Какие выбрать солнечные батареи: поликристаллические или монокристаллические? Элементы солнечные монокристаллические
Монокристаллические и поликристаллические солнечные. Инфографика | Блог SolarSoul
Несмотря на серьезный прогресс и применение различных материалов в сфере солнечной энергетики, кремний всё еще остается основным «строительным материалом» для солнечных батарей. Для этого используют два основных вида кремния для производства солнечного элемента:
- Монокристаллический кремний
- Поликристаллический кремний
Внешний вид
В первую очередь солнечные элементы из поли и моно кремния отличаются внешним видом. У монокристаллических элементов углы скруглены а поверхность однородная. Это связано с особенностями производства кристаллов, которые имеют цилиндрическую форму после процесса выращивания по методу Чохральского. При этом получается единый кристалл с однородным цветом.
В свою очередь, процесс литья при котором получается поликристаллический элемент технологически проще и поэтому есть возможность сразу получать прямоугольные заготовки. А неоднородная фактура пластин указывает на то, что элемент состоит из множества кристаллов кремния с примесями.
Эффективность солнечных элементов
Монокристаллические элементы и соответственно панели на их основе имеют на сегодняшний день наивысшую эффективность — до 22% среди серийных моделей. Для солнечных батарей из поликристаллических фотоэлементов КПД будет составлять до 18%. Благодаря этим параметрам мы можем сказать, что 1 м² монокристаллической солнечной батареи будет способен генерировать 190 Вт а 1 м² поликристаллической батареи — 180 Вт.
Стоимость солнечных элементов
Стоимость батареи из монокристаллических фотоэлементов немного выше в расчете на единицу мощности производимую панелью. Это связано с более дорогим процессом производства и применением кремния высокой степени очистки. Однако это различие незначительно и составляет в среднем не более 15%.
Инфографика показывает основные различия в этапах производства кремниевых солнечных элементов.
Поделиться "Сравнение монокристаллических и поликристаллических солнечных элементов. Инфографика"
Рекомендуемые статьи
solarsoul.net
Монокристаллические солнечные панели и их особенности
Все серийные солнечные фотомодули изготавливаются из кремниевых пластин. И это вполне логично. Дело в том, что кремний – не просто самый распространенный p-n проводник. Он еще и довольно дешев и прост в обработке, технологические процессы с его участием тщательно изучены, поэтому организовать производство кремниевых пластин не составляет труда.
Конечно, существуют материалы и сплавы, которые гораздо эффективнее преобразуют солнечную энергию, чем силикаты, но их производство (особенно в промышленных масштабах) обойдется гораздо дороже. Поэтому сегодня наиболее популярными по-прежнему остаются поли- и монокристаллические солнечные батареи на основе кремния.
Фотобатареи на монокристаллах широко используются и в бытовых, и в промышленных солнечных станциях. Более того, именно такие ячейки (правда, значительно усовершенствованные) применяются в космической сфере, на искусственных спутниках, орбитальных станциях и т.д. Используются эти изделия и для энергообеспечения морских кораблей, особенно рассчитанных на дальние плавания.
Особенности структуры солнечных монокристаллов
Монокристаллы кремния имеют множество отличительных черт, и, пожалуй, самой заметной является их насыщенный синий цвет при абсолютно однородной поверхности. Такой оттенок, как и равномерность поверхности, объясняется строгой кристаллографической структурой материала. Кроме того, для солнечных модулей из монокремния характерна особая, псевдоквадратная, форма со скругленными углами. Дело в том, что при выращивании монокристаллов образуются цилиндрические заготовки, поэтому после обработки и резки пластины принимают такой оригинальный вид.
Эффективность фотопреобразований
Именно солнечные элементы на монокристаллах имеют наибольший КПД среди всех кремниевых пластин. Объясняется это очень просто. Поскольку ячейка имеет однородную структуру, лучи солнца равномерно освещают всю ее поверхность. Также равномерно они преобразуются в электроток, не рассеиваясь на кристаллических неровностях. Иными словами, эффективность такой ячейки зависит только от свойств самого кристалла, она не снижается из-за побочных отражений лучей (как это происходит в полипластинах).
