При использовании преобразователей частоты и при наличии сети повышенной частоты двигатели переменного тока легче и меньше коллекторных изделий.

Ресурс асинхронных моделей с переменными показателями значительно выше, нежели у коллекторных. Определяется он состоянием подшипников и особенностями обмоточной изоляции.

Синхронный двигатель, у которого есть датчик положения ротора и инвертор, считается электронным аналогом коллекторного двигателя постоянного тока. Фактически он является коллекторным электродвигателем с последовательно включенными обмотками статора. Они идеально оптимизированы для работы с бытовой электросетью. Такую модель, независимо от полярности напряжения, можно вращать в одну сторону, так как последовательное соединение обмоток и ротора гарантирует смену полюсов из магнитных полей. Соответственно, результат остается направленным в одну сторону.

Статор из магнитного мягкого материала применим для работы на переменном токе. Это возможно, если сопротивление в перемагничивании у него незначительное. Чтобы снизить потери на вихревые токи, статор делают из изолированных пластин. Он получается наборным. Его особенностью является то, что потребляемый ток ограничивается за счёт индуктивного сопротивления обмоток. Соответственно, момент двигателя оценочно становится максимальным и варьируется от 3 до 5. Чтобы приблизить к механическим характеристикам двигатели общего назначения, применяются секционные обмотки. Они имеют отдельные выводы.

Примечательно, что для передвижения некоторыми видами бактерий используется электродвигатель из нескольких белковых молекул. Он способен трансформировать энергию электрического тока в форме движения протонов во вращении жгутика.

Синхронная модель возвратно-поступательного движения работает таким образом, что подвижная часть устройства оснащена постоянными магнитами. Они зафиксированы на шторке. Посредством неподвижных элементов постоянные магниты находятся под воздействием магнитного поля и проводят перемещение штока возвратно-поступательным методом.

220v.guru

принцип работы, из чего состоит?

Выполнение механической работы — это главный процесс в нашем материальном мире. По этой причине появление электродвигателей стало важнейшим событием в развитии человеческой цивилизации. Именно эти устройства понесли на себе весь груз промышленного производства. Это и обеспечило, в конце концов, так называемую научно-техническую революцию. В любых электрических движках в основу конструкции положено открытие взаимодействия проводов с проходящим по ним электрическим током.

О том, какие результаты были достигнуты за время, прошедшее с этого открытия, и будет рассказано нашим читателям. Напомним, что взаимодействие запитанных электротоком проводов обнаружил Андре Ампер в 1820 году. После этого события была создана конструкция, способная усилить это взаимодействие — соленоид. Катушка с ферромагнитным сердечником при сближении с постоянным магнитом или другой аналогичной катушкой воздействовала на них со значительным усилием. Поэтому оставалось только придумать такое конструктивное решение, которое позволит максимально увеличить взаимодействие соленоидов и придаст ему необходимое направление.

Превращение электроэнергии в механическую работу

Два соленоида могут либо притягиваться, либо отталкиваться. Их взаимодействие определяется полюсами. Одноименные — отталкиваются, разноименные — притягиваются. Поэтому не составляет особого труда догадаться о конструктивном решении, позволяющем получить вращение вала:

  • Вал и соленоид объединяются в жесткую конструкцию. Соленоид располагается так, чтобы создаваемые силовые линии магнитного поля были перпендикулярны оси вращения вала. Полученный элемент двигателя называется ротором, а также индуктором.
  • Вокруг ротора располагаются несколько других соленоидов для его притяжения. Чтобы направление было явно задано, а вращение равномерно, их должно быть как минимум три. Полученный элемент движка называется статором.
  • Статор или ротор в разных конструкциях моторов могут также иметь название якорь. Суть якоря электрического двигателя заключена в его сходстве со своим корабельным тезкой. Для корабельного якоря характерна прикрепленная цепь, соединяющая его с кораблем. А строение якоря электрического движка включает в себя либо ротор, либо статор, а также присоединенный к нему электрический шнур. Он используется для подключения к источнику питания. То есть вместо якоря с цепью получается ротор или статор со шнуром питания — в этом и заключено их сходство и происхождение названия элемента движка.
  • Статор состоит из стальных пластин, которые уменьшают потери электроэнергии, создаваемые вихревыми токами. В результате получается конструкция из обмоток с сердечниками, охватывающая ротор. Они образуют отверстие цилиндрической формы. В него входит цилиндрический ротор с некоторым зазором относительно статора. Такая конструкция электрических двигателей самая распространенная.
Классическая конструкция электродвигателя — ротор внутри статора

Однако для решения некоторых задач необходимо применение иных конструкций. Это может быть, например, расположение ротора снаружи статора или отсутствие вала по причине линейного перемещения элементов двигателя относительно друг друга.

Электродвигатель с внешним ротором

Простейшим линейным двигателем является электромагнит с втягивающимся сердечником. Для того чтобы более точно управлять перемещением подвижной части линейного движка, в нем используется необходимое число взаимодействующих магнитных элементов. Электромагнитами могут быть либо все, либо их часть — это постоянные магниты.

Линейный электродвигатель

Как видно из рассмотренных примеров, принцип работы электродвигателя использует магнитные поля. Они — следствие как постоянного тока, так и переменного. Но в любом случае принцип действия электродвигателя — это переход электроэнергии в энергию движения.

Далее рассмотрим, как работает электродвигатель, изготовленный соответственно напряжению электропитания — постоянному или переменному.

Электропитание источником переменного напряжения

Двигатель переменного тока наиболее широко используется. Это обусловлено переменным напряжением в большинстве электросетей. Электродвигатели переменного тока подключаются к ним с использованием минимального количества дополнительных устройств. Для любого из приборов надежность и долговечность являются главными качествами. Для этого конструкция должна иметь минимум потенциально уязвимых элементов. Наиболее значимыми из них являются контакты. Меньше контактов — больше надежности.

Устройство и принцип работы электродвигателя с максимальной надежностью основаны на явлении электромагнитной индукции. Это явление используется в трансформаторах. Создание гальванически развязанных электрических цепей — это их важнейшее назначение. Аналогично создаются гальванически развязанные статорные и роторные цепи. Под напряжением пребывают только обмотки статора. Возникающая в роторе электромагнитная индукция приводит к взаимодействию магнитных полей. Но принцип работы электродвигателя переменного тока — это не только индукция. Кроме нее должно существовать условие, обеспечивающее возникновение однонаправленной силы, без которой вращение невозможно. Для этого необходимо пространственное перемещение электромагнитного поля.

С этой целью устройство электродвигателя переменного тока предусматривает одно из следующих конструктивных решений:

  • использование однофазного источника переменного напряжения с фазосдвигающим элементом с двумя парами полюсов;
  • подключение к трехфазному источнику питания обмоток статора с тремя парами полюсов;
  • применение коммутатора, переключающего взаимодействующие обмотки.

Движимые перемещающимся магнитным полем

Электродвигатель, принцип работы которого определяет электромагнитная индукция, работает следующим образом. В его роторе отсутствуют контакты. Переменное магнитное поле с максимумом, перемещающимся вокруг ротора, вызывает в нем токи, создающие собственное электромагнитное поле. Существование этих токов возможно только при отставании ротора от движущегося максимума электромагнитного поля статора.

Иначе не получится электромагнитной индукции, условием которой является пересечение силовых линий и проводника. Движки, в которых скорости перемещения поля статора и ротора отличаются друг от друга, называются асинхронными. Асинхронный электродвигатель, устройство которого показано далее, в основном имеет одинаковую конструкцию статора, но разные варианты исполнения ротора.

