Логический элемент Исключающее ИЛИ. Или логический элемент
Логические элементы и их электрические аналоги
Из журнала «Радио»
Логических элементов, работающих как самостоятельные цифровые микросхемы малой степени интеграции и как компоненты микросхем более высокой степени интеграции, можно насчитать несколько десятков. Но здесь мы поговорим лишь о четырех из них — о логических элементах И, ИЛИ, НЕ, И-НЕ. Элементы И, ИЛИ и НЕ — основные, а И-НЕ является комбинацией элементов И и НЕ.
Что представляют собой эти «кирпичики» цифровой техники, какова логика их действия? Сразу уточним: напряжение от 0 до 0,4В, т. е. соответствующее уровню логического 0, мы будем называть напряжением низкого уровня, а напряжение более 2,4В, соответствующее уровню логической I,-напряжением высокого уровня. Именно такими уровнями напряжения на входе и выходе логических элементов и других микросхем серии К155 принято характеризовать их логические состояния и работу.
Условное графическое обозначение логического элемента И показано на Рис–1,а. Его условным символом служит знак «&», стоящий внутри прямоугольника; этот знак заменяет союз «и»в английском языке. Слева — два (может быть и больше) логических входа – X1 и X2, справа — один выход Y. Логика действия элемента такова: напряжение высокого уровня появляется на выходе лишь тогда, когда сигналы такого же уровня будут поданы на все его входы
Элемент И — умножение
Разобраться в логике действия логического элемента И поможет его электрический аналог (Рис–1, б), составленный из последовательно соединенных источника питания GB (например, батареи 3336), кнопочных переключателей SB1, SB2 любой конструкции и лампы накаливания HL (МНЗ,5-0,26). Переключатели имитируют электрические сигналы на входе аналога, а нить лампы индицирует уровень сигнала на выходе. Разомкнутое состояние контактов переключателей соответствует напряжению низкого уровня, замкнутое- высокого уровня. Пока контакты кнопок не замкнуты (на обоих входах элемента напряжение низкого уровня), электрическая; цепь аналога разомкнута и лампа, естественно, не светит. Нетрудно сделать другой вывод: лампа накаливания на выходе элемента И включается только после того, как контакты обеих кнопок SB1 и SB2 окажутся замкнутыми В этом и заключается логическая связь между входными и выходными сигналами элемента И.
Теперь взгляните на Рис–1,в. На нем изображены временные диаграммы электрических процессов, дающие достоверное представление о работе логического элемента И. На входе X1 сигнал появляется первым. Как только такой же сигнал будет и на входе Х2, тут же появляется сигнал и на выходе Y, который существует до тех пор, пока на обоих входах имеются сигналы, соответствующие напряжению высокого уровня.
О состоянии и логической связи между входными и выходным сигналами элемента И дает представление так называемая таблица состояний (Рис–1, г), напоминающая таблицу умножения. Глядя на нее, можно сказать, что сигнал высокого уровня на выходе элемента будет только тогда, когда сигналы такого же уровня появятся на обоих его входах. Во всех других случаях на выходе элемента будет напряжение низкого уровня, т. е. соответствующее логическому 0
Элемент ИЛИ
Условный символ логического элемента ИЛИ — цифра 1 внутри прямоугольника (Рис–2, а). У этого элемента, как и у элемента И, может быть два и больше входов. Сигнал на выходе Y, соответствующий напряжению высокого уровня, появляется при подаче такого же сигнала на вход X1, или на вход Х2, или одновременно на оба входа. Чтобы убедиться в таком действии элемента ИЛИ, проведите опыт с его электрическим аналогом (Рис–2, б).
Лампа накаливания HL на выходе аналога будет включаться всякий раз, когда окажутся замкнутыми контакты или кнопки SB1, или SB2, или одновременно обеих (всех) кнопок Закрепить в памяти электрическое свойство элемента ИЛИ помогут временные диаграммы его работы (Рис–2,в) и таблица состояний (Рис–2,г), определяющая логическую связь между входными и выходным сигналами.
Элемент НЕ
Условный символ логического элемента НЕ — тоже цифра 1 в прямоугольнике Рис–3,а. Но у него один вход и один. выход. Небольшой кружок, которым начинается линия связи выходного сигнала, символизирует логическое отрицание на выходе элемента На языке цифровой техники НЕ означает, что этот элемент является инвертором- электронным устройством, выходной сигнал которого противоположен входному. Иначе говоря, пока на входе элемента НЕ действует сигнал низкого уровня, на его выходе будет сигнал высокого уровня, и наоборот.
Электрический аналог элемента НЕ можно собрать по схеме, представленной на Рис– 3, б. Электромагнитное реле К, срабатывающее при напряжении батарея GB, должно быть выбрано с группой замкнутых контактов. Пока контакты кнопки SB1 разомкнуты, обмотка реле обесточена, его контакты К остаются замкнутыми и, следовательно, лампа HL светит. При нажатии на кнопку ее контакты замыкаются, имитируя появление входного сигнала высокого уровня, в результате чего реле срабатывает. Его контакты, размыкаясь, разрывают цепь питания лампы HL-погасая, она символизирует появление на выходе сигнала низкого уровня. Попробуйте начертить самостоятельно временные диаграммы работы элемента НЕ и составить его таблицу состоянии — они должны получиться такими же, как приведенные на Рис–3, в, г.
Элемент И–НЕ
Как мы уже говорили, логический элемент И-НЕ является комбинацией элементов И и НЕ. Поэтому на его графическом обозначении (Рис–4, а) есть знак «&»и кружок на линии выходного сигнала, символизирующий логическое отрицание. Выход один, а входов два и больше.