Такая особенность позволяет делать солнечные моноячейки более компактными, а значит, и уменьшить итоговые габариты собираемых из них батарей.
Преимущества эксплуатации
Монокристаллические солнечные панели не только продуктивнее полибатарей. Они также имеют несколько весомых эксплуатационных преимуществ:
- Возможность установки на криволинейных поверхностях. Монопанели имеют гибкую структуру, способную выдержать небольшой изгиб без потери качества фотопреобразований. Поэтому их можно монтировать там, где поликристаллические модули расположить невозможно.
- Равномерная работа в различных погодных условиях. Многие считают, что в пасмурную погоду производительность монокристаллических ячеек резко падает, тогда как поликристаллы работают практически с той же эффективностью. Когда-то это действительно было так, но с развитием технологий ситуация кардинально изменилась. Сегодня КПД монопанелей при затемнении не уменьшается, а значит, по этому показателю они вновь превосходят поликристаллические аналоги.
- Эффективная работа при минусовых температурах и сильных морозах. Именно монокристаллическими ячейками укомплектованы все солнечные батареи, рассчитанные на зимнюю эксплуатацию.
По сути, единственным недостатком таких панелей является их более высокая, по сравнению с поликристаллами, стоимость. Однако разница эта на самом деле не так велика (порядка 10%), а с учетом большей производительности она фактически неощутима.
Специфика производства
Технология производства монокристаллических солнечных панелей отлажена довольно давно. Отправной точкой служит получение высокочистого технического кремния (массовая доля – порядка 99,99%). Затем осуществляется плавление сырья при высоких температурах, с последующим синтезом при введении разного рода добавок. Добавки используются для повышения производительности фотоячеек и улучшения их эксплуатационных свойств.
Однородные монокристаллы выращиваются в специальных, постоянно вращающихся, тиглях. Такое вращение необходимо для формирования строгой кристаллографической структуры. Готовые технологические слитки монокремния имеют округлую цилиндрическую форму, поэтому их обычно обрабатывают для придания формы псведоквадратной призмы с нужной площадью сечения. Затем слитки при помощи алмазных пил нарезаются на тонкие пластины, которые тщательно очищаются от следов суспензии. На финальном этапе выполняется строгий контроль внешних дефектов и фотоэлектрических параметров. И если пластина соответствует всем стандартам, ее используют для создания солнечных фотобатарей.
Таким образом, на сегодняшний день именно монокристаллические кремниевые ячейки являются наиболее перспективным направлением развития серийных солнечных батарей.
solarb.ru
Солнечные элементы. Виды и работа. Применение и особенности
Фотогальванические полупроводниковые фотоэлементы преобразуют энергию электромагнитного излучения в электрическую. По принципу действия они являются фотодиодами, не требующими приложения внешнего напряжения, и создающими электродвижущую силу самостоятельно.
Первые такие элементы были разработаны в 1926 году, в качестве полупроводникового материала использовалась закись меди. Далее были разработаны селеновые фотоэлементы. В 1958 году в США и СССР были запущены спутники с использованием солнечных батарей.
В настоящее время используются в основном кремниевые фотоэлементы, преобразующие энергию солнечных лучей, и называются подобные ячейки обычно солнечными элементами. Полупроводниковый кремний широко распространен на земле в виде диоксида кремния (обычного песка, или кремнезема).
Путем последовательного и параллельного соединения элементов создаются солнечные батареи мощностью до нескольких киловатт.
Виды солнечных элементов
Кремниевые солнечные элементы выпускаются 4 видов:
- поликристаллические;
- монокристаллические;
- тонкопленочные;
- гибридные.
Все эти виды солнечных элементов производятся по разным технологиям.
Производство солнечных элементов
Для производства поликристаллических элементов прежде всего, путем медленного охлаждения расплава кремния, выращиваются призматические заготовки квадратного сечения, разрезаемые далее на тонкие квадратные пластинки. Поверхность ячеек темного (черного) оттенка с неоднородной структурой.
Неоднородность вызывается тем, что заготовка не представляет собой единого кристалла, а состоит из большого количества кристалликов случайной ориентации.
Выращивание поликристаллов требует меньших затрат, чем производство монокристаллов, что удешевляет поликристаллические солнечные элементы в сравнении с другими типами.