Принцип работы асинхронного двигателя

Самыми распространенными являются короткозамкнутый ротор и другая его конструкция, именуемая «беличьей клеткой». В последнем варианте ротора получается более эффективная индукция. Однако и конструкция при этом менее технологичная. Но в этих двух разновидностях асинхронного двигателя лишь один недостаток — большой пусковой ток.

Разновидности асинхронного двигателя

Чтобы регулировать процесс пуска, потребовалась третья конструкция ротора, называемая «фазной». Но если где-то прибыло, значит, где-то и убыло. У фазного ротора появились контакты — кольца и щетки. А контакты — главная проблема электротехники. Выигрывая в экономичности, проигрываем в долговечности и эксплуатационных расходах. За щетками и кольцами необходим уход и периодическая замена, в результате чего фазный ротор применяется намного реже. Появление мощных полупроводниковых приборов делает возможным регулировку любого асинхронного двигателя в пределах коммутационных возможностей этих приборов. Поэтому сегодня фазный ротор — это архаичная конструкция.

Фазный ротор

Но если ротор изготовить из специального материала, который обладает некоторой остаточной намагниченностью, скорости поля статора и вращения ротора станут одинаковыми. Под воздействием статора в роторе такого движка из-за свойств его материала не могут возникать токи с величиной, достаточной для движения. Но это и не нужно. Материал способен многократно усиливать внешнее электромагнитное поле и становиться постоянным магнитом. И такой магнитный ротор будет тянуться за электромагнитным полем статора. Такой двигатель называется синхронно-гистерезисным.

Элементы синхронно-гистерезисного движка

К сожалению, гистерезисный ротор имеет высокую себестоимость материала. А поскольку мощность движка напрямую связана с его размерами, большие и мощные синхронные двигатели с гистерезисным ротором из-за его высокой цены не производятся. Вместо этого делается постоянный электромагнит с питанием через кольца. Так менее надежно, но гораздо дешевле.

Синхронный двигатель

Скорость вращения синхронных и асинхронных движков определяет частота напряжения питания и число пар полюсов. Эта особенность — их большой недостаток. Ведь частота электросети составляет 50–60 Гц, и без применения дополнительного оборудования, через которое придется подключать двигатель, изменить ее невозможно. А это значительно усложняет и удорожает установку. По этой причине в управляемом электроприводе для возможности широкого диапазона регулирования оборотов применяется другой двигатель, о котором будет рассказано далее.

Коллекторные двигатели

Чтобы разобраться в том, как работает электромотор с коллектором, надо обратиться к опытам с рамкой, расположенной между полюсами магнитов. Это классический опыт для демонстрации взаимодействия проводника с током и магнитного поля. На изображениях далее наглядно показан результат этого взаимодействия.

Коллекторные двигатели

Но сила, вращающая рамку, зависит от ее положения относительно полюсов. По мере вращения она постепенно уменьшается. И по этой причине рамка останавливается. Чтобы вращение продолжалось, для конкретной конструкции рамки с магнитами потребуется больше рамок. При этом каждая из них подключается к своей паре скользящих контактов. Они образуются парой щеток и парой пластин — ламелей.

Движок, в котором реализован принцип вращения рамки в магнитном поле, содержит ротор с большим числом обмоток — рамок. Ламели собраны в специальном конструктивном элементе — коллекторе. Если магнитное поле создается постоянными магнитами, вращение возможно только при постоянном напряжении на щетках коллектора. Это и есть двигатель постоянного тока (сокращенно ДПТ).

Ротор ДПТ (а также универсального движка)

Скорость вращения ротора этого движка зависит только от напряжения на щетках коллектора. Если вместо постоянного магнита применить электромагнит, получится универсальный мотор, способный работать как при постоянном, так и при переменном напряжении. Полярность статора и ротора будет изменяться одновременно, сохраняя направление действия силы, вращающей ротор. Универсальный мотор — это тот самый движок, который широко применяется в регулируемых приводах.

Пояснение принципа работы униполярного двигателя

Разновидностью ДПТ и универсального двигателя можно считать униполярный движок. У его конструкции нет коллектора, но есть щетки. Появление мощных полупроводниковых приборов позволило создавать роторы без колец и коллекторов. Но при этом принцип работы электродвигателя не изменился.

Похожие статьи:

domelectrik.ru

Как работает электродвигатель – этот вопрос интересует многих людей, которые работают с этим типом

Электродвигатель является одним из ключевых изобретений человечества. Именно благодаря электрическим моторам нам удалось добиться такого высокого развития нашей цивилизации. Основные принципы работы этого устройства изучаются уже в школе. Современный электродвигатель может выполнять множеств различных задач. В основе его работы лежит передача вращения электроприводного вала на другие виды движения. В этой статье мы подробно рассмотрим, как работает это устройство.

Характеристики электродвигателей

Электромотор, по сути, представляет собой прибор, при помощи которого электрическая энергия переходит в механическую. В основе этого явления лежит магнетизм. Соответственно, в конструкцию электродвигателя входят постоянные магниты и электрические магниты, а также различные другие материалы, обладающие притягивающими свойствами. Сегодня этот прибор используется практически повсеместно. Например, электромотор является ключевой деталью часов, стиральных машин, кондиционеров, миксеров, фенов, вентиляторов, кондиционеров и других бытовых приборов. Вариантов использования электродвигателя в промышленности бесчисленное множество. Их размеры тоже варьируются от головки спички до двигателя на поездах.

Виды электромоторов

В настоящее время производится множество разновидностей электромоторов, которые разделяются по типу конструкции и электропитания.

По принципу электропитания все модели можно разделить на:

  1. устройства переменного тока, которые в качестве питания используют электросеть;
  2. приборы постоянного тока, работающие от блоков питания, пальчиковых батареек, аккумуляторов и других подобных источников.

По механизму работы все электродвигатели разделяются на:

  1. синхронные, имеющие роторные обмотки и щеточный механизм, использующийся для подачи на обмотки электрического тока;
  2. асинхронные, отличающиеся более простой конструкцией без щеток и роторных обмоток.

Принцип работы этих электромоторов существенно отличается. Синхронный двигатель вращается с той же скоростью, что и магнитное поле, которое его вращает. В то же время, асинхронный мотор вращается с меньшей скоростью, чем электромагнитное поле.

Классы электродвигателей (различаются в зависимости от используемого тока):

  • класс AC (Alternating Current) - работает от переменного источника тока;
  • класс DC (Direct Current) - использует для работы постоянный ток;
  • универсальный класс, который может использовать для работы любой источник тока.

Кроме того, электрические двигатели могут отличаться не только по типу конструкции, но и также по способам контроля скорости вращений. При этом, во всех устройствах независимо от типа используется один и тот же принцип преобразования электрической энергии в механическую.

Принцип работы агрегата на постоянном токе

Этот тип электромотора работает на основе принципа, разработанного Майклом Фарадеем в далеком 1821 году. Его открытие заключается в том, что при взаимодействии электрического импульса с магнитом есть вероятность возникновения постоянного вращения. То есть, если в магнитном поле разметить вертикальную рамку и пропустить по ней электрический ток, то вокруг проводника может возникнуть электромагнитное поле. Оно будет непосредственно контактировать с полюсами магнитов. Получается, что к одному из магнитов рамка будет притягиваться, а от другого отталкиваться. Соответственно, она повернется из вертикального положения в горизонтальное, в котором влияние магнитного поля на проводник будет нулевым. Получается, что для продолжения движения нужно будет дополнить конструкцию еще одной рамкой под углом или же поменять направление тока в первой рамке. В большинстве приборов это достигается за счет двух полуколец, к которым присоединяются контактные пластинки от аккумулятора. Они способствуют быстрому изменению полярности, в результате чего движение продолжается.

