Физические и химические свойства природного газа. Свойство природного газа


Физические и химические свойства природного газа

Значительная составляющая природного газа – метан (70 — 98%), затем идут этан, пропан и бутан; среди газов неорганической природы в состав природного газа могут входить моно- и диоксид углерода, азот, инертные газы, водород, сероводород. Химический состав природного газа (объемное содержание каждого из газов) может меняться в зависимости от месторождения.

Химические свойства природного газа

Поскольку природный газ представляет собой смесь газов, то невозможно указать, какие химические свойства для него характерны, т.к. для каждого вещества, входящего в его состав характерны свои, особые химические свойства. Однако, можно сказать, что для природного газа характерно горение, причем из всех веществ, входящих в состав природного газа на воздухе сгорают только углеводороды (метан, этан и т.д.) и монооксид углерода. Продукты реакции горения природного газа:

Ch5 + 2O2 = CO2 +2h3O;

2C2H6 + 7O2 = 4CO2 + 6h3O;

2C3Н8 + 10O2 = 6CO2 + 8h3O;

2CO + O2 = 2CO2.

Физические свойства природного газа

Природный газ при нахождении в недра Земли может находится в газообразном состоянии (газовые залежи), в виде газовой «шапки» нефтегазовых месторождений, в растворенном виде в нефти или в воде. Чистый природный газ не обладает запахом и цветом. Температура возгорания природного газа 650С. Природный газ в 1,8 газ легче воздуха.

Получение природного газа

Природный газ добывают из недр Земли с помощью скважин. Газ выходит из недр вследствие того, что в пласте находится под давлением, многократно превышающем атмосферное . Таким образом, движущей силой является разность давлений в пласте и системе сбора.

Применение природного газа

Основное направление использования природного газа — в качестве горючего для отопления жилых домов, подогрева воды и приготовления пищи; в качестве топливо для машин, котельных, ТЭЦ и др. Также, природный газ используют в химической промышленности (сырьё для получения различных органических веществ).

Примеры решения задач

ru.solverbook.com

Свойства природных газов

 

 

  1. Газы, получаемые из чисто газовых месторождений. Состоят в основном из метана СН4-98 %.

  2. Газы, получаемые из газоконденсатных месторождений. Состоят из сухого газа и примеси конденсата (бензин, лигроин, керосин)

  3. Попутные газы, получаемые из скважин нефтяных месторождений вместе с нефтью, состоят из смеси газов и пропан-бутановой фракции.

  4. Искусственный газ, получаемый в результате термической обработки.

     

     

     

    Средние составы и характеристики природных газов некоторых месторождений.

     

 

Месторождения

Состав газа(по объему)

Отн-я пл-ть

теплота

сгорания

низшая

при Т=200С

 

СН4

С2Н6

С3Н8

С4Н10

С5Н12

СО2

N2

Н2S

 

кДж/м3

Уренгойское

98,8

0,07

-

-

0,01

0,29

0,8

-

0,561

39055

Тазовское

98,6

0,10

0,03

0,02

0,01

0,20

1,0

-

0,562

33195

Губкинское

98,4

0,13

0,01

0,005

0,01

0,15

1.3

-

0,573

32986

Юбилейное

98,4

0,07

0,01

-

-

0,40

1,1

-

0,563

32902

Оренбургское

92,7

2,20

0,80

0,22

0,15

0,20

1.1

2,6

0,603

34116

 

Состояние любого газа принято характеризовать величинами, которые называются параметрами состояния- плотность, давление, температура.

 

Кроме того, широко используются такие понятия как масса, теплоемкость, работа, теплота, энтальпия. энтропия.

 

Природные газы представляют собой смесь, состоящую из нескольких чистых веществ, химически не взаимодействующих между собой.

 

 

Состав смеси определяется нахождением массовой или мольной концентрации компонентов, входящих в смесь. Понятие "моль"означает количество вещества в граммах, численно равное его мольной массе, а киломоль- количество вещества в килограммах, тоже численно равное его мольной массе.Так например, киломоль кислорода О2 равен 32 кг,киломоль метана СН4-16 кг.

 

Плотность газа- отношение массы газа к объему.кг/м3.

 

Давление- отношение силы,действующей перпендикулярно к поверхности тела , на единицу этой поверхности,сила,приходящаяся на единицу поверхности.

Абсолютное давление равно сумме избыточного и атмосферного(барометрического) давлений.

 

Видео о свойствах природного газа

Природный газ

 

Соотношение между единицами давления газа.

 

Обообозначение ед.

Па

дин/см2

кгс/ м2

кгс/см2 (ат)

бар

мм вод.ст

мм рт.ст.

1 паскаль (Па)

1

10

0,102

102 10-6

10-5

0,102

7,5 10-3

1дин/см2

0,1

1

10,2 10-3

1.02 10-6

10-6

10,2 10-3

750 10-6

1 кгс/см2

9,81

98,1

1

10-4

98,1 10-6

1

73,56 10-3

1 кгс/см2 (ат)

9,81 103

98,1 103

104

1

0,981

104

735,6

1 бар

105

106

10,2 103

1,02

1

10,2 103

750

1 мм вод ст.

9,81

98,1

1

10-4

98,1 10-6

1

73,56 10-3

1 мм рт.ст.

133,3

133,3

13,6

1,36 10-3

1,333 10-3

13,6

1

 

Температура является параметром, определяющим состояние газа, степень его нагретости. При измерении температуры газа используются две температурные шкалы: шкала Цельсия и шкала Кельвина.

 

Температура, до которой нужно охладить газ, чтобы содержащиеся в нем водяные пары достигли состояния насыщения называется точкой росы этого газа при данном давлении.

 

Работа- это произведение силы, действующей в направлении движения, на путь перемещения газа.    

 

Массовым расходом газа называется масса газа. проходящая через поперечное сечение трубы в единицу времени кг/сек

 

Объемным расходом газа называется количество газа в единице объема, проходящего через сечение газопровода в единицу времени.м3/сек.

 

Абсолютная влажность – количество водяных паров, содержащихся в единице объема газа. г/м3.

 Относительная влажность газа – это отношение абсолютной влажности к максимально возможной при данном давлении и при данной температуре.

 

Относительная влажность насыщенного газа равна 1.При насыщении газа водяным паром (относительная влажность равна 1) из него начнут выпадать капли воды. Температура, до которой нужно охладить газ, чтобы содержащиеся в нем водяной пар достиг состояния насыщения,называется точкой росы.

 

Содержание влаги в газе можно определить весовым методом, основанном на пропускании замеряемого объема газа через через поглотители влаги.Ввиду того, что влагосодержание газа зависит от температуры и давления. анализы на влажность должны проводиться непосредственно в том месте, где необходимо знание влажности газа (например,на узлах замера газа,на пониженных участках газопровода.

 

Зная абсолютную влажность газа,можно определить точку росы при данном давлении в газопроводе.

 

В зависимости от содержания влаги в газе и при определенном давлении и температуре в газопроводе на поверхности контакта газ-вода образуются гидраты неустойчивые соединения углеводородов с водой в виде белых кристаллов, внешне похожих на снег или лед.

 

Гидраты образуют только следующие углеводородные газы: метан, этан, пропан, изо-бутан, н-бутан. Для этих газов существует критическая температура гидратообразования  максимальная температура, выше которой никаким повышением давления нельзя вызвать образование гидратов. Для метана она равна 21,5 0С, этана 14,50С, пропана 5,50С.

 

Основные факторы, определяющие образование гидратовприродных газов –состав газа, его давление и температура, полное насыщение газа парами воды. Факторы, влияющие на скорость образования гидратов-наличие скоплений воды в пониженных частях газопровода и паров воды в газовом потоке,турбулентность и охлаждение газового потока. Для выявления условий образования гидратов используют кривые равновестного состояния гидратов.

 

Слева от этих кривых находится область существования гидратов,а справа –область их отсутствия. Зная состав транспортируемого газа (его относительную плотность), давление и температуру в газопроводе, по кривым определяют условия образования гидратов, а по содержанию влаги в газе возможность образования гидратов в данных условиях. Это дает возможность предотвратить образование гидратов при транспорте газа.

 

Физические характеристики компонентов.

 

Компонент состава газа

Мольная масса

Плотность кг/м3

Плотность по отношению к воздуху

Температура сжижения,0С

Метан СН4

16,04

0,72

0,55

 

-161,5

Этан С2Н6

30,07

1,36

1,05

-89

Пропан С3Н8

44,09

2,02

1,55

-42

Бутан С4Н10

58,12

2,70

2,08

-1

Пентан С5Н12

72,15

3,22

2,50

+36

           

 

Критические параметры некоторых веществ.

 

 

Газ

Критическая t 0 С

Критическое Р МПа

Метан СН4

-82,1

4,649

Этан С2Н6

32,1

4,954

Пропан С3Н8

95,6

4,404

Бутан С4Н10

152,8

225

Пентан С5Н12

196,6

232

Углекислый газ СО2

31,1

468

Сероводород Н2S

100,4

-

Азот N2

147,1

311

Воздух

140,7

310

 

Теплота сгорания газа - это количество теплоты,выделяемое при полном сгорании единицы объема газа.

 

Различают высшую и низшую теплоту сгорания.

 

Высшая теплота сгорания - количество теплоты, которая выделиться при полном сгорании единицы объема газа, с учетом конденсации водяных паров, образующихся при окислении водорода.

 

Низшей теплотой сгорания называется количество теплоты, которое выделится при полном сгорании единицы объема газа без учета теплоты, которая выделяется при конденсации водяных паров.

 

В расчетах обычно используют понятие низшей теплоты сгорания топлива в силу того, что отходящие продукты сгорания имеют относительно высокую температуру, значительно выше, чем температура точки росы, при которой и происходит конденсация водяных паров, содержащихся в продуктах питания.

