03.10.2024

Как определить коэффициент трансформации опытным путем: Как_опытным_путем_определить_коэффициент_трансформации

Содержание

Как_опытным_путем_определить_коэффициент_трансформации

  1. Что такое коэффициент трансформации?
  2. Методы расчета коэффициент трансформации.
  3. Как подготовить приборы к расчету?
  4. Измерение потерь холостого хода

Что такое коэффициент трансформации?

Проверка коэффициента трансформации подразумевает расчет отношения напряжений U1 и U2. U1 – это напряжение концов обмотки трансформатора. U2 – это напряжение выводов вторичной обмотки, которое определяется во время холостого хода. В теории устройство не претерпевает потери мощности. Но на практике часто встречаются ситуации, при которых наблюдается понижающий или повышающий коэффициент. В таком случае без специальных расчетов не обойтись. Коэффициент можно найти с помощью простой формулы:

Данное значение показывает, насколько токовое напряжение в одной обмотке отличается от другой при воздействии определенных нагрузок. Такие измерения позволяют вовремя устранить неисправности и предотвратить риск возникновения аварийной ситуации.

Методы расчета коэффициент трансформации

Для проведения испытаний вам понадобится вольтметр. С помощью этого прибора можно убедиться в том, что соотношение количества витков соответствует техническим стандартам. Для этого необходимо измерить коэффициенты на холостом ходу. Эти проверки также позволяют определить полярности и возможные повреждения трансформатора.

Существует 3 метода определения коэффициента трансформации:

  • технические документы от производителя;
  • мост переменного тока;
  • последовательные измерения вольтметром.

Классический метод измерений предполагает использование двух вольтметров. Номинальный коэффициент определяется путем деления показателей напряжения, которые фиксируются на холостом ходу.

При работе с новым прибором эти данные можно посмотреть в техническом паспорте производителя. При проверке трехфазных трансформаторов измерения проводятся одновременно для одной и другой обмотки.

Встречаются ситуации, при которых прибор имеет скрытые выводы. В таком случае измерения проводятся только в том месте, в котором провода соединяются с устройством и не находятся под кожухом. Они находятся снаружи, поэтому доступны для проведения проверки. При работе с устройством одной фазы задача упрощается. Для исследования понадобятся значения двух вольтметров, расположенных в разных концах обмотки. Такая схема учитывает подключенную нагрузку цепи №2.

Наиболее современный способ определения коэффициентов позволит быстро получить показатели должного уровня точности. Универсальные приборы не требуют подведения к трансформатору каких-либо источников напряжения. Данным методом пользуются профессиональные электрики. При наличии специальных приборов с такой задачей справится и неподготовленный человек.

При анализе токов трансформатора создается цепь, в которой величина тока от 20 до 100 процентов пропускается по обмотке первичного типа. При этом должно и измеряться ответвление – вторичный ток.

Стоит быть предельно осторожными при работе с трансформаторами, имеющими несколько обмоток вторичного типа. Такие устройства могут быть опасными. Вторичные обмотки в таком случае изолируются с целью предотвращения возникновения риска для жизни и рабочего оборудования.

Некоторые типы трансформаторов требуют заземления. Для работы с ними требуется найти в корпусе найти клемму со специальным обозначением «З» (то есть, заземление).

Как подготовить приборы к расчету?

Современные устройства для измерения коэффициентов способны работать в полуавтоматическом режиме, поэтому сложностей при их настройке не возникает. Несмотря на это, пользователю следует знать некоторые особенности выполнения такого задания.

Для определения коэффициентов в трансформаторах с одной и тремя фазами воспользуйтесь схемами, представленными ниже.

Инженерные универсальные приборы для измерения показателей должны соответствовать государственным стандартам. Используйте только ту технику, которая имеет сертификаты качества и соответствия. Важно обращать внимание на материал корпуса и комплектующих. Они должны состоять из надежных составляющих. Такие материалы переносят большие напряжения и отличаются длительным сроком эксплуатации.

Перед использованием прибора убедитесь в том, что датчики находятся на нулевом значении. Несмотря на высокую точность измерений, следует снизить уровень погрешности путем проведения нескольких испытаний. Более точные значения можно получить после нахождения общего арифметического всех полученных результатов.

Стоит запомнить, что номинальное напряжение всегда выше подводимого. Универсальные приборы современного типа предназначены не только для определения коэффициента трансформации. Такие приспособления показывают полярность катушек и значение тока возбуждения в трансформаторах различного типа.

Измерение потерь холостого хода

Такие испытания проводятся для трансформаторов, мощность которых превышает 1000 кВт. Установки мощностью до 1000 кВт можно проверять только после проведения капитального ремонта и частичным изменением магниопровода.

Потери холостого хода у трансформаторов трехфазного типа фиксируются при наличии однофазного возбуждения тока. При проведении работ следует использовать схемы, предоставленные производителем.

Обратите внимание, что коэффициенты установок во время ремонта или эксплуатации не должны отличаться от заводских стандартов более чем на 5%. Для трансформаторов однофазного типа аналогичные значение не превышают 10%.

Решение о начале измерений принимается техническим руководителем на предприятии. Поводом для начала исследований могут стать данные хроматографического анализа газов, растворенных в масле. В этом случае полученные показатели не должны отличаться от исходных норм более чем на 30%. В конце исследования все технические параметры заносятся в соответствующий отчет. Этот документ может использоваться в будущем технологами предприятия для определения уровня амортизации оборудования и его общего технического состояния.

Коэффициент трансформации трансформатора — это величина, выражающая масштабирующую (преобразовательную) характеристику трансформатора относительно какого-нибудь параметра электрической цепи (напряжения, силы тока, сопротивления и т. д.). [ источник не указан 1132 дня ]

Для силовых трансформаторов ГОСТ 16110-82 определяет коэффициент трансформации как «отношение напряжений на зажимах двух обмоток в режиме холостого хода» и «принимается равным отношению чисел их витков» [1] :п. 9.1.7 .

Содержание

Общие сведения [ править | править код ]

Термин «масштабирование» используется в описании вместо термина «преобразование» с целью акцентировать внимание на том, что трансформаторы не преобразовывают один вид энергии в другой, и даже не один из параметров электрической сети в другой параметр (как иногда привыкли говорить о преобразовании, например, напряжения в ток понижающими трансформаторами). Преобразование — это всего лишь изменение значения какого-либо из параметров цепи в сторону увеличения или уменьшения. И хотя такие преобразования затрагивают практически все параметры электроцепи, принято выделять из них самый «главный» и с ним связывать термин коэффициента трансформации. Это выделение обосновывается функциональным назначением трансформатора, схемой включения к питающей стороне и т. д.

Масштабирование напряжения [ править | править код ]

Для трансформаторов с параллельным подключением первичной обмотки к источнику энергии интересует, как правило, масштабирование в отношении напряжения, а значит, коэффициент трансформации n выражает отношение первичного (входного) и вторичного (выходного) напряжений:

n = U 1 U 2 = ε ⋅ N 1 + I 1 ⋅ R 1 ε ⋅ N 2 − I 2 ⋅ R 2 <displaystyle n=<frac >>>=<frac <varepsilon cdot N_<1>+I_<1>cdot R_<1>><varepsilon cdot N_<2>-I_<2>cdot R_<2>>>> ,2>1>

Если пренебречь потерями в обмотках, то есть R 1 <displaystyle R_<1>> , R 2 <displaystyle R_<2>> считать равными нулю, то

n = U 1 U 2 = N 1 N 2 <displaystyle n=<frac >>>=<frac2>1> >>>> .2>1>

Такие трансформаторы ещё называют трансформаторами напряжения.

