Магнетрон. Из чего состоит магнетрон


Магнетрон Википедия

Магнетрон — это электронный прибор, генерирующий микроволны при взаимодействии потока электронов с электрической составляющей поля СВЧ в пространстве, где постоянное магнитное поле перпендикулярно постоянному электрическому полю[1].

История

В 1912 году швейцарский физик Генрих Грейнахер изучал способы вычисления массы электрона. Он собрал установку, в которой внутрь магнита был помещен электровакуумный диод с цилиндрическим анодом вокруг стержневидного катода. Ему не удалось измерить массу электрона из-за проблем с получением достаточного уровня вакуума в лампе, однако в ходе работы были разработаны математические модели движения электронов в электрических и магнитных полях.[2][3]

Альберт Халл (США) использовал данные модели при попытках обойти патенты Western Electric на триод. Халл планировал использовать для управления потоком электронов между катодом и анодом изменяющееся магнитное поле вместо постоянного электрического. В исследовательских лабораториях General Electric (Schenectady, New York) Халл создал лампы, переключавшие режим через изменение соотношения магнитных и электрических полей. В 1921 он предложил термин магнетрон, опубликовал несколько статей об их устройстве и получил патенты.[4] Магнетрон Халла не был предназначен для получения высокочастотных электромагнитных волн. В 1924 чехословацкий физик А. Жачек[5] и германский физик Эрих Хабан (Erich Habann, Йенский университет) независимо обнаружили возможность генерации магнетроном дециметровых волн (порядка 100 МГц - 1 ГГц).

В 20-е годы исследованиями в области генерирования СВЧ-колебаний с применением магнитных полей занимались также А. А. Слуцкин и Д. С. Штейнберг (1926—1929, СССР), К. Окабе и Х. Яги (1928—1929, Япония), И. Ранци (1929, Италия).

Действующие магнетронные генераторы радиоволн были созданы независимо и почти одновременно в трёх странах: в Чехословакии (Жачек, 1924 г.), в СССР (А. А. Слуцкин и Д. С. Штейнберг, 1925 г.), в Японии (Окабе и Яги, 1927 г.).

К 1936-1937 году мощность генераторов на базе магнетрона была повышена в несколько раз (до сотен Вт на волне с длиной 9 см) путём создания многорезонаторного магнетрона (с использованием массивного медного анода с несколькими резонаторами и охлаждением; М. А. Бонч-Бруевич, Н. Ф. Алексеев, Д. Е. Маляров)[6][7].

Французский учёный Морис Понт с сотрудниками из парижской фирмы «КСФ» в 1935 году создали электронную лампу с вольфрамовым катодом, окружённым резонаторными анодными сегментами. Она была предшественницей магнетронов с резонаторными камерами.

Конструкция многорезонаторного магнетрона Алексеева — Малярова, обеспечивающего 300-ваттное излучение на волне 10 сантиметров, созданного в 1936-39 гг., стала известна мировому сообществу благодаря публикации 1940 г.[8]

Своим появлением на свет многорезонаторный магнетрон Алексеева — Малярова обязан радиолокации. Работы по радиолокации были развернуты в СССР почти одновременно с началом радиолокационных работ в Англии и США. По признанию зарубежных авторов, к началу 1934 года СССР продвинулся в этих работах более, чем США и Англия.[9]

В 1940 британские физики Джон Рэндалл и Гарри Бут (англ. Harry Boot) изобрели резонансный магнетрон[10]. Новый магнетрон давал импульсы высокой мощности, что позволило разработать радар сантиметрового диапазона. Радар с короткой длиной волны позволял обнаруживать более мелкие объекты[11]. Кроме того, компактный размер магнетрона привёл к резкому уменьшению размеров радарной аппаратуры[12], что позволило устанавливать её на самолетах[13].

В 1949 году в США инженерами Д. Уилбуром и Ф. Питерсом были разработаны методы изменения частоты магнетрона с помощью управления напряжением (прибор "митрон" - mitron).[14][15]

Начиная с 1960-х годов магнетроны получили применение в СВЧ-печах для домашнего использования[16].

Характеристики

Магнетроны могут работать на различных частотах от 0,5 до 100 ГГц, с мощностями от нескольких Вт до десятков кВт в непрерывном режиме, и от 10 Вт до 5 МВт в импульсном режиме при длительностях импульсов главным образом от долей до десятков микросекунд.

Магнетроны обладают высоким КПД (до 80 %).

Магнетроны бывают как неперестраиваемые, так и перестраиваемые в небольшом диапазоне частот (обычно менее 10 %). Для медленной перестройки частоты применяются механизмы, приводимые в движение рукой, для быстрой (до нескольких тысяч перестроек в секунду) — ротационные и вибрационные механизмы.

Магнетроны как генераторы сверхвысоких частот широко используются в современной радиолокационной технике (хотя их начинают вытеснять активные фазированные антенные решётки) и в микроволновых печах. Фактически магнетрон по состоянию на 2017 год последний тип массово производимого электровакуумного прибора (не считая рентгеновской трубки) после свёртывания производства кинескопов в начале 2010 годов.

Конструкция

Магнетрон в продольном разрезе Схема конструкции магнетрона

Резонансный магнетрон состоит из анодного блока, который представляет собой, как правило, металлический толстостенный цилиндр с прорезанными в стенках полостями, выполняющими роль объёмных резонаторов. Резонаторы образуют кольцевую колебательную систему. К анодному блоку закрепляется цилиндрический катод. Внутри катода закреплён подогреватель. Магнитное поле, параллельное оси прибора, создаётся внешними магнитами или электромагнитом.

Для вывода СВЧ энергии используется, как правило, проволочная петля, закреплённая в одном из резонаторов, или отверстие из резонатора наружу цилиндра.

Резонаторы магнетрона образуют кольцевую колебательную систему, около них происходит взаимодействие пучка электронов и электромагнитной волны. Поскольку эта система в результате кольцевой конструкции замкнута сама на себя, то её можно возбудить лишь на определённых видах колебаний, из которых важное значение имеет π-вид. Среди нескольких резонансных частот системы (при N резонаторах в системе возможно существование любого целого количества стоячих волн в диапазоне от 1 до N/2) чаще всего используется π-вид колебаний, при котором фазы в смежных резонаторах различаются на π. При наличии рядом с рабочей частотой (ближе 10%) других резонансных частот возможны перескоки частоты и нестабильная работа прибора. Для предотвращения подобных эффектов в магнетронах с одинаковыми резонаторами в них могут вводиться различные связки либо применяться магнетроны с разными размерами резонаторов (четные резонаторы с одним размером, нечётные — с другим).

Отдельные модели магнетронов могут иметь различную конструкцию. Так, резонаторная система выполняется в виде резонаторов нескольких типов: щель-отверстие, лопаточных, щелевых и т. д.

Принцип работы

Схема работы магнетрона

Электроны эмиттируются из катода в пространство взаимодействия, где на них воздействует постоянное электрическое поле анод-катод, постоянное магнитное поле и поле электромагнитной волны. Если бы не было поля электромагнитной волны, электроны бы двигались в скрещённых электрическом и магнитном полях по сравнительно простым кривым: эпициклоидам (кривая, которую описывает точка на круге, катящемся по наружной поверхности окружности большего диаметра, в конкретном случае — по наружной поверхности катода). При достаточно высоком магнитном поле (параллельном оси магнетрона) электрон, движущийся по этой кривой, не может достичь анода (по причине действия на него со стороны этого магнитного поля силы Лоренца), при этом говорят, что произошло магнитное запирание диода. В режиме магнитного запирания некоторая часть электронов движется по эпициклоидам в пространстве анод-катод. Под действием собственного поля электронов, а также статистических эффектов (дробовой шум) в этом электронном облаке возникают неустойчивости, которые приводят к генерации электромагнитных колебаний, эти колебания усиливаются резонаторами. Электрическое поле возникшей электромагнитной волны может замедлять или ускорять электроны. Если электрон ускоряется полем волны, то радиус его циклотронного движения увеличивается, и он отклоняется в направлении катода. При этом энергия передаётся от волны к электрону. Если же электрон тормозится полем волны, то его энергия передаётся волне, при этом циклотронный радиус электрона уменьшается, центр окружности вращения смещается ближе к аноду, и он получает возможность достигнуть анода. Поскольку электрическое поле анод-катод совершает положительную работу только если электрон достигает анода, энергия всегда передаётся в основном от электронов к электромагнитной волне. Однако, если скорость вращения электронов вокруг катода не будет совпадать с фазовой скоростью электромагнитной волны, один и тот же электрон будет попеременно ускоряться и тормозиться волной, в результате эффективность передачи энергии волне будет небольшой. Если средняя скорость вращения электрона вокруг катода совпадает с фазовой скоростью волны, электрон может находиться непрерывно в тормозящей области, при этом передача энергии от электрона к волне наиболее эффективна. Такие электроны группируются в сгустки (так называемые «спицы»), вращающиеся вместе с полем. Многократное, в течение ряда периодов, взаимодействие электронов с ВЧ-полем и фазовая фокусировка в магнетроне обеспечивают высокий коэффициент полезного действия и возможность получения больших мощностей.