Современные электромоторы не имеют постоянных магнитов, так как их место занимаю электрические магниты и катушки индуктивности. То есть, если вы разберете любой такой двигатель, то увидите витки проволоки, покрытые изоляционным составом. По сути, они и представляют собой электромагнит, который еще называется обмоткой возбуждения. Постоянные магниты в конструкции электродвигателей применяются только в небольших детских игрушках, работающих от пальчиковых батареек. Все остальные более мощные электродвигатели оснащаются только электрическими магнитами или же обмотками. При этом, вращающаяся деталь получила название ротор, а статичная - статор.

Как работает асинхронный электромотор

Корпус асинхронного двигателя вмещает в себя обмотки статора, благодаря которым и создается вращающееся поле магнита. Концы для подключения обмоток выводят через специальную клеммную колодку. Охлаждение осуществляется за счет вентилятора, размещенного на вале в торце электрического двигателя. Ротор плотно соединен с валом, изготовленным из металлических стержней. Эти короткозамкнутые стержни замыкаются между собой с обеих сторон. За счет такой конструкции, двигатель не нуждается в периодическом обслуживании, так как здесь нет необходимости время от времени менять токоподающие щетки. Именно поэтому, асинхронные моторы считаются более надежными и долговечными, чем синхронные. В основном причиной поломки асинхронных двигателей является изнашивание подшипников, на которых осуществляется вращение вала.

Для работы асинхронных двигателей необходимо, чтобы вращение ротора осуществлялось медленнее, чем вращение электромагнитного поля статора. Именно за счет этого в роторе и возникает электрический ток. Если бы вращение осуществлялось с одинаковой скоростью, то по закону индукции ЭДС не образовывалось бы, и отсутсвовало вращение в целом. Однако, в настоящей жизни за счет трения подшипников и повышенной нагрузки на вал ротор будет крутиться медленнее. Магнитные полюса регулярно вращаются в обмотках ротора, за счет чего постоянно изменяется направление тока в роторе.

По этому же принципу работает и круговая пила, так как наибольшие обороты она набирает без нагрузки. Когда пила начинает резать доску, ее скорость вращения снижается и одновременно ротор начинает вращаться медленнее по отношению к электромагнитному полю. Соответственно, по законам электротехники в нем начинает возникать еще большая величина ЭДС. После этого возрастает потребляемый мотором ток и он начинает работу на полной мощности. При нагрузке, при которой мотор застопорится, может возникнуть разрушение короткозамкнутого ротора. Это возникает из-за того, что в двигателе возникает максимальная величина ЭДС. Именно поэтому необходимо подбирать электромотор необходимой мощности. Если взять двигатель слишком большой мощности, то это может привести к неоправданным затратам энергии.

Скорость, с которой вращается ротор, в данном случае зависит от количества полюсов. Если в устройстве имеется два полюса, то скорость вращения будет соответствовать скорости вращения магнитного поля. Максимально асинхронный электрический двигатель может развивать до 3 тысяч оборотов в секунду. Частота сети при этом может составлять до 50 Гц. Для уменьшения скорости в два раза вам придется повысить количество полюсов в статоре до 4 и так далее. Единственный недостаток асинхронных моторов - это то, что они могут поддаваться регулировке скорости вращения вала только посредством изменения частоты электрического тока. Кроме того, в асинхронном моторе вы не сможете добиться постоянной частоты вращения вала.

Как работает синхронный электрический двигатель переменного тока

Синхронный электрический двигатель применяется в тех случаях, когда нужна постоянная скорость вращения и возможность ее быстрой регулировки. Кроме того, синхронный мотор используется там, где нужно добиться скорости вращения более 3 тысяч оборотов, что является пределом для асинхронного двигателя. Поэтому, такой тип электродвигателя преимущество используется в бытовой технике, такой как пылесос, электрический инструментарий, стиральная машина и так далее.

Корпус синхронного мотора переменного тока содержит обмотки, которые наматываются на якорь и ротор. Их контакты припаиваются к секторам токосъемного коллектора и кольца, на которые посредством графитовых щеток подают напряжение. Выводы здесь располагаются так, чтобы щетки всегда подавали напряжения только на одну пару. Из недостатков синхронного мотора можно отметить их меньшую надежность, по сравнению асинхронными двигателями.

Самые частые поломки синхронных двигателей:
  • Преждевременный износ щеток или нарушение их контакта из-за ослабления пружины.
  • Загрязнение коллектора, который чистится при помощи спирта или нулевой наждачной бумаги.
  • Изнашивание подшипников.
Принцип работы синхронного мотора

Вращающий момент в таком электродвигателе создается путем взаимодействия между магнитным полем и током якоря, которые контактируют между собой в обмотке возбуждения. По мере направления переменного тока будет изменяться и направление магнитного потока, что обеспечивает вращение в только в одну сторону. Скорость вращения регулируется путем изменения силы подаваемого напряжения. Изменение скорости напряжения чаще всего используется в пылесосах и дрелях, где для этой цели применяется переменное сопротивление или реостат.

Механизм работы отдельных типов двигателя

Промышленные электродвигатели могут работать как на постоянном, так и на переменном токе. В основе их конструкции лежит статор, который представляет собой электромагнит, создающий магнитное поле. Промышленный электромотор содержит обмотки, которые поочередно подключаются к источнику питания при помощи щеток. Они попеременно поворачивают ротор на определенный угол, что приводит его в движение.

Самый простой электродвигатель для детских игрушек может работать только при помощи постоянного тока. То есть, он может получать ток от пальчиковой батарейки или аккумулятора. Ток при этом проходит по рамке, находящейся между полюсами магнита постоянного типа. Благодаря взаимодействию магнитных полей рамки с магнитом она начинает вращаться. По завершению каждого полуоборота, коллектор переключает контакты в рамке, которые проходят к батарейке. В результате этого рамка совершает вращательные движения.

Таким образом, на сегодняшний день существует большое количество электродвигателей разнообразного предназначения, которые имеют один принцип работы.

ekowheel.com

Устройство электродвигателей переменного тока :: SYL.ru

При помощи электродвигателей переменного тока происходит конвертация электроэнергии в механическую. Бывают моторы переменного и постоянного тока. У них есть много отличий, особенно в конструкции. В промышленности большое распространение получили электродвигатели, работающие на переменном токе. Их можно встретить как в бытовых приборах, так и в промышленности. Они встречаются везде — в стиральных машинах, автомобилях, перфораторах, болгарках, производственных станках.

Как работает электродвигатель?

Функционирование электромоторов напрямую зависит от законов Ампера и электромагнитной индукции Фарадея. Закон Фарадея гласит, что на замкнутых проводниках, которые расположены в магнитном поле, генерируется ЭДС. В моторах поле создается обмотками статора, именно по ним проходит переменный электрический ток. Трехфазные электрические двигатели переменного тока работают именно по этим законам.