Масштабирование силы тока [ править | править код ]

Для трансформаторов с последовательным подключением первичной обмотки к источнику энергии вычисляют масштабирование в отношении силы тока, то есть коэффициент трансформации n выражает отношение первичного (входного) и вторичного (выходного) токов:

n = I 1 I 2 <displaystyle n=<frac >>>> 2>1>

Кроме того эти токи связаны ещё одной зависимостью

I 1 ⋅ N 1 = I 2 ⋅ N 2 + I 0 <displaystyle I_<1>cdot N_<1>=I_<2>cdot N_<2>+I_<0>> ,

Если пренебречь всеми потерями намагничивания и нагрева магнитопровода, то есть I 0 <displaystyle I_<0>> считать равным нулю, то

I 1 ⋅ W 1 = I 2 ⋅ W 2 <displaystyle I_<1>cdot W_<1>=I_<2>cdot W_<2>> => I 1 I 2 = N 2 N 1 <displaystyle <frac >>>=<frac2> >2>1>>>> n = I 1 I 2 = N 2 N 1 <displaystyle n=<frac1> >>>=<frac2> >2>1>>>> 1>

Такие трансформаторы ещё называют трансформаторами тока.

Масштабирование сопротивления [ править | править код ]

Ещё одно из применений трансформаторов с параллельным подключением первичной обмотки к источнику энергии — масштабирование сопротивления.

Этот вариант используется, когда не интересует непосредственно само изменение напряжения или тока, а требуется подключить к источнику энергии нагрузку с входным сопротивлением, значительно отличающимся от величин, предъявляемых этим источником.

Например, выходные каскады звуковых усилителей мощности требуют нагрузочное сопротивление выше, чем имеют низкоомные динамики. Другой пример — высокочастотные устройства, для которых равенство волновых сопротивлений источника и нагрузки позволяет получить максимальную выделяемую мощность в нагрузке. И даже сварочные трансформаторы, по сути, являются преобразователями сопротивления в большей мере чем напряжения, поскольку последнее служит для повышения безопасности работ, а первое является требованием к сопротивлению нагрузки электрических сетей. Хотя сварщику может быть и не важно, каким образом была получена из сети требуемая тепловая энергия для нагрева металла, но вполне понятно, что практически «короткое замыкание» в сети не приветствуется энергоснабжающей стороной.

Соответственно, можно сказать, что масштабирование сопротивления предназначено для передачи мощности из источника в любую нагрузку наиболее «цивилизованным» способом, без «шоковых» режимов для источника и с минимальными потерями (например, если сравнивать трансформаторное масштабирование и простое повышение сопротивления нагрузки с помощью последовательного балластного сопротивления, которое «съест» значительную долю энергии у источника).

Принцип расчета такого масштабирования тоже основан на передаче мощности, а именно, на условном равенстве мощностей: потребляемой трансформатором из первичной цепи (от источника) и отдаваемой во вторичную (нагрузке), пренебрегая потерями внутри трансформатора.

S 1 = S 2 + Δ S <displaystyle S_<1>=S_<2>+Delta S> ,

Как видно выше, коэффициент трансформации по сопротивлению равен квадрату коэффициента трансформации по напряжению.

Такие трансформаторы иногда называют согласующими (особенно в радиотехнике).

Итоговые замечания [ править | править код ]

Несмотря на различия в схемах включения, принцип работы самого трансформатора не изменяется и, соответственно, все зависимости напряжений и токов внутри трансформатора будут такими, как показано выше. То есть даже трансформатор тока кроме своей «главной» задачи масштабировать силу тока будет иметь зависимости первичных и вторичных напряжений такие же, как если бы он был трансформатором напряжения, и вносить в последовательную цепь, в которую он включен, сопротивление своей нагрузки, изменённое по принципу согласующего трансформатора.

Следует также помнить, что токи, напряжения, сопротивления и мощности в переменных цепях имеют кроме абсолютных значений ещё и сдвиг фаз, поэтому в расчетах (в том числе и вышеприведенных формулах) они являются векторными величинами. Это не так бывает важно учитывать для коэффициента трансформации трансформаторов общетехнического назначения, с невысокими требованиями по точности преобразования, но имеет огромное значение для измерительных трансформаторов токов и напряжений.

Для любого параметра масштабирования, если n 1 <displaystyle n , то трансформатор можно назвать повышающим; в обратном случае — понижающим [2] . Однако ГОСТ 16110-82 [1] :п. 9.1.7 не знает такого разграничения: «В двухобмоточном трансформаторе коэффициент трансформации равен отношению высшего напряжения к
низшему », то есть коэффициент трансформации всегда больше единицы.

Дополнительные сведения [ править | править код ]

Особенность учета витков [ править | править код ]

Трансформаторы передают энергию из первичной цепи во вторичную посредством магнитного поля. За редким исключением так называемых «воздушных трансформаторов», передача магнитного поля осуществляется по специальным магнитопроводам (из электротехнической стали, например, или других ферромагнитных веществ) с магнитной проницаемостью намного большей, чем у воздуха или вакуума. Это концентрирует магнитные силовые линии в теле магнитопровода, уменьшая магнитное рассеивание, а кроме того, усиливает плотность магнитного потока (индукцию) в этой части пространства, занятой магнитопроводом. Последнее приводит к усилению магнитного поля и меньшему потреблению тока «холостого хода», то есть меньшим потерям.

Как известно из курса физики, магнитные силовые линии — концентричные и замкнутые сами на себя «кольца», охватывающие проводник с током. Прямой проводник с током охватывается кольцами магнитного поля по всей длине. Если проводник изогнуть, то кольца магнитного поля с разных участков длины проводника сближаются на внутренней стороне изгиба (подобно витковой пружине, изогнутой набок, с прижатыми витками внутри и растянутыми снаружи изгиба). Этот шаг позволяет увеличить концентрацию силовых линий внутри изгиба и соответственно усилить магнитное поле в той части пространства. Ещё лучше изогнуть проводник кольцом, и тогда все магнитные линии распределенные по длине окружности «собьются в кучку» внутри кольца. Такой шаг называется созданием витка проводника с током.

Все вышеописанное очень хорошо подходит для трансформаторов без сердечника (либо других случаев с относительно однородной магнитной средой вокруг витков), но абсолютно бесполезно при наличии магнитных замкнутых сердечников, которые, к сожалению, по геометрическим причинам никак не могут заполнить все пространство вокруг обмотки трансформатора. И поэтому, магнитные силовые линии, охватывающие виток обмотки трансформатора находятся в неравных условиях по периметру витка. Одним силовым линиям «повезло» больше, и они проходят только по облегченному маршруту магнитопроводника, другим же приходится часть пути проходить по сердечнику (внутри витка), а остальную по воздуху, для создания замкнутого силового «кольца». Магнитное сопротивление воздуха почти гасит такие линии поля и соответственно нивелирует наличие той части витка, которая породила эту магнитную линию.