 

Компонент смеси

Метан

Этан

Пропан

Бутан

Низшая теплота сгорания,кДж/м3

35880

64450

92940

118680

 

Пределы взрываемости  газов в смеси с воздухом.

 

Газ

нижний %

верхний %

Метан

5

15

Природный газ

5

15

пропан

2

9,5

 

 

Критическим давлением называется такое давление, при котором и выше которого никаким повышением температуры жидкость уже не может быть превращена в пар.

 

Критической температурой называется такая температура, при которой и выше которой ни прикаком повышении давления нельзя сконденсировать пар, т.е. минимальная температура, при которой не происходит процесс образования гидратов в газе, называется критической температурой гидратообразования. Для метана она равна 21,50С, этана –14,50С,

 

пропана –   5,50С

 

Температура, до которой нужно охладить газ, чтобы содержащиеся в нем водяные пары достигли состояния насыщения называется точкой росы этого газа при данном Р.

 

Влажный газ называется насыщенным, когда он содержит максимально возможное количество пара при данной Т и Р.

 

При определенной влажности газа, Р и Т в газопроводе могут образоваться кристаллогидраты – соединение углеводородов с водой.

 

(СН4 6Н2О, СН4 7 Н2О)

 

Минимальная Т, при которой не происходит процесс образования гидратов в газе, называется критической температурой гидратообразования.

 

Для СН4  21.50С , С2Н6  -14,50С, С3Н8 -5,50С.

 

Во избежание образования гидратов газ осушают до точки росы температура которой должна быть ниже Т газа в газопроводах на 6 - 70С.

 

Гидраты в газопроводе образуются в тех случаях, когда точка росы транспортируемого равна, или выше рабочей температуры газа.

 

Зная состав, влажность транспортируемого газа, изменение Ти Р в газопроводе, можно заранее определить возможные зоны образования гидратов и наметить мероприятия по их предотвращению.

 

После прохождения газа через задвижки. регулирующие клапана происходит его резкое расширение. Этот процесс называется дросселированием. При транспортировке газа по газопроводам процесс дросселирования влечет за собой резкое падение давления и понижение Т газа. Этот процесс называется положительным эффектом Джоуля-Томсона. При снижении Р на1кгс/см2 снижается Т на 0,40С.

 

1 киломоль любого газа при нормальных условиях Т=00С и Р атмосферном занимает V=22,4 л.

 

Относительная плотность любого газа Р=М/22,4 (плотность воздуха при нормальных условиях), кгс/см2.

 

РСН4=12+4/22,4=0,71

 

Газы из чисто газовых месторождений состоят в основном из метана. В этих газах содержится также углекислый газ и азот. Содержание углекислого газа в большинстве случаев не превышает 6-7%,а азота –10%. Однако встречаются месторождения, газы которых содержат углекислого газа 35% и более (углеводородно-углекислые газы), а азота-45% и более (углеводородно-азотные газы). Содержание сероводорода в природных газах редко превышает 5-6%. В газе Оренбургского месторождения содержится до 4,5 сероводорода и до 1,5% углекислого газа, в газе группы Астраханских месторождений-до 23 и 20% соответственно.

 

Процесс сгорания метана в воздухе протекает по уравнению.

 

СН4+2О2+7,52N2=СО2+2Н2О+7,52N2

 

В результате сгорания образуется 10,52м3 продуктов горения.

 

Опасные свойства углеводородных газов требуют принятия мер предосторожности, с одной стороны, для предохранения работников от удушья и отравления, с другой – для предупреждения взрывов и пожаров.

 

Чистые метан и этан неядовиты, но при недостатке кислорода в воздухе вызывают удушье. Первые признаки недомогания обнаруживаются, когда содержание метана в воздухе достигает примерно 25-30%

 

Первые признаки отравления парообразными углеводородами, содержащимися в естественном газе, недомогание и головокружение, вслед за этим наступает как бы опъянение, сопровождаемое смехом, часто галлюцинациями и потерей сознания, если пострадавшего не удалить из вредной атмосферы.

 

Из газовых компонентов природных газов особенно токсичен сероводород. Сероводород бесцветный газ,тяжелее воздуха, сероводород скапливается в низких местах. Сероводород- сильный яд нервно-паралитического действия, вызывающий смерть от удушья, а иногда и от паралича сердца. Предельно допустимая концентрация сероводорода в воздухе рабочей зоны 10 мг/м3

 

Углекислый газ бесцветный, практически без запаха. Плотность по отношению к воздуху 1,57.

 

При содержании в воздухе 4-5% углекислого газа заметно его действие на человека: появляются ощущения раздражения слизистых оболочек дыхательных путей, кашель, раздражение глаз, повышение кровяного давления, головокружение.  При 20% - наступает смерть через несколько секунд от остановки дыхания.

 

Для возникновения взрыва необязательно, чтобы все помещения было заполнено газом.  Взрыв возможен и при скоплении газа в определенном участке помещения.  Сила взрыва максимальна, когда содержание воздуха в смеси приближается к количеству, теоретически необходимому для полного сгорания.  Сила взрыва тем больше, чем больше давление газовоздушной смеси.

 

Температура воспламенения – минимальная температура,до которой необходимо нагреть смесь газа с кислородом (газа с воздухом), чтобы начался процесс горения. Горение газа-процесс соединенияего горючих составляющих с кислородом, сопровождающийся выделением теплоты, количество которой должно быть достаточно для покрытия потерь теплоты в окружающую среду и нагрева частиц газа и воздуха до температуры воспламенения. Если это условие выполняется, то горение будет устойчивым. Температура воспламенения зависит от состава газа, концентрации газа и кислорода, их смешения, формы и размеров топочного пространства, давления в топке и др.

Различают нижний и верхний пределы воспламеняемости. Нижний предел воспламеняемости соответствует минимальному содержанию горючего газа в смеси, при котором газовоздушная смесь еще остается горючей, а высший предел воспламеняемости, максимальному содержанию горючего газа в смеси. Существование верхнего и нижнего пределов воспламеняемости объясняется тепловыми потерями при горении. С уменьшением содержания горючего газа в смеси все больше увеличивается расход теплоты на нагрев негорючей части смеси, скорость распространения пламени все время уменьшается и, наконец наступает момент, когда горение прекращается. С увеличением содержания горючего газа в смеси наступает такой момент, когда происходит неполное сгорание горючих компонентов из-за недостатка кислорода воздуха. При этом расход теплоты на нагрев негорючих компонентов будет все время увеличиваться, скорость распространения пламени уменьшится, и наконец, наступит момент, когда горение прекратится.

 

Газовоздушная смесь, в которой содержание газа находится между нижним и верхним пределами воспламеняемости, является взрывоопасной. Чем шире диапазон пределов воспламеняемости (взрываемости),тем более взрывоопасен газ. Взрыв газовоздушной смеси процесс очень быстрого(практически мгновенного) горения, приводящий к образованию продуктов горения с высокой температурой и значительным давлением. Расчетное избыточное давление при взрыве природного газа 0,75 Мпа, пропана и бутана 0,86 Мпа, водорода 0,74 Мпа, ацетилена 1,03 Мпа.

 

При определенных условиях взрыв может принять вибрационный и даже детонационный характер, при котором скорость распространения пламени превышает 2000 м/с, а давление будет в 2-3 раза больше давления, возникающего при тепловом взрыве.

 

Знание температур воспламенения и пределов взрываемости газов позволяет обеспечить безопасную эксплуатацию и безопасное проведение ремонтных работ на объектах транспорта газа. Необходимо учитывать, что при повышении давления газовоздушной смеси пределы взрываемости сужаются.

 

Газ

Температура воспламенения 0С

Пределы взрываемости при t 200С

Р = 0,1013 МПа

нижний

верхний

Метан

Этан

Пропан

Сероводород

Ацетилен

Водород

645

530

510

290

305

510

5

3,1

2,1

4,3

2

4

15

12,1

9,5

45,5

82

75

           

  

 

Пределы взрываемости 5-15%,пределы горения 15-80%.

 

Температура воспламенения 7450С, температура горения 20000С.

 

Для возникновения взрыва необязательно, чтобы все помещение было заполнено газом.  Взрыв возможен и при скоплении газа в определенном участке помещения. Горение и взрыв однотипные химические процессы, но резко отличающиеся по интенсивности протекающей реакции. При взрыве реакция происходит очень быстро. Сила взрыва максимальна, когда содержание воздуха в смеси приближается к количеству, теоретически необходимому для полного сгорания. Сила взрыва тем больше, чем больше давление газовоздушной смеси.

 

Вязкость газов, вязкость или внутреннее трение-свойство газов оказывать сопротивление перемещению одной их части относительно другой. Вязкость определяется силами сцепления между отдельными молекулами вещества. Эти силы сцепления проявляются при относительном перемещении соседних слоев газа, вследствии чего между этими слоями возникает обмен количеством движения. Вязкость газов обусловлена перелетом хаотически движущихся молекул из слоя в слой. Например, если один слой газа движется быстрее соседнего,то на границе контакта этих  слоев часть молекул первого слоя будет переходить во второй слой, стремясь ускоритьего движение,а часть молекул второго слоя будет переходить в первый,стремясь замедлить его движение.

 

Точка росы (в 0 С) влажных природных углеводородных газов.

 

 

Р, МПа

в газ-е

Абсолютная влажность газов, г/м3

 

80

100

150

200

250

300

400

500

600

800

1000

5,0

-12,5

-9

-3

-1,5

5

8

12,5

16,5

19,5

24,5

28,5

5,5

-11,5

-8

-2

2,5

6

9

13,5

17,5

20,5

25,5

30

6,0

-10,5

-7

-1

3,5

7

10

14,5

18,5

21,5

26,5

31

6,5

-9,5

-6

0

4,5

8

11

15,5

19,5

22,5

27,5

32

7,0

-9

-5,5

0,5

5

9

12

16,5

20,5

23,5

28,5

33

7.5

-8,5

-5

1

5,5

infoks.ru

Основные свойства природного газа для котельных

ПРИРОДНЫЙ ГАЗ

Природный (нефтяной) газ, состоящий из метана и других легких насыщенных углеводородов, – весьма дешевое и удобное топливо. В 1987 в США было добыто почти 566 млрд. м3 и было установлено 5,3 трлн. м3 подтвержденных промышленных извлекаемых запасов, которые были бы исчерпаны к 1998, если бы сохранился уровень добычи 1987. В 1997 в США было более 50 млн. индивидуальных и много тысяч промышленных и торговых потребителей газа.