Применение

Предупреждающий знак «Опасно. Радиоизлучение»

В радарных устройствах волновод подсоединён к антенне, которая может представлять собой как щелевой волновод, так и конический рупорный облучатель в паре с параболическим отражателем (так называемая «тарелка»). Магнетрон управляется короткими высокоинтенсивными импульсами подаваемого напряжения, в результате чего в пространство излучается короткий импульс микроволновой энергии. Небольшая порция этой энергии отражается от объекта радиолокации обратно к антенне, попадает в волновод, которым она направляется к чувствительному приёмнику. После дальнейшей обработки сигнала он, в конце концов, появляется на электронно-лучевой трубке (ЭЛТ) в виде радарной карты А1.

В микроволновых печах волновод заканчивается отверстием, прозрачным для радиочастот (непосредственно в камере для готовки). Важно, чтобы во время работы печи в ней находились продукты. Тогда микроволны поглощаются вместо того, чтобы отражаться обратно в волновод, где интенсивность стоячих волн может вызвать искрение. Искрение, продолжающееся достаточно долго, может повредить магнетрон. Если в микроволновой печи готовится небольшое количество пищи, лучше поставить в камеру ещё и стакан воды для поглощения микроволн.

Примечания

  1. ↑ Кулешов, 2008, с. 353.
  2. ↑ H. Greinacher (1912) "Über eine Anordnung zur Bestimmung von e/m" (Об аппарате для определения e/m), Verhandlungen der Deutschen Physikalischen Gesellschaft, 14 : 856-864. (нем.)
  3. ↑ "Invention of Magnetron"  (англ.)
  4. ↑ Albert W. Hull (1921) "The effect of a uniform magnetic field on the motion of electrons between coaxial cylinders," Physical Review, 18 (1) : 31-57. Также: Albert W. Hull, "The magnetron," Journal of the American Institute of Electrical Engineers, vol. 40, no. 9, pages 715-723 (September 1921).
  5. ↑ Biographical information about August Žáček:
    • R. H. Fürth, Obituary: "Prof. August Žáček," Nature, vol. 193, no. 4816, page 625 (1962).
    • "The 70th birthday of Prof. Dr. August Žáček," Czechoslovak Journal of Physics, vol. 6, no. 2, pages 204-205 (1956). Available on-line at: Metapress.com Архивная копия от 12 марта 2012 на Wayback Machine.
  6. ↑ Моuromtseeff J. Е. Proc. Natl.-Electr. Conf., 1945, № 33, p. 229 – 233.
  7. ↑ Расширение исследований по радиообнаружению. М. М. Лобанов. Развитие советской радиолокационной техники. Проверено 27 января 2016.
  8. ↑ Alexeev Н. F., Malyarov Д. Е. Getting powerful vibrations of magnetrons in centimeter wavelength range // Magazine of Technical Physics. 1940. Vol. 10. No. 15, P. 1297—1300.
  9. ↑ Brown, Louis. A Radar History of World War II. Technical and Military Imperatives. Bristol: Institute of Physics Publishing, 1999. ISBN 0-7503-0659-9
  10. ↑ The Magnetron. Bournemouth University (1995-2009). Проверено 23 августа 2009. Архивировано 23 августа 2011 года.
  11. ↑ Я. З. Перпя. Как работает радиолокатор. Оборонгиз, 1955
  12. ↑ Schroter, B. (Spring 2008). «How important was Tizard’s Box of Tricks?». Imperial Engineer 8: 10. Проверено 2009-08-23.
  13. ↑ Who Was Alan Dower Blumlein?  (недоступная ссылка — история). Dora Media Productions (1999-2007). Проверено 23 августа 2009. Архивировано 23 августа 2011 года.
  14. ↑ The Mitron-An Interdigital Voltage-Tunable Magnetron / Proceedings of the IRE (Volume:43, Issue: 3, 1955) pp 332-338, doi:10.1109/JRPROC.1955.278140
  15. ↑ 62. Mitrons / V. N. Shevchik, Fundamentals of Microwave Electronics: International Series of Monographs on Electronics and Instrumentation, Elsevier, 2014 ISBN 9781483194769, p239  (англ.)
  16. ↑ В. Коляда. Прирученные невидимки. Всё о микроволновых печах // Наука и Жизнь №10, 2004

Ссылки

Литература

  • Кулешов В.Н., Удалов Н.Н., Богачев В.М. и др. Генерирование колебаний и формирование радиосигналов. — М.: МЭИ, 2008. — 416 с. — ISBN 978-5-383-00224-7.

wikiredia.ru

Конструкция магнетрона | yourmicrowell.ru

Давайте в этой статье поговорим о магнетроне. Как я писал раньше, он является сердцем микроволновой печи. Говоря коротко, магнетрон преобразует электроэнергию в микроволны. Большинство магнетронов выпускаемых современной промышленностью работают на частоте 2440 – 2460МГц.  Нить накала магнетрона рассчитана на 3,3В., а величина анодного напряжения составляет от 4,2Кв. до 4,5Кв. Мощность магнетрона может быть от 500Вт. до 1500Вт. Параметров магнетронов наиболее популярных производителей можно посмотреть «здесь». Не смотря на свою внешнюю простоту, магнетрон представляет собой весьма сложный прибор. Предлагаю рассмотреть магнетрон, что называется, с головы до пят.

    На первом рисунке: вид сбоку, а на втором: вид сверху и снизу. Таким образом, магнетрон состоит из следующих компонентов и выполняют они следующие функции.

  1. Колпачок антенны. Закрывает антенну и является элементом конструкции излучателя.
  2. Изолятор. Керамический изолятор, изолирует излучатель  магнетрона от корпуса.
  3. Фланец крепления. Это то, с помощью чего магнетрон крепится внутри печи. По конструкции фланцы бывают разные, есть горизонтальные, есть вертикальные. Все зависит от конструкции конкретной печи и применяемого в ней магнетрона. Задача фланца – как можно плотнее прижать корпус магнетрона к корпусу печи в месте крепления.
  4. Сетка фильтра. Играет двойную роль. Препятствует прохождению микроволнового излучения через корпус магнетрона и обеспечивает надежный контакт между корпусом печи и магнетроном. Сетка сплетена в несколько слоев из тонкой медной проволоки имеющей специальное покрытие.
  5. Постоянный магнит. Магнитов два, верхний и нижний, представляют собой кольца расположенные на теле магнетрона по краям рабочей области. Магниты создают постоянное магнитное поле внутри магнетрона, необходимое для его работы.
  6. Ребра радиатора. При работе магнетрона выделяется много тепла. Радиатор отводит излишки тепловой энергии в окружающий воздух. Это необходимо, для продолжительной работы магнетрона. Выполнен радиатор как правило, из листовой дюрали, расположен поверх анода магнетрона.
  7. Тело магнетрона. Металлический цилиндр, в который заключена вся конструкция электровакуумного прибора. Основу составляет медный анод с резонаторами.
  8. Корпус. Корпус магнетрона обеспечивает жесткость конструкции, удерживая все составляющие детали на своих местах. Изготовлен корпус, из листовой стали довольно высокой прочности.
  9. Выводы. Концы проводников обеспечивающие контакт между электродами магнетрона и фильтром паразитного излучения.
  10. Катушки фильтра и проходные конденсаторы, которые находятся в изоляторе коробки фильтра вместе, образуют фильтр, который препятствует попаданию в цепи питания печи, паразитного излучения, возникающего в процессе работы магнетрона. Катушки бескаркасные, намотаны толстым медным проводом. Внутрь катушек вставлены ферритовые сердечники обеспечивающие нужные параметры индуктивности катушек.
  11.  Контакты. Обеспечивают подводку питающих напряжений к электродам магнетрона. Имеют обозначение: “FA” и  “F”. Оба контакта соответствуют нити накала магнетрона, а контакт “F” внутри конструкции, соединяется с катодом магнетрона.
  12. Коробка фильтра. Защищает детали фильтра от внешних воздействий, а так же выполняет роль экрана. Выполнена со съемной крышкой.

После того, как мы разобрались с конструкцией магнетрона, можно перейти к изучению принципа его работы.

yourmicrowell.ru

Магнетрон — WiKi

История

В 1912 году швейцарский физик Генрих Грейнахер изучал способы вычисления массы электрона. Он собрал установку, в которой внутрь магнита был помещен электровакуумный диод с цилиндрическим анодом вокруг стержневидного катода. Ему не удалось измерить массу электрона из-за проблем с получением достаточного уровня вакуума в лампе, однако в ходе работы были разработаны математические модели движения электронов в электрических и магнитных полях.[2][3]

Альберт Халл (США) использовал данные модели при попытках обойти патенты Western Electric на триод. Халл планировал использовать для управления потоком электронов между катодом и анодом изменяющееся магнитное поле вместо постоянного электрического. В исследовательских лабораториях General Electric (Schenectady, New York) Халл создал лампы, переключавшие режим через изменение соотношения магнитных и электрических полей. В 1921 он предложил термин магнетрон, опубликовал несколько статей и получил патенты.[4] Магнетрон Халла не был предназначен для получения высокочастотных электромагнитных волн. В 1924 чехословацкий физик А. Жачек[5] и германский физик Эрих Хабан (Erich Habann, Йенский университет) независимо обнаружили возможность генерации магнетроном дециметровых волн (порядка 100 МГц - 1 ГГц).

В 20-е годы исследованиями в области генерирования СВЧ-колебаний с применением магнитных полей занимались также А. А. Слуцкин и Д. С. Штейнберг (1926—1929, СССР), К. Окабе и Х. Яги (1928—1929, Япония), И. Ранци (1929, Италия).