Из всего вышесказанного и отображенного на рисунке существует вывод — в работе трансформатора с замкнутым ферромагнитопроводом принимает участие не весь виток, а только небольшая часть, которая полностью окружена этим магнитопроводом. Или другими словами — основной магнитный поток, проходящий через замкнутый сердечник трансформатора создается только той частью провода, которая проходит сквозь «окно» этого сердечника. Рисунок показывает, что для создания 2-х «витков» достаточно дважды пропустить провод с током через «окно» магнитопровода, экономя при этом на обмотке.

По своей сути коэффициент трансформации представляет собой техническую величину. В качестве примера можно взять счетчик электроэнергии прямого включения, работающий с малыми токами нагрузки. Однако токи, которые нужно измерить, имеют гораздо более высокое значение. Их требуется уменьшить, чтобы прибор учета не сгорел. С этой целью используются трансформаторы тока, подбираемые в соответствии с нагрузкой потребителя, а также силовой трансформатор. В связи с этим, коэффициент трансформации может быть разным, в зависимости от оборудования, установленного в квартире.

Счетчик, работающий через трансформатор, учитывает не реальное значение потребленной электроэнергии, а той, которая понижена тока в определенное количество раз. Эти разы и будут коэффициентом трансформации. Данная величина показывает во сколько раз входной ток или напряжение, больше или меньше такого же параметра на выходе.

Основной параметр трансформатора

Основной характеристикой любого трансформатора является коэффициент трансформации. Он определяется как отношение количества витков первичной обмотки к числу витков во вторичной обмотке. Кроме того, эта величина может быть рассчитана путем деления соответствующих показателей ЭДС в обмотках.

Формула

При наличии идеальных условий, когда отсутствуют электрические потери, решение вопроса, как определить коэффициент, осуществляется с помощью соотношения напряжений на зажимах каждой из обмоток. Если в трансформаторе имеется больше двух обмоток, данная величина рассчитывается поочередно для каждой обмотки.

В понижающих трансформаторах коэффициент трансформации будет выше единицы, в повышающих устройствах этот показатель составляет от 0 до 1. Фактически этот показатель определяет во сколько раз трансформатор напряжения понижает подаваемое напряжение. С его помощью можно определить правильность числа витков. Данный коэффициент определяется на всех имеющихся фазах и на каждом ответвлении сети. Полученные данные используются для расчетов, позволяют выявить обрывы проводов в обмотках и определить полярность каждой из них.

Определить реальный коэффициент трансформации тока трансформатора можно с использованием двух вольтметров. В трансформаторах с тремя обмотками измерения выполняются как минимум для двух пар обмоток с наименьшим током короткого замыкания. Если некоторые элементы трансформатора и ответвления закрыты кожухом, то определение коэффициента становится возможным только для зажимов обмоток, выведенных наружу.

В однофазных трансформаторах для расчета рабочего коэффициента трансформации используется специальная формула, в которой напряжение, подведенное к первичной цепи, делится на одновременно измеряемое напряжение во вторичной цепи. Для этого нужно заранее знать, в чем измеряется каждый показатель.

Запрещается подключение к обмоткам напряжения существенно выше или ниже номинального значения, указанного в паспорте трансформатора. Это приведет к росту погрешностей измерений вследствие потерь тока, потребляемого измерительным прибором, к которому подключается трехфазный трансформатор. Кроме того, на точность измерений влияет ток холостого хода. Для большинства устройств разработана специальная таблица, где указаны довольно точные данные, которые можно использовать при расчетах.

Измерения должны проводиться вольтметрами с классом точности 0,2-0,5. Более простое и быстрое определение коэффициента возможно с помощью специальных универсальных приборов, позволяющих обойтись без использования посторонних источников переменного напряжения.

Коэффициент трансформации электросчетчика

Величина коэффициента трансформации широко применяется для приборов учета электроэнергии. Эти данные необходимы для правильного выбора электросчетчика и дальнейших расчетов реального энергопотребления. С этой целью используется дополнительный показатель – расчетный коэффициент учета.

Для того чтобы определить данную величину с прибора учета электроэнергии снимаются показания и умножаются на коэффициент трансформации подключенного трансформаторного устройства. Например, решая задачу, как найти нужный показатель, 60 кВт/ч нужно умножить на коэффициент, равный 20 (30, 40 или 60). В результате умножения получается 60 х 20 = 1200 кВт/ч. Полученной значение и будет реальным расходом электроэнергии.

Существуют различные виды приборов учета. По своему принципу действия они могут быть одно- или трехфазными. Они не подключаются напрямую, между ними в цепь обязательно включается трансформатор тока. Некоторые конструкции счетчиков предполагают возможность прямого включения. В сетях с напряжением до 380 вольт используются счетчики 5-20 ампер. На счетчик поступает электроэнергия в чистом виде, с постоянным значением.

В настоящее время используются индукционные приборы учета, которые постепенно заменяются электронными моделями. Они считаются устаревшими, поскольку не могут выполнять учет потребленной электроэнергии по разным тарифам. Кроме того, они не могут передавать данные на удаленное расстояние. Поэтому на смену им приходят электронные счетчики, способные напрямую преобразовывать поступающий ток в определенные сигналы. В этих конструкциях отсутствуют вращающиеся части, что способствует существенному повышению их надежности и долговечности. Коэффициент трансформации счетчиков оказывает прямое влияние на точность получаемых данных.

Как определить коэффициент трансформации

Коэффициент трансформации счетчика

Коэффициент трансформации трансформатора

Коэффициент абсорбции трансформатора

Коэффициент мощности нагрузки

Коэффициент использования светового потока

Коэффициент использования производственной мощности

Определение коэффициента трансформации





⇐ ПредыдущаяСтр 3 из 4Следующая ⇒

Коэффициентом трансформации называют отношение ЭДС в первичной фазной обмотке к ЭДС во вторичной фазной обмотке, созданных основным магнитным потоком. Как показано на с. 5, коэффициент трансформации оказывается равным отношению чисел витков фазных обмоток .

При вычислении коэффициента трансформации за первичную обмотку принимают обычно ВН, чтобы иметь .

Экспериментально коэффициент трансформации определяют (проверяют) в режиме ХХ. В этом режиме выполняются условия: считать и , и, следовательно, получим:

.

Согласно ГОСТу [6], в опыте по определению коэффициента трансформации используются вольтметры класса 0,2. В трёхфазном Тр измеряются по три линейных напряжения для каждой из обмоток, по которым находят затем среднеарифметические величины и . При одинаковых схемах соединений обмоток ВН и НН коэффициент трансформации

,

при схеме соединений (символ в числителе дроби относится к обмотке ВН, а в знаменателе – к обмотке НН)

,

а при схеме

.

Коэффициент трансформации, вычисленный по приведенным выше формулам, называется ещё коэффициентом трансформации фазных напряжений. Иногда используется и коэффициент трансформации линейных напряжений, который независимо от схем соединений обмоток ВН и НН определяется выражением

.