Разобраться в принципе действия такого логического элемента цифровой техники вам поможет его электрический аналог, собранный по схеме на Рис–4,б. Электромагнитное реле К, батарея GB и лампа накаливания HL такие же, как в аналоге элемента НЕ. Последовательно с обмоткой реле включите две кнопки (SB1 и SB2), контакты которых будут имитировать входные сигналы. В исходном состоянии, когда контакты кнопок разомкнуты, лампа светит, символизируя сигнал высокого уровня на выходе. Нажмите на одну из кнопок во входной цепи.
Как на это реагирует индикаторная лампа? Она продолжает светить. А если нажать на обе кнопки? В этом случае электрическая цепь, образованная батареей питания обмоткой реле и контактами кнопок, оказывается замкнутой, реле срабатывает и его контакты К, размыкаясь, разрывают вторую цепь аналога-лампа гаснет. Эти опыты позволяют сделать вывод: при сигнале низкого уровня на одном или на всех входах элемента И-НЕ (когда контакты входных кнопок аналога разомкнуты) на выходе действует сигнал высокого уровня, который изменяется на сигнал низкого уровня при появлении таких же сигналов на всех входах элемента (контакты кнопок аналога замкнуты). Такой вывод подтверждается диаграммами работы и таблицей состояний, показанными на Рис–4, в, г. Обратим внимание на следующий факт: если входы элемента И-НЕ соединить вместе и подать на них сигнал высокого уровня, на выходе элемента будет сигнал низкого уровня. И наоборот, при подаче на объединенный вход сигнала низкого уровня на выходе элемента будет сигнал высокого уровня. В этом случае элемент И-НЕ, как, вероятно, вы уже догадались, становится инвертором, т. е. логическим элементом НЕ. Это свойство элемента И-НЕ очень широко используется в приборах и устройствах цифровой техники.
Элемент ИЛИ–НЕ
Элемент исключающий ИЛИ
Автоколебательный мультивибратор
При ёмкости конденсатора С = 1мкФ и изменении R от 0 до 1,5 ком. частота колебаний изменится от 300Гц до 10 кГц.
Ждущий мультивибратор
Изменением ёмкости и сопротивления изменяют длительность вырабатываемых импульсов.
Длительность запускающего импульса должна быть меньше длительности формируемого.
Сопротивление должно быть от 100 Ом до 2,2 к.
Триггер Шмитта
Это спусковое устройство с двумя устойчивыми состояниями. Из одного состояния в другое устройство переходит под действием входного сигнала.
Ещё он преобразует подаваемое на вход переменное напряжение синусоидальной формы в напряжение прямоугольной формы такой же частоты. Срабатывает при определённой амплитуде входного сигнала.
R S — триггер
При 0 на S и 1 на R, триггер находится в единичном состоянии. 1 на S и 0 на R, триггер в нулевом состоянии. Если на оба входа подать 0, на выходах будет 1. Это противоречит логике его действия и считается недопустимым. 1 на обеих входах не изменит первоначального состояния триггера.
D – триггер
D – Вход приёма цифровой информации.
C – Вход тактовых импульсов синхронизации.
0 – на входе R – триггер в нулевом состоянии.
0 – на входе S – триггер в единичном состоянии.
Логика работы D – триггера в режиме приёма информации следующая: если на входе D – 1, то по фронту тактового импульса на входе С – триггер устанавливается в единичное состояние, если на входе D – 0, то по фронту тактового импульса на входе С – триггер устанавливается в нулевое состояние.
На спады синхронизирующих импульсов D – триггер не реагирует. Каждое изменившееся состояние триггера означает запись в его память принятой информации.
Работа D – триггера в счётном режиме.
В счётном режиме триггер делит частоту входного сигнала на 2. Выполняет функцию двоичного счётчика.
J K – триггер
По входам R и S, он работает как RS триггер. Входы J и K – управляющие, каждый из них имеет по три входа объединённые по схеме 3И. С – вход тактовых импульсов. В режиме приёма и хранения информации он служит входом тактовых импульсов, в счётном режиме – информационным входом.
J K – триггер, работает по спаду тактовых импульсов.
Поворотный механизм инкубатора »selhozpro.ru
Логический элемент Исключающее ИЛИ | Все своими руками
Опубликовал admin | Дата 23 сентября, 2014На практике наиболее часто используют двухвходовые элементы «исключающее ИЛИ. На рис. 1 показано условное графическое обозначение элемента без инверсии и его таблица состояний. По простому, суть данного элемента сводится к следующему, сигнал на выходе появляется только в том случае, когда логические уровни на входах не одинаковые.
В данной схеме три элемента «Исключающий ИЛИ» используются для задержки импульсов. DD1.4 — суммирующий. Выходные импульсы имеют стабильные фронты и срезы. Длительность каждого выходного импульса равна утроенному времени задержки переключения каждого из трех элементов. Временной промежуток между фронтами выходных импульсов равен длительности входного импульса. Так же это устройство удваивает частоту входного сигнала.
Есть еще одно интересное свойство «Исключающее ИЛИ». Если на один из входов подать постоянный «0», то сигнал на выходе элемента будет повторять входной сигнал, а если постоянный «0» поменять на постоянную «1», то выходной сигнал уже будет инверсией входного.
Иногда появляется необходимость получить элемент «исключающее ИЛИ» из отдельных стандартных логических элементов. Примером может служить схема элемента «исключающее ИЛИ» реализованная на четырех элементах 2-И-НЕ. На рисунке 3 показана схема «исключающее ИЛИ» в четырех ее состояниях. Здесь показаны все возможные логические уровни на каждом из используемых логически элементов 2-И-НЕ.