Действующие магнетронные генераторы радиоволн были созданы независимо и почти одновременно в трёх странах: в Чехословакии (Жачек, 1924 г.), в СССР (А. А. Слуцкин и Д. С. Штейнберг, 1925 г.), в Японии (Окабе и Яги, 1927 г.).

К 1936-1937 году мощность генераторов на базе магнетрона была повышена в несколько раз (до сотен Вт на волне с длиной 9 см) путём создания многорезонаторного магнетрона (с использованием массивного медного анода с несколькими резонаторами и охлаждением; М. А. Бонч-Бруевич, Н. Ф. Алексеев, Д. Е. Маляров)[6][7].

Французский учёный Морис Понт с сотрудниками из парижской фирмы «КСФ» в 1935 году создали электронную лампу с вольфрамовым катодом, окружённым резонаторными анодными сегментами. Она была предшественницей магнетронов с резонаторными камерами.

Конструкция многорезонаторного магнетрона Алексеева — Малярова, обеспечивающего 300-ваттное излучение на волне 10 сантиметров, созданного в 1936-39 гг., стала известна мировому сообществу благодаря публикации 1940 г. (Alexeev Н. F., Malyarov Д. Е. Getting powerful vibrations of magnetrons in centimeter wavelength range // Magazine of Technical Physics. 1940. Vol. 10. No. 15, P. 1297—1300.)

Своим появлением на свет многорезонаторный магнетрон Алексеева — Малярова обязан радиолокации. Работы по радиолокации были развернуты в СССР почти одновременно с началом радиолокационных работ в Англии и США. По признанию зарубежных авторов, к началу 1934 года СССР продвинулся в этих работах более, чем США и Англия. (Brown, Louis. A Radar History of World War II . Technical and Military Imperatives. Bristol: Institute of Physics Publishing, 1999. ISBN 0-7503-0659-9.)

В 1940 британские физики Джон Рэндалл и Гарри Бут (англ. Harry Boot) изобрели резонансный магнетрон[8]. Новый магнетрон давал импульсы высокой мощности, что позволило разработать радар сантиметрового диапазона. Радар с короткой длиной волны позволял обнаруживать более мелкие объекты[9]. Кроме того, компактный размер магнетрона привёл к резкому уменьшению размеров радарной аппаратуры[10], что позволило устанавливать её на самолетах[11].

В 1949 году в США инженерами Д. Уилбуром и Ф. Питерсом были разработаны методы изменения частоты магнетрона с помощью управления напряжением (прибор "митрон" - mitron).[12][13]

Начиная с 1960-х годов магнетроны получили применение в СВЧ-печах для домашнего использования[14].

Характеристики

Магнетроны могут работать на различных частотах от 0,5 до 100 ГГц, с мощностями от нескольких Вт до десятков кВт в непрерывном режиме, и от 10 Вт до 5 МВт в импульсном режиме при длительностях импульсов главным образом от долей до десятков микросекунд.

Магнетроны обладают высоким КПД (до 80 %).

Магнетроны бывают как неперестраиваемые, так и перестраиваемые в небольшом диапазоне частот (обычно менее 10 %). Для медленной перестройки частоты применяются механизмы, приводимые в движение рукой, для быстрой (до нескольких тысяч перестроек в секунду) — ротационные и вибрационные механизмы.

Магнетроны как генераторы сверхвысоких частот широко используются в современной радиолокационной технике (хотя их начинают вытеснять активные фазированные антенные решётки) и в микроволновых печах. Фактически магнетрон по состоянию на 2017 год последний тип массово производимого электровакуумного прибора (не считая рентгеновской трубки) после свёртывания производства кинескопов в начале 2010 годов.

Конструкция

  Магнетрон в продольном разрезе   Схема конструкции магнетрона

Резонансный магнетрон состоит из анодного блока, который представляет собой, как правило, металлический толстостенный цилиндр с прорезанными в стенках полостями, выполняющими роль объёмных резонаторов. Резонаторы образуют кольцевую колебательную систему. К анодному блоку закрепляется цилиндрический катод. Внутри катода закреплён подогреватель. Магнитное поле, параллельное оси прибора, создаётся внешними магнитами или электромагнитом.

Для вывода СВЧ энергии используется, как правило, проволочная петля, закреплённая в одном из резонаторов, или отверстие из резонатора наружу цилиндра.

Резонаторы магнетрона образуют кольцевую колебательную систему, около них происходит взаимодействие пучка электронов и электромагнитной волны. Поскольку эта система в результате кольцевой конструкции замкнута сама на себя, то её можно возбудить лишь на определённых видах колебаний, из которых важное значение имеет π-вид. Среди нескольких резонансных частот системы (при N резонаторах в системе возможно существование любого целого количества стоячих волн в диапазоне от 1 до N/2) чаще всего используется π-вид колебаний, при котором фазы в смежных резонаторах различаются на π. При наличии рядом с рабочей частотой (ближе 10%) других резонансных частот возможны перескоки частоты и нестабильная работа прибора. Для предотвращения подобных эффектов в магнетронах с одинаковыми резонаторами в них могут вводиться различные связки либо применяться магнетроны с разными размерами резонаторов (четные резонаторы с одним размером, нечётные — с другим).

Отдельные модели магнетронов могут иметь различную конструкцию. Так, резонаторная система выполняется в виде резонаторов нескольких типов: щель-отверстие, лопаточных, щелевых и т. д.

Принцип работы

  Схема работы магнетрона

Электроны эмиттируются из катода в пространство взаимодействия, где на них воздействует постоянное электрическое поле анод-катод, постоянное магнитное поле и поле электромагнитной волны. Если бы не было поля электромагнитной волны, электроны бы двигались в скрещённых электрическом и магнитном полях по сравнительно простым кривым: эпициклоидам (кривая, которую описывает точка на круге, катящемся по наружной поверхности окружности большего диаметра, в конкретном случае — по наружной поверхности катода). При достаточно высоком магнитном поле (параллельном оси магнетрона) электрон, движущийся по этой кривой, не может достичь анода (по причине действия на него со стороны этого магнитного поля силы Лоренца), при этом говорят, что произошло магнитное запирание диода. В режиме магнитного запирания некоторая часть электронов движется по эпициклоидам в пространстве анод-катод. Под действием собственного поля электронов, а также статистических эффектов (дробовой шум) в этом электронном облаке возникают неустойчивости, которые приводят к генерации электромагнитных колебаний, эти колебания усиливаются резонаторами. Электрическое поле возникшей электромагнитной волны может замедлять или ускорять электроны. Если электрон ускоряется полем волны, то радиус его циклотронного движения увеличивается, и он отклоняется в направлении катода. При этом энергия передаётся от волны к электрону. Если же электрон тормозится полем волны, то его энергия передаётся волне, при этом циклотронный радиус электрона уменьшается, центр окружности вращения смещается ближе к аноду, и он получает возможность достигнуть анода. Поскольку электрическое поле анод-катод совершает положительную работу только если электрон достигает анода, энергия всегда передаётся в основном от электронов к электромагнитной волне. Однако, если скорость вращения электронов вокруг катода не будет совпадать с фазовой скоростью электромагнитной волны, один и тот же электрон будет попеременно ускоряться и тормозиться волной, в результате эффективность передачи энергии волне будет небольшой. Если средняя скорость вращения электрона вокруг катода совпадает с фазовой скоростью волны, электрон может находиться непрерывно в тормозящей области, при этом передача энергии от электрона к волне наиболее эффективна. Такие электроны группируются в сгустки (так называемые «спицы»), вращающиеся вместе с полем. Многократное, в течение ряда периодов, взаимодействие электронов с ВЧ-полем и фазовая фокусировка в магнетроне обеспечивают высокий коэффициент полезного действия и возможность получения больших мощностей.

Применение

  Предупреждающий знак «Опасно. Радиоизлучение»

В радарных устройствах волновод подсоединён к антенне, которая может представлять собой как щелевой волновод, так и конический рупорный облучатель в паре с параболическим отражателем (так называемая «тарелка»). Магнетрон управляется короткими высокоинтенсивными импульсами подаваемого напряжения, в результате чего в пространство излучается короткий импульс микроволновой энергии. Небольшая порция этой энергии отражается от объекта радиолокации обратно к антенне, попадает в волновод, которым она направляется к чувствительному приёмнику. После дальнейшей обработки сигнала он, в конце концов, появляется на электронно-лучевой трубке (ЭЛТ) в виде радарной карты А1.

В микроволновых печах волновод заканчивается отверстием, прозрачным для радиочастот (непосредственно в камере для готовки). Важно, чтобы во время работы печи в ней находились продукты. Тогда микроволны поглощаются вместо того, чтобы отражаться обратно в волновод, где интенсивность стоячих волн может вызвать искрение. Искрение, продолжающееся достаточно долго, может повредить магнетрон. Если в микроволновой печи готовится небольшое количество пищи, лучше поставить в камеру ещё и стакан воды для поглощения микроволн.

