Как определить мощность светодиода. Мощность диода


Как определить мощность светодиода: способы, примеры рассчета

Самый лучший способ узнать мощность светодиода – это посмотреть рабочие характеристики на упаковке изделия. Зная марку и модель можно найти его характеристики в Интернете. В противном случае, останется только два способа: проверить мультиметром или постараться определить по внешнему виду, о них мы и поговорим в этой статье.

Зачем нужно знать мощность

Мощность светодиода нужна для выбора подходящего источника питания. Зная потребление светодиода, мы можем подобрать нужный ему блок питания. Расчет по мощности позволит избежать проблем при дальнейшей работе или сэкономить средства.

Рассмотрим примеры, чтобы стало понятно, о чем идет речь. Например, имеем светоизлучающий диод с рабочим напряжением 3,5 Вольта и током 0,1 Ампера. По формуле расчета мощности P=I*U, получаем значение P=3,5*0,1 => P=0,35 Ватт. Мощность десяти составит 3,5 Ватта или 1 Ампер. Отсюда делаем вывод, что для подключения одного светодиода нам потребуется блок питания (БП) мощностью 0,385 Ватта (с запасом 10%). Для подключения десяти понадобится БП на 3,85 Вт (также с запасом 10%).

Блок питания для светодиодов рекомендуется выбирать с запасом в 10-20%. Это предотвратит работу БП на пределе, что в свою очередь продлит его срок службы.

Способы определения мощности светодиода

На самом деле способов как узнать потребление не так уж и много, поэтому давайте остановимся на каждом из них и рассмотрим более подробно.

Мультиметром

Этот способ самый сложный и не является точным, прибегать к нему советую только в крайнем случае, когда достаточно хотя бы примерных значений.

Определить мощность лазерного светодиода при помощи мультиметра нельзя!

Имея на руках только один мультиметр (он же тестер), для измерения следует выполнить следующую последовательность действий:

  1. Собрать схему с подключенным светодиодом через токоограничивающий резистор на 500 Ом от блока питания с плавной регулировкой напряжения от 0 до 12 В. 
  2. Плавно поднимая напряжение на блоке питания, следует постоянно измерять напряжение на блоке питания и светоизлучающем диоде, т.е. до резистора и после (в местах V1 и V2). В таком способе удобно использовать два мультиметра или два вольтметра. Изначально, значения напряжений будут почти одинаковы (разница не более 0,1В). При достижении определенного уровня, начнется ощутимый рост разницы измеряемых значений.
  3. Зафиксировать значение напряжение
  4. Подключить проверяемый светоизлучающий диод через резистор 10 Ом последовательно с амперметром. Если нет амперметра, используйте мультиметр. 
  5. Поднимите напряжение до зафиксированного ранее значения V
  6. Зафиксируйте значение тока и, используя закон Ома, определите мощность светодиода.

Как это сделать, читайте ниже.

Иногда люди сталкиваются с интересной особенностью, проверяемый светоизлучающий диод исправен (проверяют светодиод мультиметром), но никак не светится при подаче на него питания. Оказывается, что он инфракрасный. Определить ИК — светодиод можно посмотрев на него через объектив камеры. Он будет светиться.

По закону Ома

В самом начале статье мы упоминали формулу мощности, которая вытекает из закона Ома. Там же приведен пример расчета потребления. Зная формулу (P=I*U), а также силу тока (I) и напряжение (U) светодиода, Вы без труда узнаете сколько потребляет светодиод.

По внешнему виду

Определить сколько потребляет светодиод по внешнему виду практически не возможно, поэтому этим способом также рекомендую пользоваться только в крайнем случае, так сказать в безвыходной ситуации. Методика визуального определения сводится к возможности отнесения «узнаваемого» к какому-либо известному Вам типу светоизлучающего диода. Определяем для «подопытного» тип светодиода (а лучше марку и модель, это можно сделать по маркировке) и ищем к нему даташит, в котором можно найти точные характеристики, в том числе и мощность.

Давайте посмотрим, как применить способ на практике. Например, на руках у нас имеется светоизлучающий диод, как на фото ниже.

Сразу видим, что это SMD LED. Зная то, что в названии SMD LED зашифрованы габариты. Берем штангенциркуль и меряем размеры. Получив значения ширины – 28 и длины – 35 мм, можно с уверенностью сказать, что это светодиод SMD 3528. Мощность SMD 3528 белого цвета составляет 0,06 Вт. Это значение является средним, т.к. оно может варьироваться плюс – минус 15% в зависимости от производителя.

Мощность светодиода зависит от излучаемого им цвета. Поэтому узнав характеристики для светодиода белого цвета, стоит знать, что для красного или зеленого они будут другие.

Рассмотренная выше методика применима к любому SMD LED и даже для светодиодной ленты, т.к. в ее основе лежат данные LED. Узнав мощность одного светоизлучающего диода на ленте, и посчитав их количество, Вы без труда узнаете мощность всей светодиодной ленты.

Для наглядной демонстрации определения мощности светодиодной ленты, рекомендуем посмотреть соответствующее видео с ютуба. При расчетах автор пользуется законом Ома.

Итоги

Часто в руки радиолюбителя попадаются светодиоды без надписей и упаковочных коробок, по которым можно без труда определить мощность светодиода. Владея описанными в статье способами Вы знаете как рассчитать хотя бы примерные характеристики, и в большинстве случаев этого достаточно для решения широкого круга задач.

 

ledno.ru

Как определить мощность светодиода

С годами рынок предлагает все большее разнообразие светодиодов. Они отличаются цветом, напряжением, мощностью и т.д.Если вам в руки попался светодиод и вы хотите его использовать, то непременно нужно разобраться какой мощности это устройство, иначе можно элементарно спалить его.Как определить мощность светодиода? Об этом расскажем в данной статье.Светодиод представляет собой полупроводниковый кристалл. Он может быть в корпусе или без него, но в любом случае у него будет два вывода: положительный и отрицательный. Мощностью светодиодов часто называют показатели в ваттах. Однако это не совсем верно. Это делается для простоты понимания. У светодиодов есть показатель максимума рабочего тока, при котором он может работать. А мощность зависит от количества тока, который вы ему дадите.

Содержание статьи

Светодиоды малой мощности

Так же их называют индикаторными. Их смело можно назвать самым распространенным видом светодиодов. Они небольшого размера (2-20 миллиметров в диаметре). Индикаторными их называют по самому частому применению – вы наверняка их видели практически во всей бытовой технике. Практически все белые маломощные светодиоды обладают параметрами 20МА 3,2 вольт. То есть его мощность – 0,06ватт.Так же к этому виду светодиодов относят светодиоды поверхностного монтажа или SMD – светодиоды. Это светодиоды, которые подсвечивают экраны, кнопки и т.п. Так же из них делают светодиодные ленты, часто используемые для декорирования помещений.Ленты бывают либо SMD 3528, либо 5050. SMD 3528 делается как раз из таких индикаторных светодиодов. А вот SMD 5050 сделаны из соединенных по трое светодиодов. Их мощность – в районе 0,2 ватта.