Из сопоставления выражений для и видно, что при одинаковых схемах соединений обмоток ВН и НН , при схеме , а при схеме .



Опыт короткого замыкания

Опыт КЗ позволяет определить потери в меди обмоток Тр и рассчитать активные сопротивления и индуктивные сопротивления рассеяния. Опыт КЗ проводится в режиме короткого замыкания, когда на одну из трёхфазных обмоток подано пониженное напряжение, а другая трёхфазная обмотка замкнута накоротко.

Режим КЗ при номинальном напряжении питания является аварийным, так как установившиеся токи обмоток в этом случае в 10–20 раз превышают номинальные. В опыте КЗ напряжение, подаваемое на первичную обмотку, должно составлять не более 0,1 от номинального.

Опыт КЗ по форме проводится аналогично опыту ХХ – при каждом значении питающего напряжения по приборам отсчитываются 3 линейных напряжения, 3 линейных тока и 2 алгебраических значения мощности. Рекомендуется снять 5 точек при таких напряжениях питания, при которых ток первичной обмотки составляет 1,25; 1,0; 0,75; 0,5; 0,25 от её номинального тока. Опыт начинается с наибольшего значения тока первичной обмотки, чтобы обеспечить наименьшее нагревание обмоток за время опыта.



Опыт КЗ, как правило, следует проводить при питании Тр со стороны обмотки ВН, так как в этом случае измеряемые напряжения лучше согласуются с пределами измерений ваттметров и вольтметров.

Результаты опыта КЗ рекомендуется записывать в таблицу 2.2.

Таблица 2.2


п/п
Первичные линейные напряжения Первичные линейные токи Мощности Ном.напря-жение и ток ваттметра, В/А
Uл1, Uл2, Uл3,
дел
Цена дел., В/дел. Iл1, Iл2, Iл3,
дел.
Ном.
первичный ток ТА, А
P1,P2,
дел.
19,3 18,5 18,2

2,45 2,41 2,48

45,1
-5,7
75/5
75/5
           
           

 

 

Обработка результатов лабораторных исследований

Опыт холостого хода

По полученным в опыте показаниям приборов, выраженных в делениях, вычислить значения напряжений, токов и мощностей в именованных единицах.

В расчётах используются среднеарифметические значения первичных линейных напряжений и токов:

, .

Мощность, потребляемая Тр,

,

где мощности, измеренные 1–м и 2 –м ваттметрами.

Полное сопротивление намагничивающей ветви Т-образной схемы замещения Тр [1, 3] , где – фазные значения напряжения и тока первичной обмотки (для схемы Y: ; для схемы : ).

Активное сопротивление намагничивающей ветви .

Индуктивное сопротивление намагничивающей ветви .

Коэффициент мощности (отношение активной мощности к полной)

.

Расчёты свести в таблицу 2.3.

Таблица 2.3

По данным таблицы 2.3 построить характеристики ХХ (на графике обязательно указать точки, соответствующие таблице 2.3). Типичный вид характеристик ХХ показан на рисунке 2.2.




 

 











Расчет коэффициента трансформации для трансформаторов: формула

Этим термином обозначают пропорциональность изменения напряжения на выходе вторичной обмотке при подключении соответствующего устройства к источнику питания. Коэффициент трансформации определяет основные параметры трансформатора. Для рабочих расчетов функциональных компонентов и различных вариантов подключения нагрузки применяют специализированные алгоритмы.

Устройство типового трансформатора

Устройство типового трансформатора

Что такое коэффициент трансформации

По классическому определению коэффициентом трансформации трансформатора (Ктр) называют отношение напряжений (Uвых/Uвх) при отсутствии нагрузки. Режим холостого хода подразумевает отсутствие учета влияния подключенных потребителей энергии. Для оценки комбинированных устройств с несколькими вторичными обмотками отдельно рассматривают соответствующее количество коэффициентов.

К сведению. При работе с трехфазными сетями следует учитывать различия между Ктр по напряжению и ЭДС.

Свойства трансформатора

В представленной выше схеме серийного изделия функциональность обеспечивают две катушки индукции, закрепленные на сердечнике из металла. При подключении к источнику питания переменного тока формируется электромагнитное поле, которое создает ток во второй обмотке по базовым законам электродинамики. В упрощенном варианте пренебрегают затратами энергии на повышение температуры проводников и потерями, которые обеспечивают вихревые токи. Для приблизительного расчета применяют формулу:

Ктр = Uвх/Uвых = N1/N2, где N – количество витков в первичной и вторичной обмотках, соответственно.

Масштабирование напряжения

Этот термин подчеркивает суть рассматриваемого явления. Фактически трансформация (преобразование) энергии в данном случае не происходит. Изменяется в сторону увеличения (уменьшения) определенный параметр. Несмотря на взаимную связь всех базовых компонентов, отдельно рассматривают только важнейший показатель для решения определенной инженерной задачи (напряжение, силу тока или электрическое сопротивление).

Если подключить трансформатор по схеме, показанной на картинке выше, формулу коэффициента трансформации можно определить следующим образом:

Ктр = Uвх/Uвых = (E*N1 + I1*R1)/ (E*N2 + I2*R2),

где:

  • E – электродвижущая сила, которая наводится в одиночном витке;
  • I, R – токи, активные электрические сопротивления (значения для соответствующих обмоток).

Масштабирование силы тока

В этом примере первичную обмотку подключают к источнику питания последовательно через небольшую нагрузку (Ктр = I1/I2). Зависимость токов и количества витков:

I1*N1 = I2*N2 +Iх.

В этом выражении Ix – ток холостого хода, который обусловлен отмеченными выше вихревыми явлениями и потерями на повышение температуры магнитопровода. Простым математическим преобразованием можно получить значение коэффициента трансформации через количество витков (без учета сопутствующих энергетических затрат):

Ктр = N2/N1.

Масштабирование сопротивления

В отдельных ситуациях функциональность электротехнического устройства (отдельных блоков) будет определять именно сопротивление подключаемой нагрузки. Наглядный пример – согласование типовых низкоомных динамиков (6-8 Ом) и выходного тракта усилителя мощности звукового диапазона.

Согласующий трансформатор

Согласующий трансформатор

При воспроизведении технологии сварки в рабочей области фактически поддерживается режим короткого замыкания. Если не отделить эту часть от источника питания, сеть будет подвергаться чрезмерным нагрузкам. В этой ситуации пригодится трансформатор, который сохраняет путь передачи электроэнергии с одновременным выполнением необходимых защитных функций.

Для этих примеров особое значение приобретает баланс:

W1 = W2 + Wп.

В этом выражении приведены обозначения мощностей:

  • W1 – потребления;
  • W2 – передаваемой в нагрузку;
  • Wп – потерь.

Последовательность элементарных преобразований позволит получить следующие выражения, по которым будут вычисляться отдельные параметры:

  • W1 = I1 * U1 = U12/Z1;
  • W2 = I2 * U2 = U22/Z2;
  • с исключением потерь: U12/Z1 = U22/Z2;
  • Ктр (по сопротивлению) = U12/U22 = Z1/ Z2 = Ктр2 (по напряжению).