Примечания

  1. ↑ Кулешов, 2008, с. 353.
  2. ↑ H. Greinacher (1912) "Über eine Anordnung zur Bestimmung von e/m" (Об аппарате для определения e/m), Verhandlungen der Deutschen Physikalischen Gesellschaft, 14 : 856-864. (нем.)
  3. ↑ "Invention of Magnetron"  (англ.)
  4. ↑ Albert W. Hull (1921) "The effect of a uniform magnetic field on the motion of electrons between coaxial cylinders," Physical Review, 18 (1) : 31-57. Также: Albert W. Hull, "The magnetron," Journal of the American Institute of Electrical Engineers, vol. 40, no. 9, pages 715-723 (September 1921).
  5. ↑ Biographical information about August Žáček:
    • R. H. Fürth, Obituary: "Prof. August Žáček," Nature, vol. 193, no. 4816, page 625 (1962).
    • "The 70th birthday of Prof. Dr. August Žáček," Czechoslovak Journal of Physics, vol. 6, no. 2, pages 204-205 (1956). Available on-line at: Metapress.com.
  6. ↑ Моuromtseeff J. Е. Proc. Natl.-Electr. Conf., 1945, № 33, p. 229 – 233.
  7. ↑ Расширение исследований по радиообнаружению. М. М. Лобанов. Развитие советской радиолокационной техники. Проверено 27 января 2016.
  8. ↑ The Magnetron. Bournemouth University (1995-2009). Проверено 23 августа 2009. Архивировано 23 августа 2011 года.
  9. ↑ Я. З. Перпя. Как работает радиолокатор. Оборонгиз, 1955
  10. ↑ Schroter, B. (Spring 2008). «How important was Tizard’s Box of Tricks?». Imperial Engineer 8: 10. Проверено 2009-08-23.
  11. ↑ Who Was Alan Dower Blumlein?. Dora Media Productions (1999-2007). Проверено 23 августа 2009. Архивировано 23 августа 2011 года.
  12. ↑ The Mitron-An Interdigital Voltage-Tunable Magnetron / Proceedings of the IRE (Volume:43, Issue: 3, 1955) pp 332-338, doi:10.1109/JRPROC.1955.278140
  13. ↑ 62. Mitrons / V. N. Shevchik, Fundamentals of Microwave Electronics: International Series of Monographs on Electronics and Instrumentation, Elsevier, 2014 ISBN 9781483194769, p239  (англ.)
  14. ↑ ПРИРУЧЕННЫЕ НЕВИДИМКИ. ВСЕ О МИКРОВОЛНОВЫХ ПЕЧАХ // Наука и Жизнь №10, 2004

Ссылки

Литература

  • Кулешов В.Н., Удалов Н.Н., Богачев В.М. и др. Генерирование колебаний и формирование радиосигналов. — М.: МЭИ, 2008. — 416 с. — ISBN 978-5-383-00224-7.

ru-wiki.org

Магнетрон — Википедия

Магнетрон микроволновой печи

Магнетрон — это мощный электронный прибор, генерирующий микроволны при взаимодействии потока электронов с магнитным полем.

В 1912 году швейцарцский физик Heinrich Greinacher изучал способы вычисления массы электрона. Он собрал установку из в которой внутрь магнита был помещен электровакуумный диод с цилиндрическим анодом вокруг стержневидного катода. Ему не удалось измерить массу электрона из-за проблем с получением достаточного уровня вакуума в лампе, однако в ходе работы были разработаны математические модели движения электронов в электрических и магнитных полях.[1][2]

Альберт Халл (США) использовал данные модели при попытках обойти патенты Western Electric на триод. Халл планировал использовать для управления потоком электронов между катодом и анодом изменяющееся магнитное поле вместо постоянного электрического. В исследовательских лабораториях General Electric (Schenectady, New York), Халл создал лампы, переключавшие режим через изменение соотношения магнитных и электрических полей. В 1921 он предложил термин магнетрон, опубликовал несколько статей и получил патенты.[3] Магнетрон Халла не был предназначен для получения высокочастотных электромагнитных волн. В 1924 чехословацкий физик А. Жачек[4] и германский физик Эрих Хабан (Erich Habann, Йенский университет) независимо обнаружили возможность генерации магнетроном дециметровых волн (порядка 100 МГц - 1 ГГц).

В 20-е годы исследованиями в области генерирования СВЧ-колебаний с применением магнитных полей занимались также А. А. Слуцкин и Д. С. Штейнберг (1926—1929, СССР), К. Окабе и Х. Яги (1928—1929, Япония), И. Ранци (1929, Италия).

Действующие магнетронные генераторы радиоволн были созданы независимо и почти одновременно в трёх странах: в Чехословакии (Жачек, 1924 г.), в СССР (А. А. Слуцкин и Д. С. Штейнберг, 1925 г.), в Японии (Окабе и Яги, 1927 г.).

К 1936-1937 году мощность генераторов на базе магнетрона была повышена в несколько раз (до сотен Вт на волне с длиной 9 см) путем создания многорезонаторного магнетрона (с использованием массивного медного анода с несколькими резонаторами и охлаждением; М. А. Бонч-Бруевич, Н. Ф. Алексеев, Д. Е. Маляров)[5][6].

Французский учёный Морис Понт с сотрудниками из парижской фирмы «КСФ» в 1935 году создали электронную лампу с вольфрамовым катодом, окружённым резонаторными анодными сегментами. Она была предшественницей магнетронов с резонаторными камерами.

Конструкция многорезонаторного магнетрона Алексеева — Малярова, обеспечивающего 300-ваттное излучение на волне 10 сантиметров, созданного в 1936-39 гг., стала известна мировому сообществу благодаря публикации 1940 г. (Alexeev Н. F., Malyarov Д. Е. Getting powerful vibrations of magnetrons in centimeter wavelength range // Magazine of Technical Physics. 1940. Vol. 10. No. 15, P. 1297—1300.)

Своим появлением на свет многорезонаторный магнетрон Алексеева — Малярова обязан радиолокации. Работы по радиолокации были развернуты в СССР почти одновременно с началом радиолокационных работ в Англии и США. По признанию зарубежных авторов, к началу 1934 года СССР продвинулся в этих работах более, чем США и Англия. (Brown, Louis. A Radar History of World War II . Technical and Military Imperatives. Bristol: Institute of Physics Publishing, 1999. ISBN 0-7503-0659-9.)

В 1940 британские физики Джон Рэндалл (англ. John Randall) и Гарри Бут (англ. Harry Boot) изобрели резонансный магнетрон[7]. Новый магнетрон давал импульсы высокой мощности, что позволило разработать радар сантиметрового диапазона. Радар с короткой длиной волны позволял обнаруживать более мелкие объекты[8]. Кроме того, компактный размер магнетрона привёл к резкому уменьшению размеров радарной аппаратуры[9], что позволило устанавливать её на самолетах[10].

В 1949 году в США инженерами Д. Уилбуром и Ф. Питерсом были разработаны методы изменения частоты магнетрона с помощью управления напряжением (прибор "митрон" - mitron).[11][12]

Начиная с 1960-х годов магнетроны получили применение в СВЧ-печах для домашнего использования[13].

Характеристики[править]

Магнетроны могут работать на различных частотах от 0,5 до 100 ГГц, с мощностями от нескольких Вт до десятков кВт в непрерывном режиме, и от 10 Вт до 5 МВт в импульсном режиме при длительностях импульсов главным образом от долей до десятков микросекунд.

Магнетроны обладают высоким КПД (до 80 %).

Магнетроны бывают как неперестраиваемые, так и перестраиваемые в небольшом диапазоне частот (обычно менее 10 %). Для медленной перестройки частоты применяются механизмы, приводимые в движение рукой, для быстрой (до нескольких тысяч перестроек в секунду) — ротационные и вибрационные механизмы.

Магнетроны как генераторы сверхвысоких частот широко используются в современной радиолокационной технике.

Магнетрон в продольном разрезе Схема конструкции магнетрона

Резонансный магнетрон состоит из анодного блока, который представляет собой, как правило, металлический толстостенный цилиндр с прорезанными в стенках полостями, выполняющими роль объёмных резонаторов. Резонаторы образуют кольцевую колебательную систему. К анодному блоку закрепляется цилиндрический катод. Внутри катода закреплён подогреватель. Магнитное поле, параллельное оси прибора, создаётся внешними магнитами или электромагнитом.

Для вывода СВЧ энергии используется, как правило, проволочная петля, закреплённая в одном из резонаторов, или отверстие из резонатора наружу цилиндра.

Резонаторы магнетрона образуют кольцевую колебательную систему, около них происходит взаимодействие пучка электронов и электромагнитной волны. Поскольку эта система в результате кольцевой конструкции замкнута сама на себя, то её можно возбудить лишь на определённых видах колебаний, из которых важное значение имеет π-вид. Среди нескольких резонансных частот системы (при N резонаторах в системе возможно существование любого целого количества стоячих волн в диапазоне от 1 до N/2) чаще всего используется π-вид колебаний, при котором фазы в смежных резонаторах различаются на π. При наличии рядом с рабочей частотой (ближе 10%) других резонансных частот возможны перескоки частоты и нестабильная работа прибора. Для предотвращения подобных эффектов в магнетронах с одинаковыми резонаторами в них могут вводится различные связки, либо применяться магнетроны с разными размерами резонаторов (четные резонаторы с одним размером, нечётные — с другим).

Отдельные модели магнетронов могут иметь различную конструкцию. Так, резонаторная система выполняется в виде резонаторов нескольких типов: щель-отверстие, лопаточных, щелевых и т. д.