Закон Ампера описывает вращение ротора внутри статора. Когда по проводнику протекает электрический заряд, при условии, что воздействует магнитное поле, появляется электродвижущая сила. Причём эта движущая сила направлена перпендикулярно силовым линиям поля. При этом ротор, установленный по центру двигателя на подшипниках, начинает вращаться.

Асинхронный двигатель

В промышленности огромную популярность завоевали асинхронные электродвигатели переменного тока. Они очень неприхотливые, отдают высокую мощность, надежны. Устройство электродвигателя переменного тока асинхронного типа состоит из нескольких частей:

  1. Неподвижная часть — статор, имеет цилиндрическую форму. Выполнен из стальных листов с пазами, в которые укладываются обмотки. Оси обмоток расположены под углом 120 градусов друг к другу. Все края обмоток выводятся в коробку, расположенную сверху мотора. Всего шесть выводов, которые можно соединить по схеме «звезда» или «треугольник». Зависит от того, какие параметры у электропривода.
  2. Чаще всего используется короткозамкнутый ротор. Конструкция его называется «беличья клетка» за внешнее сходство. В ней имеется несколько стержней из меди или алюминия, которые коротко замкнуты при помощи металлических колец на торцах.
  3. Фазный ротор немного иной конструкции. На нем укладывается три обмотки, напоминающие те, которые расположены в статоре. Края всех обмоток выводятся в коробку, где производится их соединение. При помощи фазного ротора можно добавить в цепь питания обмотки резистор, способный менять сопротивление. Это позволяет уменьшить силу тока при запуске.

Обязательно на асинхронном электродвигателе устанавливается крыльчатка, которая позволяет охлаждать обмотки, две крышки, подшипники, коробка, вал.

Как работает асинхронник?

Функционирует асинхронный электрический двигатель по законам электромагнитной индукции. ЭДС возникает в том случае, когда у магнитного поля обмоток статора и ротора разная скорость вращения. В случае, если эти параметры были бы одинаковы, электродвижущая сила не смогла бы сгенерироваться. Но так как на ротор воздействуют тормозящие факторы, например, трение и нагрузка со стороны подшипников, то всегда будут благоприятные условия для работы устройства.

Синхронные электродвигатели

Однофазные электродвигатели переменного тока синхронного типа получили широкое распространение. Конструкция у таких моторов немного отличается от рассмотренной выше. В них ротор вращается с такой же скоростью, с какой движется магнитное поле обмоток статора. А на якоре имеются обмотки, соединенные с коллектором. Конструкция контактных площадок выполнена так, что в один момент времени питание подается при помощи графитовых щеток только на пару противоположных ламелей.

Следовательно, запитана только одна обмотка на роторе. Подобные коллекторные электродвигатели переменного тока получили широкое распространение в бытовой технике. Например, в электроинструментах, стиральных машинах, двигателях привода компрессоров кондиционеров или холодильников.

Как работает синхронный электродвигатель?

Всего можно выделить несколько этапов работы асинхронного электродвигателя:

  1. Возникновение вращающего момента происходит, как только начинают взаимодействовать магнитный поток в статоре и электрический ток в роторе.
  2. Магнитный поток изменяет направление своего движения. Причём происходит это одновременно с реверсом тока. При помощи такого поведения получается сохранить вращение ротора в одном направлении.
  3. Чтобы добиться необходимой частоты вращения ротора, достаточно произвести регулировку питающего напряжения. Во многих бытовых приборах используется для этой цели простой реостат, который изменяет свое сопротивление.

Конструкция синхронного двигателя весьма ненадежная, так как очень часто изнашиваются графитовые щетки, либо ослабляются их пружины. При разрушении подшипников на валу появляется характерный неприятный звук. Со временем загрязняются ламели на коллекторе. Их можно очистить при помощи наждачной бумаги или спиртосодержащими растворами.

Особенности диагностики синхронных двигателей

Чтобы осуществить проверку электродвигателя, необходимо полностью обесточить инструмент и разобрать его. Если имелось короткое замыкание, то внутри изоляционный материал начнёт оплавляться, и появится неприятный запах. Поэтому первым делом необходимо понюхать ротор. Если нет признаков поломки, то проверьте на якоре состояние ламелей. Делается это при помощи мультиметра.

Переключаете его в режим измерения сопротивления с порогом 200 Ом. Прозвоните все соседние ламели. Если сопротивление меняется, то это говорит о том, что внутри катушки имеется поломка. Вместо мультиметра можно использовать простую лампу накаливания. Для этого необходимо подключить электродвигатель к источнику питания 12 Вольт, в разрыв установить лампу накаливания. Вращая вал рукой, необходимо посмотреть на поведение лампы.

В случае если лампа начинает моргать, это говорит о наличии межвиткового замыкания. Если же она совсем не горит, то имеется обрыв в цепи питания, либо неисправна одна из ламелей. Чтобы проводить ремонт, необходимо заменить обмотку и установить новую изоляцию. Только в этом случае двигатель не перегорит. Обязательно после ремонта проведите испытание электродвигателя переменного тока. Для увеличения ресурса мотора обязательно нужно проводить перемотку ротора каждые два года.

Преимущества и недостатки моторов, работающих на переменном токе

Большую популярность приобрели трехфазные электродвигатели переменного тока асинхронного типа. В промышленности их доля составляет более 95%. Но у них имеется недостаток — изменение частоты вращения можно производить только лишь путем регулировки частоты электрического тока. Для этого используются частотные преобразователи, стоимость которых довольно высокая. При изменении частоты вращения снижается, причем существенно, мощность электродвигателя. У асинхронников очень высокий пусковой ток, а момент при старте крайне низкий. Но можно также применять редукторы, чем-то похожие на автоматическую коробку передач, используемую в автомобилях.

У синхронных моторов имеется один большой недостаток — это его конструкция. Щетки из графита очень быстро разрушаются под действием нагрузки, в результате чего теряется контакт. У них также могут выходить из строя подшипники, разрушаться обмотки, а их вдвое больше, нежели у асинхронных машин. Запустить синхронную машину намного сложнее, нежели асинхронную. Поэтому в промышленности они большого распространения не получили. Да и асинхронник способен дольше работать под большими нагрузками, не испытывая "дискомфорт".

Подключение к трехфазной сети питания

Всего имеется две схемы, по которым соединяются обмотки трехфазных электрических двигателей:

  1. "Звезда" — крайне низкие пусковые токи, но добиться высокой мощности в этом случае вряд ли получится.
  2. "Треугольник" — пусковой ток очень высокий, поэтому использование такой схемы рекомендуется при работе в устоявшемся режиме.

Подключить асинхронный двигатель к сети переменного тока с трехфазным напряжением очень просто.

Для этого в клеммной коробке необходимо соединить шесть выводов обмоток. Но если вы произведете подключение неверно, то обмотки расплавятся. Потребуется проводить ремонт электрической машины. Синхронные машины намного сложнее подключить, так как необходимо правильно соединить обмотки ротора из статора.