Мощные светодиоды

Условно можно поделить на:

  • Брендовые (фирмы CREE, Nichia, Osram и другие…)
  • Китайские

Что касается брендовых, они всем хороши, кроме, пожалуй, завышенной цены. Зато приобретая такие светодиоды, вы будете уверены в их качестве, к тому же все показатели, в том числе и мощность, указаны в инструкции. Так же нужно учитывать, что подобные компании выпускают светодиоды для заводской сборки. Вручную это тоже можно сделать, но будет гораздо сложнее.Китайские светодиоды обладают гораздо большим ассортиментом. Но при всем многообразии китайские светодиоды грешат отклонениями от стандартов (точнее одних стандартов просто нет), и невысоким качеством.Обычный светодиод китайского производства обладает мощностью примерно в 2,6 ватта.Так же выпускают светодиоды с увеличенным кристаллом.

Какой ток даст максимальную мощность светодиода?

Если вам нужно добиться максимальной экономичности светильника – используйте светодиоды, которые дают около 120 Лм на ватт. Ток для них должен быть не более 300 мА. При хорошем отводе тепла такие светодиоды будут работать бесконечно долго.Если главное яркость, то чипы 35-38 mil на токе в 600мА будут неплохим решением.

Как определить мощность светодиода?

Допустим, вы просто нашли у себя на столе светодиод. Никаких данных о нем нет. Как быть в таком случае?Самый простой способ – включаете его на низковольтном питании последовательно с резистором на 1 – 1,5 кОМ. Практически любой светодиод будет работать. Но если нужны более точные показатели, делаем следующее: соотносим показатели по внешнему виду.Маленькие (3-10 мм):

  • Инфракрасный (ток – менее 2 ватт, напряжение – около 20 мА)
  • Красный (ток – от1,7 до 2 ватт, напряжение – от 15 до 20 мА)
  • Оранжевый (ток –около 2 ватт, напряжение –20 мА)
  • Желтый (ток – 2,1-2,2 ватт, напряжение – 20 мА)
  • Зеленый (ток – 1,9-3,6 ватт, напряжение – 20 мА)
  • Голубой (ток — 2,5-3,6 ватт, напряжение – 20 мА)
  • Фиолетовый (ток – 2,7-4 ватт, напряжение –20 мА)

Большие:

  • Желтый (обычно на радиаторе) (ток – 2,1-2,2 ватт, напряжение –300 мА)
  • Белый, розовый (ток – 3,2-3,6 ватт, напряжение –20 мА)

Светодиодные ленты (ток – 12 или 24 ватт, напряжение – рассчитывается в зависимости от длины ленты).

Точное определение мощности

Вам понадобятся:

  • Мультиметр
  • Блок питания, в котором можно плавно повышать напряжение
  • Резистор на 500 Ом

К лазерным светодиодам эта техника неприменима!Подключаете светодиод к резистору и блоку питания. Соблюдайте полярность! Ее тоже можно определить с помощью мультиметра.Плавно увеличивайте напряжение на блоке питания, сравнивая показатели на нем и на светодиоде.Удобнее будет использовать блок питания, который показывает рабочее напряжение, или использовать два вольтметра.Что будет происходить? одинаковое изначально напряжение будет постепенно изменяться на блоке и светодиоде. Важно, чтобы светодиод светился с нормальной яркостью.

Почему он может не светится?

  • если он инфракрасный
  • если он сломан
  • если напряжение на двух точках пропорционально меняется от нуля до максимума, но светится он начинает с 3 воль, значит внутри светодиода находится резистор, ограничивающий подачу тока. В этом варианте ограничиваете тока на значении не больше 20 мА, смотря на то, как ярко светится светодиод.

Далее на блоке питания ставим 0 вольт, подключаем напрямую (или через резистор на 10Ом) светодиод. В цепь подключаем и миллиамперметр. Постепенно поднимаете напряжение до рассчитанного.

СоветНе зная точных показателей светодиода, не давайте ему ток более 350 мА. Если все-таки необходимо больше – подготовьте сильный теплоотвод. Примерно при токе в 700мА светодиоду будет нужно около 80 кв. см радиатора. Оптимальная температура – 60 по Цельсию.

le-diod.ru

Применение силовых диодов выпрямительного типа разной мощности

Силовые диоды (варикапы) являются полупроводниковыми приборами, функционирующими за счет использования одного стандартного p-n-перехода. Данные элементы бывают различных видов, в зависимости от того, в какой сфере они используются. Также они различаются своими характеристиками. Такие диоды еще называются выпрямительными, а их функция – преобразовывать переменный ток в однополярный. С этой целью варикап включают последовательно в цепь источника переменного тока и нагрузки. Ниже рассмотрим, что собой представляет данный прибор, и каковы его особенности.

Что это такое

Как классифицируются

Учитывая максимальный уровень прямого тока, диоды выпрямительного типа бывают:

  • маломощные – актуальны для выпрямления прямого тока до 300 mA;
  • средней мощности – 300 mA-10 A;
  • выпрямительные диоды большой мощности – больше 10 А.

При их изготовлении используется кремний или германий, однако, наиболее распространены кремниевые элементы, обладающие лучшими физическими свойствами. Их обратные токи в разы меньше, если сравнивать с германиевыми, при этом напряжение то же. Благодаря этой характеристике, в полупроводниках можно добиться высокой величины допустимого обратного напряжения – до 1500 В. Что касается германиевых диодов, здесь данный показатель варьируется от 100 до 400 В.

Также следует обратить внимание на сохранение функциональности при температурных нагрузках:

  • Кремниевые – сохраняют свои свойства при температуре от -60 до +150 градусов Цельсия;
  • Германиевые – от -60 до +85 градусов.

Обуславливается это тем, что когда уровень нагрева превышает +85 градусов, образуются электронно-дырочные пары, увеличивающие обратный ток, из-за чего работа диода становится менее эффективной.

Выпрямительными диодами называют полупроводниковые кристаллы, имеющие вид пластины. В их теле находятся две области с разной проводимостью. Именно по этой причине данные приборы носят название плоскостных. Процесс их производства выглядит следующим образом: сверху кристалла с n-проводимостью расплавляют алюминий, индий и бор, а на p-типе –фосфор. Под влиянием высокой температуры элементы плотно сплавляются друг с другом. Также следует заметить, что атомы данных материалов диффундируют в сам кристалл, из-за чего в нем появляется проводимость электронного или дырочного типа. Как результат, создается полупроводниковое устройство с двумя разными областями и отличающейся электропроводностью. Многие плоскостные мощные диоды, изготовленные из германия или кремния, функционируют именно по этому принципу.