Принцип работы[править]

Схема работы магнетрона

Электроны эмиттируются из катода в пространство взаимодействия, где на них воздействует постоянное электрическое поле анод-катод, постоянное магнитное поле и поле электромагнитной волны. Если бы не было поля электромагнитной волны, электроны бы двигались в скрещённых электрическом и магнитном полях по сравнительно простым кривым: эпициклоидам (кривая, которую описывает точка на круге, катящемся по наружной поверхности окружности большего диаметра, в конкретном случае — по наружной поверхности катода). При достаточно высоком магнитном поле (параллельном оси магнетрона) электрон, движущийся по этой кривой, не может достичь анода (по причине действия на него со стороны этого магнитного поля силы Лоренца), при этом говорят, что произошло магнитное запирание диода. В режиме магнитного запирания некоторая часть электронов движется по эпициклоидам в пространстве анод-катод. Под действием собственного поля электронов, а также статистических эффектов (дробовой шум) в этом электронном облаке возникают неустойчивости, которые приводят к генерации электромагнитных колебаний, эти колебания усиливаются резонаторами. Электрическое поле возникшей электромагнитной волны может замедлять или ускорять электроны. Если электрон ускоряется полем волны, то радиус его циклотронного движения увеличивается и он отклоняется в направлении катода. При этом энергия передаётся от волны к электрону. Если же электрон тормозится полем волны, то его энергия передаётся волне, при этом циклотронный радиус электрона уменьшается, центр окружности вращения смещается ближе к аноду и он получает возможность достигнуть анода. Поскольку электрическое поле анод-катод совершает положительную работу только если электрон достигает анода, энергия всегда передаётся в основном от электронов к электромагнитной волне. Однако, если скорость вращения электронов вокруг катода не будет совпадать с фазовой скоростью электромагнитной волны, один и тот же электрон будет попеременно ускоряться и тормозиться волной, в результате эффективность передачи энергии волне будет небольшой. Если средняя скорость вращения электрона вокруг катода совпадает с фазовой скоростью волны, электрон может находиться непрерывно в тормозящей области, при этом передача энергии от электрона к волне наиболее эффективна. Такие электроны группируются в сгустки (так называемые «спицы»), вращающиеся вместе с полем. Многократное, в течение ряда периодов, взаимодействие электронов с ВЧ-полем и фазовая фокусировка в магнетроне обеспечивают высокий коэффициент полезного действия и возможность получения больших мощностей.

Предупреждающий знак «Опасно. Радиоизлучение»В радарных устройствах волновод подсоединён к антенне, которая может представлять собой как целевой волновод, так и конический рупорный облучатель в паре с параболическим отражателем (так называемая «тарелка»). Магнетрон управляется короткими высокоинтенсивными импульсами подаваемого напряжения, в результате чего в пространство излучается короткий импульс микроволновой энергии. Небольшая порция этой энергии отражается от объекта радиолокации обратно к антенне, попадает в волновод, которым она направляется к чувствительному приёмнику. После дальнейшей обработки сигнала он, в конце концов, появляется на электронно-лучевой трубке (ЭЛТ) в виде радарной карты А1.

В микроволновых печах волновод заканчивается отверстием, прозрачным для радиочастот (непосредственно в камере для готовки). Важно, чтобы во время работы печи в ней находились продукты. Тогда микроволны поглощаются вместо того, чтобы отражаться обратно в волновод, где интенсивность стоячих волн может вызвать искрение. Искрение, продолжающееся достаточно долго, может повредить магнетрон. Если в микроволновой печи готовится небольшое количество пищи, лучше поставить в камеру ещё и стакан воды для поглощения микроволн.

  1. ↑ H. Greinacher (1912) "Über eine Anordnung zur Bestimmung von e/m" (Об аппарате для определения e/m), Verhandlungen der Deutschen Physikalischen Gesellschaft, 14 : 856-864. (нем.)
  2. ↑ "Invention of Magnetron"  (англ.)
  3. ↑ Albert W. Hull (1921) "The effect of a uniform magnetic field on the motion of electrons between coaxial cylinders," Physical Review, 18 (1) : 31-57. Также: Albert W. Hull, "The magnetron," Journal of the American Institute of Electrical Engineers, vol. 40, no. 9, pages 715-723 (September 1921).
  4. ↑ Biographical information about August Žáček:
    • R. H. Fürth, Obituary: "Prof. August Žáček," Nature, vol. 193, no. 4816, page 625 (1962).
    • "The 70th birthday of Prof. Dr. August Žáček," Czechoslovak Journal of Physics, vol. 6, no. 2, pages 204-205 (1956). Available on-line at: Metapress.com.
  5. ↑ Моuromtseeff J. Е. Proc. Natl.-Electr. Conf., 1945, № 33, p. 229 – 233.
  6. ↑ Расширение исследований по радиообнаружению. М. М. Лобанов. Развитие советской радиолокационной техники. Проверено 27 января 2016.
  7. ↑ The Magnetron. Bournemouth University (1995-2009). Проверено 23 августа 2009. Архивировано из первоисточника 23 августа 2011.
  8. ↑ Я. З. Перпя. Как работает радиолокатор. Оборонгиз, 1955
  9. ↑ Schroter, B. (Spring 2008). «How important was Tizard’s Box of Tricks?». Imperial Engineer 8: 10. Проверено 2009-08-23.
  10. ↑ Who Was Alan Dower Blumlein?. Dora Media Productions (1999-2007). Проверено 23 августа 2009. Архивировано из первоисточника 23 августа 2011.
  11. ↑ The Mitron-An Interdigital Voltage-Tunable Magnetron / Proceedings of the IRE (Volume:43, Issue: 3, 1955) pp 332-338, doi:10.1109/JRPROC.1955.278140
  12. ↑ 62. Mitrons / V. N. Shevchik, Fundamentals of Microwave Electronics: International Series of Monographs on Electronics and Instrumentation, Elsevier, 2014 ISBN 9781483194769, p239  (англ.)
  13. ↑ ПРИРУЧЕННЫЕ НЕВИДИМКИ. ВСЕ О МИКРОВОЛНОВЫХ ПЕЧАХ // Наука и Жизнь №10, 2004

wp.wiki-wiki.ru

Магнетрон - это... Что такое Магнетрон?

Магнетрон

Магнетрон — это мощная электронная лампа, генерирующая микроволны при взаимодействии потока электронов с магнитным полем.

История

Термин «магнетрон» был предложен Альбертом Халлом, который в 1921 году впервые опубликовал результаты теоретических и экспериментальных исследований работы прибора в статическом режиме и предложил ряд конструкций магнетрона. Генерирование электромагнитных колебаний в дециметровом диапазоне волн посредством магнетрона открыл и запатентовал в 1924 чехословацкий физик А. Жачек.

Действующие магнетронные генераторы радиоволн были созданы независимо и почти одновременно в трех странах: в Чехословакии (Жачек, 1924 г.), в СССР (А.А. Слуцкин и Д.С. Штейнберг, 1925 г.), в Японии (Окабе и Яги, 1927 г.).

Французский ученый Морис Понт с сотрудниками из парижской фирмы «КСФ» в 1935 году создали электронную лампу с вольфрамовым катодом, окруженным резонаторными анодными сегментами. Она была предшественницей магнетронов с резонаторными камерами.

Конструкция многорезонаторного магнетрона Алексеева — Малярова, обеспечивающего 300-ваттное излучение на волне 10 сантиметров, созданного в 1936-39 гг., стала известна мировому сообществу благодаря публикации 1940 г. (Alexeev Н. F., Malyarov Д. Е. Getting powerful vibrations of magnetrons in centimeter wavelength range // Magazine of Technical Physics. 1940. Vol. 10. No. 15, P. 1297—1300.)

Своим появлением на свет многорезонаторный магнетрон Алексеева — Малярова обязан радиолокации. Работы по радиолокации были развернуты в СССР почти одновременно с началом радиолокационных работ в Англии и США. По признанию зарубежных авторов, к началу 1934 года СССР продвинулся в этих работах более, чем США и Англия. (Brown, Louis. A Radar History of World War II . Technical and Military Imperatives. Bristol: Institute of Physics Publishing, 1999. ISBN 0-7503-0659-9.)

В 1940 британские физики Джон Рэндалл (англ. John Randall) и Гарри Бут (англ. Harry Boot) изобрели резонансный магнетрон[1] Новый магнетрон давал импульсы высокой мощности, что позволило разработать радар сантиметрового диапазона. Радар с короткой длиной волны позволял обнаруживать более мелкие объекты[2]. Кроме того, компактный размер магнетрона привел к резкому уменьшению размеров радарной аппаратуры[3], что позволило устанавливать ее на самолетах[4].

Явление перестройки частоты магнетрона напряжением впервые обнаружили в 1949 американские инженеры Д. Уилбур и Ф. Питерс. Магнетрон, настраиваемый напряжением, или митрон — генераторный прибор магнетронного типа, рабочая частота которого в широком диапазоне изменяется пропорционально анодному напряжению.

Начиная с 1960-х годов магнетроны получили применение в СВЧ-печах для домашнего использования.

Характеристики

Магнетроны могут работать на различных частотах от 0,5 до 100 ГГц, с мощностями от нескольких Вт до десятков кВт в непрерывном режиме, и от 10 Вт до 5 МВт в импульсном режиме при длительностях импульсов главным образом от долей до десятков микросекунд.

Магнетроны обладают высоким КПД (до 80 %).