Природный газ называется «сухим», если почти не содержит бензина (менее 1 л на 25 м3 газа). «Жирный» газ может содержать бензина в 10 раз больше. Смесь жидких углеродов может быть получена как путем сжатия и охлаждения газа, так и путем его абсорбции нефтью. Полученные жидкости называются сжиженным нефтяным газом (газоконденсатом) и имеют разнообразное применение.

Главные составные части природного газа – метан, этан, пропан и бутан (в порядке уменьшения их содержания). Природный газ не содержит свободного водорода, монооксида углерода, кислорода, олефинов или ацетилена, хотя во многих залежах имеются диоксид углерода (углекислый газ), азот и сероводород. Ряд месторождений природного газа, большинство из которых располагается в США, содержит промышленные концентрации гелия.

Природный газ широко распространен в мире, главным образом как попутный нефтяной газ. Ведущими странами-производителями газа являются США, Россия и Канада, но большие перспективы открытия потенциально значительных месторождений дают поисково-разведочные работы в море, особенно у побережья Африки, Азии, Южной Америки, в Северном и Каспийском морях. Главное использование природного газа – в качестве топлива в промышленности и быту. В промышленности он применяется при выплавке металлов и стекла, производстве извести и цемента, приготовлении хлеба и другой пищи и во многих других случаях. Он используется также в производстве бензина, сажи и некоторых важных химических продуктов, таких, как метиловый спирт, формальдегид, синтетический аммиак. В домашнем хозяйстве газ служит горючим в печах, нагревательных приборах, газовых плитах и т.п.^

Природный газ, добываемый из недр земли, не имеет вкуса, цвета и запаха. Для придания запаха с целью распознавания его в воздухе в случае утечки используется одоризация — внесение в газ сильнопахнущего вещества. В качестве одоранта используется этилмеркаптан в количестве 16 г на 1 000 м3 природного газа. Это позволяет обнаружить природный газ при концентрации его в воздухе 1 %, что составляет 1/5 нижнего предела взрываемое™.

Важнейшей теплотехнической характеристикой природного газа является теплота сгорания — количество теплоты, выделяющееся при сгорании 1 м3 сухого газа и зависящее от того, в каком агрегатном состоянии находится в продуктах горения вода, выделяющаяся из топлива и образующаяся при сгорании водорода и углеводородов, — в парообразном или жидком. Если в продуктах горения все водяные пары конденсируются и образуют жидкую фазу, то теплота сгорания называется высшей Qвс. Если же конденсации водяного пара не происходит, то теплоту сгорания называют низшей Qнc = 35,8.

Обычно продукты горения покидают котельные установки при температуре, при которой не происходит конденсации водяных паров, поэтому в теплотехнических расчетах используется величина Qнc, которая для природного газа близка к теплоте сгорания метана и составляет 35,8 МДж/м3 (8 550 ккал/м3).

Плотность природного газа (метана) при нормальных условиях (0°С и 0,1 МПа, т.е. 760 мм рт. ст.) рг = 0,73 кг/м3. Плотность воздуха при тех же условиях рв = 1,293 кг/м3. Таким образом, природный газ легче воздуха примерно в 1,8 раза. Поэтому при утечках газа он будет подниматься вверх и скапливаться у потолка, перекрытий, верхней части топки.

Температура самовоспламенения природного газа tвоспл = 645... 700 °С. Это означает, что любая смесь газа с воздухом после нагревания до этой температуры воспламенится сама без источника зажигания и будет гореть.

Концентрационные границы воспламенения (взрыва) природного газа (метана) находятся в диапазоне 5... 15 %. Вне этих границ газовоздушная смесь не способна к распространению пламени. При взрыве давление в замкнутом объеме повышается до 0,8... 1 МПа.

К преимуществам природного газа по сравнению с другими видами топлива (в первую очередь с твердыми) относятся высокая теплота сгорания; относительно низкая стоимость; отсутствие складских помещений для хранения; относительно высокая экологич-ность, характеризующаяся отсутствием в продуктах горения твердых включений и меньшим количеством вредных газообразных выбросов; легкость автоматизации процесса сжигания; возможность повышения коэффициента полезного действия (КПД) котельного агрегата; облегчение труда обслуживающего персонала.^

Сжиженный углеводородный газ (СУГ) или сжиженный нефтяной газ пропан-бутан - универсальный синтетический газ, получаемый из попутного нефтяного газа или при переработке нефти, т.е. фактически для большинства производителей это побочный продукт. В России перерабатывается в сырье для нефтехимии и в сжиженный пропан-бутан не более 40% попутного газа, еще 40% без всякой переработки сжигается на ГРЭС, а оставшиеся 20% сжигаются на месторождениях в открытых факелах. Официально подобным образом нефтяными компаниями уничтожается 4 млрд.м3 в год попутного газа, а не официально - до10 млрд. м3 в год.

В нормальных условиях СУГ находится в газообразном состоянии. При небольшом повышении давления он переходит в жидкое состояние. Тогда его можно легко перевозить и хранить. При снижении давления или небольшом повышении температуры "жидкий" газ начинает испаряться и переходит в газовую фазу. Процесс заканчивается достижением состояния насыщения. Давление насыщенных паров зависит только от температуры окружающей среды и не зависит от количества жидкой фазы. Из одного литра СУГ получается около 0,25 м3 газовой фазы. Зимой давление газа снижается и производительность подачи газовой фазы, заметно падает. Вот почему резервуары требуется заглублять в грунт, откуда идет поток тепла, поддерживая стабильные параметры регазификации.

Чистое горение газа (минимум продуктов сгорания) делает его экологически чистым топливом для широкого применения в жилых домах (отопление, горячее водоснабжение, газовые плиты, нагрев саун и воды в бассейнах), на агропромышленных - предприятиях, в производстве, в качестве автомобильного топлива...

Смесь сжиженного газа состоит из пропана и бутана. Пропан испаряется при более низких температурах, до -35 гр.Ц., а бутан только при положительной температуре. Пропан устойчиво поставляет газовую фазу даже при морозах, но относительно дорог и хорош только зимой. Летом, при жаре, давление его паров доходит до предельного значения, допустимого для стенок сосуда (1,6 МПа). При повышении температуры, жидкость в резервуаре очень сильно расширяется и, поскольку она несжимаема, может даже разгерметизировать сосуд. Именно поэтому пропан разбавляют более дешевым и не интенсивно испаряющимся бутаном. В зависимости от сезона, пропорции частей различны: летом примерно в равных частях: 60 : 40 или 50 : 50, а зимой пропана в смеси больше в пропорциях 70 : 30 соответственно. В емкостях с преобладанием пропана создается большее давление, чем в "бутановых". Для того чтобы резервуар не подвергся разгерметизации при повышении температуры, его заполнение ограничивается 85% геометрического объема. Заправщики эту норму неукоснительно соблюдают. Такие свойства пропан-бутановых смесей делают его более приемлемым для использования в суровом российском климате (отопление домов, газовые плиты, газовые генераторы, автомобильное топливо и пр.)

При использовании СУГ необходимо учитывать, что процесс испарения обладает свойством саморегулирования. Если отбирать пары интенсивно (например, подключить несколько котлов), то ускоренное испарение жидкости приведет к ее охлаждению и, значит, к снижению давления газов над зеркалом жидкости. В итоге производительность установки снизится. Чтобы получить большие объемы газов, прибегают к дополнительному обогреву емкостей или увеличивают их количество в одной установке. (Зеркало жидкости - это площадь поверхности жидкой фазы. Чем оно больше - тем интенсивнее происходит испарение газа и соответственно выше производительность газовой фазы)

СУГ легче воды в два раза, поэтому, водный конденсат постепенно скапливается на дне сосуда, откуда его приходится откачивать (из малых емкостей примерно раз в год, обычно это осуществляется при заправке). В газообразном состоянии смесь тяжелее воздуха в 1,5-2 раза. Следовательно, при утечках газы стекают в нижние точки. Учитывая, что эти газы, хотя и нетоксичны, обладают удушающим свойством, котельные при использовании СУГ нельзя размещать в подвалах и цокольных помещениях, если площадь окон в них менее 1 м2. Поскольку для полного сгорания СУГ требуется много воздуха, в котельных надо обеспечить хорошую вентиляцию - лучше принудительную. Кроме того, в помещении необходимо организовать естественное освещение, а также установить датчик обнаружения утечки газов и автоматический отсекающий клапан с автономным питанием.

Сам по себе сжиженный газ не горит и не детонирует. Однако смесь газовой фазы с воздухом в пределах 1,8-10% загорается, если рядом есть источник тепла с температурой около 500°С и более (в пламени спички есть участки с температурой более 1000°С). При определенных соотношениях объема, давления и температуры -это горение может сопровождаться взрывом.

Вытекающая газовая фаза, смешавшись с воздухом, может лишь загореться небольшим факелом, причем пламя внутрь потока газа не распространяется и к взрыву емкости не приводит. Чтобы на 100% исключить утечки жидкости, в установках предусматривают специальные меры безопасности.