Монокристаллические солнечные элементы производятся из монокристаллов кремния высокой чистоты с не более чем 0,01% примесей, и они отличаются более высокой стоимостью и эксплуатационными характеристиками, чем поликристаллические элементы.
Монокристаллы кремния выращиваются при температуре 1300 °С в виде призмы с поперечным сечением в виде многоугольника, соответственно ячейки этого типа имеют форму квадрата со скошенными углами, либо многоугольника. Монокристалличность заготовки определяет однородный характер поверхности элементов. Самый верхний слой ячейки выполнен из антиотражающего материала, придающего элементу яркий синий цвет.
Тонкопленочные солнечные элементы называют также «гибкими панелями». Производятся подобные ячейки напылением в вакууме при температуре 300 °С полупроводникового аморфного кремния на тонкую гибкую подложку из стекла, пластика или металла. Кристаллы кремния при этом осаждаются на подложке неравномерно и направлены своими осями в разные стороны случайным образом.
Как альтернатива, взамен кремния напыляются теллурид кадмия или селенид меди-индия. Слой полупроводникового материала покрывается сверху защитной пленкой. Технологии производства подобных элементов непрерывно совершенствуются. Тонкопленочные солнечные элементы отличаются минимальной толщиной (около 1 мкм) и малыми затратами на изготовление.
При производстве гибридных солнечных элементов над кристаллическим полупроводниковым материалом располагается тонкий слой аморфного полупроводника.
Принцип действия солнечных элементов
В основе работы фотоэлементов лежит давно открытое явление фотоэффекта – испускания веществом электронов под действием света или любого другого электромагнитного изучения.
Солнечный элемент представляет собой p-n переход, это по сути два соприкасающихся полупроводника разной проводимости с разделяющим слоем между ними. В p-полупроводнике электронов недостаток, а в n-полупроводнике напротив, избыток. В сторону источника излучения направлен n-полупроводник (внешний электрод), он располагается на подложке поверх p-полупроводника (внутреннего электрода). При попадании на элемент солнечных лучей электроны n-полупроводника выбиваются с атомных орбит и переходят в лежащий ниже p-полупроводник. Образуется направленный поток электронов, который можно замкнуть на внешнюю нагрузку с протеканием в ней непрерывного электрического тока.
Такой элемент является некоторым аналогом батареи с катодом (отводом от n-полупроводника) и анодом (отводом от p-полупроводника). Отрицательным полюсом этой «батареи» является внешний электрод (сетка поверх n-полупроводника), а положительным – внутренний (подложка с нанесенным p-полупроводником).
Солнечные элементы как источники питания
Освещенный светом солнечный элемент создает на своих выводах некоторую электродвижущую силу (ЭДС), значение которой зависит от интенсивности падающего на ячейку света. С увеличением освещенности ЭДС возрастает, но лишь до определенного предела (для кремниевых элементов до 0,6 В), т.е. зависимость ЭДС от освещенности нелинейная. От размеров элементов ЭДС не зависит, но она снижается примерно на 2 мВ при нагреве элемента на 1 С.
Для получения более высокой ЭДС устройства соединяют последовательно. Отдаваемый элементом ток зависит от вида элемента и падающего светового потока, в свою очередь определяемого освещенностью и площадью ячейки. Элемент с коэффициентом полезного действия (КПД) 17% размером 156 х 156 мм выдает при коротком замыкании ток 9 А. Максимальную мощность элемент выдает при просадке напряжения под нагрузкой до 0,47-0,5 В, такой режим работы элемента наиболее оптимален. Поскольку площадь ячейки ограничивается технологией изготовления (ячейка – поперечный срез кристалла ограниченных размеров), для повышения отдаваемой мощности отдельные элементы соединяют также и параллельно.
При подключении к элементу или батарее нагрузки напряжение падает, а поскольку оно зависит и от высоты солнца, состояния неба и атмосферы (в пасмурную погоду мощность световых панелей падает в 15-20 раз), солнечные электростанции снабжаются автоматическими регуляторами и буферными аккумуляторами, сглаживающими пики потребления электроэнергии и изменения интенсивности падающего светового потока.