Такие элементы входят в схему контроллера шагового двигателя. В данной схеме элемент «Исключающий ИЛИ» выполнен на четырех элементах 2-И-НЕ, входящих в один корпус микросхемы К561ЛА7.
Схема формирователя показана на рисунке 4. Здесь логический элемент «исключающее ИЛИ» также реализован на четырех элементах 2-И-НЕ.На входы 1 и 2 формирователя падают импульсы прямоугольной формы (см. графики 1 и 2), которые различаются частотой следования. Узел на логических элементах DD1.1—DDI.4 перемножает эти сигналы. Выходной импульсный сигнал (график 3) с элемента DD1.4 подается на интегрирующую цепь R3, С1, преобразующую его в сигнал треугольной формы (график 4) с частотой, равной разности частот входных сигналов, а ОУ DA1 преобразует полученный сигнал в меандр (см. график 5). Резистором R1 регулируют длительность положительной и отрицательной полуволн выходного сигнала. Очень интересная схема. Радиоконструктору, есть над чем подумать. Например, сигнал, показанный на третьем графике, является сигналом ШИМ синусоиды. Конечно диапазон использования элементов «исключающее ИЛИ» намного шире. Я привел здесь на мой взгляд более интересные для радиолюбителей.
Используемая литература:• Б.И. Горшков Элементы радиоэлектронных устройств Издательство «Радио и связь»• Цифровые интегральные схемы М.И. Богданович Справочник Минск «Беларусь»-«Полымя» 1996
Обсудить эту статью на - форуме "Радиоэлектроника, вопросы и ответы".
Просмотров:7 548
www.kondratev-v.ru
Логический элемент Исключающее ИЛИ | HomeElectronics
Всем доброго времени суток! Сегодня мы рассмотрим последние два элемента, которые выполняют простейшие логические функции. Такими элементами являются Исключающее ИЛИ (Exclusive-OR, XOR) и Исключающее ИЛИ-НЕ (None Exclusive-OR, NXOR). Предыдущие статьи смотрите здесь, здесь, здесь и здесь.
Логический элемент Исключающее ИЛИ, как и ранее рассмотренные логические элементы имеет несколько равноправных входов и один выход, но не один из входных выводов не может заблокировать другие входы, установив выходной сигнал к уровню единицы или нуля. Исходя из сказанного, можно установить логику работы элемента Исключающее ИЛИ: высокий логический уровень на выходе появляется только тогда, когда только на одном из входов есть высокий уровень, а если на всех входах одновременно присутствуют сигналы логического нуля или логической единицы, то на выходе буде низкий уровень напряжения. Так же как и все остальные логические элементы элемент Исключающее ИЛИ может иметь инверсию на выходе, такой элемент называют Исключающее ИЛИ-НЕ. Логика работы такого элемента следующая: высокий уровень на выходе логического элемента Исключающее ИЛИ-НЕ появиться только в том случае, когда на всех входах одновременно присутствует сигналы лог. 0 или лог. 1. Таким образом таблица истинности логических элементов Исключающее ИЛИ и Исключающее ИЛИ-НЕ будет иметь следующий вид:
Входные выводы | Тип логического элемента | ||
1 | 2 | Исключающее ИЛИ | Исключающее ИЛИ-НЕ |
0 | 0 | 0 | 1 |
0 | 1 | 1 | 0 |
1 | 0 | 1 | 0 |
1 | 1 | 0 | 1 |
Элементы Исключающее ИЛИ из-за своего специфического функционала не имеют широкого применения, поэтому отдельных суффиксов в их обозначении не присутствует, они в основном входят в серию ЛП (например, К555ЛП5, КР1533ЛП12, К561ЛП2), в составе которой микросхемы с различным функционалом. Логические элементы Исключающее ИЛИ имеют своё графическое обозначение, которое приведено ниже.
Условное графическое обозначение элементов Исключающее ИЛИ: DIN (слева) и ANSI (справа).Применение элемента Исключающее ИЛИ
С точки зрения математики, элемент Исключающее ИЛИ выполняет операцию суммирования по модулю 2. Поэтому эти элементы иногда называют сумматорами по модулю два. Основное предназначение элементов Исключающее ИЛИ состоит в сравнении двух входных сигналов (когда на входы приходят два высоких или два низких логических уровня на выходе формируется лог. 0), очень часто данный элемент применяют для формирования задержки сигнала или формирования коротких импульсов.
Управляемый инвертор
Важное применение элементов Исключающее ИЛИ – управляемый инвертор. Опишем его работу. Один из входов используется как управляющий, а на другой поступает сигнал. Если на управляющем входе высокий логический уровень, то сигнал инвертируется, а если низкий, то не инвертируется. Чаще всего управляющий сигнал задаётся постоянным уровнем, определяя режим работы элемента, а информационный сигнал является импульсным. То есть элемент Исключающее ИЛИ может изменять полярность входного сигнала или фронта, а может и не изменять в зависимости от управляющего сигнала.
Элемент Исключающее ИЛИ в качестве управляемого инвертора.Смешивание сигналов
В случае, когда имеется два сигнала и исключается их одновременный приход на элемент Исключающее ИЛИ, то он может быть использован для смешивания сигналов. Такое применение данного элемента может быть использовано в тех случаюх, когда остаются неиспользованными некоторые элементы Исключающее ИЛИ.
Применение элемента Исключающее ИЛИ для смешивания двух неодновременных сигналов.Формирование коротких импульсов
Второе важное применение данного элемента – выделение фронта и среза входного импульса, которое традиционно делали с помощью дифференцирующего RC-звена, с последующим усилением и формированием сигнала. Микросхема с элементами Исключающее ИЛИ упрощает данную задачу.