Для потребителей пропан-бутан является отличным топливом в местах, где не подведен природный газ (метан). И дает двукратную экономию на отопление Вашего дома, по сравнению с дизельным топливом или электричеством. ^

Природный газ (Метан), англ. NG - natural gas. Транспортируется по газопроводам в газообразном состоянии. Является на сегодняшний день самым дешевым видом топлива, но из-за трудностей сжижения, может распространятся только по газовым магистралям, что затрудняет его использование. Стоимость 1 КВтч выработанной энергии ПГ дешевле чем СУГ в 5 раз. Хотя программа реорганизации энергоснабжения предполагает к 2010 г. Повышение цен на природный газ до 7 раз (уже в этом году официально заявлено о повышении тарифов на природный газ на 40%), можно предположить, что через несколько лет себестоимость Гкал на пропане (СУГ) и на природном газе (ПГ) сравняются.^

Компримированный природный газ (КПГ, англ. CNG - compressed natural gas), получается при сжатии природного газа (Метана) при помощи компрессоров до давления 200-250 Бар. В сжатом состоянии объем газа уменьшается в 200-250 раз. Хранится и транспортируется КПГ, в баллонах высокого давления или в специализированных модулях МАТ (ссылка на стр. «Принцип работы системы автономного газоснабжения на природном газе»), у конечного потребителя давление газа редуцируется до низкого. Один МАТ транспортирует 1500 куб.м природного газа.

КПГ также используется в качестве автомобильного топлива. В этом случае газ просто перекачивается в заправочные баллоны автомобилей под давлением 200-250 Бар. Заправка осуществляется на АГНКС и АГЗС. Построение отопительных систем на основе КПГ, имеет смысл только для поселков, промышленных производств и производств автономной электроэнергии.^

Сжиженный природный газ (СПГ, англ. LNG - liquefied natural gas), получается при охлаждении природного газа (Метана) до -162° Цельсия. В жидком состоянии объем газа уменьшается в 600 раз. Хранится СПГ, при низких температурах в особых криогенных сосудах, которые поддерживают низкую температуру газа, при давлении 0.4 МПа.

Именно это его свойство, делает его использование для отопления, экономически не оправданным. Стоимость криогенных сосудов достаточно высока и требуется дополнительная энергия для поддержания требуемой температуры. Построение отопительных систем на основе СПГ, имеет смысл для газификации только крупных поселков, таких как Приозерск, Ленинградской области, (где реализована такая система).^

автономных систем отопленияЕсли Ваш дом удален от газовых сетей и нет качественного электроснабжения, то альтернативой системе отопления на жидком топливе является система отопления на сжиженном углеводородном газе.

К сожалению, первоначальные затраты на выполнение системы отопления на сжиженном газе и оснащение дома необходимым оборудованием (резервуары, запорная, предохранительная и регулирующая арматура), монтаж оборудования, превышают затраты даже на выполнение системы отопления на жидком топливе.

Однако, вариант отопления на сжиженном газе сохраняет все преимущества отопления природным газом и независимость жидкотопливной системы отопления.

При этом, эксплуатационные расходы отопления на сжиженном газе на 30-40% ниже, чем при использовании для отопления дизельного топлива и еще ниже, чем при использовании электрического отопления.

И хотя сжиженный углеводородный газ, по сути, является побочным продуктом добычи нефти и природного газа, времена, когда переработчики нефти и добытчики природного газа сжигали сжиженный газ в факелах, уходят в прошлое.

Сейчас во всем мире сжиженный газ производят и используют как высококачественное бытовое и промышленное топливо.

И в связи с тем, что на сегодняшний день по природному газу мы отстаем от европейских цен в 10-15 раз, а по ценам на сжиженный углеводородный газ всего в 1,5 раза, то можно предположить, что совсем скоро эффективность использования сжиженного углеводородного газа для отопления резко повысится, так как потолок мировых цен не пустит сжиженный углеводородный газ дорожать столь же интенсивно, как природный газ.

Учитывая то, что значительная часть загородных домов в Европе и Америке отапливают системами отопления на сжиженном газе, большинство моделей современного газового отопительного оборудования предполагает возможность работы и на природном и на сжиженном газе.

В отличие от системы отопления на жидком топливе, в состав оборудования для отопления на сжиженном газе дополнительно входят резервуары (газгольдеры), регулятор давления газа, предохранительно-запорный и предохранительно-сбросной клапаны, контрольно-измерительные приборы для контроля давления и уровня сжиженного газа в резервуаре, запорная арматура, а также трубопроводы жидкой и паровой фаз.

Для хранения сжиженного газа используют резервуары объемом до 50 м3. Объем и тип резервуара для конкретного объекта определяют в зависимости от отапливаемой площади (величины газопотребления). Так, хранилища емкостью 5 м3 и 9 м3 подойдут для коттеджей, оснащенных котлами мощностью 50 и 80 кВт соответственно.

Возможны два варианта размещения газгольдеров – наземный и подземный. Выбор между ними делают исходя из конкретных условий.

На расположение газгольдеров относительно жилых домов, автомобильных дорог, линий электропередачи, других сооружений и коммуникаций действуют жесткие ограничения.

Так, наземные резервуары объемом 5 м3 должны располагаться не ближе 20 м от жилых зданий, 5 м – от наземных сооружений и коммуникаций, 10 м – от автомобильных дорог. Однако при установке подземного резервуара такого же объема допустимые расстояния уменьшаются: до объекта отопления и дорог – в два раза (10 и 5 м соответственно).

Регламент требует заглубления подземного резервуара ниже уровня промерзания. Однако запорная арматура, которой оснащается газгольдер, должна быть доступной и располагаться на поверхности. Поэтому все подземные резервуары снабжают удлиненной горловиной.

На резервуары подземного размещения, сделанные из стали, наносят эпоксидное покрытие, а также обеспечивают баки электрохимической анодно-катодной защитой от коррозии. Защита состоит из магнезиального анодного элемента, измерительного блока и емкостного кабеля.

Наземные резервуарные установки должны иметь проветриваемое ограждение из негорючих материалов высотой не менее 1,6 м. Расстояние от резервуаров до ограждения следует принимать не менее 1 м, а от ограждения до наружной бровки замкнутого обвалования или ограждающей стенки из негорючих материалов – не менее 0,7 м.

И хотя уже сейчас на территории нашей страны действуют компании, являющиеся официальными представителями таких европейских фирм, как FAS (Германия), Walter Tosto Serbatoi (Италия), DeltaGaz (Чехия), занимающихся проектированием, комплектацией, монтажом, аварийно-техническим обслуживанием и регистрацией объектов потребления сжиженного газа в надзорных органах, рассматривать отопление на сжиженном газе, по моему мнению, стоит только взвесив все возможности организовать отопление на жидком топливе Удельная теплота сгорания пропан-бутановой смеси 103 мДж/м3 или, с учетом плотности 46 мДж/литр, учитывая КПД газового котла, получим, что при сжигании 1 литра получим 42,3 мДж энергии, или в более привычных единицах - 11,8 кВт*ч.

odtdocs.ru

Состав и физические свойства природных газов

⇐ ПредыдущаяСтр 3 из 7Следующая ⇒

 

Месторождения природного газа в зависимости от состава пластовой продукции условно делятся на газовые и газоконденсатные, газонефтяные и газогидратные.

Газовые – это месторождения, продукция которых не нуждается в дополнительной обработке перед подачей в магистральные газопроводы. Подготовка в этом случае заключается только в извлечении влаги из газа, а в случае необходимости и кислых компонентов. Это сухие газы с содержанием метана до 94¸98 %

Газоконденсатные – это такие месторождения, продукция которых должна подвергаться обработке для извлечения из них пентана и высших углеводородов. Это влияет как на схему обработки пластовой продукции, так и на технико-экономические показатели эксплуатации месторождения. В составе газа таких месторождений от 70% до 90% метана (в среднем) – см. табл. 2.1, 2.2.

Газонефтяные – имеют газовую шапку и нефтяную оторочку промышленного значения. Содержание метана в таких газах составляет 30¸50% (табл. 2.1, 2.2, 2.3).

Газокондесатонефтяные – месторождения, содержащие газоконденсатную смесь и подстилающую её нефтяную оторочку (табл. 2.4).

Газогидратные – содержат в продуктивных пластах газ в твёрдом гидратном состоянии, который образуется при определённых давлениях в участках земной коры с пониженной температурой.

Основной компонент природных газов – метан (до 98%). В составе природных газов в значительном количестве содержатся также этан, пропан, бутан, пентан и более тяжелые углеводороды. В состав газов всегда входят водяные пары и довольно часто такие компоненты, как азот, сероводород, двуокись углерода и гелий.

В составе природных газов и конденсата (газового) наряду с сероводородом встречаются и другие сернистые соединения, которые разделяются на две группы – активные и неактивные. К активным сернистым соединениям относятся сероводород, элементарная сера, сернистый ангидрид, меркаптаны и т.п. К неактивным соединениям серы – сульфиды, дисульфиды, тиофен и тиофаны. Из сернистых соединений газа наиболее активен сероводород, он вызывает коррозию металлов с образованием сульфидов. Наличие влаги в газе резко усиливает коррозионное действие сероводорода и других кислых компонентов.

Свойства газа определяются свойствами отдельных компонентов, входящих в его состав (см. табл. 2.3).

Метан при стандартных условиях (при атмосферном давлении и 20°С) ведет себя как реальный газ. Этан находится на границе фазовых состояний газ - пар. Пропан и бутаны при обычных условиях являются газами, т.к. их критические параметры весьма высоки.

Углеводороды, начиная с изопентана и выше, при нормальных условиях (0,1 МПа и 0°С) находятся в жидком состоянии, а в составе газа – в капельном виде.

В составе газов чисто газовых месторождений значительно больше содержится метана, чем в составе нефтяных газов. В зависимости от преобладания легких (СН4, С2Н8) или тяжелых (С3Н8+в) компонентов газа разделяются соответственно на две группы: сухие и жирные. В сухом газе содержание тяжелых углеводородов незначительное или они отсутствуют, в то время как в жирном газе их количество может достигать таких величин, что из него можно получать сжиженные газы или конденсат (газовый бензин). На практике принято считать сухим газ, содержащий в 1м3 менее 60 г газового бензина, а жирным – более 60¸70 г бензина.