Особенности солнечных элементов разных видов
Солнечным элементам свойственны как общие свойства, так и отличные в зависимости от их вида и технологии изготовления.
Поликристаллические элементы
Поскольку в элементах этого типа кристаллики кремния ориентированы случайно, их эффективность снижается при прямом падении солнечного света, но, в порядке некоторой компенсации, снижается незначительно при наклонном падении света. Их характеристики незначительно зависят от угловой высоты солнца и его положения на небосводе. КПД таких элементов невысок и составляет 17-20%.
Монокристаллические элементы
КПД монокристаллических элементов выше КПД поликристаллических элементов и доходит до 25%, и даже до 44% в элементах, предназначенных для космической отрасли. Эти элементы более критичны к углу падения солнечных лучей, и их целесообразно ориентировать на Солнце с изменением положения в течение дня. Хорошо работают они и при высокой облачности, а также при отрицательных температурах.
Аморфные элементы
КПД элементов из кремния низок (около 7-10%), для элементов из современных материалов он достигает 15-20%. К достоинствам этих элементов относится возможность монтажа их на изогнутых конструкциях, они хорошо работают при рассеянном освещении. К недостатку можно отнести большие размеры – вследствие низкого КПД они требуют при равенстве мощности вдвое большей установочной площади в сравнении с кристаллическими элементами. Также со временем слой аморфного кремния постепенно деградирует, и батарея теряет эффективность, примерно на 20% мощности за первые 2 года эксплуатации.
Гибридные элементы
Поскольку кристаллический кремний и аморфный кремний наиболее эффективно работают каждый в своей области солнечного спектра, при освещении солнечным светом смешанного состава общий КПД солнечного элемента повышается.
Применение солнечных элементов
Поскольку ЭДС одного элемента составляет 0,6 В, для получения достаточного напряжения их соединяют последовательно. Батарея из соединенных последовательно 36 элементов будет обладать ЭДС 0,6 х 36 = 21,6 В, а при оптимальной нагрузке будет выдавать напряжение порядка 17-18 В. Чтобы заряжать таким напряжением аккумулятор с номинальным напряжением 12 В, необходим контроллер заряда, избавляющий аккумулятор от перезаряда, а батарею от перегрузки. Подобный контроллер позволяет путем автоматического снижения напряжения увеличивать снимаемый ток, а тем самым постоянно поддерживать элементы в режиме съема максимальной в данных условиях мощности.
Изначально предполагалось, что устройства будут применяться в основном в космической промышленности и в военных целях. Солнечные батареи – основные источники питания на космических аппаратах, особо эффективны такие устройства при полетах от Земли в сторону Солнца, где мощность батарей значительно возрастает. Очень выгодно использование солнечных элементов для питания автоматических метеостанций.
В тропических и субтропических регионах с большим количеством часов солнечного сияния в году солнечные батареи позволяют решить проблемы энергоснабжения жилых домов и дач, при этом батареи размещают на крышах. В городах батареи на солнечных элементах используются для подзарядки автомобилей, а также для уличного освещения (накопленная в светлое время суток энергия расходуется в темное). Сфера применения солнечных элементов и батарей непрерывно расширяется по мере их удешевления и совершенствования характеристик.
Похожие темы:
electrosam.ru
Монокристаллические солнечные панели и поликристаллические: что лучше
Стремясь сэкономить семейный бюджет, многие люди обращаются к альтернативным источникам энергии. Одним из таких источников являются солнечные батареи. Но в продаже представлен большой ассортимент. Как определиться с выбором? Что лучше: монокристаллические солнечные панели или поликристаллические?
Чтобы понять, какие солнечные батареи лучше, необходимо выяснить, что представляет собой каждая из моделей.
Панели из монокристаллов
Понять, что перед вами монокристаллические солнечные панели, очень просто. Их поверхность составляет большое число квадратов, которые имеют срезанные уголки. Монокристаллы с такой формой получаются в процессе изготовления, а объясняется это структурой кристаллической решетки кремния.
Из названия ясно, что при производстве используется один кремниевый кристалл. Чтобы его изготовить, запускают процесс выращивания из расплава, используя чистый кремний. В результате выходит кристаллический элемент в форме цилиндра, который в дальнейшем нарезают тонкими пластинками, и они получают форму срезанных квадратов.