Выделения фронта и среза импульса.Ниже представлена схема для выделения среза и фронта входящего импульса. Входной сигнал задерживается цепочкой элементов, а затем исходный сигнал и его задержаная копия поступают на входы элемента Исключающее ИЛИ. В результате такого преобразования можно говорить об удвоении частоты входного сигнала, так как выходные импульсы следуют вдвое чаще, чем входные.
Схема реализующая выделение фронта и среза импульса.Теория это хорошо, но теория без практики - это просто сотрясание воздуха. Перейдя по ссылке всё это можно сделать своими руками
Скажи спасибо автору нажми на кнопку социальной сети
www.electronicsblog.ru
Логический элемент "или"
Следующим простейшим логическим элементом является схема, реализующая операцию логического умножения "И":
F(x1,x2) = x1Vx2
где символ V обозначает функцию логического сложения. Иногда эта же функция записывается в другом виде:
F(x1,x2) = x1Vx2 = x1+x2 = x1|x2.
То же самое действие можно записать при помощи таблицы истинности, приведённой в таблице 4. В формуле, приведенной выше использовано два аргумента. Поэтому логический элемент, выполняющий эту функцию имеет два входа. Такой элемент обозначается "2ИЛИ". Для элемента "2ИЛИ" таблица истинности будет состоять из четырех строк (22 = 4).
Таблица 1.4. Таблица истинности схемы, выполняющей логическую функцию "2ИЛИ"
In1 | In2 | Out |
0 | 0 | 0 |
0 | 1 | 1 |
1 | 0 | 1 |
1 | 1 | 1 |
Как и в случае, рассмотренном для схемы логического умножения, воспользуемся для реализации схемы "2ИЛИ" ключами. На этот раз соединим ключи параллельно. Схема, реализующая таблицу истинности 1.4, приведена на рисунке 1.5. Как видно из приведённой схемы, уровень логической единицы появится на её выходе, как только будет замкнут любой из ключей, то есть схема реализует таблицу истинности, приведённую в таблице 1.4.
Рисунок 1.5. Принципиальная схема, реализующая логическую функцию "2ИЛИ"
Так как функция логического суммирования может быть реализована различными принципиальными схемами, то для обозначения этой функции на принципиальных схемах используется специальный символ "1", как это приведено на рисунке 1.6.
Рисунок 1.6. Условно-графическое изображение логического элемента, выполняющего функцию "2ИЛИ"
Глава 2 Диодно-транзисторная логика (дтл)
Наиболее простой логический элемент получается при помощи диодов. Схема базового логического элемента диодной логики приведена на рисунке 2.1.
Рисунок 2.1. Принципиальная схема базового логического элемента "2И", выполненного на диодах
В схеме базового логического элемента на диодах при подаче нулевого потенциала на любой из входов (или на оба сразу) через резистор R1 будет протекать ток, и на его сопротивлении возникнет падение напряжения. В результате на выходе схемы базового логического элемента будет присутствовать единичный потенциал только если подать единичный потенциал сразу на оба входа микросхемы. То есть приведенная схема базового логического элемента реализует функцию "2И".
Количество входов логического элемента "И" зависит от количества диодов. Если использовать два диода, то получится логический элемент "2И", если три диода — то логический элемент "3И", если четыре диода, то логический элемент "4И", и так далее. В микросхемах средней интеграции выпускается максимальный логический элемент "8И".
Приведенная схема логического элемента "И" обладает таким недостатком, как смещение логических уровней на ее выходе. Напряжение нуля и напряжение единицы на выходе схемы выше входных уровней на 0.7 В. Это вызвано падением напряжения на входных диодах. Скомпенсировать это смещение уровней можно диодом, включенном на выходе схемы диодного логического элемента, как это показано на рисунке 2.2.
Рисунок 2.2 Принципиальная схема усовершенствованного логического элемента "2И", выполненного на диодах
В этой схеме логического элемента логические уровни на входе и выходе схемы одинаковы. Более того, схема логического элемента, приведенная на рисунке 2.2, будет нечувствительна не только к входным напряжениям, большим напряжения питания схемы, но и к отрицательным входным напряжениям. Диоды выдерживают напряжение до сотен вольт. Поэтому такая схема до сих пор используется для защиты цифровых устройств от перегрузок по напряжению, возникающих, например, в цепях, выходящих за пределы устройства. Естественно, что для защиты одного входа достаточно одного диода на входе элемента. В результате получается только схема защиты без логической функции "И".
К сожалению приведенные схемы логических элементов не могут каскадироваться, так как мощность сигнала при распространении по схеме уменьшается. Поэтому к схеме диодного логического элемента "И" обычно подключается двухтактный усилитель на биполярных транзисторах. Схема такого логического элемента приведена на рисунке 2.3.
Рисунок 2.3. Принципиальная схема базового логического элемента ДТЛ микросхемы
Усилитель, использованный в схеме на рисунке 2.3, позволяет вырабатывать как втекающий, так и вытекающий выходной ток. Тем не менее следует помнить, что это источник напряжения, и если не ограничить выходной ток микросхемы, то можно вывести ее из строя.
Приведенный на рисунке 3 логический элемент используется в таких современных сериях микросхем как 555, 533, 1531, 1533. Да, да! Не следует удивляться тем, кто привык считать эти микросхемы ТТЛ микросхемами. Микросхемы приведенных серий ведут себя как ТТЛ микросхемы (обладают входными и выходными токами, совместимыми с ТТЛ микросхемами и воспринимают не ДТЛ, а ТТЛ логические уровни), но при этом внутри они реализованы по схеме ДТЛ логических элементов. В приведенных сериях цифровых микросхем для повышения быстродействия применяются транзисторы и диоды Шоттки.