Магнетроны бывают как неперестраиваемые, так и перестраиваемые в небольшом диапазоне частот (обычно менее 10 %). Для медленной перестройки частоты применяются механизмы, приводимые в движение рукой, для быстрой (до нескольких тысяч перестроек в секунду) — ротационные и вибрационные механизмы.

Магнетроны как генераторы сверхвысоких частот широко используются в современной радиолокационной технике.

Конструкция

Магнетрон в продольном сечении Схема конструкции магнетрона

Резонансный магнетрон состоит из анодного блока, который представляет собой, как правило, металлический толстостенный цилиндр с прорезанными в стенках полостями, выполняющими роль объёмных резонаторов. Резонаторы образуют кольцевую колебательную систему. К анодному блоку закрепляется цилиндрический катод. Внутри катода закреплён подогреватель. Магнитное поле, параллельное оси прибора, создаётся внешними магнитами или электромагнитом.

Для вывода СВЧ энергии используется, как правило, проволочная петля, закреплённая в одном из резонаторов, или отверстие из резонатора наружу цилиндра.

Резонаторы магнетрона образуют кольцевую колебательную систему, около них происходит взаимодействие пучка электронов и электромагнитной волны. Поскольку эта система в результате кольцевой конструкции замкнута сама на себя, то её можно возбудить лишь на определённых видах колебаний, из которых важное значение имеет π-вид. Такая система имеет не одну, а несколько резонансных частот, при которых на кольцевой колебательной системе укладывается целое число стоячих волн от 1 до N/2 (N — число резонаторов). Наиболее выгодным является вид колебаний, при котором число полуволн равно числу резонаторов (так называемый π-вид колебаний). Этот вид колебаний назван так потому, что напряжения СВЧ на двух соседних резонаторах сдвинуты по фазе на π.

Для стабильной работы магнетрона (во избежание перескоков во время работы на другие виды колебаний, сопровождающиеся изменениями частоты и выходной мощности) необходимо, чтобы ближайшая резонансная частота колебательной системы значительно отличалась от рабочей частоты (примерно на 10 %). Так как в магнетроне с одинаковыми резонаторами разность этих частот получается недостаточной, её увеличивают либо введением связок в виде металлических колец, одно из которых соединяет все чётные, а другое все нечётные ламели анодного блока, либо применением разнорезонаторной колебательной системы (чётные резонаторы имеют один размер, нечётные — другой).

Отдельные модели магнетронов могут иметь различную конструкцию. Так, резонаторная система выполняется в виде резонаторов нескольких типов: щель-отверстие, лопаточных, щелевых и т. д.

Принцип работы

Схема работы магнетрона

Электроны эмиттируются из катода в пространство взаимодействия, где на них воздействует постоянное электрическое поле анод-катод, постоянное магнитное поле и поле электромагнитной волны. Если бы не было поля электромагнитной волны, электроны бы двигались в скрещённых электрическом и магнитном полях по сравнительно простым кривым: эпициклоидам (кривая, которую описывает точка на круге, катящемся по наружной поверхности окружности большего диаметра, в конкретном случае — по наружной поверхности катода). При достаточно высоком магнитном поле (параллельном оси магнетрона) электрон, движущийся по этой кривой, не может достичь анода (по причине действия на него со стороны этого магнитного поля силы Лоренца), при этом говорят, что произошло магнитное запирание диода. В режиме магнитного запирания некоторая часть электронов движется по эпициклоидам в пространстве анод-катод. Под действием собственного поля электронов, а также статистических эффектов (дробовой шум) в этом электронном облаке возникают неустойчивости, которые приводят к генерации электромагнитных колебаний, эти колебания усиливаются резонаторами. Электрическое поле возникшей электромагнитной волны может замедлять или ускорять электроны. Если электрон ускоряется полем волны, то радиус его циклотронного движения уменьшается и он отклоняется в направлении катода. При этом энергия передаётся от волны к электрону. Если же электрон тормозится полем волны, то его энергия передаётся волне, при этом циклотронный радиус электрона увеличивается и он получает возможность достигнуть анода. Поскольку электрическое поле анод-катод совершает положительную работу только если электрон достигает анода, энергия всегда передаётся в основном от электронов к электромагнитной волне. Однако, если скорость вращения электронов вокруг катода не будет совпадать с фазовой скоростью электромагнитной волны, один и тот же электрон будет попеременно ускоряться и тормозиться волной, в результате эффективность передачи энергии волне будет небольшой. Если средняя скорость вращения электрона вокруг катода совпадает с фазовой скоростью волны, электрон может находиться непрерывно в тормозящей области, при этом передача энергии от электрона к волне наиболее эффективна. Такие электроны группируются в сгустки (так называемые «спицы»), вращающиеся вместе с полем. Многократное, в течение ряда периодов, взаимодействие электронов с ВЧ-полем и фазовая фокусировка в магнетроне обеспечивают высокий коэффициент полезного действия и возможность получения больших мощностей.

Применение

Предупреждающий знак «Опасно. Радиоизлучение»

В радарных устройствах волновод подсоединён к антенне, которая может представлять собой как щелевой волновод, так и конический рупорный облучатель в паре с параболическим отражателем (так называемая «тарелка»). Магнетрон управляется короткими высокоинтенсивными импульсами подаваемого напряжения, в результате чего излучается короткий импульс микроволновой энергии. Небольшая порция этой энергии отражается обратно антенне и волноводу, где она направляется к чувствительному приёмнику. После дальнейшей обработки сигнала он, в конце концов, появляется на электронно-лучевой трубке (ЭЛТ) в виде радарной карты А1.

В микроволновых печах волновод заканчивается отверстием, прозрачным для радиочастот (непосредственно в камере для готовки). Важно, чтобы во время работы печи в ней находились продукты. Тогда микроволны поглощаются вместо того, чтобы отражаться обратно в волновод, где интенсивность стоячих волн может вызвать искрение. Искрение, продолжающееся достаточно долго, может повредить магнетрон. Если в микроволновой печи готовится небольшое количество пищи, лучше поставить в камеру ещё и стакан воды для поглощения микроволн.

Источники

  1. ↑ The Magnetron. Bournemouth University (1995-2009). Архивировано из первоисточника 23 августа 2011. Проверено 23 августа 2009.
  2. ↑ Я. З. Перпя. Как работает радиолокатор. Оборонгиз, 1955
  3. ↑ Schroter, B. (Spring 2008). «How important was Tizard’s Box of Tricks?». Imperial Engineer 8: 10. Проверено 2009-08-23.
  4. ↑ Who Was Alan Dower Blumlein?. Dora Media Productions (1999-2007). Архивировано из первоисточника 23 августа 2011. Проверено 23 августа 2009.

veter.academic.ru

Магнетрон - это... Что такое Магнетрон?

Магнетрон

Магнетрон — это мощная электронная лампа, генерирующая микроволны при взаимодействии потока электронов с магнитным полем.

История

Термин «магнетрон» был предложен Альбертом Халлом, который в 1921 году впервые опубликовал результаты теоретических и экспериментальных исследований работы прибора в статическом режиме и предложил ряд конструкций магнетрона. Генерирование электромагнитных колебаний в дециметровом диапазоне волн посредством магнетрона открыл и запатентовал в 1924 чехословацкий физик А. Жачек.

Действующие магнетронные генераторы радиоволн были созданы независимо и почти одновременно в трех странах: в Чехословакии (Жачек, 1924 г.), в СССР (А.А. Слуцкин и Д.С. Штейнберг, 1925 г.), в Японии (Окабе и Яги, 1927 г.).

Французский ученый Морис Понт с сотрудниками из парижской фирмы «КСФ» в 1935 году создали электронную лампу с вольфрамовым катодом, окруженным резонаторными анодными сегментами. Она была предшественницей магнетронов с резонаторными камерами.

Конструкция многорезонаторного магнетрона Алексеева — Малярова, обеспечивающего 300-ваттное излучение на волне 10 сантиметров, созданного в 1936-39 гг., стала известна мировому сообществу благодаря публикации 1940 г. (Alexeev Н. F., Malyarov Д. Е. Getting powerful vibrations of magnetrons in centimeter wavelength range // Magazine of Technical Physics. 1940. Vol. 10. No. 15, P. 1297—1300.)

Своим появлением на свет многорезонаторный магнетрон Алексеева — Малярова обязан радиолокации. Работы по радиолокации были развернуты в СССР почти одновременно с началом радиолокационных работ в Англии и США. По признанию зарубежных авторов, к началу 1934 года СССР продвинулся в этих работах более, чем США и Англия. (Brown, Louis. A Radar History of World War II . Technical and Military Imperatives. Bristol: Institute of Physics Publishing, 1999. ISBN 0-7503-0659-9.)

В 1940 британские физики Джон Рэндалл (англ. John Randall) и Гарри Бут (англ. Harry Boot) изобрели резонансный магнетрон[1] Новый магнетрон давал импульсы высокой мощности, что позволило разработать радар сантиметрового диапазона. Радар с короткой длиной волны позволял обнаруживать более мелкие объекты[2]. Кроме того, компактный размер магнетрона привел к резкому уменьшению размеров радарной аппаратуры[3], что позволило устанавливать ее на самолетах[4].

Явление перестройки частоты магнетрона напряжением впервые обнаружили в 1949 американские инженеры Д. Уилбур и Ф. Питерс. Магнетрон, настраиваемый напряжением, или митрон — генераторный прибор магнетронного типа, рабочая частота которого в широком диапазоне изменяется пропорционально анодному напряжению.