К сведению. В этих выражениях Z1 (Z2) – это сопротивления нагрузки для источника питания при подключенном трансформаторе или без него, соответственно.

Итоговые замечания

Следует подчеркнуть неизменность воспроизведения трансформатором рабочих процессов в любом из представленных выше примеров. Тип масштабирования будет определяться целевым назначением определенной схемы. В зависимости от необходимости учитывают коэффициент трансформатора по соответствующему параметру (U, I или Z). Способность повышать, понижать или поддерживать равный уровень напряжения объясняется только количеством витков.

К сведению. При расчете измерительной аппаратуры и в других ситуациях для повышения точности учитывают энергетические потери, фазовый сдвиг электрических параметров и влияние внешних факторов.

Коэффициент трансформации трансформатора

Чтобы определить Ктр опытным путем, применяют несколько вольтметров. Рекомендуется использовать однотипные приборы с одинаковым классом точности.

Измерение коэффициента трансформации

Измерение коэффициента трансформации

Методики

РисунокТрансформаторИсточник питания
а)однофазныйоднофазный
б)трехфазныйтрехфазная схема возбуждения
в)трехфазныйоднофазная схема возбуждения
г)трехфазныйнулевой вывод, однофазная схема возбуждения

Формула коэффициента трансформации трансформатора

Устройства этой категории не преобразуют энергию в разные виды. Трансформаторы изменяют электрические параметры. Специальным коэффициентом (Ктр) обозначают соответствующий множитель. При выходном напряжении большем, чем входное, Ктр становиться меньше единицы. Такой трансформатор будет называться повышающим. В обратной ситуации (Ктр = 220/ 110 = 2>1) – понижающим.

Виды трансформаторов и их коэффициенты

Для изменения определенных проектом параметров применяют соответствующие схемы включения и расчетные формулы:

  • первичная обмотка подсоединена к источнику питания параллельно (масштабирование по напряжению): Ктрu = Uвх/Uвых = N1/N2;
  • аналогичный способ, но с учетом изменения сопротивления: Ктрz = Uвх2/Uвых2 = Z1/ Z2 = Ктрu2;
  • последовательное подключение для масштабирования силы тока: Ктрi = Iвх/Iвых = N2/N1 (для повышения точности следует добавить энергетические потери, которые определяют в режиме холостого хода).

Особенность учета витков

При рассмотрении отдельных конструкций следует обратить внимание на несколько важных деталей. Энергия передается с помощью электромагнитного поля. Сердечник, созданный из ферромагнитного материала, улучшает распределение силовых линий. Это снижает сопутствующие потери. Однако и в этом случае отдельные линии проходят через воздушную среду. Приходится учитывать взаимное влияние разных витков. Основные полезные функции выполняет часть поля, сформированная во внутреннем пространстве магнитопровода.

Видео

Коэффициент трансформации трансформатора

Коэффициент трансформации – показывает значение во сколько раз изменилась величина вторичного тока и напряжения. Также с его помощью можно определить какой трансформатор: понижающий или повышающий.

Для силового трансформатора

Трансформаторы бывают повышающие и понижающие, что бы это определить нужно узнать коэффициент трансформации, с его помощью можно узнать какой трансформатор. Если коэффициент меньше 1 то трансформатор повышающий(также это можно определить по значениям если во вторичной обмотке больше чем в первичной то такой повышающий) и наоборот если К>1, то понижающий(если в первичной обмотке меньше витков чем во вторичной).

Формула по вычислению коэффициента трансформацииФормула по вычислению коэффициента трансформации

где:

  • U1 и U2 — напряжение в первичной и вторичной обмотки,
  • N1 и N2 — количество витков в первичной и вторичной обмотке,
  • I1 и I2 — ток в первичной и вторичной обмотки.

Трансформатор тока

Формула для вычисления коэффициента трансформации ТТ:

коэффициента трансформации ТТ

Значения коэффициентов обычно очень большие по сравнению с силовым трансформатор. Величины могут быть такими, как представлено в таблице:

значения тт

Определим коэфф. трансформации: возьмём ТТ со значениями которые выделены в таблице 600/5 = 120. Также можно взять любой трансформатор 750/5 = 150; 800/2 = 400 и тд.

Подробнее о трансформаторе тока(ТТ):Читать статью

Трансформатор напряжения

Формула для вычисления коэффициента трансформации ТН:

коэффициента трансформации тн

Давайте рассчитаем коэффициент трансформации для ТН который показана на фото ниже:

Значение ТН

Нужно взять напряжение первичной обмотки(красная стрелка) и разделить на напряжение вторичной обмотки(жёлтая стрелка). 35000/100 = 350.

Подробнее о трансформаторе напряжения(ТН):Читать статью

Автотрансформатор

Формула для вычисления коэффициента трансформации у автотрансформатора:

Коэфф у автотрансформатора

эдс

Подробнее об автотрансформаторе(ЛАТР):Читать статью

Что такое коэффициент трансформации — Cтатьи от компании T-zamer

  1. Что такое коэффициент трансформации?
  2. Методы расчета коэффициент трансформации.
  3. Как подготовить приборы к расчету?
  4. Измерение потерь холостого хода

Что такое коэффициент трансформации?


Проверка коэффициента трансформации подразумевает расчет отношения напряжений U1 и U2. U1 – это напряжение концов обмотки трансформатора. U2 – это напряжение выводов вторичной обмотки, которое определяется во время холостого хода. В теории устройство не претерпевает потери мощности. Но на практике часто встречаются ситуации, при которых наблюдается понижающий или повышающий коэффициент. В таком случае без специальных расчетов не обойтись. Коэффициент можно найти с помощью простой формулы:


pica21.jpg


Данное значение показывает, насколько токовое напряжение в одной обмотке отличается от другой при воздействии определенных нагрузок. Такие измерения позволяют вовремя устранить неисправности и предотвратить риск возникновения аварийной ситуации.

Методы расчета коэффициент трансформации


Для проведения испытаний вам понадобится вольтметр. С помощью этого прибора можно убедиться в том, что соотношение количества витков соответствует техническим стандартам. Для этого необходимо измерить коэффициенты на холостом ходу. Эти проверки также позволяют определить полярности и возможные повреждения трансформатора.


Существует 3 метода определения коэффициента трансформации:

  • технические документы от производителя;
  • мост переменного тока;
  • последовательные измерения вольтметром.


Классический метод измерений предполагает использование двух вольтметров. Номинальный коэффициент определяется путем деления показателей напряжения, которые фиксируются на холостом ходу.


При работе с новым прибором эти данные можно посмотреть в техническом паспорте производителя. При проверке трехфазных трансформаторов измерения проводятся одновременно для одной и другой обмотки.


Встречаются ситуации, при которых прибор имеет скрытые выводы. В таком случае измерения проводятся только в том месте, в котором провода соединяются с устройством и не находятся под кожухом. Они находятся снаружи, поэтому доступны для проведения проверки. При работе с устройством одной фазы задача упрощается. Для исследования понадобятся значения двух вольтметров, расположенных в разных концах обмотки. Такая схема учитывает подключенную нагрузку цепи №2.


pica22.jpg


Наиболее современный способ определения коэффициентов позволит быстро получить показатели должного уровня точности. Универсальные приборы не требуют подведения к трансформатору каких-либо источников напряжения. Данным методом пользуются профессиональные электрики. При наличии специальных приборов с такой задачей справится и неподготовленный человек.