 

Таблица 2.1

Основные физико-химические свойства индивидуальных углеводородов

 

Характеристика метан этан этилен Пропан Пропилен н-бутан Изобутан н-бутилен Пентан
Химическая формула СН4 С2Н6 С2Н4 С3Н8 С3Н6 н-С4Н10 Изо-С4Н10 н-С4Н8 С5Н12
Молекулярная масса, кг/кмоль 16,04 30,07 28,05 44,1 42,08 58,12 58,12 56,1 72,15
Плотность газовой фазы, кг/м3 при Р = 0,1013 МПа, Т = 0 оС 0,72 1,356 1,261 2,019 1,915 2,703 2,665 2,55 3,457
Плотность жидкой фазы, кг/м3 при Р = 0,1013 МПа, Т = 0 оС -
Температура кипения, 0С -161 -88,5 -103,7 -42,1 -47,7 -0,5 -11,1 -6,9 36,07
Температура критическая, 0С -82,1 32,3 9,7 96,8 92,3 134,9 144,4 196,6
Давление критическое, МПа 4,58 4,82 5,03 4,21 4,54 3,74 3,62 3,95 3,33
Удельная теплоемкость газа, кДж /(кг×0С): при 00С и пост. дав. Ср при 00С и пост. об. Сv     2,171 1,654     1,65 1,373     1,465 1,163     1,554 1,365     1,432 1,222     1,596 1,457     1,596 1,457     1,487 1,339     1,60 1,424
Удельная теплоемкость жидкой фазы, кДж/(кг×0С) 3,461 3,01 2,415 2,23 - 2,239 2,239 - 2,668
Низшая теплота сгорания газовой фазы, МДж/м3 35,76 63,65 59,53 91,14 86,49 118,5 118,2 113,8 1461,2
Скрытая теплота испарения, кДж/кг 512,4 487,2 428,4 398,6 382,9 441,6 361,2
Объем паров с 1 кг сжиженных газов, м3 - 0,745 0,8 0,51 0,52 0,386 0,386 0,4 0,312
Продолжение таблицы 2.1  
Теоретически необходимое кол-во воздуха для горения газа, м3 9,53 16,66 14,28 23,8 22,42 30,94 30,94 28,56 30,08
Жаропроизводительность, 0С
Температура воспламенения, 0С 545¸ 530¸ 510¸543 504¸ 455¸550 430¸ 490¸510 440¸500 284¸
Октановое число
Вязкость газокинематическая, 106 м2/с 14,71 6,45 7,548 3,82 4,11 2,55 2,86 3,12 2,18
Вязкость жидкой фазы динамическая, 106Па 66,64 162,7 - 135,2 130,5 210,8 188,1 - 284,2
Пределы воспламенения горючих газов в смеси с воздухом при н.у., %:                    
нижний 1,7 1,7 1,7 1,35
верхний 12,5 9,5 8,5 8,5

 

Таблица 2.2

Состав продукции скважин некоторых газоконденсатных месторождений

 

Месторождение, пласт Содержание, мольн. % (объем) С2/С3 С1/С2+
С1 С2 С3 С4 С5 СО2 N2 h3S
Газоконденсатные месторождения
Астраханское 47,48 1,92 0,93 0,66 3,08 21,55 1,98 22,50 - -
Кандымское 90,15 2,55 0,39 0,14 0,55 2,82 3,0 0,4 6,5 9,4
Харасавейское, ТП21-22 91,61 4,66 1,34 0,55 1,37 0,32 0,15 - 3,5 12,0
Бованенковское, ТП13-14 90,83 4,76 1,63 0,71 1,51 0,46 0,09 - 2,9 9,5
Ямбургское, БУ8 89,67 4,39 1,64 0,74 2,36 0,94 0,26 - 2,6 9,7
Юрхарское, АУ10 89,74 5,71 1,58 0,79 1,35 0,07 0,76 - 3,6 9,5
Уренгойское, БУ5 88,24 5,53 2,56 1,08 2,20 0,01 0,38 - 2,1 7,4
Майкопское 88,04 6,32 1,29 0,52 0,84 1,99 1,00 - 4,8 9,8
Газлинское 94,20 3,30 1,00 0,40 0,60 0,30 0,20 - 3,3 17,7
Газоконденсатные месторождения с нефтяными оторочками
Оренбургское 84,22 4,89 1,63 0,76 1,81 0,58 4,83 1,30 3,0 9,3
Вуктыльское 74,80 8,70 3,90 1,80 6,40 0,10 4,30 - 2,2 3,5
Западно-Тар-косалинское, БН4 81,52 6,29 5,02 1,98 4,05 0,16 0,96 - 1,2 4,7
Уренгойское, БУ14 82,27 6,56 3,24 1,49 5,62 0,50 0,32 - 2,0 4,6
Заполярное, БТ10 85,69 5,33 2,77 1,12 4,76 0,03 0,3 - 1,9 6,0
Федоровское, АС4 95,55 0,55 0,53 0,86 1,25 0,16 1,10 - 1,10 29,9
                                       

Требования к качеству товарного газа

 

Показатели качества товарного газа основаны на следующих требованиях:

· газ при транспортировке не должен вызывать коррозию трубопровода, арматуры, приборов и т.д.;

· газ в условиях трубопровода (при его транспорте) должен быть в однофазном состоянии, т.е. не должно произойти образование и выпадение в газопроводе углеводородной жидкости, водяного конденсата и газовых гидратов;

· товарный газ не должен вызывать осложнений у потребителя при его использовании.

Для того чтобы газ отвечал указанным требованиям, необходимо определять точку росы по воде, содержание углеводорода, содержания в газе сернистых соединений, механических примесей и кислорода.

Важный показатель качества товарного газа – содержание в нем кислорода. Значение этого показателя – не более 1%. При большем содержании кислорода газ становится взрывоопасным. Кроме того, кислород способствует усилению коррозии в системе.

Отраслевой стандарт не устанавливает конкретное содержание отдельных углеводородов в товарном газе. Это связано с разнообразием составов сырьевого газа (см. табл. 2.3).

Таблица 2.3

Нормы ОСТ 51.40-93 на природный газ, транспортируемый

по магистральным газопроводам

 

  Показатели Для климатической зоны
умеренно-жаркой холодной
Точка росы по влаге и тяжелым УВ, 0С, не более    
в зимний период (с 1/Х по 30/IV) 0/-5 -10/- 25
в летний период (с 1/V по 30/IX) 0/0 - 5/-10
Содержание меркаптановой серы, г/100 м3 1,6 1,6
Низшая теплота сгорания (ст. усл.), МДж/м3 32,5 32,5
Содержание сероводорода, г/100м3 0,7 0,7
Содержание кислорода, % 0,5 1,0

 

В газе могут содержаться также сероокись углерода (COS), сероуглерод (CS2) и др. В ГОСТе содержание этих компонентов не указано. Следовало бы установить общее количество всех сернистых соединений в газе.

Несомненно, обеспечение надежной транспортировки, хранения и использования продукции газовых скважин должно отвечать определенным требованиям, изложенным в соответствующих стандартах и технических условиях.

Например, на заключительном этапе разработки газоконденсатных месторождений для получения товарного газа, отвечающего требованиям отраслевого стандарта, необходимо вводить установки искусственного холода (УИХ). Затраты на строительство и эксплуатацию УИХ значительно превышают прибыль от выхода дополнительной продукции УКПГ. Для поддержания высокой эффективности работы газотранспортных систем предложен комплексный подход к определению показателей качества газа. Суть предложения сводится к тому, чтобы не внедрять ОСТ на каждом месторождении, связанном с одним магистральным газопроводом, а на основном месторождении установить более высокие показатели качества газа, чем по стандарту. За основное можно принимать наиболее крупное месторождение из рассматриваемой группы с тем, чтобы на нем было экономически выгодно применять сложную технологию, позволяющую на всех этапах разработки осуществлять осушку газа по влаге и извлечению тяжелых УВ.

Базовыми могут служить месторождения, в газе которых содержится сероводород, т.к. на газоперерабатывающих заводах после сероочистки необходимо проводить осушку на гликолевых установках или охлаждать весь объем газа с использованием искусственного холода.

Практически без больших дополнительных затрат на базовых месторождениях или на газоперерабатывающих заводах можно готовить газ с точкой росы по влаге и углеводородам ниже, чем по ОСТ 51.40-93. Это позволит подавать в магистральный газопровод газ, добываемый на небольших месторождениях, находящихся вдоль трассы, без организации сложных систем промысловой подготовки газа, осуществляя только отделение жидкой фазы. Смешение сырого газа с газом, имеющим более низкую точку росы, чем по требованиям ОСТа, позволяет получить смесь, которая будет отвечать требованиям ОСТа.

Применение такой системы промысловой подготовки газа дает возможность сконцентрировать сложное промысловое оборудование на одном базовом месторождении, мелкие месторождения обустраивать по упрощенным схемам.

Основные требования к технологическим процессам промысловой и заводской обработки природных и нефтяных газов – это обеспечение показателей качества товарного газа и другой продукции газовой промышленности.

Следует отметить, что в настоящее время единых международных норм по допустимым значениям содержания в газе сероводорода, углекислоты, сераорганических соединений, азота, воды, механических примесей и т.д. не существует.

Читайте также:

lektsia.com

Физические свойства природного газа

По петрофизике

на тему: «Нефть и газ»

 

 

Выполнил:

студент 2 курса

Зубриков Александр Андреевич

ГФЗ-2, геологический факультет

 

Проверил:

Доцент

Некрасов Александр Сергеевич

 

Пермь 2012

 

Содержание

Содержание. 2

1. Введение. 3

2. Краткая теория. 4

3. Физически свойства нефти. 5

4. Физические свойства природного газа. 9

5. Типы залежей нефти и газа. 11

6. Аппаратура; условия измерения. 19

7. Заключение. 23

Литература. 24

 

 

 

Введение

Цель: рассмотреть нефть и газ как вещество, а так же их физические свойства.