Выделяют следующие виды силовых диодов:

  • Импульсные;
  • Обращенные;
  • Диоды Шоттки.

Прибор Шоттки

Импульсными – оборудуются, как правило, схемы невысокой мощности, к которым напряжение подводится импульсно. К ним предъявляется одно требование – из одного состояния в другое они должны переходить за короткий промежуток времени. Импульсные диоды имеют следующие особенности:

  • Время восстановления – время, за которое переключается напряжение на варикапе с прямого на обратное, и момент, когда ток уменьшается до определенного значения;
  • Время установления – интервал, когда прямой ток начинает протекать через прибор до определенной величины до момента установления выбранного напряжения;
  • Максимальный ток восстановления – обратный ток, прошедший через диод после переключения.

Отличительная черта обращенных диодов в том, что они в p-n-областях характеризуются большой концентрацией примесей. Обратное включение характеризуется малым сопротивлением, прямое – большим. Исходя из этого, они актуальны там, где требуется выпрямление малых сигналов, амплитуда которых не превышает нескольких десятков вольт.

Преимущество диодов Шоттки сводится к переходу металл-полупроводник. Производятся с использованием низкоомных n-кремниевых подложек и высокоомного эпитаксиального слоя (тонкий слой) аналогичного полупроводника. Сверху описанного слоя наносится металлический электрод, который отвечает за выпрямление, но он не способен инжектировать неосновные носители в базовую область. По этой причине в данных приборах не протекают медленные процессы – в них не накапливаются и не рассасываются неосновные носители в базе. Исходя из этого, диоды Шоттки имеют невысокую инерционность.

Важно! Варикапы Шоттки имеют низкое последовательное сопротивление, если сравнивать с выпрямительными приборами, так как их слой имеет малое сопротивление. Таким образом, при помощи диодов Шоттки выпрямляются значительные токи (более 10 А).

К сведению. Импульсные вторичные источники питания, выпрямляющие высокочастотные напряжения (несколько МГц), оборудуются такими диодами.

Конструкция силового диода

Кристалл с p-n-переходом вмонтирован в корпус, защищающий его от влияний извне и позволяющий обеспечить надежное отведение тепла. Маломощные приборы помещаются в пластиковые корпуса с гибкими внешними выводами. Варикапы средней мощности выполняются из металлостеклянного корпуса (жесткие выводы). Для изготовления приборов высокой мощности используется металлостеклянный или металлокерамический корпус.

Как выглядит

Кристалл p-n-перехода из кремния или германия припаивается к кристаллодержателю, выступающему в роли основания корпуса. К нему приваривают изделие с изолятором из стекла, через него выводится один из электродов.

Как было замечено выше, маломощные диоды имеют гибкие выводы, благодаря которым их монтируют в схемы. Такие изделия компактны и мало весят. А средне,- и высокомощные устройства оснащены более мощными выводами, так как токи, с которыми они работают, имеют значительную величину. Их нижняя часть содержит массивное основание, задача которого – отводить тепло. Наружная часть выполнена плоской, что требуется для надежного теплового контакта с наружным радиатором.

Технология производства может различаться, поэтому диоды бывают точечными и плоскостными. Для сборки первых применяется кремний или германий – это пластина n-типа, имеющая площадь от 0.5 до 1.5 квадратных миллиметра, а также стальная игла, необходимая для образования p-n-перехода в области контакта. Из-за малой мощности переход получается малоемкостным, поэтому используется в высокочастотных цепях. Ток через переход обычно небольшой – не больше 100 мА. Плоскостные варикапы предполагают две соединенные пластины, где у каждой своя электропроводность. Благодаря большой площади контакта получаются емкостный переход и сравнительно низкая рабочая частота. Показатель проходящего тока достигает 6000 А.

Где находят применение диоды

Такие приборы используются не только в качестве выпрямительных или детекторных устройств. Они применяются во многих других областях. Благодаря хорошим вольтамперным характеристикам, варикапы актуальны в тех областях, где нужно нелинейно обрабатывать аналоговые сигналы. Это различные преобразователи частоты, логарифмические усилители, детекторы и прочие устройства. Роль диода здесь – функционировать в качестве преобразователя или формировать характеристику прибора (их включают в цепь обратной связи).

Схема с приборами

Силовые диоды также есть в стабилизированных источниках питания, коммутирующих элементах и так далее.

Используя варикапы, с легкостью создается ограничитель сигнала: если два диода включить встречно-параллельно, то они отлично защищают вход усилителя, к примеру, микрофонного, чтобы тот не подавал сигнал высокого уровня. Нередко ими оборудуются коммутаторы сигналов и логические приборы.

Светодиоды – один из видов классических варикапов. Некоторое время назад такие приборы использовались в качестве индикатора. В наше же время светодиоды широко используются, начиная обычными фонариками и заканчивая телевизорами с LED-подсветкой.

Многие задаются вопросом что лучше: сборка или отдельные диоды. Однозначного ответа здесь нет, так как функциональность в обоих случаях одинакова. Преимущество сборки заключается в компактности, но, с другой стороны, если она выйдет из строя, ее можно только заменить на новую. Если использовать отдельные элементы, то если какой-то прибор вышел из строя, его заменяют новым выпрямительным диодом.

Отталкиваясь от справочника, силовой диод – это прибор, при помощи которого переменный ток преобразуется в постоянный. Некоторое время назад использовались электровакуумные варикапы и игнитроны, которые сейчас успешно заменены приборами из полупроводниковых материалов и диодными мостами (четыре диода, заключенные в один корпус). Такие элементы бывают разных видов, где каждый имеет свои технические характеристики, особенности и области применения.

Видео

Оцените статью:

elquanta.ru

устройство, конструктивные особенности и основные характеристики

Как определить мощность светодиода

С годами рынок предлагает все большее разнообразие светодиодов. Они отличаются цветом, напряжением, мощностью и т.д.Если вам в руки попался светодиод и вы хотите его использовать, то непременно нужно разобраться какой мощности это устройство, иначе можно элементарно спалить его.Как определить мощность светодиода? Об этом расскажем в данной статье.Светодиод представляет собой полупроводниковый кристалл. Он может быть в корпусе или без него, но в любом случае у него будет два вывода: положительный и отрицательный. Мощностью светодиодов часто называют показатели в ваттах. Однако это не совсем верно. Это делается для простоты понимания. У светодиодов есть показатель максимума рабочего тока, при котором он может работать. А мощность зависит от количества тока, который вы ему дадите.