Подключение трехфазного двигателя в однофазную сеть

Для того чтобы произвести подключение трехфазного асинхронного двигателя в бытовую сеть, лучше всего воспользоваться конденсаторами. С их помощью можно произвести сдвиг по фазе питающего напряжения. Таким образом, вы получите третью дополнительную фазу, необходимую для запуска и работы электродвигателя. Если нужно запускать мотор мощностью до 1,5 кВт, то достаточно применять один рабочий конденсатор. Если же мощность свыше 1,5 кВт, то параллельно ему потребуется включать еще один посредством выключателя. Он должен работать только несколько секунд, пока двигатель не запустится. Так запускаются электродвигатели переменного тока 220В и 380В от бытовой сети.

www.syl.ru

Принцип работы электродвигателя. Принцип работы электродвигателя переменного тока. Физика, 9 класс

Сегодня представить себе человеческую цивилизацию и высокотехнологическое общество без электричества невозможно. Одним из основных аппаратов, которые обеспечивают работу электрических приборов, является двигатель. Эта машина нашла самое широкое распространение: от промышленности (вентиляторы, дробилки, компрессоры) до бытового использования (стиральные машины, дрели и прочее). Но в чем состоит принцип работы электродвигателя?

Назначение

Принцип работы электродвигателя и его основные цели заключаются в передаче рабочим органам необходимой для совершения технологических процессов механической энергии. Сам двигатель вырабатывает ее за счет потребляемой из сети электроэнергии. По сути говоря, принцип работы электродвигателя заключается в преобразовании электрический энергии в механическую. Количество вырабатываемой им механической энергии за одну единицу времени называется мощностью.

Виды двигателей

В зависимости от характеристик питающей сети можно выделить два основных типа двигателя: на постоянном и на переменном токе. Наиболее распространенными машинами постоянного тока являются моторы с последовательным, независимым и смешанным возбуждением. Примерами двигателей на переменном токе могут выступить синхронные и асинхронные машины. Несмотря на кажущееся разнообразие, устройство и принцип работы электродвигателя любого назначения основаны на взаимодействии проводника с током и магнитным полем либо же постоянного магнита (ферромагнитного объекта) с магнитным полем.

Рамка с током – прообраз двигателя

Основным моментом в таком вопросе, как принцип работы электродвигателя, можно назвать появление крутящего момента. Рассмотреть такое явление можно на примере рамки с током, которая состоит из двух проводников и магнита. К проводникам ток подводится через контактные кольца, которые закреплены на оси вращающейся рамки. В соответствии со знаменитым правилом левой руки на рамку будут действовать силы, которые создадут крутящий момент относительно оси. Она под действием этой суммарной силы будет вращаться по направлению против часовой стрелки. Известно, что этот момент вращения прямо пропорционален магнитной индукции (B), силе тока (I), площади рамки (S) и зависит от угла между линиями поля и осью последней. Однако под действием момента, изменяющегося по своему направлению, рамка будет совершать колебательные движения. Что же предпринять для образования постоянного направления? Тут есть два варианта:

  • менять направление электрического тока в рамке и положение проводников относительно полюсов магнита;
  • менять направление самого поля, притом что рамка вращается в неизменную сторону.

Первый вариант используется для двигателей постоянного тока. А второй - это принцип работы электродвигателя переменного тока.

Изменение направления тока относительно магнита

Для того чтобы изменить направление движения заряженных частиц в проводнике рамки с током, необходимо устройство, которое бы задавало это направление в зависимости от расположения проводников. Такая конструкция реализована благодаря использованию скользящих контактов, которые служат для подвода к рамке тока. При замене одним кольцом двух, когда рамка поворачивается на половину оборота, направление тока меняется на противоположное, а крутящий момент его сохраняет. Важно учесть, что одно кольцо собрано из двух половинок, которые изолированы друг от друга.

Конструкция машины постоянного тока

Вышеприведенный пример – это принцип работы электродвигателя постоянного тока. Реальная машина, естественно, имеет более сложную конструкцию, где используются десятки рамок, образующих обмотку якоря. Проводники этой обмотки размещены в специальных пазах в цилиндрическом ферромагнитном сердечнике. Концы обмоток присоединены к изолированных кольцам, которые образуют коллектор. Обмотка, коллектор и сердечник – это якорь, вращающийся в подшипниках на корпусе самого двигателя. Магнитное поле возбуждения создается полюсами постоянных магнитов, которые расположены в корпусе. Обмотка подключается к питающей сети, и ее можно включать как независимо от цепи якоря, так и последовательно. В первом случае электродвигатель будет иметь независимое возбуждение, во втором – последовательное. Также существует конструкция со смешанным возбуждением, когда используются сразу два типа подключения обмотки.

Синхронная машина

Принцип работы синхронного электродвигателя заключается в необходимости создания вращающегося магнитного поля. Затем нужно поместить в это поле обтекаемые неизменным в направлении током проводники. Принцип работы синхронного электродвигателя, который получил весьма широкое распространение в промышленности, основан на вышеприведенном примере с рамкой с током. Вращающееся поле, создаваемое магнитом, образуется при помощи системы обмоток, которые подключены к питающей сети. Обычно используют трехфазные обмотки, однако принцип работы однофазного электродвигателя переменного тока не будет отличаться от трехфазного, разве что количеством самих фаз, что несущественно при рассмотрении конструктивных особенностей. Обмотки укладывают в пазы статора с некоторым сдвигом по окружности. Это делается для создания вращающегося магнитного поля в образованном воздушном промежутке.

Синхронизм

Очень важным моментом является синхронная работа электродвигателя вышеприведенной конструкции. При взаимодействии магнитного поля с током в обмотке ротора образуется сам процесс вращения двигателя, который будет синхронным по отношению к вращению магнитного поля, образованному на статоре. Синхронизм будет сохраняться до достижения максимального момента, который вызван сопротивлением. При увеличении нагрузки машина может выйти из синхронизма.

Асинхронный двигатель

Принцип работы электродвигателя асинхронного заключается в наличии вращающегося магнитного поля и замкнутых рамок (контуров) на роторе – крутящейся части. Магнитное поле образуется так же, как и у синхронного двигателя - при помощи расположенных в пазах статора обмоток, которые подключены к сети переменного напряжения. Обмотки ротора состоят из десятка замкнутых контуров-рамок и имеют обычно два типа исполнения: фазное и короткозамкнутое. Принцип работы электродвигателя переменного тока в обоих вариантах одинаковый, меняется только конструктивное исполнение. В случае короткозамкнутого ротора (также известного под названием «беличья клетка») обмотка заливается расплавленным алюминием в пазы. При изготовлении обмотки фазной концы каждой фазы выводят наружу с помощью скользящих колец-контактов, так как это позволит включить в цепь добавочные резисторы, которые необходимы для регулирования частоты вращения двигателя.

Тяговая машина

Принцип работы тягового электродвигателя аналогичен мотору на постоянном токе. От питающей сети ток подают на повышающий трансформатор. Далее трехфазный переменный ток передается на специальные тяговые подстанции. Там находится выпрямитель. Он преобразует переменный ток в постоянный. По схеме он проводится одной своей полярностью к контактным проводам, второй – непосредственно к рельсам. Необходимо помнить, что многие тяговые механизмы работают на частоте, отличной от установившейся промышленной (50 Гц). Поэтому используют частотник для электродвигателя, принцип работы которого заключается в преобразовании частот и контролировании данной характеристики.

По поднятому пантографу напряжение подается в камеры, где находятся пусковые реостаты и контакторы. С помощью контроллеров реостаты подключаются к тяговым электродвигателям, которые расположены на осях тележек. От них ток поступает через шины на рельсы, а затем возвращается к тяговой подстанции, таким образом замыкая электрическую цепь.

fb.ru

Как работает простейший электродвигатель. Как работает электродвигатель. Преимущества и недостатки разных видов

Сегодняшняя тема - обзор различных электродвигателей. Электродвигатели нашли широчайшее применение в науке и технике. Жизнь человека трудно представить без машин и механизмов на основе электрических двигателей. Они применяются повсюду - в заводах, в автомобильной технике, в бытовой аппаратуре, в медицинской технике, одним словом - везде! Электрический двигатель - это своего рода преобразователь, который превращает электрическую энергию в механическую энергию вращения вала двигателя.