Обратите внимание, что транзистор VT1 инвертирует сигнал на выходе элемента "И". В результате вместо логической 1 на выходе присутствует логический 0. И наоборот, вместо логического нуля на выходе присутствует логическая единица, а схема в целом реализует логическую функцию "2И-НЕ":
Условно-графическое изображение ДТЛ логического элемента "2И-НЕ" показано на рисунке 2.4, а таблица истинности приведена в таблице 2.1
Рисунок 2.4. Условно-графическое изображение логического элемента "2И-НЕ"
Таблица 2.1. Таблица истинности схемы, реализующей логическую функцию "2И-НЕ"
x1 | x2 | F |
0 | 0 | 1 |
0 | 1 | 1 |
1 | 0 | 1 |
1 | 1 | 0 |
На основе базового элемента ДТЛ строится и инвертор. В этом случае на входе используется только один диод. Схема ДТЛ инвертора приведена на рисунке 2.5.
Рисунок 2.5. Принципиальная схема инвертора ДТЛ микросхемы
В состав современных серий микросхем кроме логических элементов "И" входят логические элементы "ИЛИ". В схеме логического элемента "ИЛИ" транзисторы VT2 соединяются параллельно в точках "а" и "б", показанных на рисунке 2.3, а выходной каскад используется один. Схема логического элемента "2ИЛИ-НЕ" приведена на рисунке 2.6.
Рисунок 2.6. Принципиальная схема логического элемента "2ИЛИ-НЕ" ДТЛ микросхемы
Схемы "ИЛИ-НЕ" в этих сериях микросхем имеет обозначение ЛЕ. Например схема К555ЛЕ1 содержит в одном корпусе четыре элемента "2ИЛИ-НЕ". Таблица истинности, реализуемая этой схемой, приведена в таблице 2.2, а условно-графическое изображение логического элемента показано на рисунке 2.7.
Рисунок 2.7. Условно-графическое изображение элемента "2ИЛИ-НЕ".
Таблица 2.2. Таблица истинности схемы, выполняющей логическую функцию "2ИЛИ-НЕ"
x1 | x2 | F |
0 | 0 | 1 |
0 | 1 | 0 |
1 | 0 | 0 |
1 | 1 | 0 |
studfiles.net
Логический элемент ИЛИ
ИЗУЧЕНИЕ ОСНОВНЫХ ЛОГИЧЕСКИХ ЭЛЕМЕНТОВ И
ЦИФРОВЫХ МИКРОСХЕМ
Цель работы: Изучение основных логических элементов. Приобретение практических навыков при работе с цифровыми микросхемами.
ТЕОРЕТИЧЕСКАЯ ЧАСТЬ
Логические элементы
Логическими элементами(ЛЭ) называются функциональные устройства, с помощью которых реализуются элементарные логические функции.
ЛЭ работают с двоичным кодированием информации, которое характеризуется двумя уровнями напряжения двоичной переменной. Высокий уровень напряжения обозначают цифрой 1 или буквой H. Низкий уровень напряжения обозначают цифрой 0 или буквой L.
В зависимости от уровня напряжения, при котором воспринимается или вырабатывается информация, различают прямые и инверсные входы и выходы логических элементов.
Прямым считается такой вход (выход), на котором двоичная переменная имеет значение 1, когда уровень напряжения на этом входе (выходе) соответствует состоянию, принятому за 1.
Если двоичная переменная на входе (выходе) имеет значение 1 при уровне напряжения на нем, соответствующем состоянию, принятому за 0, такой вход (выход) называется инверсным.
Каждый ЛЭ преобразует последовательность входных сигналов в последовательность выходных сигналов или сигнал. Способ преобразования чаще всего описывается:
· логическим выражением;
· в виде таблицы истинности, которая отображает значение выходного сигнала, соответствующее конкретному набору значений входных сигналов;
· в виде временных диаграмм (зависимостей во времени значений выходного сигнала от значений входных сигналов).
Простейшие логические элементы
Логический элемент НЕ
Реализует функцию логического отрицания (инверсии):
На рисунке 1.1 представлены условно-графическое обозначение (а), таблица истинности (б) и диаграмма работы (в) ЛЭ НЕ.
| ||
а) – УГО | б) – таблица истинности | в) – диаграмма работы |
Рисунок 1.1 – Логический элемент НЕ |
Логический элемент И
Реализует операцию логического умножения (конъюнкции):
На выходе ЛЭ И (рисунок 1.2) сигнал 1 появится только тогда, когда на всех его входах присутствуют сигналы 1.
| ||
а) – УГО | б) – таблица истинности | в) – диаграмма работы |
Рисунок 1.2 – Логический элемент И |
Логический элемент ИЛИ
Реализует операцию логического сложения (дизъюнкции):
F = Х1+Х2 или F = Х1٧Х2.
На выходе ЛЭ ИЛИ (рисунок 1.3) сигнал 1 появится тогда, когда хотя бы на одном из его входов присутствует сигнал 1.
| ||
а) – УГО | б) – таблица истинности | в) – диаграмма работы |
Рисунок 1.3 – Логический элемент И |
ЛЭ И, ИЛИ, НЕ предназначены для выполнения трех основных операций (конъюнкция, дизъюнкция, инверсия) цифровой логики над дискретными сигналами. Иначе эти элементы называют основными.
studopedya.ru
Логические элементы
Логические элементы - это наименьшие цифровые элементы электронной вычислительной машины (ЭВМ).