Такая форма позволяет предотвратить нерациональное использование полезных площадей. Монокристаллическая панель отличается однородным цветом и структурой. Это свидетельствует о высокой чистоте кремния (до 99,99 %).
Отдельные квадратные детали складывают в единую панель, окруженную по периметру оболочкой из пластика. После этого солнечный модуль готов к функционированию.
Достоинства
Монокристаллические солнечные батареи обладают рядом преимуществ:
- Имеют наилучший коэффициент полезного действия среди всех современных моделей.
- Хорошо функционируют в условиях низких температур.
- Обладают длительным сроком эксплуатации (до 25 лет).
- Требуют меньше места по сравнению с другими аналогами при одной и той же отдаче тепла.
Панели из поликристаллов
Поликристаллические солнечные батареи имеют в своем составе элементы с большим числом кристаллов. Какие же отличия в процессе производства поликристаллов? Их не выращивают дорогим и долгим по времени способом, как монокристаллические. Расплавленный кремний постепенно охлаждается и затвердевает, в результате выходит заготовка из поликристаллов кремния в виде прямоугольника. Готовый материал нарезают на тончайшие пластинки (менее 1 мм).
По структурной однородности и чистоте эта модель уступает монопанелям. Сырьем могут служить отработавшие свой срок солнечные панели.
Подготовленные поликристаллические элементы наклеиваются на сплошное основание и заключаются в алюминиевую рамку, которую покрывают черной краской. На заключительном этапе делают герметизацию рамки, ламинируют всю поверхность для предотвращения порчи от воздействия внешней среды (осадки, перепады температур). Именно от этого этапа зависит, как долго солнечная батарея сможет проработать.
Достоинства
- Процесс производства более дешевый и простой. Это сказывается на стоимости товара.
- Хорошая результативность при функционировании в облачных погодных условиях, этому способствует неравномерная поверхность панели.
- Поликристаллические солнечные панели отличаются более разнообразными параметрами по размерам и формам.
- Более устойчивы к перепадам температуры окружающей среды.
Минусы панелей обоих видов
Несмотря на то, какая существует разница в технологическом процессе, у названных солнечных модулей есть одинаковые недостатки, которые преимущественно связаны с характерными особенностями кремния:
- Поликристаллические солнечные модули, как и монокристаллические, обладают повышенной хрупкостью. Поэтому располагать их необходимо на твердом ровном основании. Если на поверхности ячейки образуется трещина, то панель не пригодна для дальнейшего использования.
- Продуктивность в преобразовании энергии солнца не слишком высока. Поликристаллические панели имеют КПД до 15-18 %, а монокристаллические – 22 %. Даже панели, задействованные в космических технологиях, выдают КПД не более 38 %.
- Производительность и тех, и других батарей полностью зависит от солнечной погоды. То есть наибольшая эффективность будет в южных областях, где солнце светит дольше и количество ясных дней преобладает над пасмурными.
- Чтобы обеспечить работу солнечных батарей (моно- или поли-), понадобится электростанция или аккумулятор для преобразования энергии и стабилизации напряжения на выходе.
- Процессу старения одинаково поддаются как поли-, так и монокристаллы. Монокристаллические элементы за четверть века теряют эффективность работы на 20 %, поликристаллические за такой же период теряют до 30 %. Несмотря на бесперебойность поступления энергии, солнечная панель со временем нуждается в обновлении.
- Стоимость изделия с использованием энергосберегающих технологий достаточно высока по сравнению с ценой обычных товаров.
Читайте также:О характеристиках солнечных батарей
Советы по выбору
Зная все плюсы и минусы, которыми обладают поликристаллические или подобные им монокристаллические солнечные батареи, можно определиться с их выбором:
- Прежде всего, стоит отталкиваться от своих потребностей. Нужно высчитать объем тепла, который вам понадобится. Наиболее рациональным считается, если солнечная батарея сможет выдавать от 40 до 80 % необходимого тепла.
- Приобретаемая панель должна соответствовать вашему жилью. Следует принимать во внимание климатическую зону, продолжительность светового дня: для этого делаются специальные расчеты с использованием карты освещенности.