Содержание статьи

Светодиоды малой мощности

Так же их называют индикаторными. Их смело можно назвать самым распространенным видом светодиодов. Они небольшого размера (2-20 миллиметров в диаметре). Индикаторными их называют по самому частому применению – вы наверняка их видели практически во всей бытовой технике. Практически все белые маломощные светодиоды обладают параметрами 20МА 3,2 вольт. То есть его мощность – 0,06ватт.Так же к этому виду светодиодов относят светодиоды поверхностного монтажа или SMD – светодиоды. Это светодиоды, которые подсвечивают экраны, кнопки и т.п. Так же из них делают светодиодные ленты, часто используемые для декорирования помещений.Ленты бывают либо SMD 3528, либо 5050. SMD 3528 делается как раз из таких индикаторных светодиодов. А вот SMD 5050 сделаны из соединенных по трое светодиодов. Их мощность – в районе 0,2 ватта.

Мощные светодиоды

Условно можно поделить на:

  • Брендовые (фирмы CREE, Nichia, Osram и другие…)
  • Китайские

Что касается брендовых, они всем хороши, кроме, пожалуй, завышенной цены. Зато приобретая такие светодиоды, вы будете уверены в их качестве, к тому же все показатели, в том числе и мощность, указаны в инструкции. Так же нужно учитывать, что подобные компании выпускают светодиоды для заводской сборки. Вручную это тоже можно сделать, но будет гораздо сложнее.Китайские светодиоды обладают гораздо большим ассортиментом. Но при всем многообразии китайские светодиоды грешат отклонениями от стандартов (точнее одних стандартов просто нет), и невысоким качеством.Обычный светодиод китайского производства обладает мощностью примерно в 2,6 ватта.Так же выпускают светодиоды с увеличенным кристаллом.

Какой ток даст максимальную мощность светодиода?

Если вам нужно добиться максимальной экономичности светильника – используйте светодиоды, которые дают около 120 Лм на ватт. Ток для них должен быть не более 300 мА. При хорошем отводе тепла такие светодиоды будут работать бесконечно долго.Если главное яркость, то чипы 35-38 mil на токе в 600мА будут неплохим решением.

Как определить мощность светодиода?

Допустим, вы просто нашли у себя на столе светодиод. Никаких данных о нем нет. Как быть в таком случае?Самый простой способ – включаете его на низковольтном питании последовательно с резистором на 1 – 1,5 кОМ. Практически любой светодиод будет работать. Но если нужны более точные показатели, делаем следующее: соотносим показатели по внешнему виду.Маленькие (3-10 мм):

  • Инфракрасный (ток – менее 2 ватт, напряжение – около 20 мА)
  • Красный (ток – от1,7 до 2 ватт, напряжение – от 15 до 20 мА)
  • Оранжевый (ток –около 2 ватт, напряжение –20 мА)
  • Желтый (ток – 2,1-2,2 ватт, напряжение – 20 мА)
  • Зеленый (ток – 1,9-3,6 ватт, напряжение – 20 мА)
  • Голубой (ток — 2,5-3,6 ватт, напряжение – 20 мА)
  • Фиолетовый (ток – 2,7-4 ватт, напряжение –20 мА)

Большие:

  • Желтый (обычно на радиаторе) (ток – 2,1-2,2 ватт, напряжение –300 мА)
  • Белый, розовый (ток – 3,2-3,6 ватт, напряжение –20 мА)

Светодиодные ленты (ток – 12 или 24 ватт, напряжение – рассчитывается в зависимости от длины ленты).

Точное определение мощности

Вам понадобятся:

  • Мультиметр
  • Блок питания, в котором можно плавно повышать напряжение
  • Резистор на 500 Ом

К лазерным светодиодам эта техника неприменима!Подключаете светодиод к резистору и блоку питания. Соблюдайте полярность! Ее тоже можно определить с помощью мультиметра.Плавно увеличивайте напряжение на блоке питания, сравнивая показатели на нем и на светодиоде.Удобнее будет использовать блок питания, который показывает рабочее напряжение, или использовать два вольтметра.Что будет происходить? одинаковое изначально напряжение будет постепенно изменяться на блоке и светодиоде. Важно, чтобы светодиод светился с нормальной яркостью.

Почему он может не светится?

  • если он инфракрасный
  • если он сломан
  • если напряжение на двух точках пропорционально меняется от нуля до максимума, но светится он начинает с 3 воль, значит внутри светодиода находится резистор, ограничивающий подачу тока. В этом варианте ограничиваете тока на значении не больше 20 мА, смотря на то, как ярко светится светодиод.

Далее на блоке питания ставим 0 вольт, подключаем напрямую (или через резистор на 10Ом) светодиод. В цепь подключаем и миллиамперметр. Постепенно поднимаете напряжение до рассчитанного.

СоветНе зная точных показателей светодиода, не давайте ему ток более 350 мА. Если все-таки необходимо больше – подготовьте сильный теплоотвод. Примерно при токе в 700мА светодиоду будет нужно около 80 кв. см радиатора. Оптимальная температура – 60 по Цельсию.

le-diod.ru

Характеристика диодов

История возникновения диода

Возникновение диода обязано ученому из Великобритании Фредерику Гутри и немецкому физику Карлу Фердинанду Брауну. В 1873 и 1874 годах они открыли принцип работы термионных диодов и принцип работы кристаллических диодов. Позже термионными диодами стали называть специализированные вакуумные лампы. В начале 1880 года Томас Эдиссон повторно задокументировал работу термионного диода, но развитие этого радиоэлектронного компонента произошло только через 9 лет, когда немецкий ученый Карл Браун показал действие выпрямителя на кристалле. В начале 20 века Гринлиф Пикард предъявил публике первый радиоприемник, в основе которого был положены свойства диода реагировать на электромагнитные колебания. Промышленный выпуск диодов термионного типа (ламповых диодов) был налажен в Британии с разрешения Джона Флеминга в 1904 году, а через 2 года американец Пикард запатентовал первый детектор из кристаллов кремния. Современную терминологию слова «диод» (от греч. «di» - два, «odos» - путь) ввел Вильям Генри Иклс в 1919 году. В СССР главную роль в развитии полупроводниковых компонентов сыграл физик Б. М. Вул.

Первое развитие получили ламповые диоды или кенотроны (электровакуумные диоды), а так же газонаполненные диоды (газотроны, стабилитроны, игнитроны). Однако основной вклад в развитие радиоэлектронных компонентов внесли полупроводниковые диоды на основе кремния и германия.