Базовые логические элементы
Базовыми, или простейшими логическими элементами являются:
Элемент ИЛИ (OR)
Логический элемент ИЛИ или логическое сложение на выходе имеет 1 если хотя бы один вход = 1.
Обозначение на схемах | Таблица истинности для элемента ИЛИ |
Элемент И (AND)
Логический элемент И или логическое умножение на выходе имеет 1 только если оба входа установлены в 1.
Обозначение на схемах | Таблица истинности для элемента И |
Элемент НЕ (NOT)
Логический элемент НЕ инвертирует входное значение. Если на входе 0, то на выходе 1. Если на входе 1, то на выходе 0.
Обозначение на схемах | Таблица истинности для элемента НЕ |
Элемент Исключающее ИЛИ (XOR)
Логический элемент Исключающее ИЛИ имеет на выходе 1 только если значения на входах различаются.
Обозначение на схемах | Таблица истинности для элемента Исключающее ИЛИ |
Дополнительные логические элементы
Дополнительные логические элементы служат для удобного выражения различных логических операций:
Элемент И-НЕ (NAND)
Логический элемент И-НЕ является инверсией элемента И. На выходе появляется 1 в случае, если хотя бы на одном входе 0.
Обозначение на схемах | Таблица истинности для элемента И-НЕ |
Элемент ИЛИ-НЕ (NOR)
Логический элемент ИЛИ-НЕ является инверсией элемента ИЛИ. На выходе появляется 1 только если на обоих входах 0.
Обозначение на схемах | Таблица истинности для элемента ИЛИ-НЕ |
Элемент Исключающее ИЛИ-НЕ (XNOR)
Логический элемент Исключающее ИЛИ-НЕ имеет на выходе 1 только если на обоих входах одинаковые значения.
Обозначение на схемах | Таблица истинности для элемента Исключающее ИЛИ-НЕ |
Обозначения логических элементов
Работа логических элементов
cpubook.ru
Логические элементы - это... Что такое Логические элементы?
Логические элементы — устройства, предназначенные для обработки информации в цифровой форме (последовательности сигналов высокого — «1» и низкого — «0» уровней в двоичной логике, последовательность «0», «1» и «2» в троичной логике, последовательности «0», «1», «2», «3», «4», «5», «6», «7», «8» и «9» в десятичной логике). Физически логические элементы могут быть выполнены механическими, электромеханическими (на электромагнитных реле), электронными (на диодах и транзисторах), пневматическими, гидравлическими, оптическими и др.
С развитием электротехники от механических логических элементов перешли к электромеханическим логическим элементам (на электромагнитных реле), а затем к электронным логическим элементам на электронных лампах, позже — на транзисторах. После доказательства в 1946 г. теоремы Джона фон Неймана об экономичности показательных позиционных систем счисления стало известно о преимуществах двоичной и троичной систем счисления по сравнению с десятичной системой счисления. От десятичных логических элементов перешли к двоичным логическим элементам. Двоичность и троичность позволяет значительно сократить количество операций и элементов, выполняющих эту обработку, по сравнению с десятичными логическими элементами.
Логические элементы выполняют логическую функцию (операцию) над входными сигналами (операндами, данными).
Всего возможно логических функций и соответствующих им логических элементов, где — основание системы счисления, — число входов (аргументов), — число выходов, то есть бесконечное число логических элементов. Поэтому в данной статье рассматриваются только простейшие и важнейшие логические элементы.
Всего возможны двоичных двухвходовых логических элементов и двоичных трёхвходовых логических элементов (Булева функция).
Кроме 16 двоичных двухвходовых логических элементов и 256 трёхвходовых двоичных логических элементов возможны 19 683 двухвходовых троичных логических элемента и 7 625 597 484 987 трёхвходовых троичных логических элементов (троичные функции).
Содержание
|
Логические операции (булева функция) своё теоретическое обоснование получили в алгебре логики.
Логические операции с одним операндом называются унарными, с двумя — бинарными, с тремя — тернарными (триарными, тринарными) и т. д.
Из возможных унарных операций с унарным выходом интерес для реализации представляют операции отрицания и повторения, причём, операция отрицания имеет большую значимость, чем операция повторения, так как повторитель может быть собран из двух инверторов, а инвертор из повторителей не собрать.
Отрицание, НЕ
Инвертор, НЕ0 | 1 |
1 | 0 |
Мнемоническое правило для отрицания звучит так: На выходе будет:
Повторение, ДА
0 | 0 |
1 | 1 |
Преобразование информации требует выполнения операций с группами знаков, простейшей из которых является группа из двух знаков. Оперирование с большими группами всегда можно разбить на последовательные операции с двумя знаками.
Из возможных бинарных логических операций с двумя знаками c унарным выходом интерес для реализации представляют 10 операций, приведённых ниже.