- При выборе батареи нужно выяснить ее КПД; материал, из которого она изготовлена; период, на который рассчитана работа изделия.
При установке солнечных батарей лучше проконсультироваться со специалистами, которые, исходя из конкретных характеристик вашего дома и запросов, помогут подобрать самый оптимальный вариант по цене и производительности.
batteryk.com
Как делают солнечные элементы
При выборе модуля часто задается вопрос: какая солнечная батарея лучше – монокристаллическая или поликристаллическая, а может аморфная? Ведь они самые распространенные в наш век. Чтобы найти ответ, было проведено множество исследований. Рассмотрим, что же показали результаты.***КПД и срок службыМонокристаллические элементы имеют КПД около 17-22%, сроки их службы не менее 25 лет. Эффективность поликристаллических может достигать 12-18%, служат они тоже не менее 25 лет. КПД аморфных составляет 6-8% и снижается гораздо быстрее кристаллических, работают они не более 10 лет.
***Температурный коэффициентВ реальных условиях использования солнечные батареи нагревается, что приводит к снижению номинальной мощности на 15-25%. Средний температурный коэффициент для поли и моно составляет -0,45%, аморфного -0,19%. Это значит, что при повышении температуры на 1°C от стандартных условий кристаллические батареи будут менее производительными, чем аморфные.
***Потеря эффективностиДеградация солнечных монокристаллических и поликристаллических модулей зависит от качества исходных элементов – чем больше в них бора и кислорода, тем быстрее снижается КПД. В поликремниевых пластинах меньше кислорода, в монокремниевых – бора. Поэтому при равных качествах материала и условий использования особой разницы между степенью деградации тех и других модулей нет, в среднем она составляет около 1% в год. В производстве аморфных батарей используется гидрогенизированный кремний. Содержанием водорода обусловлена его более быстрая деградация. Так, кристаллические деградируют на 20% через 25 лет эксплуатации, аморфные быстрее в 2-3 раза. Однако некачественные модели могут потерять эффективность на 20% уже в первый год использования. Это стоит учесть при покупке.
***СтоимостьТут превосходство полностью на стороне аморфных модулей – их цена ниже, чем кристаллических, из-за более дешевого производства. Второе место занимают поли, моно же самые дорогие.
***Размеры и площадь установкиМонокристаллические батареи более компактны. Для создания массива требуемой мощностью понадобится меньшее количество панелей по сравнению с другими видами. Так что при установке они займут немного меньше места. Но прогресс не стоит на месте, и по соотношению мощность/площадь поликристаллические модули уже догоняют моно. Аморфные же пока отстают от них – для их установки понадобится в 2,5 раза больше места.
***СветочувствительностьЗдесь лидируют аморфно-кремниевые модули. У них лучший коэффициент преобразования солнечной энергии из-за водорода в составе элемента. Поэтому они, по сравнению с кристаллическими, в условиях слабой освещенности работают эффективнее. Моно и поли, при плохом освещении работают примерно одинаково – значительно реагируют на изменение интенсивности света.
***Годовая выработкаВ результате тестирования модулей разных производителей было установлено, что монокристаллические за год вырабатывают больше электроэнергии, чем поликристаллические. А те в свою очередь производительнее, чем аморфные, несмотря на то, что последние вырабатывают энергию и при слабой освещенности.
Можно сделать вывод, что солнечные батареи моно и поли имеют небольшие, но важные различия. Хотя mono все-таки эффективнее и отдача от них больше, но poly все равно будут пользоваться большей популярностью. Правда, это зависит от качества продукции. Тем не менее, большинство крупных солнечных электростанций собраны на базе полимодулей. Связано это с тем, что инвесторы смотрят на общую стоимость проекта и сроки окупаемости, а не на максимальную эффективность и долговечность.
Теперь об аморфных батареях. Начнем с преимуществ: метод их изготовления самый простой и малобюджетный, потому что не требуется резка и обработка кремния. Это отражается в невысокой стоимости конечной продукции. Они неприхотливы – их можно установить куда угодно, и не привередливы – пыль и пасмурная погода им не страшны.