Физические основы работы диода

Открытый в 1882 году химический элемент «германий» Клеменсом Винклером в процессе изучения в электричестве позволил выявить эффект полупроводника тока. Эксперименты физиков для получения одностороннего проводника тока привели к такому результату, что если к германию присоединить акцепторную примесь (барий, алюминий, галлий или индий), способную захватывать электроны, накопленные в германии, то в результате получится электронный элемент, способный пропускать электроны только в одну сторону (от германия к акцепторной смеси). Как мы знаем, электрон – это отрицательно заряженная частица, притягивающаяся к положительной частице, однако в электронике принято обозначение перемещения тока от плюса к минусу. Таким образом, диод представляет собой смесь германия или кремния с акцепторным материалом. Германий, за счет накопленных электронов несет в себе отрицательный N заряд (N - negative), а акцепторная смесь насыщается положительными P ионами (P - positive). Процесс протекания тока из P области в N область через место «соединения» или p-n переход и есть принцип раб

xn----7sbeb3bupph.xn--p1ai

Мощность, рассеиваемая на диоде

Поиск Лекций

Характеристики диодов, конструкции и особенности применения

Характеристики диодов, конструкции и особенности применения

В предыдущей статье мы начали знакомство с полупроводниковым диодом. В этой статье мы рассмотрим свойства диодов, их достоинства и недостатки, различные конструкции и особенности применения в электронных схемах.

Вольтамперная характеристика диода

Вольтамперная характеристика (ВАХ) полупроводникового диода показана на рисунке 1.

Здесь в одном рисунке показаны ВАХ германиевого (синим цветом) и кремниевого (черным цветом) диодов. Нетрудно заметить, что характеристики очень похожи. На координатных осях нет никаких цифр, поскольку для разных типов диодов они могут существенно различаться: мощный диод может пропустить прямой ток в несколько десятков ампер, в то время как маломощный всего несколько десятков или сотен миллиампер.

Диодов разных моделей великое множество, и все они могут иметь разное назначение, хотя основной их задачей, основным свойством является обеспечение односторонней проводимости тока. Именно это свойство позволяет использовать диоды в выпрямителях и детекторных устройствах. Следует, однако, заметить, что в настоящее время германиевые диоды, равно как и транзисторы вышли из употребления.

Рисунок 1. Вольтамперная характеристика диода

Прямая ветвь ВАХ

В первом квадранте системы координат расположена прямая ветвь характеристики, когда диод находится в прямом включении, - к аноду подключен положительный вывод источника тока, соответственно отрицательный вывод к катоду.

По мере увеличения прямого напряжения Uпр, начинает возрастать и прямой ток Iпр. Но пока это возрастание незначительно, линия графика имеет незначительный подъем, напряжение растет значительно быстрее, чем ток. Другими словами, несмотря на то, что диод включен в прямом направлении, ток через него не идет, диод практически заперт.

При достижении определенного уровня напряжения на характеристике появляется излом: напряжение практически не меняется, а ток стремительно растет. Это напряжение называется прямым падением напряжения на диоде, на характеристике обозначено как Uд. Для большинства современных диодов это напряжение находится в пределах 0,5…1В.

На рисунке видно, что для германиевого диода прямое напряжение несколько меньше (0,3…0,4В), чем для кремниевого (0,7…1,1В). Если прямой ток через диод умножить на прямое напряжение, то полученный результат будет не что иное, как мощность, рассеиваемая на диоде Pд = Uд * I.

Если эта мощность будет превышена относительно допустимой, то может произойти перегрев и разрушение p-n перехода. Именно поэтому в справочниках ограничиваетсямаксимальный прямой ток, а не мощность (считается, что прямое напряжение известно). Для отведения излишнего тепла мощные диоды устанавливаются на теплоотводы - радиаторы.

Мощность, рассеиваемая на диоде

Сказанное поясняет рисунок 2, на котором показано включение нагрузки, в данном случае лампочки, через диод.

Рисунок 2. Включение нагрузки через диод

Представьте себе, что номинальное напряжение батарейки и лампочки 4,5В. При таком включении на диоде упадет 1В, тогда до лампочки дойдет лишь 3,5В. Конечно, такую схему никто практически собирать не будет, это просто для иллюстрации, как и на что влияет прямое напряжение на диоде.

Предположим, что лампочка ограничила ток в цепи на уровне ровно в 1А. Это для простоты расчета. Также не будем принимать во внимание то, что лампочка является элементом нелинейным, и закону Ома не подчиняется (сопротивление спирали зависит от температуры).

Нетрудно подсчитать, что при таких напряжениях и токах на диоде рассеивается мощность P = Uд * I или 1В * 1А = 1Вт. В то же время мощность на нагрузке всего 3,5В * 1А = 3,5Вт. Получается, что бесполезно расходуется 28 с лишним процентов энергии, больше, чем четвертая часть.

Если прямой ток через диод будет 10…20А, то бесполезно будет расходоваться до 20Вт мощности! Такую мощность имеет маленький паяльник. В описанном случае таким паяльником будет диод.

Диоды Шоттки

Совершенно очевидно, что избавиться от таких потерь можно, если снизить прямое падение напряжения на диоде Uд. Такие диоды получили название диодов Шоттки по имени изобретателя немецкого физика Вальтера Шоттки. Вместо p-n перехода в них используется переход металл – полупроводник. Эти диоды имеют прямое падение напряжения 0,2…0,4В, что значительно снижает мощность, выделяющуюся на диоде.

Единственным, пожалуй, недостатком диодов Шоттки является низкое обратное напряжение, - всего несколько десятков вольт. Максимальное значение обратного напряжения 250В имеет промышленный образец MBR40250 и его аналоги. Практически все блоки питания современной электронной аппаратуры имеют выпрямители на диодах Шоттки.

Обратная ветвь ВАХ

Одним из недостатков следует считать то, что даже при включении диода в обратном направлении через него все равно протекает обратный ток, ведь идеальных изоляторов в природе не бывает. В зависимости от модели диода он может варьироваться от наноампер до единиц микроампер.

Вместе с обратным током на диоде выделяется некоторая мощность, численно равная произведению обратного тока на обратное напряжение. Если эта мощность будет превышена, то возможен пробой p-n перехода, диод превращается в обычный резистор или даже проводник. На обратной ветви ВАХ этой точке соответствует загиб характеристики вниз.

Обычно в справочниках указывается не мощность, а некоторое предельно допустимое обратное напряжение. Примерно так же, как ограничение прямого тока, о котором было сказано чуть выше.