Задачи: Определить физические свойства нефти и газа, описать приборы для разделения смеси. Рассмотреть разницу между пластовыми и поверхностными нефтью и газом.

Краткая теория

Нефть — жидкий каустобиолит, исходное звено в классификационном спектре нафтидов. Генетически нефть. представляет собой обособившийся в самостоятельные скопления концентрат жидких, преимущественно углеводородных, продуктов преобразования в осадочной толще захороненного органического вещества. Состоит из углеводородов метанового, нафтенового и ароматического рядов с примесью сернистых, азотистых и кислородных соединений.[1]

Природный газ - это смесь нескольких газов, образовавшаяся в глубинах земли из-за разложения осадочных органических пород. [2]

Природный газ является полезным ископаемым, которое добывается, как самостоятельно, так и в качестве попутного газа при добыче нефти. Природный газ в естественном состоянии (в земных недрах) присутствует в виде газа в отдельных скоплениях (т.н. газовые залежи), в виде газовой шапки при нефтегазовых месторождениях. Также природный газ может находиться в недрах земли в растворённом состоянии в жидкости (нефть, вода). В стандартных условиях (давление 0,101325 МПа и температура 20 градусов) природный газ находится только в газообразном состоянии. Ещё одно состояние природного газа – газогидраты. [5]

Чистый природный газ не имеет цвета и запаха. Чтобы можно было определить утечку по запаху, в газ добавляют небольшое количество одорантов, имеющих сильный неприятный запах. Чаще всего в качестве одоранта применяется этил-меркаптан - т. н. одорант.

Природный газ широко применяется как топливо на электростанциях, в чёрной и цветной металлургии, цементной и стекольной промышленности, при производстве стройматериалов и для коммунально-бытовых нужд, а так же как сырье для получения органических соединений при синтезе. [2]

Физически свойства нефти

Физические свойства нефтей. Измерение физических параметров нефтей позволяет определить их товарные качества. Некоторые параметры (плотность, вязкость и др.) используются при расчете и проектировании разработки месторождений, нефтепроводов, транспортирования нефти и т. д. В геологии из физических параметров наибольшее значение имеют плотность, оптическая активность, люминесценция и некоторые другие. [3]

Плотность определяется количеством массы в единице объема. Единицей плотности является кг/м3. На практике пользуются относительной плотностью, которая представляет собой отношение плотности нефти при температуре 20 °С к плотности воды при 4 °С. Плотность (относительная) нефтей колеблется чаще всего в пределах 0,82—0,92. Как исключение встречаются нефти плотностью меньше 0,77 (дистилляты естественного фрак­ционирования нефтей) и тяжелые, густые асфальтоподобные нефти, плотность которых превышает 1,000 (остатки естественного фракционирования). Различия в плотности нефтей связаны с количественными соотношениями углеводородов отдельных классов. Нефти с преобладанием метановых углеводородов легче нефтей, богатых ароматическими углеводородами. Плотность смолистых веществ нефти выше 1,000, поэтому чем больше их в нефти, тем выше ее плотность.

Плотность нефти зависит от соотношения количества легкокипящих и тяжелых фракций. Как правило, в легких нефтях преобладают легкокипящие (бензин, керосин), а в тяжелых—тяжелые компоненты (масла, смолы). Поэтому плотность нефти дает первое приближенное представление о ее составе.

Плотность нефтей в пластовых условиях меньше, чем на зем­ной поверхности, так как в пластовых условиях нефти содержат растворенные газы.

Температура кипения углеводородов зависит от их строения. Чем больше атомов углерода входит в состав моле­кулы, тем выше температура кипения. У нафтеновых и арома­тических углеводородов, у которых атомы углерода соединены в циклы (кольца), температура кипения при равном количестве атомов углерода выше, чем у метановых. Природная нефть содержит компоненты, выкипающие в широком интервале тем­ператур—от 30 до 600 °С. [3]

Застывание и плавление нефтей происходит при различных температурах. Обычно нефти в природе встречаются в жидком состоянии. Однако некоторые нефти загустевают при незначительном охлаждении. Температура застывания нефти зависит от ее состава. Чем больше в ней твердых парафинов, тем выше ее температура застывания. Смолистые вещества ока­зывают противоположное влияние — с повышением их содержания температура застывания понижается. [17]

Вязкость—свойство жидкости оказывать сопротивление перемещению ее частиц при движении. Различают динамическую (абсолютную) вязкость нефти, кинематическую и относи­тельную (удельную, условную).

Динамическая вязкость выра­жается величиной сопротивления взаимному перемещению двух слоев жидкости с поверхностью 1 см2, отстоящих друг от друга на 1 см, при относительной скорости перемеще­ния 1 см/с. За единицу динамической вязкости принят пуаз (П) с размерностью дин*с/см2.

Кинематическая вязкость представляет собой отношение динамической вязкости данной жидкости к ее плотности при той же температуре. Единица кинематической вязкости – стокс, равный см2/с (в системе СИ — м2/с).

Условная вязкость – отношение времени истечения из вискозиметра определённого объёма жидкости ко времени истечения такого же объёма дистиллированной воды при 20 °С.

Из различных углеводородов, составляющих нефть, наименьшей вязкостью обладают парафиновые, а наибольшей—на­фтеновые. [16]

Испаряемость. Испарение – процесс перехода жидкости у поверхности на открытом воздухе из жидкого состояния в парообразное. При этом нефть теряет наиболее лёгкие фракции. Если нефть находится в закрытых резервуарах, то при определённых условиях возможно испарение до какой-то предельной величины. Давление паров данной жидкости, находящихся в равновесии с ней, называют упругостью паров жидкости. [1]

Давление насыщения. В пластовых условиях важным свойством нефти является давление насыщения нефти газом. Это наименьшее давление, при котором нефть полностью насыщается газом, или давление, при незначительном снижении которого из смеси появляются пузырьки газа. [16]

Температуры вспышки, воспламенения, самовоспламенения, плавления и застывания. Температура, при которой смесь паров нагреваемого нефтепродукта и воздуха вспыхивает при поднесении к ней огня, называется температурой вспышки. При этом нефтепродукт нагревается в строго определённых условиях, а вспыхнувшее пламя мгновенно затухает. Температура вспышки ниже, если легче фракция нефти. Так, температура вспышки бензиновых фракций до минус 40°С, керосиновых – 28-60°С, масляных – 130-325°С. По температуре вспышки судят о чистоте получаемых при перегонке фракций нефти, о возможности образования взрывчатых смесей.

Если после определения вспышки продолжать нагревание нефтепродукта, то при определённой температуре после поднесения пламени огня пары загорятся вновь и не гаснут в течение некоторого времени. Эта температура называется температурой воспламенения.

Если нефтепродукт нагреть до высоких температур, то после соприкосновения с воздухом он может самопроизвольно воспламениться. Эта температура называется температурой самовоспламенения. Сравнительно легко самовоспламеняются высококипящие нефтепродукты (тяжёлые нефтяные остатки – 300-350°С).

Под температурой плавления твёрдых нефтепродуктов (парафина, церезина) понимают температуру, при которой нефтепродукт из твёрдого состояния переходит в жидкое (в строго определённых условиях).

Температура, при которой нефтепродукт в определённых условиях испытания теряет подвижность, называется температурой застывания нефтепродукта. Эта температура зависит от содержания в нефтепродуктах твёрдых при обычной температуре углеводородов, т. е. парафинов и церезинов. [12]

Удельная теплоёмкость. Удельная теплоёмкость нефти – количество тепла, которое необходимо затратить для нагревания 1г нефти на 1°С. Удельная теплоёмкость колеблется в пределах 0,4 – 0,5 кал (г*°С)-1­­­­. С повышением плотности нефти она уменьшается. [3]

Теплотворная способность. Теплотворная способность нефти – количество тепла, которое выделяется при сгорании 1 кг нефти. Низшая теплота сгорания нефти изменяется от 10300 до 10800 ккал/кг, увеличиваясь с уменьшением плотности. [3]

Растворимость. Нефти и нефтепродукты легко растворяются в органических растворителях: бензине, хлороформе, сероуглероде и др. Растворимость нефти в воде мала. Так, в 1м3 воды может раствориться 270г керосина. Нефть и её продукты являются хорошим растворителем для ряда веществ: йода, серы, каучука, многих смол и растительных и животных жиров. Нефть ничтожно мало растворяет воду в количествах, измеряемых тысячными долями процента. [3]

Электропроводность. Нефть и её производные по отношению к электрическому току являются изоляторами. [1]

Газовый фактор.Количество газа, приходящееся на 1т нефти, называется газовым фактором. В пластовых условиях распределение каждого углеводорода между жидкой и газообразной фазами будет находиться в соответствии с давлением паров при данной температуре. Газ, не перешедший в жидкую фазу в пластовых условиях, может находиться в разных состояниях в зависимости от давления насыщения (свободном, растворённом, адсорбированном и т. д.). [3]

Физические свойства природного газа

Плотность газов существенно зависит от давления и температуры. Она может измеряться в абсолютных единицах (г/см3, кг/м3) и в относительных. При давлении 0,1 МПа и температуре 00С плотность газов примерно в 1000 раз меньше плотности жидкости и изменяется для углеводородных газов от 0,0007 до 0,0015 г/см3 (в зависимости от содержания в газе легких и тяжелых углеводородов).