При анализе токов трансформатора создается цепь, в которой величина тока от 20 до 100 процентов пропускается по обмотке первичного типа. При этом должно и измеряться ответвление – вторичный ток.


Стоит быть предельно осторожными при работе с трансформаторами, имеющими несколько обмоток вторичного типа. Такие устройства могут быть опасными. Вторичные обмотки в таком случае изолируются с целью предотвращения возникновения риска для жизни и рабочего оборудования.


Некоторые типы трансформаторов требуют заземления. Для работы с ними требуется найти в корпусе найти клемму со специальным обозначением «З» (то есть, заземление).

Как подготовить приборы к расчету?


Современные устройства для измерения коэффициентов способны работать в полуавтоматическом режиме, поэтому сложностей при их настройке не возникает. Несмотря на это, пользователю следует знать некоторые особенности выполнения такого задания.


Для определения коэффициентов в трансформаторах с одной и тремя фазами воспользуйтесь схемами, представленными ниже.


pica23.jpg


Инженерные универсальные приборы для измерения показателей должны соответствовать государственным стандартам. Используйте только ту технику, которая имеет сертификаты качества и соответствия. Важно обращать внимание на материал корпуса и комплектующих. Они должны состоять из надежных составляющих. Такие материалы переносят большие напряжения и отличаются длительным сроком эксплуатации.


Перед использованием прибора убедитесь в том, что датчики находятся на нулевом значении. Несмотря на высокую точность измерений, следует снизить уровень погрешности путем проведения нескольких испытаний. Более точные значения можно получить после нахождения общего арифметического всех полученных результатов.


Стоит запомнить, что номинальное напряжение всегда выше подводимого. Универсальные приборы современного типа предназначены не только для определения коэффициента трансформации. Такие приспособления показывают полярность катушек и значение тока возбуждения в трансформаторах различного типа.

Измерение потерь холостого хода


Такие испытания проводятся для трансформаторов, мощность которых превышает 1000 кВт. Установки мощностью до 1000 кВт можно проверять только после проведения капитального ремонта и частичным изменением магниопровода.


Потери холостого хода у трансформаторов трехфазного типа фиксируются при наличии однофазного возбуждения тока. При проведении работ следует использовать схемы, предоставленные производителем.


Обратите внимание, что коэффициенты установок во время ремонта или эксплуатации не должны отличаться от заводских стандартов более чем на 5%. Для трансформаторов однофазного типа аналогичные значение не превышают 10%.


Решение о начале измерений принимается техническим руководителем на предприятии. Поводом для начала исследований могут стать данные хроматографического анализа газов, растворенных в масле. В этом случае полученные показатели не должны отличаться от исходных норм более чем на 30%. В конце исследования все технические параметры заносятся в соответствующий отчет. Этот документ может использоваться в будущем технологами предприятия для определения уровня амортизации оборудования и его общего технического состояния.

Что такое коэффициент трансформации — Блог о строительстве

Коэффициент трансформации— трансформатора  это величина, выражающая масштабирующую (преобразовательную) характеристику трансформатора относительно какого нибудь параметра электрической цепи (напряжения, тока, сопротивления и т. д.).

Содержание 1 Общие… …   Википедиякоэффициент трансформации — Отношение напряжений на зажимах двух обмоток в режиме холостого хода. Примечания: 1. Для двух обмоток силового трансформатора, расположенных на одном стержне, коэффициент трансформации принимается равным отношению чисел их витков 2.

В трехфазном… …   Справочник технического переводчикаКоэффициент трансформации— 9.1.7. Коэффициент трансформации Отношение напряжений на зажимах двух обмоток в режиме холостого хода. Примечания: 1. Для двух обмоток силового трансформатора, расположенных на одном стержне, коэффициент трансформации принимается равным отношению …   Словарь-справочник терминов нормативно-технической документациикоэффициент трансформации— transformacijos koeficientas statusas T sritis automatika atitikmenys: angl.

step up ratio of transformation; transformation coefficient; transformation ratio vok. Übersetzungsverhältnis, n; Transformationsübersetzung, f;… …   Automatikos terminų žodynasкоэффициент трансформации— transformacijos koeficientas statusas T sritis Standartizacija ir metrologija apibrėžtis Transformatorių apibūdinantis dydis, išreiškiamas pirminės ir antrinės apvijos elektrovarų, įtampų, srovių stiprių arba vijų skaičių dalmeniu. atitikmenys:… …   Penkiakalbis aiškinamasis metrologijos terminų žodynasкоэффициент трансформации— keitimo santykis statusas T sritis Standartizacija ir metrologija apibrėžtis Keitiklio parametras, keičiamąjį signalą siejantis su pakeistuoju signalu, pvz., B = kA; čia A – keičiamasis signalas, B – pakeistasis signalas, k – keitimo santykis.… …   Penkiakalbis aiškinamasis metrologijos terminų žodynasкоэффициент трансформации— keitimo santykis statusas T sritis fizika atitikmenys: angl.

transformation ratio vok. Übersetzung, f rus. коэффициент трансформации, m pranc.

rapport de transformation, m …   Fizikos terminų žodynas Коэффициент трансформации— – отношение напряжения на зажимах двух обмоток трансформатора в режиме холостого хода. ГОСТ 16110 82 …   Коммерческая электроэнергетика. Словарь-справочник коэффициент трансформации ответвления (пары обмоток)— Коэффициент, равный номинальному коэффициенту трансформации: умноженному на коэффициент ответвления обмотки с ответвлениями, если это обмотка высшего напряжения; деленному на коэффициент ответвления обмотки с ответвлениями, если это обмотка… …   Справочник технического переводчикакоэффициент трансформации трансформатора малой мощности— Отношение числа витков вторичной обмотки к числу витков первичной обмотки [ГОСТ 20938 75] Тематики трансформатор Классификация >>> Синонимы коэффициент трансформации EN low power transformer turns ratio DE Übersetzungsverhältnis des… …   Справочник технического переводчика

Вам понадобится

    – трансформатор; – источник переменного тока; – тестер; – калькулятор.