Однако у аморфных модулей есть и недостатки, перекрывающие их достоинства: по сравнению с вышеописанными видами, у них самый низкий КПД, они быстрее деградируют – эффективность снижается на 40% менее чем за 10 лет, и требуют много места для установки.
fishki.net
Поликристаллические или монокристаллические солнечные батареи
При выборе гелиобатарей нужно обращать внимание как на их рабочие параметры (КПД, мощность, выходное напряжение и т.д.), так и на тип используемых в них фотоячеек. Сегодня наиболее распространенными являются солнечные панели на ячейках из моно- и поликристаллического кремния, поэтому выбор обычно делается между этими двумя типами.
И, несмотря на то, что принцип работы у них одинаков, поликристаллические и монокристаллические фотоэлементы различаются между собой достаточно сильно. Причем речь идет не только о фактических параметрах (например, КПД). Различия есть и в поведении ячеек при эксплуатации в различных условиях.
Внешний вид
Тем не менее, внешний вид – первое, что бросается в глаза. Моноячейки имеют форму квадрата со срезанными углами и однородную поверхность. Связано это с особенностями производства и кристаллической структуры монокристаллов. При выращивании кристаллов кремния получаются заготовки цилиндрической формы, которые после дальнейшей обработки нарезаются на такие «псевдоквадратные» пластины. А равномерность поверхности определяется строгой кристаллической структурой заготовки.
Поликристаллические ячейки обладают ровной квадратной формой. При их производстве на промежуточном этапе получают призматические заготовки, которые нарезаются на квадратные (или прямоугольные) пластины. Их внешняя поверхность неоднородна из-за полиструктуры кремния.
Отсюда вытекает первое различие между модулями на моно- и полиячейках. Это плотность заполнения. Поликристаллические элементы заполняют всю полезную площадь батареи, тогда как между моноэлементами остаются незадействованные пустоты. Это означает, что, несмотря на разницу в КПД отдельных ячеек, производительность полимодуля на единицу площади может оказаться выше.
Производительность и рабочие особенности
Солнечные батареи с моноячейками обычно обладают большей рабочей эффективностью. Связано это с тем, что КПД моноэлемента выше КПД полиячейки. Несмотря на то, что разница эта не слишком велика в процентном соотношении, для солнечных электростанций она может иметь решающее значение, поскольку производительность батареи должна соответствовать параметрам системы.
Кроме того, монокристаллы более эффективно работают при отрицательных температурах. Поэтому если планируется использовать солнечные батареи в зимний период (или же круглогодично), то стоит остановить выбор именно на таком варианте. Однако поликристаллические элементы чуть лучше зарекомендовали себя в условиях облачности и пасмурной погоды. Из-за неоднородной структуры поверхности они несколько эффективнее улавливают рассеянный свет, поэтому больше подходят для межсезонного применения. Впрочем, с развитием технологий производства моноэлементов разница в падении производительности стала гораздо меньше.
Еще один аспект – старение ячеек. Иными словами, потеря производительности с течением времени. Для монобатарей этот показатель несколько ниже, что связано с равномерностью их структуры. Так, если моноячейки стареют за 25 лет примерно на 20%, то для полимодулей падение эффективности может достигать 30%.
Цена
Солнечные батареи на разных фотоэлементах обладают и различной стоимостью. Расценки на монокристаллические панели несколько выше (обычно в пределах 10%), что связано с более дорогостоящим технологическим процессом и необходимостью использовать кремний высокой чистоты.
Таким образом, прежде чем решать, какие именно модули выбрать, нужно определиться с условиями их использования, местом установки и размерами бюджета. По сути, солнечной электростанции безразлично, какая именно панель производит для нее ток, главное – показатели выходной мощности и напряжения. А эти значения могут быть одинаковыми и для изделий на разных типах ячеек, отличаться они будут только площадью поверхности. Поэтому если габариты не критичны, то можно приобрести солнечные батареи той же производительности (на поликристаллах), но с чуть большей площадью, стоить они будут несколько дешевле.
solarb.ru
Сравнение монокристаллических и поликристаллических солнечных батарей
Итак, какая солнечная батарея лучше — монокристаллическая или поликристаллическая? Чтобы ответить на этот вопрос, нужно сначала разобраться, а чем же они отличаются?