Относительной плотностью газа называют отношение плотности газа при атмосферном давлении (0,1 МПа) и стандартной температуре (обычно 00С) к плотности воздуха при тех же значениях давления и температуры. Для углеводородных газов относительная плотность по воздуху изменяется в пределах 0,6?1,1. [4]

Растворимость углеводородных газов в жидкости при неизменной температуре определяют по формуле

S = aPb ,

где S – объем газа, растворенного в единице объема жидкости, приведенной к стандартным условиям; Р – давление газа над жидкостью, a ? коэффициент растворимости газа в жидкости , характеризующий объем газа (приведенный к стандартным условиям), растворенный в единице объема жидкости при увеличении давления на 1МПа; b- показатель, характеризующий степень отклонения растворимости реального газа от идеального. Значение a и b зависят от состава газа и жидкости.

Коэффициент растворимости a для нефтей и газов основных месторождений России изменяется в пределах 5?11 м3/м3на 1МПа. Показатель b изменяется в пределах 0,8?0,95.

На многих месторождениях природный газ первоначально существует в растворенном состоянии в нефти и выделяется из раствора только при снижении давления. Чем больше снижается давление, тем больше выделяется газа из раствора. То давление, при котором газ начинает выделяться из нефти, называется давлением насыщения нефти газом. [4]

Вязкость нефтяного газа при давлении 0,1 МПа и температуре 00С обычно не превышает 0,01МПа·с. С повышением давления и температуры она незначительно увеличивается. Однако при давлениях выше 3 МПа увеличение температуры вызывает понижение вязкости газа, причем газы, содержащие более тяжелые углеводороды, как правило, имеют большую вязкость. [4]

Теплоемкость газа. Теплоемкостью называется количество тепла, необходимое для нагревания единицы веса или объема этого вещества на 10С. Весовая теплоемкость газа измеряется в кДж/кг, а объемная в кДж/м3. [12]

Теплота сгорания газа. Теплота сгорания какого-либо вещества определяется количеством тепла, выделяющимся при сжигании единицы веса или единицы объема данного вещества. Теплота сгорания газов выражается в кДж/кг и кДж/м3 и является основным показателем, характеризующим газ или топливо. [2]

Если при постоянной температуре повышать давление какого-либо газа, то после достижения определенного значения давления этот газ сконденсируется, т.е. перейдет в жидкость. Для каждого газа существует определенная предельная температура, выше которой ни при каком давлении газ нельзя перевести в жидкое состояние.

Наибольшая температура, при которой газ не переходит в жидкое состояние, как бы велико ни было давление, называется критической температурой.

Давление, соответствующее критической температуре, называется критическим давлением. Таким образом, критическое давление – это предельное давление, при котором и менее которого газ не переходит в жидкое состояние, как бы ни низка была температура. Так, например, критическое давление для метана = 4,7 МПа, а критическая температура - 82,5 0С. [3]

Природные газы могут воспламеняться или взрываться, если они смешаны в определенных соотношениях с воздухом и нагреты до температуры их воспламенения при наличии открытого огня.

Минимальные и максимальные содержания газа в газовоздушных смесях, при которых может произойти их воспламенение, называются верхним и нижним пределом взрываемости. Для метана эти пределы составляют от 5 до 15%. Эта смесь называется гремучей и давление при взрыве достигает 0,8 МПа. [17]

stydopedia.ru

Предел взрываемости природного газа. Физические свойства газа

Образование 26 февраля 2017

Под природным газом понимают целую смесь газов, которые образуются в недрах земли впоследствии анаэробного разложения органических веществ. Он является одним из наиболее важных полезных ископаемых. Природный газ залегает в недрах планеты. Это могут быть отдельные скопления или газовая шапка на нефтяном месторождении, однако может быть представлен в виде газогидратов, в кристаллическом состоянии.

Опасные свойства

Природный газ знаком практически всем жителям развитых стран, и еще в школе дети изучают правила пользования газом в быту. А между тем взрывы природного газа - не редкость. Но и помимо этого, существует целый ряд угроз, исходящих от столь удобных приборов, работающих на природном газе.

Природный газ токсичен. Хотя этан и метан в чистом виде неядовиты, при насыщении ими воздуха человек будет испытывать удушье из-за недостатка кислорода. Особенно это опасно ночью, во время сна.

Предел взрываемости природного газа

При контакте с воздухом, а точнее с его составляющей - кислородом, природные газы способны образовать легковоспламеняемую детонирующую смесь, которая может вызвать взрыв большой силы даже от малейшего источника огня, например, искры от проводки или пламени спички, свечи. Если масса природного газа относительно невысока, то и температура воспламенения не будет высокой, а вот сила взрыва зависит от давления получившейся смеси: чем выше давление газовоздушного состава, тем с большей силой он взорвется.

Однако практически все люди хотя бы раз в жизни сталкивались с некоторой утечкой газа, обнаруживаемой по характерному запаху, и тем не менее никаких взрывов не происходило. Дело в том, что взорваться природный газ может только при достижении определенных пропорций с кислородом. Есть низший и высший предел взрываемости.

Как только достигнут низший предел взрываемости природного газа (для метана это 5%), то есть концентрации, достаточной для начала реакции горения, может произойти взрыв. Уменьшение концентрации устранит возможность возгорания. Превышение высшей отметки (15% для метана) так же не позволит начаться реакции горения, ввиду недостатка воздуха, а точнее - кислорода.

Предел взрываемости природного газа возрастает при повышении давления смеси, а также в случае, если смесь содержит инертные газы, например азот.

Давление природного газа в газопроводе может быть различным, от 0,05 кгс/см2 до 12 кгс/см2.

Видео по теме

Разница между взрывом и горением

Хотя на первый взгляд кажется, что взрыв и горение - несколько разные вещи, на самом деле эти процессы однотипны. Единственное их различие - это интенсивность протекания реакции. Во время взрыва в помещении или любом другом замкнутом пространстве реакция протекает невероятно быстро. Детонационная волна распространяется со скоростью, в несколько раз превышающую скорость звука: от 900 до 3000 м/с.

Так как метан, используемый в бытовом газопроводе, - газ природный, объем кислорода, необходимый для воспламенения, также подчиняется общему правилу.

Максимальная сила взрыва достигается в случае, если присутствующего кислорода теоретически достаточно для полного сгорания. Также должны присутствовать и остальные условия: концентрация газа соответствует пределу воспламенения (выше низшего предела, но ниже высшего) и присутствует источник огня.

Струя газа без примеси кислорода, то есть превышающая высший предел воспламенения, поступая в воздух, будет гореть ровным пламенем, фронт горения распространяется со скоростью 0,2-2,4 м/с при нормальном атмосферном давлении.

Свойства газов

Детонационные свойства проявляются в углеводородах парафинного ряда от метана до гексана. Строение молекул и молекулярная масса определяют их октановое число: детонационные свойства падают с уменьшением молекулярной массы, а октановое число увеличивается.

В состав природного газа входит несколько углеводородов. Первый из них - метан (химическая формула Ch5). Физические свойства газа таковы: бесцветен, легче воздуха и не имеет запаха. Он достаточно горюч, но тем не менее довольно безопасен в хранении, в случае, если полностью соблюдена техника безопасности. Этан (C2H6) также не имеет цвета и запаха, но немного тяжелее воздуха. Он горюч, но не используется в качестве топлива.

Пропан (C3H8) - ядовитый газ без цвета и запаха, способен сжижаться при небольшом давлении. Это полезное свойство позволяет не только безопасно транспортировать пропан, но и выделять его из смеси с другими углеводородами.

Бутан (C4h20): физические свойства газа близки к пропану, однако его плотность выше, а по массе бутан вдвое тяжелее воздуха.

Знакомые всем

Углекислый газ (CO2) тоже входит в состав природного. Физические свойства газа знают, пожалуй, все: не имеет запаха, но характерен кислым привкусом. Он входит в ряд газов с самой маленькой токсичностью и является единственным (за исключением гелия) негорючим газом в составе природного.

Гелий (He) - очень легкий газ, второй после водорода, бесцветен и не имеет запаха. Он очень инертен и в обычных условиях не способен реагировать с каким-либо веществом, не участвует и в процессе горения. Гелий безопасен, нетоксичен, при повышенном давлении, наряду с другими инертными газами, вводит человека в состояние наркоза.

Сероводород (h3S) - газ без цвета с характерным запахом тухлых яиц. Тяжелый и очень ядовитый, может вызвать паралич обонятельного нерва даже при незначительной концентрации. К тому же предел взрываемости природного газа очень широк, от 4,5% до 45%.

Похожие газы

Есть еще два углеводорода, которые по применению близки к природному газу, но в его состав не входят. Этилен (C2h5) - близкий по свойствам к этану, обладающий приятным запахом и не имеющий цвета газ. От этана его отличает меньшая плотность и горючесть.

Ацетилен (C2h3) - бесцветный взрывоопасный газ. Он очень горюч, взрывается, если произошло сильное сжатие. Ввиду этого ацетилен опасно использовать в быту, в основном же используется при сварочных работах.

Применение углеводородов

Как горючее в бытовых газовых приборах используется метан.

Пропан и бутан служат топливом для автомобилей (например, гибридных), а в сжиженном виде пропаном заправляют зажигалки.

А вот этан редко используют как горючее, его основное назначение в промышленности - получение этилена, который производится на планете в огромных количествах, ведь именно он является сырьем для полиэтилена.

Ацетилен служит для нужд металлургии, с его помощью достигаются высокие температуры для сварки и резки металлов. Так как он крайне горюч, его невозможно использовать в качестве топлива, и при хранении газа обязательно строгое соблюдение условий.

Хотя сероводород и токсичен, в крайне малых количествах он применяется в медицине. Это так называемые сероводородные ванны, действие которых основано на антисептических свойствах сероводорода.

Основное полезное свойство гелия - его небольшая плотность. Этим инертным газом пользуются при полетах на аэростатах и дирижаблях, им заполняют летучие воздушные шарики, популярные среди детей. Воспламенение природного газа невозможно: гелий не горит, поэтому можно без боязни нагревать его над открытым огнем. Водород, соседствующий с гелием в таблице Менделеева, еще легче, однако легко воспламеняется. Гелий является единственным газом, не имеющим твердой фазы ни при каких условиях.