Начиная с 1960-х годов магнетроны получили применение в СВЧ-печах для домашнего использования.

Характеристики

Магнетроны могут работать на различных частотах от 0,5 до 100 ГГц, с мощностями от нескольких Вт до десятков кВт в непрерывном режиме, и от 10 Вт до 5 МВт в импульсном режиме при длительностях импульсов главным образом от долей до десятков микросекунд.

Магнетроны обладают высоким КПД (до 80 %).

Магнетроны бывают как неперестраиваемые, так и перестраиваемые в небольшом диапазоне частот (обычно менее 10 %). Для медленной перестройки частоты применяются механизмы, приводимые в движение рукой, для быстрой (до нескольких тысяч перестроек в секунду) — ротационные и вибрационные механизмы.

Магнетроны как генераторы сверхвысоких частот широко используются в современной радиолокационной технике.

Конструкция

Магнетрон в продольном сечении Схема конструкции магнетрона

Резонансный магнетрон состоит из анодного блока, который представляет собой, как правило, металлический толстостенный цилиндр с прорезанными в стенках полостями, выполняющими роль объёмных резонаторов. Резонаторы образуют кольцевую колебательную систему. К анодному блоку закрепляется цилиндрический катод. Внутри катода закреплён подогреватель. Магнитное поле, параллельное оси прибора, создаётся внешними магнитами или электромагнитом.

Для вывода СВЧ энергии используется, как правило, проволочная петля, закреплённая в одном из резонаторов, или отверстие из резонатора наружу цилиндра.

Резонаторы магнетрона образуют кольцевую колебательную систему, около них происходит взаимодействие пучка электронов и электромагнитной волны. Поскольку эта система в результате кольцевой конструкции замкнута сама на себя, то её можно возбудить лишь на определённых видах колебаний, из которых важное значение имеет π-вид. Такая система имеет не одну, а несколько резонансных частот, при которых на кольцевой колебательной системе укладывается целое число стоячих волн от 1 до N/2 (N — число резонаторов). Наиболее выгодным является вид колебаний, при котором число полуволн равно числу резонаторов (так называемый π-вид колебаний). Этот вид колебаний назван так потому, что напряжения СВЧ на двух соседних резонаторах сдвинуты по фазе на π.

Для стабильной работы магнетрона (во избежание перескоков во время работы на другие виды колебаний, сопровождающиеся изменениями частоты и выходной мощности) необходимо, чтобы ближайшая резонансная частота колебательной системы значительно отличалась от рабочей частоты (примерно на 10 %). Так как в магнетроне с одинаковыми резонаторами разность этих частот получается недостаточной, её увеличивают либо введением связок в виде металлических колец, одно из которых соединяет все чётные, а другое все нечётные ламели анодного блока, либо применением разнорезонаторной колебательной системы (чётные резонаторы имеют один размер, нечётные — другой).

Отдельные модели магнетронов могут иметь различную конструкцию. Так, резонаторная система выполняется в виде резонаторов нескольких типов: щель-отверстие, лопаточных, щелевых и т. д.

Принцип работы

Схема работы магнетрона

Электроны эмиттируются из катода в пространство взаимодействия, где на них воздействует постоянное электрическое поле анод-катод, постоянное магнитное поле и поле электромагнитной волны. Если бы не было поля электромагнитной волны, электроны бы двигались в скрещённых электрическом и магнитном полях по сравнительно простым кривым: эпициклоидам (кривая, которую описывает точка на круге, катящемся по наружной поверхности окружности большего диаметра, в конкретном случае — по наружной поверхности катода). При достаточно высоком магнитном поле (параллельном оси магнетрона) электрон, движущийся по этой кривой, не может достичь анода (по причине действия на него со стороны этого магнитного поля силы Лоренца), при этом говорят, что произошло магнитное запирание диода. В режиме магнитного запирания некоторая часть электронов движется по эпициклоидам в пространстве анод-катод. Под действием собственного поля электронов, а также статистических эффектов (дробовой шум) в этом электронном облаке возникают неустойчивости, которые приводят к генерации электромагнитных колебаний, эти колебания усиливаются резонаторами. Электрическое поле возникшей электромагнитной волны может замедлять или ускорять электроны. Если электрон ускоряется полем волны, то радиус его циклотронного движения уменьшается и он отклоняется в направлении катода. При этом энергия передаётся от волны к электрону. Если же электрон тормозится полем волны, то его энергия передаётся волне, при этом циклотронный радиус электрона увеличивается и он получает возможность достигнуть анода. Поскольку электрическое поле анод-катод совершает положительную работу только если электрон достигает анода, энергия всегда передаётся в основном от электронов к электромагнитной волне. Однако, если скорость вращения электронов вокруг катода не будет совпадать с фазовой скоростью электромагнитной волны, один и тот же электрон будет попеременно ускоряться и тормозиться волной, в результате эффективность передачи энергии волне будет небольшой. Если средняя скорость вращения электрона вокруг катода совпадает с фазовой скоростью волны, электрон может находиться непрерывно в тормозящей области, при этом передача энергии от электрона к волне наиболее эффективна. Такие электроны группируются в сгустки (так называемые «спицы»), вращающиеся вместе с полем. Многократное, в течение ряда периодов, взаимодействие электронов с ВЧ-полем и фазовая фокусировка в магнетроне обеспечивают высокий коэффициент полезного действия и возможность получения больших мощностей.

Применение

Предупреждающий знак «Опасно. Радиоизлучение»

В радарных устройствах волновод подсоединён к антенне, которая может представлять собой как щелевой волновод, так и конический рупорный облучатель в паре с параболическим отражателем (так называемая «тарелка»). Магнетрон управляется короткими высокоинтенсивными импульсами подаваемого напряжения, в результате чего излучается короткий импульс микроволновой энергии. Небольшая порция этой энергии отражается обратно антенне и волноводу, где она направляется к чувствительному приёмнику. После дальнейшей обработки сигнала он, в конце концов, появляется на электронно-лучевой трубке (ЭЛТ) в виде радарной карты А1.

В микроволновых печах волновод заканчивается отверстием, прозрачным для радиочастот (непосредственно в камере для готовки). Важно, чтобы во время работы печи в ней находились продукты. Тогда микроволны поглощаются вместо того, чтобы отражаться обратно в волновод, где интенсивность стоячих волн может вызвать искрение. Искрение, продолжающееся достаточно долго, может повредить магнетрон. Если в микроволновой печи готовится небольшое количество пищи, лучше поставить в камеру ещё и стакан воды для поглощения микроволн.

Источники

  1. ↑ The Magnetron. Bournemouth University (1995-2009). Архивировано из первоисточника 23 августа 2011. Проверено 23 августа 2009.
  2. ↑ Я. З. Перпя. Как работает радиолокатор. Оборонгиз, 1955
  3. ↑ Schroter, B. (Spring 2008). «How important was Tizard’s Box of Tricks?». Imperial Engineer 8: 10. Проверено 2009-08-23.
  4. ↑ Who Was Alan Dower Blumlein?. Dora Media Productions (1999-2007). Архивировано из первоисточника 23 августа 2011. Проверено 23 августа 2009.

3dic.academic.ru

Магнетрон - это... Что такое Магнетрон?

Магнетрон

Магнетрон — это мощная электронная лампа, генерирующая микроволны при взаимодействии потока электронов с магнитным полем.

История

Термин «магнетрон» был предложен Альбертом Халлом, который в 1921 году впервые опубликовал результаты теоретических и экспериментальных исследований работы прибора в статическом режиме и предложил ряд конструкций магнетрона. Генерирование электромагнитных колебаний в дециметровом диапазоне волн посредством магнетрона открыл и запатентовал в 1924 чехословацкий физик А. Жачек.

Действующие магнетронные генераторы радиоволн были созданы независимо и почти одновременно в трех странах: в Чехословакии (Жачек, 1924 г.), в СССР (А.А. Слуцкин и Д.С. Штейнберг, 1925 г.), в Японии (Окабе и Яги, 1927 г.).

Французский ученый Морис Понт с сотрудниками из парижской фирмы «КСФ» в 1935 году создали электронную лампу с вольфрамовым катодом, окруженным резонаторными анодными сегментами. Она была предшественницей магнетронов с резонаторными камерами.

Конструкция многорезонаторного магнетрона Алексеева — Малярова, обеспечивающего 300-ваттное излучение на волне 10 сантиметров, созданного в 1936-39 гг., стала известна мировому сообществу благодаря публикации 1940 г. (Alexeev Н. F., Malyarov Д. Е. Getting powerful vibrations of magnetrons in centimeter wavelength range // Magazine of Technical Physics. 1940. Vol. 10. No. 15, P. 1297—1300.)

Своим появлением на свет многорезонаторный магнетрон Алексеева — Малярова обязан радиолокации. Работы по радиолокации были развернуты в СССР почти одновременно с началом радиолокационных работ в Англии и США. По признанию зарубежных авторов, к началу 1934 года СССР продвинулся в этих работах более, чем США и Англия. (Brown, Louis. A Radar History of World War II . Technical and Military Imperatives. Bristol: Institute of Physics Publishing, 1999. ISBN 0-7503-0659-9.)