Конъюнкция (логическое умножение). Операция 2И. Функция min(A,B)
2И0 | 0 | 0 |
1 | 0 | 0 |
0 | 1 | 0 |
1 | 1 | 1 |
Логический элемент, реализующий функцию конъюнкции, называется схемой совпадения. Мнемоническое правило для конъюнкции с любым количеством входов звучит так: На выходе будет:
- «1» тогда и только тогда, когда на всех входах действуют «1»,
- «0» тогда и только тогда, когда хотя бы на одном входе действует «0»
Дизъюнкция (логическое сложение). Операция 2ИЛИ. Функция max(A,B)
2ИЛИМнемоническое правило для дизъюнкции с любым количеством входов звучит так: На выходе будет:
- «1» тогда и только тогда, когда хотя бы на одном входе действует «1»,
- «0» тогда и только тогда, когда на всех входах действуют «0»
Инверсия функции конъюнкции. Операция 2И-НЕ (штрих Шеффера)
2И-НЕМнемоническое правило для И-НЕ с любым количеством входов звучит так: На выходе будет:
- «1» тогда и только тогда, когда хотя бы на одном входе действует «0»,
- «0» тогда и только тогда, когда на всех входах действуют «1»
Инверсия функции дизъюнкции. Операция 2ИЛИ-НЕ (стрелка Пирса)
2ИЛИ-НЕ0 | 0 | 1 |
0 | 1 | 0 |
1 | 0 | 0 |
1 | 1 | 0 |
Мнемоническое правило для ИЛИ-НЕ с любым количеством входов звучит так: На выходе будет:
- «1» тогда и только тогда, когда на всех входах действуют «0»,
- «0» тогда и только тогда, когда хотя бы на одном входе действует «1»
Эквивалентность (равнозначность), 2ИСКЛЮЧАЮЩЕЕ_ИЛИ-НЕ
ИСКЛ-ИЛИ-НЕ0 | 0 | 1 |
0 | 1 | 0 |
1 | 0 | 0 |
1 | 1 | 1 |
Мнемоническое правило эквивалентности с любым количеством входов звучит так: На выходе будет:
- «1» тогда и только тогда, когда на входе действует четное количество,
- «0» тогда и только тогда, когда на входе действует нечетное количество
Сложение по модулю 2 (2Исключающее_ИЛИ, неравнозначность). Инверсия равнозначности.
ИСКЛ-ИЛИВ англоязычной литературе 2XOR.
Мнемоническое правило для суммы по модулю 2 с любым количеством входов звучит так: На выходе будет:
- «1» тогда и только тогда, когда на входе действует нечётное количество ,
- «0» тогда и только тогда, когда на входе действует чётное количество
Импликация от A к B (прямая импликация, инверсия декремента, A<=B)
0 | 0 | 1 |
0 | 1 | 1 |
1 | 0 | 0 |
1 | 1 | 1 |
Мнемоническое правило для инверсии декремента звучит так: На выходе будет:
- «0» тогда и только тогда, когда на «B» меньше «А»,
- «1» тогда и только тогда, когда на «B» больше либо равно «А»
Импликация от B к A (обратная импликация, инверсия инкремента, A>=B)
0 | 0 | 1 |
0 | 1 | 0 |
1 | 0 | 1 |
1 | 1 | 1 |
Мнемоническое правило для инверсии инкремента звучит так: На выходе будет:
- «0» тогда и только тогда, когда на «B» больше «А»,
- «1» тогда и только тогда, когда на «B» меньше либо равно «А»
Декремент. Запрет импликации по B. Инверсия импликации от A к B
Мнемоническое правило для инверсии импликации от A к B звучит так: На выходе будет:
- «1» тогда и только тогда, когда на «A» больше «B»,
- «0» тогда и только тогда, когда на «A» меньше либо равно «B»
Инкремент. Запрет импликации по A. Инверсия импликации от B к A
Мнемоническое правило для инверсии импликации от B к A звучит так: На выходе будет:
- «1» тогда и только тогда, когда на «B» больше «A»,
- «0» тогда и только тогда, когда на «B» меньше либо равно «A»
Примечание 1. Элементы импликаций не имеют промышленных аналогов для функций с количеством входов, не равным 2.Примечание 2. Элементы импликаций не имеют промышленных аналогов.
Этими простейшими логическими операциями (функциями), и даже некоторыми их подмножествами, можно выразить любые другие логические операции. Такой набор простейших функций называется функционально полным логическим базисом. Таких базисов 4:
- И, НЕ (2 элемента)
- ИЛИ, НЕ (2 элемента)
- И-НЕ (1 элемент)
- ИЛИ-НЕ (1 элемент).
Для преобразования логических функций в один из названых базисов необходимо применять Закон (правило) де-Моргана.
Физические реализации логических элементов
Физические реализации одной и той же логической функции в разных системах электронных и неэлектронных элементов отличаются друг от друга.
Классификация электронных транзисторных физических реализаций логических элементов
Логические элементы подразделяются и по типу использованных в них электронных элементов. Наибольшее применение в настоящее время находят следующие логические элементы:
- РТЛ (резисторно-транзисторная логика)
- ДТЛ (диодно-транзисторная логика)
- ТТЛ (транзисторно-транзисторная логика)
Обычно входной каскад логических элементов ТТЛ представляет собой простейшие компараторы, которые могут быть выполнены различными способами (на многоэмиттерном транзисторе или на диодной сборке). В логических элементах ТТЛ входной каскад, кроме функций компараторов, выполняет и логические функции. Далее следует выходной усилитель с двухтактным (двухключевым) выходом.
В логических элементах КМОП входные каскады также представляют собой простейшие компараторы. Усилителями являются КМОП-транзисторы. Логические функции выполняются комбинациями параллельно и последовательно включенных ключей, которые одновременно являются и выходными ключами.
Транзисторы могут работать в инверсном режиме, но с меньшим коэффициентом усиления. Это свойство используются в ТТЛ многоэмиттерных транзисторах. При подаче на оба входа сигнала высокого уровня (1,1) первый транзистор оказывается включенным в инверсном режиме по схеме эмиттерного повторителя с высоким уровнем на базе, транзистор открывается и подключает базу второго транзистора к высокому уровню, ток идёт через первый транзистор в базу второго транзистора и открывает его. Второй транзистор «открыт», его сопротивление мало и на его коллекторе напряжение соответствует низкому уровню (0). Если хотя бы на одном из входов сигнал низкого уровня (0), то транзистор оказывается включенным по схеме с общим эмиттером, через базу первого транзистора на этот вход идёт ток, что открывает его и он закорачивает базу второго транзистора на землю, напряжение на базе второго транзистора мало и он «закрыт», выходное напряжение соответствует высокому уровню. Таким образом, таблица истинности соответствует функции 2И-НЕ.