Собственно зачастую именно эти два параметра, а именно прямой ток и обратное напряжение и являются определяющими факторами при выборе конкретного диода. Это на тот случай, когда диод предназначается для работы на низкой частоте, например выпрямитель напряжения с частотой промышленной сети 50…60Гц.

poisk-ru.ru

Технические характеристики диодов

  1. Радиоэлектроника
  2. Схемотехника
  3. Основы электроники и схемотехники
  4. Том 3 - Полупроводниковые приборы

Добавлено 4 февраля 2017 в 22:50

Сохранить или поделиться

В дополнение к прямому падению напряжения и максимальному обратному напряжению есть много других технических параметров диодов, важных при разработке схем и выборе компонентов. Производители полупроводниковых приборов предоставляют подробные спецификации своих продуктов (в том числе, и диодов) в публикациях, известных как технические описания (datasheets, «даташиты»). Технические описания для широкого спектра полупроводниковых приборов могут быть найдены в справочниках и интернете. В качестве источника спецификаций компонентов я предпочитаю интернет, так как данные, полученные от производителей, более актуальны.

Типовые технические описания диодов содержат данные для следующих параметров:

Максимальное повторяющееся (импульсное) обратное напряжение (Uобр.и.п.макс, VRRM)Максимальное напряжение, которое диод может выдержать в режиме обратного смещения при повторяющихся импульсах. В идеале, эта величина была бы бесконечной.Максимальное постоянное обратное напряжение (Uобр.макс, VR, VDC)Максимальное напряжение, которое диод может выдержать в режиме обратного смещения на постоянной основе. В идеале, эта величина была бы бесконечной.Максимальное прямое напряжение (Uпр, VF)Обычно указывается при номинальном прямом токе диода. В идеале эта величина была бы равна нулю: диод не оказывает никакого сопротивления прямому току. В реальности прямое напряжение описывается уравнением Шокли для диода.Максимальный (средний) прямой ток (Iпр.ср.макс, IF(AV))Максимальная средняя величина тока, которую ток может проводить в режиме прямого смещения. Является принципиальным тепловым ограничением: насколько может нагреться PN переход, учитывая что рассеиваемая мощность равна току (I), умноженному на напряжение (U), а прямое напряжение зависит и от тока, и от температуры перехода. В идеале, эта величина была бы бесконечнойМаксимальный (пиковый или импульсный) прямой ток (Iпр.и.макс, IFSM, if(surge))Максимальная пиковая величина тока, которую диод может проводить в режиме прямого смещения. Опять же, этот параметр ограничивается рассеиваемой мощностью диода и, как правило, намного выше максимального среднего тока из-за тепловой инерции (дело в том, что диоду необходимо определенное количество времени, чтобы достигнуть максимальной температуры при заданном токе). В идеале, эта величина была бы бесконечной.Максимальная общая рассеиваемая мощность(Pд, PD)Величина мощности (в ваттах), допустимая для рассеивания диодом, учитывая рассеивание P = IU (ток через диод, умноженный на падение напряжения на диоде) и рассеивание P = I2R (ток в квадрате, умноженный на сопротивление). Фундаментально ограничивается тепловой емкостью диода (способностью выдерживать высокие температуры).Рабочая температура перехода (Tп.макс, TJ)Максимальная допустимая температура для PN-перехода диода, как правило, дается в градусах Цельсия (°C). Тепло является «ахиллесовой пятой» полупроводниковых приборов: они должны оставаться холодными как для правильного функционирования, так и для более долгого срока службы.Диапазон температур храненияДиапазон температур, допустимых для хранения диода (без подачи питания). Иногда дается в сочетании с рабочей температурой перехода (Tп.макс, TJ), так как значения максимальной температуры хранения и максимальной рабочей температуры часто одинаковы. Хотя, на самом деле, значение максимальной температуры хранения будет больше значения максимальной рабочей температуры.Тепловое сопротивление (RT, R(Θ)), тепловое сопротивление для разности температур перехода и окружающего воздуха (RTпер–окр, RΘJA), тепловое сопротивление для разности температур перехода и выводов/корпуса (RTпер–кор, RΘJL) при определенной рассеиваемой мощностиВыражаются в единицах градусов Цельсия на ватт (°C/Вт). В идеале, этот показатель был бы равен нулю, что означало бы, что корпус диода был идеальным теплопроводником и радиатором, способным передать всю тепловую энергию от перехода в окружающий воздух (или к выводам) без разницы температур по всей толщине корпуса диода. Высокое тепловое сопротивление означает, что диод будет наращивать чрезмерную температуру в переходе (в своем самом критически важном месте), несмотря на все усилия по охлаждению с внешней стороны диода, и, таким образом, будет ограничиваться максимальная рассеиваемая мощность.Максимальный обратный ток (Iобр.макс, IR)Величина тока через диод в режиме обратного смещения с приложенным максимальным обратным напряжением (Uобр.макс, VR, VDC). Иногда называется током утечки. В идеале, этот показатель был бы равен нулю, так как идеальный диод при обратном смещении будет блокировать весь ток. В реальности, он очень мал по сравнению с максимальным прямым током.Типовая емкость перехода (Cпер, CJ)Типовая величина емкости, свойственной переходу из-за обедненной области, действующей как диэлектрик, разделяющий соединения анода и катода. Как правило, она очень мала и измеряется в диапазоне пикофарад (пФ).Время восстановления (tвос.обр trr)Количество времени, необходимое диоду «выключиться», когда напряжение на нем меняет полярность с прямого смещения на обратное. В идеале, этот показатель был бы равен нулю: диод останавливает проводимость сразу после изменения полярности. Для типовых выпрямительных диодов время восстановления находится в диапазоне десятков микросекунд; для «быстрых коммутирующих» диодов оно может составлять всего несколько наносекунд.

Большинство из этих параметров зависит от температуры и других условий эксплуатации, и поэтому одно значение не в полной мере описывает любой из этих показателей. Поэтому производители предоставляют графики показателей компонентов в зависимости от других переменных (например, температура), благодаря чему разработчик схем имеет лучшее представление о том, на что способно устройство.

Оригинал статьи:

Сохранить или поделиться

На сайте работает сервис комментирования DISQUS, который позволяет вам оставлять комментарии на множестве сайтов, имея лишь один аккаунт на Disqus.com.

radioprog.ru

Общие свойства и параметры диодов

 

Система и перечень параметров, включаемые в технические описания и характеризующие свойства полупроводниковых диодов, выбираются с учетом их физико-технологических особенностей и области применения. В большинстве случаев важны сведения об их статических, динамических и предельных параметрах.

Статические параметры характеризуют поведение приборов при постоянном токе, динамические — их частотно-временные свойства, предельные параметры определяют область устойчивой и надежной работы.

В справочники, стандарты или технические описания включается необходимая для детального расчета схем информация о параметрах: нормы на значения параметров, режимы их измерений, вольт-амперные характеристики, зависимости параметров от режима и температуры, максимальные и максимально допустимые значения параметров, конструктивно-технологические особенности приборов, их основное назначение, специфические требования, методы измерения параметров, типовые схемы применения.