В 1940 британские физики Джон Рэндалл (англ. John Randall) и Гарри Бут (англ. Harry Boot) изобрели резонансный магнетрон[1] Новый магнетрон давал импульсы высокой мощности, что позволило разработать радар сантиметрового диапазона. Радар с короткой длиной волны позволял обнаруживать более мелкие объекты[2]. Кроме того, компактный размер магнетрона привел к резкому уменьшению размеров радарной аппаратуры[3], что позволило устанавливать ее на самолетах[4].

Явление перестройки частоты магнетрона напряжением впервые обнаружили в 1949 американские инженеры Д. Уилбур и Ф. Питерс. Магнетрон, настраиваемый напряжением, или митрон — генераторный прибор магнетронного типа, рабочая частота которого в широком диапазоне изменяется пропорционально анодному напряжению.

Начиная с 1960-х годов магнетроны получили применение в СВЧ-печах для домашнего использования.

Характеристики

Магнетроны могут работать на различных частотах от 0,5 до 100 ГГц, с мощностями от нескольких Вт до десятков кВт в непрерывном режиме, и от 10 Вт до 5 МВт в импульсном режиме при длительностях импульсов главным образом от долей до десятков микросекунд.

Магнетроны обладают высоким КПД (до 80 %).

Магнетроны бывают как неперестраиваемые, так и перестраиваемые в небольшом диапазоне частот (обычно менее 10 %). Для медленной перестройки частоты применяются механизмы, приводимые в движение рукой, для быстрой (до нескольких тысяч перестроек в секунду) — ротационные и вибрационные механизмы.

Магнетроны как генераторы сверхвысоких частот широко используются в современной радиолокационной технике.

Конструкция

Магнетрон в продольном сечении Схема конструкции магнетрона

Резонансный магнетрон состоит из анодного блока, который представляет собой, как правило, металлический толстостенный цилиндр с прорезанными в стенках полостями, выполняющими роль объёмных резонаторов. Резонаторы образуют кольцевую колебательную систему. К анодному блоку закрепляется цилиндрический катод. Внутри катода закреплён подогреватель. Магнитное поле, параллельное оси прибора, создаётся внешними магнитами или электромагнитом.

Для вывода СВЧ энергии используется, как правило, проволочная петля, закреплённая в одном из резонаторов, или отверстие из резонатора наружу цилиндра.

Резонаторы магнетрона образуют кольцевую колебательную систему, около них происходит взаимодействие пучка электронов и электромагнитной волны. Поскольку эта система в результате кольцевой конструкции замкнута сама на себя, то её можно возбудить лишь на определённых видах колебаний, из которых важное значение имеет π-вид. Такая система имеет не одну, а несколько резонансных частот, при которых на кольцевой колебательной системе укладывается целое число стоячих волн от 1 до N/2 (N — число резонаторов). Наиболее выгодным является вид колебаний, при котором число полуволн равно числу резонаторов (так называемый π-вид колебаний). Этот вид колебаний назван так потому, что напряжения СВЧ на двух соседних резонаторах сдвинуты по фазе на π.

Для стабильной работы магнетрона (во избежание перескоков во время работы на другие виды колебаний, сопровождающиеся изменениями частоты и выходной мощности) необходимо, чтобы ближайшая резонансная частота колебательной системы значительно отличалась от рабочей частоты (примерно на 10 %). Так как в магнетроне с одинаковыми резонаторами разность этих частот получается недостаточной, её увеличивают либо введением связок в виде металлических колец, одно из которых соединяет все чётные, а другое все нечётные ламели анодного блока, либо применением разнорезонаторной колебательной системы (чётные резонаторы имеют один размер, нечётные — другой).

Отдельные модели магнетронов могут иметь различную конструкцию. Так, резонаторная система выполняется в виде резонаторов нескольких типов: щель-отверстие, лопаточных, щелевых и т. д.

Принцип работы

Схема работы магнетрона

Электроны эмиттируются из катода в пространство взаимодействия, где на них воздействует постоянное электрическое поле анод-катод, постоянное магнитное поле и поле электромагнитной волны. Если бы не было поля электромагнитной волны, электроны бы двигались в скрещённых электрическом и магнитном полях по сравнительно простым кривым: эпициклоидам (кривая, которую описывает точка на круге, катящемся по наружной поверхности окружности большего диаметра, в конкретном случае — по наружной поверхности катода). При достаточно высоком магнитном поле (параллельном оси магнетрона) электрон, движущийся по этой кривой, не может достичь анода (по причине действия на него со стороны этого магнитного поля силы Лоренца), при этом говорят, что произошло магнитное запирание диода. В режиме магнитного запирания некоторая часть электронов движется по эпициклоидам в пространстве анод-катод. Под действием собственного поля электронов, а также статистических эффектов (дробовой шум) в этом электронном облаке возникают неустойчивости, которые приводят к генерации электромагнитных колебаний, эти колебания усиливаются резонаторами. Электрическое поле возникшей электромагнитной волны может замедлять или ускорять электроны. Если электрон ускоряется полем волны, то радиус его циклотронного движения уменьшается и он отклоняется в направлении катода. При этом энергия передаётся от волны к электрону. Если же электрон тормозится полем волны, то его энергия передаётся волне, при этом циклотронный радиус электрона увеличивается и он получает возможность достигнуть анода. Поскольку электрическое поле анод-катод совершает положительную работу только если электрон достигает анода, энергия всегда передаётся в основном от электронов к электромагнитной волне. Однако, если скорость вращения электронов вокруг катода не будет совпадать с фазовой скоростью электромагнитной волны, один и тот же электрон будет попеременно ускоряться и тормозиться волной, в результате эффективность передачи энергии волне будет небольшой. Если средняя скорость вращения электрона вокруг катода совпадает с фазовой скоростью волны, электрон может находиться непрерывно в тормозящей области, при этом передача энергии от электрона к волне наиболее эффективна. Такие электроны группируются в сгустки (так называемые «спицы»), вращающиеся вместе с полем. Многократное, в течение ряда периодов, взаимодействие электронов с ВЧ-полем и фазовая фокусировка в магнетроне обеспечивают высокий коэффициент полезного действия и возможность получения больших мощностей.

Применение

Предупреждающий знак «Опасно. Радиоизлучение»

В радарных устройствах волновод подсоединён к антенне, которая может представлять собой как щелевой волновод, так и конический рупорный облучатель в паре с параболическим отражателем (так называемая «тарелка»). Магнетрон управляется короткими высокоинтенсивными импульсами подаваемого напряжения, в результате чего излучается короткий импульс микроволновой энергии. Небольшая порция этой энергии отражается обратно антенне и волноводу, где она направляется к чувствительному приёмнику. После дальнейшей обработки сигнала он, в конце концов, появляется на электронно-лучевой трубке (ЭЛТ) в виде радарной карты А1.

В микроволновых печах волновод заканчивается отверстием, прозрачным для радиочастот (непосредственно в камере для готовки). Важно, чтобы во время работы печи в ней находились продукты. Тогда микроволны поглощаются вместо того, чтобы отражаться обратно в волновод, где интенсивность стоячих волн может вызвать искрение. Искрение, продолжающееся достаточно долго, может повредить магнетрон. Если в микроволновой печи готовится небольшое количество пищи, лучше поставить в камеру ещё и стакан воды для поглощения микроволн.

Источники

  1. ↑ The Magnetron. Bournemouth University (1995-2009). Архивировано из первоисточника 23 августа 2011. Проверено 23 августа 2009.
  2. ↑ Я. З. Перпя. Как работает радиолокатор. Оборонгиз, 1955
  3. ↑ Schroter, B. (Spring 2008). «How important was Tizard’s Box of Tricks?». Imperial Engineer 8: 10. Проверено 2009-08-23.
  4. ↑ Who Was Alan Dower Blumlein?. Dora Media Productions (1999-2007). Архивировано из первоисточника 23 августа 2011. Проверено 23 августа 2009.

xzsad.academic.ru


Видеоматериалы

24.10.2018

Опыт пилотных регионов, где соцнормы на электроэнергию уже введены, показывает: граждане платить стали меньше

Подробнее...
23.10.2018

Соответствует ли вода и воздух установленным нормативам?

Подробнее...
22.10.2018

С начала года из ветхого и аварийного жилья в республике были переселены десятки семей

Подробнее...
22.10.2018

Столичный Водоканал готовится к зиме

Подробнее...
17.10.2018

Более 10-ти миллионов рублей направлено на капитальный ремонт многоквартирных домов в Лескенском районе

Подробнее...

Актуальные темы

13.05.2018

Формирование энергосберегающего поведения граждан

 

Подробнее...
29.03.2018

ОТЧЕТ о деятельности министерства энергетики, ЖКХ и тарифной политики Кабардино-Балкарской Республики в сфере государственного регулирования и контроля цен и тарифов в 2012 году и об основных задачах на 2013 год

Подробнее...
13.03.2018

Предложения организаций, осуществляющих регулируемую деятельность о размере подлежащих государственному регулированию цен (тарифов) на 2013 год

Подробнее...
11.03.2018

НАУЧИМСЯ ЭКОНОМИТЬ В БЫТУ

 
Подробнее...

inetpriem


<< < Ноябрь 2013 > >>
Пн Вт Ср Чт Пт Сб Вс
        1 2 3
4 5 6 7 8 9 10
11 12 13 14 15 16 17
18 19 20 21 22 23 24
25 26 27 28 29 30  

calc

banner-calc

.