Инструкция

Возьмите обычный трансформатор. Он состоитиз двух катушек. Найдите количество витков катушек N1 и N2, которые являютсяосновой трансформатора и соединены магнитопроводом. Определите коэффициент трансформацииk. Для этого поделите количество витков первичной катушки N1, которая подключается к источнику тока, на количество витков вторичной катушки N2, к которой подключается нагрузка: k=N1/N2.Пример. Обмотка трансформатора, подключенная к источнику тока, имеет 200 витков, а другая обмотка 1200 витков. Определите коэффициент трансформациии тип трансформатора. Найдите первичную и вторичную обмотку. Первичная – это та, которая подключена к источнику тока, она имеет 200 витков. Вторичная обмотка имеет, соответственно, 1200 витков. Рассчитайте коэффициент трансформациипо формуле: k=N1/N2=200/1200=1/6≈0,167. Трансформатор повышающий.Измерьте электродвижущую силу (ЭДС) на обоих обмотках трансформатора ε1 и ε2, если нет возможности узнать количество витков в них. Для этого подключите первичную обмотку трансформатора к источнику тока. Этот режим называетсяхолостым ходом. С помощьютестера найдите напряжение на первичной и вторичной обмотке. Оно будет равно ЭДС каждой из обмоток. Учитывайте, что потериэнергии за счет сопротивления обмоток пренебрежимо малы. Рассчитайте коэффициент трансформациичерез отношение ЭДС первичной и вторичной обмотки: k= ε1/ε2.Пример. Напряжение на первичной обмотке после подключенияк источнику тока равно 220 В. На разомкнутой вторичной обмотке напряжение составляет55 В. Найдите коэффициент трансформации. Трансформатор работаетна холостом ходу, поэтому напряжения на обмотках считайте равными ЭДС. Рассчитайте коэффициент трансформациипо формуле: k=ε1/ε2=220/55=4.Найдите коэффициент трансформацииработающего трансформатора, когдак вторичной обмотке присоединен потребитель. Рассчитайте его, поделив ток в первичной I1 обмотке, на ток во вторичной I2 обмотке. Ток измерьте, присоединяя последовательно обмоткам тестер, переключенный в режим работы амперметра: k=I1/I2.

Видео по теме

Обратите внимание

Трансформатор подключайте только к источнику переменного тока, иначе он не будет работать и может испортиться.

Источники:

    коэффициент трансформации этоОпределение коэффициента трансформации однофазного

Трансформатор– это электрический аппарат, который преобразует одно переменное напряжение в другое, например из 220 В. в 12 В. – это понижающий трансформатор.

Простейший трансформатор состоит из магнитопровода и намотанных на нем обмоток: первичной и вторичной. На первичную обмотку подается переменное напряжение, к примеру, 220 вольт от сети, а во вторичной обмотке, посредством индуктивной связи создается другое переменное напряжение. Выходное напряжение, зависит от разности витков первичной и вторичной обмоток.

Инструкция

Расчет примитивного Ш-образного трансформатора лучше всего показать на примере. Допустим, вам нужно рассчитать трансформаторс параметрами: сетевое напряжение U1=220В; выходное напряжение (напряжение на вторичной обмотке) U2=12В; ток нагрузкиi2=0,5А. Сначала определите выходную мощность: P2=U2*i2=12*0,5=6Вт. Для такой мощностиможно взять магнитопровод сечением примерно четыре квадратных сантиметра (S=4)Далее рассчитайте, сколькотребуется витков для одного вольта. Для Ш-образного трансформатора есть формула: К=50/S=50/4=12,5 витков на вольт.

Затем, рассчитайте количество витков первичной обмотки: W1=U1*K=220*12,5=2750 витков. И количество витков вторичной обмотки: W2=U2*K=12*12,5=150 витков.

После этого, определите ток в первичной обмотке: i1=(1,1*P2)/U1=(1,1*6)/220=30мА. А затем удастся посчитать диаметр проводапервичной обмотки без изоляции. Дело в том, что максимальный ток для медного провода составляет 5 амперна квадратный миллиметр, поэтому: d1=5А/(1/i1)=5A/(1/0,03А)=0,15мм.

И последнее, рассчитайте диаметр провода вторичной обмотки по формуле, d2=0,025*корень квадратный из i2, значение i2 в этой формуле подставляйте в миллиамперах: d2=0,025*22,4=0,56мм.

Полезный совет

Измерить диаметр провода при подборке можно и без использования точных измерительных приборов. Намотайте плотно измеряемый провод на карандаш, замерьте один сантиметр намотки и разделив его на количество витков вы получите диаметр провода.

О финансовой устойчивости предприятия можно сделать вывод, зная о степени его зависимости от заемных средств, о возможности маневрировать собственным капиталом. Эта информация важна для собственников компании, ее инвесторов, а также контрагентов (покупателей готовой продукции и поставщиков сырья).

Инструкция

При анализе финансовой устойчивости вы можете рассчитать коэффициент маневренности собственного капитала. Он характеризует долю источников собственных средств предприятия, находящихся в мобильной форме. Коэффициент маневренности показывает, какаячасть собственного оборотного капиталазанятав обороте, а какая капитализирована. При этом оборотным капиталом, находящимся в мобильной форме, предприятие может свободно маневрировать.Для расчета коэффициента маневренности используйте следующую формулу: Км = СОС/СК, гдеСОС – собственные оборотные средства;СК – собственный капитал.

Иными словами, коэффициент маневренности представляет собой отношение собственного оборотного капитала предприятия к собственнымисточникам финансирования его деятельности.

Рекомендуемое значение для данного показателя – 0,5 и выше. Его величина зависитот вида деятельности предприятия. В фондоемких производствах его нормальный уровень, как правило, ниже, чем в материалоемких.

Величину собственного капитала вы можете увидеть в III разделе пассива бухгалтерского баланса. Что касается объема собственных оборотных средств, то это расчетная величина. Ее вы можете найти одним из следующихспособов:1) СОС = СК – ВА, гдеСК – собственный капитал предприятия; ВА – внеоборотные активы.2) СОС = ОА – КО, гдеОА – оборотные активы;КО – краткосрочные обязательства предприятия.

Данный показатель характеризует долю собственного капитала, которая направляется на финансирование его текущей деятельности (формирование текущих активов).

Вы должны учитывать, что в динамикекоэффициент маневренности должен увеличиваться. Однако его резкий рост не являетсясвидетельством нормального развития предприятия. Это связано с тем, что повышение данного коэффициента возможно при росте собственного оборотного капитала или при снижении собственных источников предприятия. А значит, резкое увеличение данного показателя автоматически вызовет уменьшение других, например, коэффициента автономии, что свидетельствует об усилении зависимости предприятия от кредиторов.

Содержание:

При использовании различных типов трансформаторов, а также счетчиков электрической энергии нередко возникает вопрос, что такое коэффициент трансформации.

По своей сути, данный параметр представляет собой техническую величину. В качестве примера можно взять счетчик электроэнергии прямого включения, работающий с малыми токами нагрузки. Однако токи, которые нужно измерить, имеют гораздо более высокое значение.

Их требуется уменьшить, чтобы прибор учета не сгорел. С этой целью используются трансформаторы тока, подбираемые в соответствии с нагрузкой потребителя, а также силовой трансформатор. В связи с этим, коэффициент трансформации может быть разным, в зависимости от оборудования, установленного в квартире.

Счетчик, работающий через трансформатор, учитывает не реальное значение потребленной электроэнергии, а той, которая понижена тока в определенное количество раз. Эти разы и будут коэффициентом трансформации. Данная величина показывает во сколько раз входной ток или напряжение, больше или меньше такого же параметра на выходе.

Основной параметр трансформатора

Основной характеристикой любого трансформатора является коэффициент трансформации. Он определяется как отношение количества витков первичной обмотки к числу витков во вторичной обмотке. Кроме того, эта величина может быть рассчитана путем деления соответствующих показателей ЭДС в обмотках.