Постоянные (случайные) изменения технологических факторов оказывают существенное влияние на значения параметров изготавливаемых приборов. Поэтому значения параметров даже одного типа приборов являются случайными величинами, т.е. имеется отклонение от среднего (типового, номинального) уровня. Для некоторых параметров устанавливаются граничные значения и возможные отклонения (разброс). Нормы на разброс параметров устанавливаются на основе экспериментально-статистических данных при обеспечении надежной и устойчивой работы приборов в различных условиях и режимах применения, а также исходя из экономических соображений.

Необходимо отметить, что вследствие постоянного совершенствования конструкций и технологии изготовления полупроводниковых приборов происходят изменения средних значений параметров. Некоторые образцы приборов имеют параметры лучше, чем приведенные в технических описаниях и справочниках.

В разных странах существуют региональные унифицированные стандарты на параметры и характеристики полупроводниковых приборов, методики их измерений и контроля качества, которые могут существенно отличаться от международных стандартов.

Различают общие параметры, которыми характеризуется любой полупроводниковый диод, и специальные параметры, присущие только отдельным видам диодов. К общим параметрам диодов относят: параметры рассеиваемой мощности, тепловые параметры, пробивные максимальные и максимально допустимые токи и напряжения, параметры, определяемые по виду ВАХ прибора, параметры, характеризующие основные свойства \(p\)-\(n\)-перехода и т.п.

Рассеиваемая мощность (\(P_{пр}\), \(P_{обр}\), \(P_{ср}\), \(P_и\)). Когда через диод проходит ток, при заданном напряжении на диоде выделяется мощность \(P_д = I \cdot U\). При подаче на диод переменного напряжения общая мощность, рассеиваемая диодом, равна сумме мощностей рассеиваемых при прохождении тока в прямом (\(P_{пр}\)) и обратном (\(P_{обр}\)) направлениях \(P_д = P_{пр} + P_{обр}\). Средняя рассеиваемая мощность (\(P_{ср}\)) определяется как среднее за период значение мощности, рассеиваемой диодом при протекании прямого и обратного токов. Максимальное значение рассеиваемой мощности, при которой гарантируется долговременная и стабильная работа диода при заданных внешних условиях, называется максимальной допустимой мощностью рассеяния диода. Наибольшее мгновенное значение мощности, рассеиваемой диодом, называется импульсной рассеиваемой мощностью (\(P_и\)).

Температура (\(T\), \(T_п\), \(T_{кор}\)). Выделение мощности сопровождается нагреванием диода, что приводит к росту обратного тока и увеличению вероятности возникновения теплового пробоя \(p\)-\(n\)-перехода. Для исключения теплового пробоя температура \(p\)-\(n\)-перехода должна быть меньше максимальной допустимой температуры перехода (\(T_{п max}\)). Как правило, эта температура для германиевых диодов составляет 70 °C, а для кремниевых — 125 °C. Выделяемая теплота рассеивается диодом в окружающую среду. Учитывая конструктивные особенности диода и условия его эксплуатации, иногда нормируются максимальная температура корпуса диода (\(T_{к max}\)) и максимальная температура окружающей среды вблизи диода (\(T\)).

Тепловое сопротивление (\(R_т\), \(R_{т пер-окр}\), \(R_{т пер-кор}\)). Перепад температур между переходом и окружающей средой определяется выражением: \(T_п – T = R_т \cdot P_д\), где \(R_т\) — тепловое сопротивление, характеризующее условия отвода теплоты от диода (определяется конструкцией корпуса, наличием радиатора и т.д.). В зависимости от расположения контрольной точки, в которой производится измерение температуры, различают: тепловое сопротивление переход – окружающая среда (\(R_{т пер-окр}\)), тепловое сопротивление переход – корпус диода (\(R_{т пер-кор}\)). Тепловое сопротивление переход – среда (\(R_{т пер-окр}\)) необходимо знать для расчета допустимой рассеиваемой мощности маломощных диодов обычно работающих без теплоотвода, а тепловое сопротивление переход – корпус (\(R_{т пер-кор}\)) — для расчета режима работы мощных приборов при наличии внешнего радиатора. Обычно \(R_{т пер-окр} \gg R_{т пер-кор}\) (сопротивление \(R_{т пер-кор}\) остается постоянным только в случае малых плотностей тока). Тепло от кристалла с переходами к корпусу или радиатору отводится за счет теплопроводности, а от корпуса в окружающее пространство — конвекцией и излучением. Режим диода необходимо выбирать из условия \(\newcommand{\slfrac}[2]{\left.#1\right/#2}U \cdot I \leq P_{д max}= \slfrac{\left( T_{п max} – T \right)}{R_{т пер-окр}}\).

Переходное тепловое сопротивление (\(Z_т\), \(Z_{т пер-окр}\), \(Z_{т пер-кор}\)). При определении тепловых режимов в случае работы диодов при малых длительностях импульсов используются их переходные тепловые характеристики, а именно переходное тепловое сопротивление диода (\(Z_т\)), которое является отношением разности изменения температуры перехода и температуры в контрольной точке за заданный промежуток времени, когда происходит это изменение температуры, к приращению рассеиваемой мощности диода, скачкообразно увеличенной в начале этого интервала. Производными этого параметра являются: переходное тепловое сопротивление переход – окружающая среда (\(Z_{т пер-окр}\)) и переходное тепловое сопротивление переход – корпус диода (\(Z_{т пер‑кор}\)).

Прямой ток и напряжение (\(I_{пр}\), \(I_{пр}\) и, \(I_{пр ср}\), \(U_{пр}\), \(U_{пр и}\)). При приложении к диоду постоянного прямого напряжения \(U_{пр}\) его температура зависит от величины протекающего прямого тока \(I_{пр}\). Прямой ток, при котором температура \(p\)-\(n\)-перехода диода достигает максимального допустимого значения (\(T_{п max}\)), называют допустимым прямым током (\(I_{пр max}\)). Наибольшее допустимое мгновенное значение прямого тока диода называют максимальным импульсным прямым током (\(I_{пр и max}\)). Наибольшее мгновенное значение прямого напряжения на диоде, обусловленное заданным импульсным прямым током, называется максимальным импульсным прямым напряжением диода (\(U_{пр и max}\)). Средний прямой ток диода (\(I_{пр ср}\)) определяется при подаче на диод переменного напряжения как среднее за период значение прямого тока.