Электродвигатель состоит из двух основных частей - неподвижной части (статор) и вращающая часть (ротор). Двигатели разделяются на две основные группы - двигатели постоянного тока и переменного тока. Основные части простого электродвигателя постоянного тока - неподвижная часть (статор) постоянные магниты, в центре на валу собран ротор, который состоит из стальных пластин, а на них намотана обмотка. Ротор еще и называют якорем электродвигателя.

Питание подается через контакты (щетки) на обмотку. В результате этого якорь превращается в электромагнит, в результате магнитного воздействия, ротор пытается из магнитного поля, а убежать ему некуда, и ротор начинает вращаться с большей скоростью, иногда число оборотов ротора за одну минуту превышает 10000! На роторе обычно мотают несколько обмоток, для эффективной работы и повышения мощности двигателя. Ниже показана схема двигателя в электродрели.

Двигатели которые работают под определенной частотой тока, то есть питание двигателей осуществляется переменным током, работают в основном на сетевой частоте 50-60 герц. Двигатели переменного тока делятся на две группы - синхронные и асинхронные двигатели. В основном они пускаются вручную или имеют пусковую обмотку. Двухфазовые или конденсаторные двигатели - это электродвигатели которые имеют конечное число положения ротора. Заданное положение ротора фиксируется подачей питания на соответствующей обмотке. Переход в другое состояние осуществляется путем снятия напряжения с одной обмотки и передачи ее на другой, так напряжение проходит по всем обмоткам, каждая в свою очередь превращается в электромагнит.

Синхронный - это разновидность двигателей переменного тока, ротор которого вращается синхронно с магнитным полем питающего напряжения. Асинхронный электродвигатель - это двигатель переменного тока в котором частота вращения ротора отличается от частоты вращающего магнитного поля создавая ему питающее напряжение.

В технике в основном используют двигатели переменного тока, там не используются постоянные магниты, которые расчитаны на стабильную мощность, для повышенной мощности используют электромагнит, мощность которого во много раз повышает мощность постоянного магнита, хотя для питания электромагнитной обмотки нужно на нее подать добавочное напряжение. Вот в кратце вся основная информация, на сегодня достаточно, автор - АКА.

Здравствуйте, дорогие читатели. В этой статье мы вам расскажем, про электродвигатель, про его устройство и принцип действия. И так, электродвигатели – это устройства, в которых электрическая энергия превращается в механическую. В основе принципа их действия лежит явление электромагнитной индукции. Однако способы взаимодействия магнитных полей, заставляющих вращаться ротор двигателя, существенно различаются в зависимости от типа питающего напряжения – переменного или постоянного.

Устройство и принцип действия электродвигателя постоянного тока

В основе принципа работы электродвигателя постоянного тока лежит эффект отталкивания одноименных полюсов постоянных магнитов и притягивания разноименных. Приоритет ее изобретения принадлежит русскому инженеру Б. С. Якоби. Первая промышленная модель двигателя постоянного тока была создана в 1838 году. С тех пор его конструкция не претерпела кардинальных изменений.

В двигателях постоянного тока небольшой мощности один из магнитов является физически существующим. Он закреплен непосредственно на корпусе машины. Второй создается в обмотке якоря после подключения к ней источника постоянного тока. Для этого используется специальное устройство – коллекторно-щеточный узел. Сам коллектор – это токопроводящее кольцо, закрепленное на валу двигателя. К нему подключены концы обмотки якоря.

Электродвигатель постоянного тока

Чтобы возник вращающий момент, необходимо непрерывно менять местами полюса постоянного магнита якоря. Происходить это должно в момент пересечения полюсом так называемой магнитной нейтрали. Конструктивно такая задача решается разделением кольца коллектора на секторы, разделенные диэлектрическими пластинами. Концы обмоток якоря присоединяются к ним поочередно.

Чтобы соединить коллектор с питающей сетью используются так называемые щетки – графитовые стержни, имеющие высокую электрическую проводимость и малый коэффициент трения скольжения.

В двигателях большой мощности физически существующих магнитов не используют из-за их большого веса. Для создания постоянного магнитного поля статора используется несколько металлических стержней, каждый из которых имеет собственную обмотку из проводника, подключенного к плюсовой или минусовой питающей шине. Одноименные полюса включаются последовательно друг другу.

Количество пар полюсов на корпусе двигателя может быть равно одной или четырем. Число токосъемных щеток на коллекторе якоря должно ему соответствовать.

Электродвигатель большой мощности имеют ряд конструктивных хитростей. Например, после запуска двигателя и с изменением нагрузки на него, узел токосъемных щеток сдвигается на определенный угол против вращения вала. Так компенсируется эффект «реакции якоря», ведущий к торможению вала и снижению эффективности электрической машины.

Также существует три схемы подключения двигателя постоянного тока:

Параллельное возбуждение – это когда параллельно обмотке якоря включается еще одна независимая, обычно регулируемая (реостат).

Такой способ подключения позволяет очень плавно регулировать скорость вращения и достигать ее максимальной стабильности. Его используют для питания электродвигателей станков и кранового оборудования.

Последовательная – в цепь питания якоря дополнительная обмотка включена последовательно. Такой тип подключения используется для того, чтобы в нужный момент резко нарастить вращающее усилие двигателя. Например, при трогании с места железнодорожных составов.

Двигатели постоянного тока имеют возможность плавной регулировки частоты вращения, поэтому их применяют в качестве тяговых на электротранспорте и грузоподъемном оборудовании.

Двигатели переменного тока - в чем отличие?

Устройство и принцип работы электродвигателя переменного тока для создания крутящего момента предусматривают использование вращающегося магнитного поля. Их изобретателем считается русский инженер М.О. Доливо-Добровольский, создавший в 1890 году первый промышленный образец двигателя и являющийся основоположником теории и техники трехфазного переменного тока.

Вращающееся магнитное поле возникает в трех обмотках статора двигателя сразу, как только они подключаются к цепи питающего напряжения. Ротор такого электромотора в традиционном исполнении не имеет никаких обмоток и представляет собой, грубо говоря, кусок железа, чем-то напоминающий беличье колесо.

Магнитное поле статора провоцирует возникновение в роторе тока, причем очень большого, ведь это короткозамкнутая конструкция. Этот ток вызывает возникновение собственного поля якоря, которое «сцепляется» с вихревым магнитным потом статора и заставляет вращаться вал двигателя в том же направлении.

Магнитное поле якоря имеет ту же скорость, что и статора, но отстает от него по фазе примерно на 8–100. Именно поэтому двигатели переменного тока называются асинхронными.

Принцип действия электродвигателя переменного тока с традиционным, короткозамкнутым ротором, имеет очень большие пусковые токи. Вероятно, многие из вас это замечали – при пуске двигателей лампы накаливания меняют яркость свечения. Поэтому в электрических машинах большой мощности применяется фазный ротор – на нем уложены три обмотки, соединенные «звездой».

Обмотки якоря не подключены к питающей сети, а посредством коллекторно-щеточного узла соединены с пусковым реостатом. Процесс включения такого двигателя состоит из соединения с питающей сетью и постепенного уменьшения до нуля активного сопротивления в цепи якоря. Электромотор включается плавно и без перегрузок.