Для увеличения быстродействия логических элементов в них используются транзисторы Шоттки (транзисторы с диодами Шоттки), отличительной особенностью которых является применение в их конструкции выпрямляющего контакта металл-полупроводник вместо p-n перехода. При работе этих приборов отсутствует инжекция неосновных носителей и явления накопления и рассасывания заряда, что обеспечивает высокое быстродействие. Включение этих диодов параллельно коллекторному переходу блокирует насыщение выходных транзисторов, что увеличивает напряжения логических 0 и 1, но уменьшает потери времени на переключение логического элемента при том же потребляемом токе (или позволяет уменьшить потребляемый ток при сохранении стандартного быстродействия). Так, серия 74хх и серия 74LSxx имеют приблизительно равное быстродействие (в действительности, серия 74LSxx несколько быстрее), но потребляемый от источника питания ток меньше в 4-5 раз (во столько же раз меньше и входной ток логического элемента).
Эта логика, иначе называемая логикой на переключателях тока, построена на базе биполярных транзисторов, объединённых в дифференциальные каскады. Один из входов обычно подключён внутри микросхемы к источнику опорного (образцового) напряжения, примерно посредине между логическими уровнями. Сумма токов через транзисторы дифференциального каскада постоянна, в зависимости от логического уровня на входе изменяется лишь то, через какой из транзисторов течёт этот ток. В отличие от ТТЛ, транзисторы в ЭСЛ работают в активном режиме и не входят в насыщение или инверсный режим. Это приводит к тому, что быстродействие ЭСЛ-элемента при той же технологии (тех же характеристиках транзисторов) гораздо больше, чем ТТЛ-элемента, но больше и потребляемый ток. К тому же, разница между логическими уровнями у ЭСЛ-элемента намного меньше, чем у ТТЛ (меньше вольта), и, для приемлемой помехоустойчивости, приходится использовать отрицательное напряжение питания (а иногда и применять для выходных каскадов второе питание). Зато максимальные частоты переключения триггеров на ЭСЛ более, чем на порядок превышают возможности современных им ТТЛ, например, серия К500 обеспечивала частоты переключения 160—200 МГц, по сравнению с 10-15 МГц современной ей ТТЛ серии К155. В настоящее время и ТТЛ(Ш), и ЭСЛ практически не используются, так как с уменьшением проектных норм КМОП технология достигла частот переключения в несколько гигагерц.
Инвертор
Одним из основных логических элементов является инвертор. Инвертирующими каскадами являются однотранзисторный каскад с общим эмиттером, однотранзисторный каскад с общим истоком, двухтранзисторный двухтактный выходной каскад на комплементарных парах транзисторов с последовательным включением транзисторов по постоянному току (применяется в ТТЛ и КМОП), двухтранзисторный дифференциальный каскад с параллельным включением транзисторов по постоянному току (применяется в ЭСЛ) и др. Но одного условия инвертирования недостаточно для применения инвертирующего каскада в качестве логического инвертора. Логический инвертор должен иметь смещённую рабочую точку на один из краёв проходной характеристики, что делает каскад неустойчивым в середине диапазона входных величин и устойчивым в крайних положениях (закрыт, открыт). Такой характеристикой обладает компаратор, поэтому логические инверторы строят как компараторы, а не как гармонические усилительные каскады с устойчивой рабочей точкой в середине диапазона входных величин. Таких каскадов, как и контактных групп реле, может быть два вида: нормально закрытые (разомкнутые) и нормально открытые (замкнутые).
Применение логических элементов
Логические элементы входят в состав микросхем, например ТТЛ элементы — в состав микросхем К155 (SN74), К133; ТТЛШ — 530, 533, К555, ЭСЛ — 100, К500 и т. д.
Комбинационные логические устройства
Комбинационными называются такие логические устройства, выходные сигналы которых однозначно определяются входными сигналами:
Все они выполняют простейшие двоичные, троичные или n-ичные логические функции.
Последовательностные цифровые устройства
Последовательностными называют такие логические устройства, выходные сигналы которых определяются не только сигналами на входах, но и предысторией их работы, то есть состоянием элементов памяти.
См. также
Ссылки
Литература
dic.academic.ru
Видеоматериалы
Опыт пилотных регионов, где соцнормы на электроэнергию уже введены, показывает: граждане платить стали меньше
Подробнее...С начала года из ветхого и аварийного жилья в республике были переселены десятки семей
Подробнее...Более 10-ти миллионов рублей направлено на капитальный ремонт многоквартирных домов в Лескенском районе
Подробнее...Актуальные темы
ОТЧЕТ о деятельности министерства энергетики, ЖКХ и тарифной политики Кабардино-Балкарской Республики в сфере государственного регулирования и контроля цен и тарифов в 2012 году и об основных задачах на 2013 год
Подробнее...Предложения организаций, осуществляющих регулируемую деятельность о размере подлежащих государственному регулированию цен (тарифов) на 2013 год
Подробнее...
КОНТАКТЫ
360051, КБР, г. Нальчик
ул. Горького, 4
тел: 8 (8662) 40-93-82
факс: 8 (8662) 47-31-81
e-mail:
Этот адрес электронной почты защищен от спам-ботов. У вас должен быть включен JavaScript для просмотра.