На фото ниже представлены два основных типа:
Монокристаллический элемент | Поликристаллический элемент |
Первое, что бросается в глаза, это внешний вид. У монокристаллических элементов углы скругленные и поверхность однородная. Скругленные углы связаны с тем, что при производстве монокристаллического кремния получают цилиндрические заготовки. Однородность цвета и структуры монокристаллических элементов связана с тем, что это один выращенный кристалл кремния, а кристаллическая структура является однородной.
В свою очередь, поликристаллические элементы имеют квадратную форму из-за того, что при производстве получают прямоугольные заготовки. Неоднородность цвета и структуры поликристаллических элементов связана с тем, что они состоят из большого количества разнородных кристаллов кремния, а также включают в себя незначительное количество примесей.
Второе и наверное главное отличие — это эффективность преобразования солнечной энергии. Монокристаллические элементы и соответственно панели на их основе имеют на сегодняшний день наивысшую эффективность — до 22% среди серийно выпускаемых и до 38% у используемых в космической отрасли. Монокристаллический кремний производится из сырья высокой степени очистки (99,999%).
Серийно выпускаемые поликристаллические элементы имеют эффективность до 18%. Более низкая эффективность связана с тем, что при производстве поликристаллического кремния используют не только первичный кремний высокой степени очистки, но и вторичное сырье (например, переработанные солнечные панели или кремниевые отходы металлургической промышленности). Это приводит к появлению различных дефектов в поликристаллических элементах, таких как границы кристаллов, микродефекты, примеси углерода и кислорода.
Эффективность элементов в конечном счете отвечает за физический размер солнечных панелей. Чем выше эффективность, тем меньше будет площадь панели при одинаковой мощности.
Третье отличие — это цена солнечной батареи. Естественно, цена батареи из монокристаллических элементов немного выше в расчете на единицу мощности. Это связано с более дорогим процессом производства и применением кремния высокой степени очистки. Однако это различие незначительно и составляет в среднем около 10%.
Итак, перечислим основные отличия монокристаллических и поликристаллических солнечных батарей:
- Внешний вид.
- Эффективность.
- Цена.
Как видно из этого перечня, для солнечной электростанции не имеет никакого значения, какая солнечная панель будет использоваться в ее составе. Главные параметры — напряжение и мощность солнечной панели не зависят от типа применяемых элементов и зачастую можно найти в продаже панели обоих типов одинаковой мощности. Так что окончательный выбор остается за покупателем. И если его не смущает неоднородный цвет элементов и немного большая площадь, то вероятно он выберет более дешевые поликристаллические солнечные панели. Если же эти параметры имеют для него значение, то очевидным выбором будет немного более дорогая монокристаллическая солнечная панель.
В заключении хочется отметить, что по данным Европейской ассоциации EPIA в 2010 году производство солнечных батарей по типу применяемого в них кремния распределилось следующим образом:
- поликристаллические - 52,9%
- монокристаллические - 33,2%
- аморфные и пр. - 13,9%
Т.е. поликристаллические солнечные батареи по объему производства занимают лидирующие позиции в мире.
Надеемся, приведенные выше советы помогут Вам сделать выбор!
www.solnechnye.ru
Видеоматериалы
Опыт пилотных регионов, где соцнормы на электроэнергию уже введены, показывает: граждане платить стали меньше
Подробнее...С начала года из ветхого и аварийного жилья в республике были переселены десятки семей
Подробнее...Более 10-ти миллионов рублей направлено на капитальный ремонт многоквартирных домов в Лескенском районе
Подробнее...Актуальные темы
ОТЧЕТ о деятельности министерства энергетики, ЖКХ и тарифной политики Кабардино-Балкарской Республики в сфере государственного регулирования и контроля цен и тарифов в 2012 году и об основных задачах на 2013 год
Подробнее...Предложения организаций, осуществляющих регулируемую деятельность о размере подлежащих государственному регулированию цен (тарифов) на 2013 год
Подробнее...
КОНТАКТЫ
360051, КБР, г. Нальчик
ул. Горького, 4
тел: 8 (8662) 40-93-82
факс: 8 (8662) 47-31-81
e-mail:
Этот адрес электронной почты защищен от спам-ботов. У вас должен быть включен JavaScript для просмотра.