Особенности использования асинхронных двигателей в однофазной цепи

Несмотря на то, что вращающееся магнитное поле статора проще всего получить от трехфазного напряжения, принцип действия асинхронного электродвигателя позволяет ему работать и от однофазной, бытовой сети, если в их конструкцию будут внесены некоторые изменения.

Для этого на статоре должно быть две обмотки, одна из которой является «пусковой». Ток в ней сдвигается по фазе на 90° за счет включения в цепь реактивной нагрузки. Чаще всего для этого используется конденсатор.

Запитать от бытовой розетки можно и промышленный трехфазный двигатель. Для этого в его клеммной коробке две обмотки соединяются в одну, и в эту цепь включается конденсатор. Исходя из принципа работы асинхронных электродвигателей, запитанных от однофазной цепи, следует указать, что они имеют меньший КПД и очень чувствительны к перегрузкам.

Электродвигатель этого типа легко запускается, но частоту его вращения практически невозможно регулировать.

Они чувствительны к перепадам напряжения, а при «недогрузе» снижают коэффициент полезного действия, становясь источником непропорционально больших затрат электроэнергии. При этом существуют методы использования асинхронного двигателя как генератора.

Универсальные коллекторные двигатели - принцип работы и характеристики

В бытовых электроинструментах малой мощности, от которых требуются малые пусковые токи, большой вращающий момент, высокая частота вращения и возможность ее плавной регулировки, используются так называемые универсальные коллекторные двигатели. По своей конструкции они аналогичны двигателям постоянного тока с последовательным возбуждением.

В таких двигателях магнитное поле статора создается за счет питающего напряжения. Только немного изменена конструкция магнитопроводов – она не литая, а наборная, что позволяет уменьшать перемагничивание и нагрев токами Фуко. Последовательно включенная в цепь якоря индуктивность дает возможность менять направление магнитного поля статора и якоря в одном направлении и в той же фазе.

Практически полная синхронность магнитных полей позволяет двигателю набирать обороты даже при значительных нагрузках на валу, что и требуется для работы дрелей, перфораторов, пылесосов, «болгарок» или полотерных машин.

Если в питающую цепь такого двигателя включен регулируемый трансформатор, то частоту его вращения можно плавно менять. А вот направление, при питании от цепи переменного тока, изменить не удастся никогда.

Такие электромоторы способны развивать очень высокие обороты, компактны и имеют больший вращающий момент. Однако наличие коллекторно-щеточного узла снижает их моторесурс – графитовые щетки достаточно быстро истираются на высоких оборотах, особенно если коллектор имеет механические повреждения.

Электродвигатель имеет самый большой КПД (более 80 %) из всех устройств, созданных человеком. Их изобретение в конце XIX века вполне можно считать качественным цивилизационным скачком, ведь без них невозможно представить жизнь современного общества, основанного на высоких технологиях, а чего-либо более эффективного пока еще не придумано.

Электродвигатель работает на физических принципах, открытых Майклом Фарадеем в далеком 1821 году. Он сделал важное открытие, что при взаимодействии электрического тока в проводнике и постоянного магнита появляется непрерывное вращение.

Таким образом, разместив в однородном магнитном поле в вертикальном положении токопроводящую рамку и пропустить по ней электрический ток, тогда вокруг проводника будет образовываться электромагнитное поле, которое начнет взаимодействовать с полюсами постоянных магнитов. От одного из них рамка будет отталкиваться, а к другому, наооборот притягиваться. В результате рамка провернется в горизонтальное положения, в котором будет нулевое воздействие магнитного поля на проводник с током. Для того что бы вращение снова продолжилось требуется добавить еще одну рамку под определенным углом или изменить направление протекающего в ней тока в нужный момент. На анимированном рисунке выше это сделано при помощи полуколец, к которым подведены контактные пластины от батарейки. Поэтому после совершения полуоборота в электрической цепи меняется полярность и вращение начнется снова. Подробней об этом вы можете почитать в статье ниже:

В настоящее время имеется довольно много электродвигателей разных типов и конструкций. Их можно условно разделить по типу электропитания :

Переменного тока , работают напрямую от электросети 220 или 380 Вольт. Постоянного тока , работают от батареек, аккумуляторов, блоков питания или подобных источников постоянного тока.

Из названия следует, что особенностью данного рода ЭД является то, что они работают на переменном токе. Если при постоянном токе электрические частицы следуют только в одном направлении, и могут в определенный момент времени менять свою интенсивность (разность потенциалов или напряжение), то у переменного тока имеются другие характеристики - такие как частота, форма и длительность. Что повлияло на конструкцию и принцип действия электродвигателей переменного тока. В статье описаны основные аспекты работы ЭД переменного тока.

По принципу работы электродвигатели бывают:

Синхронные электродвигатели , в них имеется обмотка на роторе и щеточный механизм, на который поступает электрический ток. Асинхронные элетродвигатели . В них нет щеток и обмоток на роторе, а его принцип работы основан на принципах физического взаимодействия магнитного поля, появляющегося в статоре, с током, который это же поле создает в роторной обмотке.

Синхронный ЭД вращается всегда синхронно с магнитным полем, которое осуществляет его вращение, а у асинхронного мотора ротор вращается куда медленнее вращающегося магнитного поля в статоре.

Синхронный двигатель – это разновидность электродвигателей, только работающих от переменного напряжения, при этом частота вращения ротора совпадает с частотой вращения магнитного поля. Именно поэтому она остается постоянной вне зависимости от нагрузки, т.к ротор синхронного двигателя – это обычный электромагнит и его, количество пар полюсов совпадает с числом пар полюсов у вращающегося магнитного поля. Поэтому взаимодействие этих полюсов обеспечивает постоянство угловой скорости, с которой крутится ротор.

Работа асинхронного двигателя основана на принципах физического взаимодействия магнитного поля, появляющегося в статоре, с током, который это же поле генерирует в роторной обмотке.

Так имеется огромное разнобразие типов электродвигателей, поэтому и схем управления ими существует великое множество. Некоторые из них рассмотрены в этой статье.

Двигатели питающиеся от электричества работают обычно долго и надежно, но рано или поздно вы столкнетесь с проблемой их исправности. Для проверки электродвигателя и устранения неисправностей неплохо использовать различные самодельные приспособления и приборы, которые существенно сократят время на поиск и устранение неисправности.

Вентильные электродвигатели малой мощности для промышленных роботов - основы теории, конструкция и схемы вентильных ЭД постоянного тока. Дан анализ путей повышения их энергетических показателей и расширения функциональных возможностей. Подробные схемы датчиков положения ротора и частоты вращения с описанием их работы

Небольшая подборка учебных материалов и руководств связанная с теорией и практикой работы ЭД, а также советы и рекомендации по их ремонту

Выбор электродвигателей к производственным механизмам - Представлены характеристики различных типов ЭД для наиболее распространенных механизмов, а также методика и расчет их выбора для обеспечения заданной производительности, надежности и экономичности.