Правила пользования газом в быту

Каждый человек, пользующийся газовыми приборами, обязан проходить инструктаж по технике безопасности. Первое правило - следить за исправностью приборов, периодически проверять тягу и дымоход, если в приборе предусмотрено отведение продуктов сгорания. После выключения газового прибора нужно закрывать краны и перекрывать вентиль на баллоне, если имеется таковой. В случае, если внезапно прервалась подача газа, а также при выявлении неисправностей нужно немедленно звонить в газовую службу.

Если в квартире или другом помещении чувствуется запах газа, необходимо сразу же прекратить какое бы то ни было использование приборов, не включать электроприборы, открыть окно или форточку для проветривания, затем покинуть помещение и вызвать аварийную службу (телефон 04).

Правила пользования газом в быту важно соблюдать, ведь малейшая неисправность может привести к плачевным последствиям.

Источник: fb.ru Бизнес Применение природного газа. Природный газ: состав, свойства

Что мы знаем об углеводородах? Ну разве что что-то из школьной программы по химии, да периодически мелькающее в СМИ слово "метан"… Что мы знаем о природном газе, кроме его взрывоопасных свойств? Каково еще прим...

Образование Физико-химические свойства природного газа. Добыча и применение природного газа

Газообразное состояние вещества - самое распространенное по сравнению с другими агрегатными параметрами соединений. Ведь в этом состоянии находятся:звезды;межзвездное пространство;планеты...

Образование Свойства и плотность природного газа

На сегодняшний день газ, возникший естественным образом, служит важнейшим источником энергии. Все газообразные горючие соединения из недр земли не имеют запаха, содержат множество примесей, влияющих на плотность приро...

Домашний уют Газовые конвекторы на природном газе: принцип работы, плюсы и минусы

На современном рынке достаточно широкий спектр всевозможных отопительных приборов. Среди них можно встретить газовые конвекторы на природном газе для больших помещений и негабаритных комнат. Потребитель имеет возможно...

Новости и общество Запасы газа в мире. Запасы природного газа в мире

Использование природного газа – важная часть жизни современного человека. Он согревает наши дома зимой, даёт нам возможность готовить пищу и купаться в тёплой воде, с его помощью двигается транспорт и работают б...

Новости и общество Природный газ – актуальный ресурс

Еще полвека назад известные запасы нефти на нашей планете почти в два раза превышали объем разведанного голубого топлива. Сегодня положение совершенно изменилось. Разведанные запасы природного газа по своим показателя...

Образование Полезные ископаемые Египта: нефть, природный газ, железная руда, известняк

Египет – страна, находящееся в северо-восточной части Африки. Ее площадь около 1 млн. км2. Самые известные полезные ископаемые Египта - углеводороды, однако это не единственное, чем богата земля в это...

Образование Происхождение природного газа, его запасы и добыча. Месторождения природного газа в России и мире

Самое выгодное, экологически чистое и важное топливо на сегодняшний день - это природный газ. Что это за вещество? Откуда берет начало происхождение природного газа и в чем его особенности? Это знать важно и нужно, ве...

Образование Природный газ: формула. Химическая формула газа. Все виды природного газа

Сегодня известно множество разнообразных газов. Какие-то из них человек получает лабораторными способами, из химических веществ, какие-то формируются сами в результате реакций в качестве побочных продуктов. А какие га...

Образование Состав природного газа

В процессе анаэробного (метанового или бескислородного) брожения в недрах земли происходит биодеструкция органических веществ с выделением свободного метана (СН4 — простейший парафиновый углеводород). Это явлени...

monateka.com

Состав и свойства природного газа

Природный газ добывается из подземных месторождений. Самые крупные из них расположены в Западной Сибири (Уренгойское, Медвежье, Ямбургское, Бованенковское и другие), в Коми (Вуктыльское), а также на юге (Оренбургское, Астраханское и другие). Вблизи месторождений строятся установки комплексной подготовки газа, в некоторых случаях газ из скважин сразу попадает на газоперерабатывающий завод. Добытый газ очищается от механических и вредных примесей, осушается и поступает в магистральные газопроводы. Большинство крупных месторождений расположено вдали от основных потребителей, поэтому поставка газа является серьезной задачей, успешно реализуемой газотранспортной сетью России.

От месторождений газ транспортируется по магистральным газопроводам, сеть которых покрывает значительную часть территории России. По ним газ поставляется потребителям в Российской Федерации и за ее пределы. Для прокачки газа по трубопроводам используют компрессорные станции, которые повышают давление газа. При подаче газа в населенные пункты от магистрального газопровода делаются ответвления, на которых строят газораспределительные станции (ГРС), из которых газ поступает в газораспределительные сети. На ГРС давление снижается, газ очищается, в него добавляют одорант, производится учет газа, поступающего в межпоселковые газопроводы и газопроводы поселений. Помимо подачи газа по трубопроводам, существуют другой способ транспортировки природного газа — в сосудах, работающих под давлением. Но такой вариант доставки в настоящее время не находят широкого применения для подачи топлива бытовым потребителям, газопроводы являются самым дешевым и безопасным способом.

Основной компонент природного газа — метан СН4. В зависимости от месторождения содержание метана может быть различным — от 85 до 99%. Газ западносибирских газовых месторождений на 98 — 99% состоит из метана. В природных газах также содержится некоторое количество более тяжелых углеводородных газов: этан (до 0.6%), пропан, бутан. Водород и оксид углерода СО содержатся в незначительных количествах. В газе могут быть негорючие компоненты: азот, кислород, углекислый газ СО2, а также механические примеси-не более 0,001 г/м³

К основным свойствам природного газа относятся следующие характеристики:

1. Природный газ легче воздуха. Его плотность зависит от состава, если содержание метана составляет 98-99%, плотность газа — 0,68 — 0,72 кг/м³. Плотность воздуха — 1,29 кг/м³, то есть природный газ почти в два раза легче воздуха.

2. Природный газ, добываемый из месторождений, не имеет запаха. Газу придают специфический запах, что позволяет обнаруживать при не герметичности газопроводов и оборудования его утечку по запаху. В газ добавляют одорант, чаще всего этилмеркаптан, который представляет собой жидкость с резким неприятным запахом. Одоранта добавляют совсем немного, 16-19 грамм на 1000 м³ газа. При наличии в воздухе 1% природного газа его запах должен отчетливо ощущаться.

3. Температура воспламенения составляет 645 °С. Температура воспламенения это температура топливовоздушной смеси, при которой смесь начинает гореть без источника воспламенения. Она зависит от состава газа. С увеличением доли более тяжелых углеводородов (этана, пропана, бутана) температура воспламенения понижается.

4. Низшая теплота сгорания QH природного газа составляет около 8000 ккал/м³. Теплота сгорания газа это количество тепла, которое выделяется при полном сгорании 1 м³ газа. Различают высшую и низшую теплоту сгорания. Низшая теплота сгорания QH не учитывает теплоту конденсации водяных паров, содержащихся в продуктах сгорания. Высшая теплота сгорания QB учитывает всю теплоту, выделяющуюся при сгорании газа. Исторически сложилось так, что для практических расчетов в России используется низшая теплота сгорания, так как лишь отдельные виды оборудования — конденсационные котлы — использует тепло, образующееся при конденсации водяных паров, содержащихся в продуктах сгорания.

5. Природный газ не токсичен и не оказывает на организм отравляющего действия.

6. Жаропроизводительность метана составляет 2043 °С. Жаропроизводительность — это максимальная температура, которая может быть достигнута при полном сгорании газа, если количество воздуха, необходимого для горения, точно отвечает формуле горения, а начальная температура воздуха и газа равны нулю.

Качество природного газа должно соответствовать ГОСТ 5542-2014 «Газы горючие природные для промышленного и коммунально-бытового назначения. Технические условия»:

— низшая теплота сгорания — не менее 7600 ккал/м³;— объемная доля кислорода — не более 1%;— масса механических примесей — не более 0,001 г/м3;— интенсивность запаха — не менее 3 баллов (интенсивность запаха определяется по 5-балльной шкале, 3 балла — запах умеренный).

Контроль качества газа на соответствие требованиям государственного стандарта производится один раз в месяц газотранспортной организацией на газораспределительных станциях, по результатам оформляется паспорт контроля качества газа. Контроль интенсивности запаха (одоризации) в конечных точках газопровода проводит газораспределительная организация (ГРО).

    1721      

stroymanual.com


Видеоматериалы

24.10.2018

Опыт пилотных регионов, где соцнормы на электроэнергию уже введены, показывает: граждане платить стали меньше

Подробнее...
23.10.2018

Соответствует ли вода и воздух установленным нормативам?

Подробнее...
22.10.2018

С начала года из ветхого и аварийного жилья в республике были переселены десятки семей

Подробнее...
22.10.2018

Столичный Водоканал готовится к зиме

Подробнее...
17.10.2018

Более 10-ти миллионов рублей направлено на капитальный ремонт многоквартирных домов в Лескенском районе

Подробнее...

Актуальные темы

13.05.2018

Формирование энергосберегающего поведения граждан

 

Подробнее...
29.03.2018

ОТЧЕТ о деятельности министерства энергетики, ЖКХ и тарифной политики Кабардино-Балкарской Республики в сфере государственного регулирования и контроля цен и тарифов в 2012 году и об основных задачах на 2013 год

Подробнее...
13.03.2018

Предложения организаций, осуществляющих регулируемую деятельность о размере подлежащих государственному регулированию цен (тарифов) на 2013 год

Подробнее...
11.03.2018

НАУЧИМСЯ ЭКОНОМИТЬ В БЫТУ

 
Подробнее...

inetpriem


<< < Ноябрь 2013 > >>
Пн Вт Ср Чт Пт Сб Вс
        1 2 3
4 5 6 7 8 9 10
11 12 13 14 15 16 17
18 19 20 21 22 23 24
25 26 27 28 29 30  

calc

banner-calc

.