Обратный ток и напряжение (\(I_{обр}\), \(I_{обр и}\), \(U_{обр}\), \(U_{обр и}\)). При приложении к диоду постоянного заданного обратного напряжения \(U_{обр}\) через него протекает постоянный обратный ток \(I_{обр}\) определенной величины. Важным параметром диодов является максимальное допустимое обратное напряжение \(U_{обр max}\), при котором не происходит пробоя \(p\)-\(n\)-перехода. Обычно \(U_{обр max} \le {0,8}U_{проб}\), где \(U_{проб}\) — значение обратного напряжения, вызывающее пробой перехода диода, при котором обратный ток достигает заданного значения, оно называется пробивным напряжением диода. Максимально допустимое импульсное обратное напряжение (\(U_{обр и max}\)) определяет максимальное мгновенное значение для обратного напряжения на диоде, а максимально допустимый импульсный обратный ток (\(I_{обр и max}\)) характеризует предельное мгновенное значение обратного тока, обусловленного импульсным обратным напряжением.

Дифференциальное сопротивление (\(r_{диф}\)). Прямое (\(r_{пр}\)) и обратное (\(r_{обр}\)) сопротивления диода постоянному току выражаются соотношениями: \(\newcommand{\slfrac}[2]{\left.#1\right/#2}r_{пр} = \slfrac{U_{пр 0}}{I_{пр 0}}\), \(r_{обр} = \slfrac{U_{обр 0}}{I_{обр 0}}\) , где \(U_{пр 0}\), \(I_{пр 0}\), \(U_{обр 0}\), \(I_{обр 0}\) задают конкретные точки на ВАХ прибора, в которых производится вычисление сопротивления. Поскольку типичная ВАХ полупроводникового прибора имеет участки с повышенной линейностью (один на прямой ветви, один — на обратной), то вводится понятие дифференциального сопротивления (\(r_{диф}\)), которое вычисляется как отношение малого приращения напряжения диода к малому приращению тока в нем при заданном режиме (\(r_{диф пр} = \slfrac{\Delta U_{пр}}{\Delta I_{пр}}\), \(r_{диф обр} = \slfrac{\Delta U_{обр}}{\Delta I_{обр}}\)).

Емкость перехода (\(C_{пер}\)) и накопленный заряд (\(Q_{нк}\)). Изменение внешнего напряжения \(\operatorname{d}U\) на \(p\)-\(n\)-переходе приводит к изменению накопленного в нем заряда \(\operatorname{d}Q\). Поэтому \(p\)‑\(n\)‑переход ведет себя подобно конденсатору, емкость которого \(C = \operatorname{d}Q/\operatorname{d}U\). В зависимости от физической природы изменяющегося заряда различают зарядную (барьерную) и диффузионную емкости. Зарядная (барьерная) емкость определяется изменением нескомпенсированного заряда ионов при изменении ширины запирающего слоя под воздействием внешнего обратного напряжения. При увеличении же внешнего напряжения, приложенного к \(p\)-\(n\)-переходу в прямом направлении, растет концентрация инжектированных носителей вблизи границ перехода, что приводит к изменению количества заряда, обусловленного неосновными носителями в \(p\)- и \(n\)-областях. Это можно рассматривать как проявление некоторой емкости. Поскольку она зависит от изменения диффузионной составляющей тока, ее называют диффузионной емкостью. Заряд электронов или дырок, накопленный при протекании прямого тока в базе диода или \(i\)‑области \(p\)-\(i\)-\(n\)-диода, называется накопленным зарядом (\(Q_{нк}\)). Полная емкость \(p\)-\(n\)-перехода определяется суммой зарядной и диффузионной емкостей: \(C_{пер} = C_{зар} + C_{диф}\). При включении \(p\)‑\(n\)‑перехода в прямом направлении преобладает диффузионная емкость, а при включении в обратном направлении — зарядная (емкость \(C_{диф}\) при этом пренебрежимо мала).

Заряд восстановления (\(Q_{вос}\)) и время восстановления (\(t_{вос обр}\), \(t_{вос пр}\)). При переключении диода с прямого тока на обратный весь накопленный заряд вытекает во внешнюю цепь. При заданных прямом токе и итоговом обратном напряжении весь суммарный заряд (с учетом накопленного заряда и заряда емкости обедненного слоя для полных процессов запаздывания и восстановления), вытекающий во внешнюю цепь, называется зарядом восстановления (\(Q_{вос}\)), а время, истекшее от момента прохождения тока через нулевое значение до момента достижения обратным током заданной величины — временем восстановления обратного сопротивления или просто временем обратного восстановления диода (\(t_{вос обр}\)). Аналогично определяется время установления прямого напряжения или время прямого восстановления диода (\(t_{вос пр}\)), которое равно промежутку времени, в течение которого прямое напряжение на диоде устанавливается от нулевого значения до заданного уровня.

Полный список общих параметров диодов и их принятых обозначений приведен в таб. 2.2‑1. Помимо описанных выше параметров он включает также:

  • эффективное время жизни неравновесных носителей заряда (\(t_{эф}\)), характеризующее материал и некоторые конструктивные параметры кристалла полупроводника;
  • емкость корпуса диода (\(C_{кор}\)), определяемую его конструктивными особенностями;
  • общие емкость (\(C_д\)) и индуктивность (\(L_п\)) диода, измеряемые в установившемся режиме работы.

 

Таб. 2.2-1. Общие основные параметры диодов

 

 

< Предыдущая Следующая >
 

www.club155.ru


Видеоматериалы

24.10.2018

Опыт пилотных регионов, где соцнормы на электроэнергию уже введены, показывает: граждане платить стали меньше

Подробнее...
23.10.2018

Соответствует ли вода и воздух установленным нормативам?

Подробнее...
22.10.2018

С начала года из ветхого и аварийного жилья в республике были переселены десятки семей

Подробнее...
22.10.2018

Столичный Водоканал готовится к зиме

Подробнее...
17.10.2018

Более 10-ти миллионов рублей направлено на капитальный ремонт многоквартирных домов в Лескенском районе

Подробнее...

Актуальные темы

13.05.2018

Формирование энергосберегающего поведения граждан

 

Подробнее...
29.03.2018

ОТЧЕТ о деятельности министерства энергетики, ЖКХ и тарифной политики Кабардино-Балкарской Республики в сфере государственного регулирования и контроля цен и тарифов в 2012 году и об основных задачах на 2013 год

Подробнее...
13.03.2018

Предложения организаций, осуществляющих регулируемую деятельность о размере подлежащих государственному регулированию цен (тарифов) на 2013 год

Подробнее...
11.03.2018

НАУЧИМСЯ ЭКОНОМИТЬ В БЫТУ

 
Подробнее...

inetpriem


<< < Ноябрь 2013 > >>
Пн Вт Ср Чт Пт Сб Вс
        1 2 3
4 5 6 7 8 9 10
11 12 13 14 15 16 17
18 19 20 21 22 23 24
25 26 27 28 29 30  

calc

banner-calc

.