Ремонт электродвигателей Советы по выявлению и устранению неисправностей, организации и проведения ремонтов и испытаний ЭД различных типов

Аварийные режимы асинхронных электродвигателей и способы их защиты -Расказывется о работе АД при отключениях и несимметрии напряжения, питании от маломощных сетей, большой неравномерности нагрузки

Автоматическое измерение выходных параметров электродвигателей

Из названия следует, что особенностью данного рода электрических двигателей (ЭД) является то, что они работают на переменном токе. Если при постоянном токе электрические частицы следуют только в одном направлении, и могут в определенный момент времени менять свою интенсивность (разность потенциалов или напряжение), то у переменного тока имеются другие характеристики - такие как частота, форма и длительность. Что повлияло на конструкцию и принцип действия электродвигателей переменного тока. В статье разберём основные аспекты работы ЭД переменного тока.

Электродвигатели переменного тока это электротехнические устройства, являющиеся своеобразными преобразователями электрической энергии, в основе принципа которых которых лежат электромагнитные силы Лоренца и , работающие на переменном токе. ЭД и генераторы переменного тока по принципу действия классифицируют на синхронные и асинхронные. Что бы было понятно дальнейшее объяснение хочу поведать о следующем.

Главной отличительной чертой электрических машин переменного тока является то, что электрическую энергию преобразуют в механическую или наоборот, с помощью взаимодействие магнитных полей, одно из них является вращающимся, динамическим (генерируемое при движении переменного тока, а другое поле в статическое, постоянное. Поэтому, для получения движения ротора движущееся поле должно взаимодействовать с постоянным, что и создает механическое движение вала ЭД.

Общий принцип действия асинхронной электрической машины состоит в следующем. На статоре ЭД намотаны три обмотки, к которым подсоединены три фазы. Из курса электротехники мы знаем, что трехфазный ток это циклическое изменение величины тока и напряжения плавно перетекающее по синусойде. То есть, максимум мощности плавно перетекает из одной точки, обмотки в другую, понятно что, при этом, на противоположной стороне синусойды будет минимум мощности. Так вот при подачи трехфазного напряжения на обмотки статора асинхронного ЭД мы имеем в результате вращающееся магнитное поле, частота которого равна частоте питающей сети, в России это 50 Гц.

Из курса физики и общей электротехники мы знаем, что при движении проводника в переменное магнитное поле на его концах генерируется разность потенциалов, а если его концы подсоединить к какой нибудь цепи, то через нее, потечет ток, образующий вокруг себя свое собственное магнитное поле. Вот этот принцип работы и лежит в асинхронных электрических машинах. Внутри нее расположен короткозамкнутый ротор. Во вращающемся магнитном поле на нем появляется ЭДС и у него создается собственное магнитное поле, что и отталкивается от поля статора.

Работа асинхронного двигателя основана на принципах физического взаимодействия магнитного поля, появляющегося в статоре, с током, который это же поле генерирует в роторной обмотке.

У синхронных ЭД подобного отставания нет. Там поле индуктора как бы цепляется за вращающееся поле якоря, что и ведет к синхронной работе обоих магнитных полей. Если в асинхронниках статическое поле является следствием работы динамического, то в синхронниках в определённом смысле причины появления вращающегося полями и поля статического независимы друг от друга, но их взаимодействие и позволяет осуществлять работу ЭД переменного тока.

Синхронный двигатель – это разновидность электродвигателей, только работающих от переменного напряжения, при этом частота вращения ротора совпадает с частотой вращения магнитного поля. Именно поэтому она остается постоянной вне зависимости от нагрузки, т.к ротор синхронного двигателя – это обычный электромагнит и его, количество пар полюсов совпадает с числом пар полюсов у вращающегося магнитного поля. Поэтому взаимодействие этих полюсов обеспечивает постоянство угловой скорости, с которой крутится ротор.

skupaem-auto.ru

Виды электродвигателей: устройство и принцип работы

Электродвигатель это устройство преобразующее энергию электричества в механическую энергию. Электродвигатели получили широкое распространение, практически во всех сферах повседневной жизни. Прежде чем рассматривать виды электродвигателей, следует кратко остановиться на принципе их работы. Все действие происходит согласно закона Ампера, когда вокруг проволоки, где протекает электрический ток, образуется магнитное поле. При вращении этой проволоки внутри магнита, каждая ее сторона будет поочередно притягиваться к полюсам. Таким образом, будет происходить вращение проволочной петли. Электродвигатели разделяются между собой, в зависимости от применяемого тока, который может быть переменным или постоянным.

Электродвигатели переменного тока

Особенностью переменного тока является смена его направления определенное количество раз в течение секунды. Как правило, используется переменный ток с частотой в 50 герц.

При подключении, ток вначале начинает протекать в одном направлении, а, затем, его направление полностью изменяется. Таким образом, стороны петли, получая толчок, притягиваются поочередно к различным полюсам. То есть, фактически, происходит их упорядоченное притягивание и отталкивание. Поэтому, при изменении направления, будет происходить вращение проволочной петли вокруг своей оси. С помощью этих круговых движений происходит преобразование энергии из электрической в механическую.

Двигатели переменного тока имеют множество конструкций и представлены самыми разнообразными моделями. Это позволяет широко использовать их не только в промышленности, но и в быту.

Электродвигатели постоянного тока

Первыми изобретенными двигателями были все-таки устройства постоянного тока. Переменный ток в это время был еще неизвестен. В отличие от переменного, движение постоянного тока осуществляется всегда в одном направлении. Вращение ротора прекращается после того, как произойдет оборот на 90 градусов. Направление магнитного поля совпадает в направлением электротока.

Поэтому, металлическое кольцо, подключенное к источнику постоянного тока, разрезается на две части и носит название кольцевого коммутатора. В начале вращения, протекание тока происходит по первой стороне коммутатора и по проводам. Электроток, протекающий по проволочной петле, создает в ней магнитное поле. При дальнейшем вращении петли, происходит и вращение коммутатора. После прохождения кольцом пустого пространства, происходит его переход на другую часть коммутатора. Далее, происходит эффект переменного электротока, благодаря которому вращение петли продолжается.

Все электродвигатели постоянного тока применяются совместно с устройствами переменного тока на производстве и транспорте.

Классификация электродвигателей

electric-220.ru


Видеоматериалы

24.10.2018

Опыт пилотных регионов, где соцнормы на электроэнергию уже введены, показывает: граждане платить стали меньше

Подробнее...
23.10.2018

Соответствует ли вода и воздух установленным нормативам?

Подробнее...
22.10.2018

С начала года из ветхого и аварийного жилья в республике были переселены десятки семей

Подробнее...
22.10.2018

Столичный Водоканал готовится к зиме

Подробнее...
17.10.2018

Более 10-ти миллионов рублей направлено на капитальный ремонт многоквартирных домов в Лескенском районе

Подробнее...

Актуальные темы

13.05.2018

Формирование энергосберегающего поведения граждан

 

Подробнее...
29.03.2018

ОТЧЕТ о деятельности министерства энергетики, ЖКХ и тарифной политики Кабардино-Балкарской Республики в сфере государственного регулирования и контроля цен и тарифов в 2012 году и об основных задачах на 2013 год

Подробнее...
13.03.2018

Предложения организаций, осуществляющих регулируемую деятельность о размере подлежащих государственному регулированию цен (тарифов) на 2013 год

Подробнее...
11.03.2018

НАУЧИМСЯ ЭКОНОМИТЬ В БЫТУ

 
Подробнее...

inetpriem


<< < Ноябрь 2013 > >>
Пн Вт Ср Чт Пт Сб Вс
        1 2 3
4 5 6 7 8 9 10
11 12 13 14 15 16 17
18 19 20 21 22 23 24
25 26 27 28 29 30  

calc

banner-calc

.