Формула

При наличии идеальных условий, когда отсутствуют электрические потери, решение вопроса, как определить коэффициент, осуществляется с помощью соотношения напряжений на зажимах каждой из обмоток. Если в трансформаторе имеется больше двух обмоток, данная величина рассчитывается поочередно для каждой обмотки.

В понижающих трансформаторах коэффициент трансформации будет выше единицы, в повышающих устройствах этот показатель составляет от 0 до 1. Фактически этот показатель определяет во сколько раз трансформатор напряжения понижает подаваемое напряжение.

С его помощью можно определить правильность числа витков. Данный коэффициент определяется на всех имеющихся фазах и на каждом ответвлении сети. Полученные данные используются для расчетов, позволяют выявить обрывы проводов в обмотках и определить полярность каждой из них.

Определить реальный коэффициент трансформации тока трансформатора можно с использованием двух вольтметров. В трансформаторах с тремя обмотками измерения выполняются как минимум для двух пар обмоток с наименьшим током короткого замыкания. Если некоторые элементы трансформатора и ответвления закрыты кожухом, то определение коэффициента становится возможным только для зажимов обмоток, выведенных наружу.

В однофазных трансформаторах для расчета рабочего коэффициента трансформации используется специальная формула, в которой напряжение, подведенное к первичной цепи, делится на одновременно измеряемое напряжение во вторичной цепи. Для этого нужно заранее знать, в чем измеряется каждый показатель.Запрещается подключение к обмоткам напряжения существенно выше или ниже номинального значения, указанного в паспорте трансформатора.Это приведет к росту погрешностей измерений вследствие потерь тока, потребляемого измерительным прибором, к которому подключается трехфазный трансформатор.

Кроме того, на точность измерений влияет ток холостого хода. Для большинства устройств разработана специальная таблица, где указаны довольно точные данные, которые можно использовать при расчетах.Измерения должны проводиться вольтметрами с классом точности 0,2-0,5. Более простое и быстрое определение коэффициента возможно с помощью специальных универсальных приборов, позволяющих обойтись без использования посторонних источников переменного напряжения.

Коэффициент трансформации электросчетчика

Величина коэффициента трансформации широко применяется для приборов учета электроэнергии. Эти данные необходимы для правильного выбора электросчетчика и дальнейших расчетов реального энергопотребления. С этой целью используется дополнительный показатель – расчетный коэффициент учета.

Для того чтобы определить данную величину с прибора учета электроэнергии снимаются показания и умножаются на коэффициент трансформации подключенного трансформаторного устройства.Например, решая задачу, как найти нужный показатель, 60 кВт/ч нужно умножить на коэффициент, равный 20 (30, 40 или 60).

В результате умножения получается 60 х 20 = 1200 кВт/ч. Полученной значение и будет реальным расходом электроэнергии.Существуют различные виды приборов учета. По своему принципу действия они могут быть одно- или трехфазными.

Они не подключаются напрямую, между ними в цепь обязательно включается трансформатор тока.Некоторые конструкции счетчиков предполагают возможность прямого включения. В сетях с напряжением до 380 вольт используются счетчики 5-20 ампер. На счетчик поступает электроэнергия в чистом виде, с постоянным значением.

В настоящее время используются индукционные приборы учета, которые постепенно заменяются электронными моделями. Они считаются устаревшими, поскольку не могут выполнять учет потребленной электроэнергии по разным тарифам.

Кроме того, они не могут передавать данные на удаленное расстояние.Поэтому на смену им приходят электронные счетчики, способные напрямую преобразовывать поступающий ток в определенные сигналы. В этих конструкциях отсутствуют вращающиеся части, что способствует существенному повышению их надежности и долговечности. Коэффициент трансформации счетчиковоказывает прямое влияние на точность получаемых данных.

Как определить коэффициент трансформации

Главная> Теория> Коэффициент трансформации

Трансформатор представляет собой одно,- или многообмоточную систему на общем магнитопроводе, связанные взаимоиндукцией и предназначенные для преобразования (трансформации) величины напряжения переменного тока без изменения частоты.

Что такое коэффициент трансформации, и как определяется эта величина? Коэффициентом трансформации называется характеристика трансформатора, которая определяет его преобразовательные свойства. Данное свойство является основным и находится в общем случае отношением числа витков в обмотках.

Устройство трансформатора

Кроме преобразования, трансформаторы выполняют роль гальванической развязки входных и выходных цепей (исключение – автотрансформатор).

Свойства трансформатора

Большинство людей знакомо с трансформаторами только в том смысле, что они являются преобразователями переменного напряжения, повышающими или понижающими.

К сведению.На самом деле трансформатор не является преобразователем. Он масштабирует в определенных пределах электрические величины.

Соответственно, можно говорить о трансформаторах:

    напряжения;тока;сопротивления.

Трансформатор напряжения

Наиболее известное устройство. Включается параллельно нагрузке.

Его задача состоит в изменении входного напряжения с заданным коэффициентом. Как определить этот коэффициент? В простейшем случае он численно равен отношению количества витков в обмотках.

Говорят о понижающем трансформаторе, когда количество витков первичной (сетевой) обмотки меньше, чем у вторичной. Тогда на выходе напряжение также будет меньше. У повышающего, наоборот, количество витков вторичной (нагрузочной) обмотки превосходит количество первичной.

Включение трансформатора напряжения

Обратите внимание!В более общем случае устройство может иметь не две, а более обмоток. Для каждой из обмоток будет иметься свой коэффициент трансформации, причем часть обмоток будут понижающими, а часть –повышающими.

Любой трансформатор напряжения обратим, то есть, подав на любую из вторичных обмоток переменное напряжение, получим его и на выходе первичной, с тем же коэффициентом преобразования (трансформации).

Определение коэффициента трансформации производится по формуле:

N=U1/U2.

Как уже говорилось, коэффициент трансформации определяется отношением количества витков. Это справедливо только для режимов холостого хода, когда сопротивления проводов обмоток не вносят потерь.

Ток, который протекает в обмотках, создает на их сопротивлении падение напряжения, которое вычитается из ЭДС ненагруженного преобразователя. Таким образом, при увеличении нагрузки коэффициент трансформации падает. Аналогичная ситуация возникает для обмоток, выполненных проводами различного сечения.

Пример.Имеем понижающий трансформатор с коэффициентом трансформации, равным 10, на двух вторичных обмотках, но одна из которых выполнена проводом, сечением в два раза меньше. При одинаковых нагрузках напряжение на той обмотке, где использовался более тонкий провод, будет ниже на величину падения напряжения на сопротивлении обмоточного провода.

У трансформатора может быть и одна обмотка. В таком случае он называется автотрансформатором. Обмотка в таком случае имеет как минимум три вывода.

К одной из пары выводов подключается входное напряжение. Выходное напряжение снимается с одного из входных и оставшегося свободным. Автотрансформатор также может быть повышающим и понижающим.

Автотрансформатор

Трансформатор тока

Данное устройство более известно тем, кто занимается измерениями и обслуживанием мощных электрических установок. Измерение токов больших величин связано с определенными затруднениями, связанными с обеспечением безопасности и трудностями в изготовлении измерительных приборов для непосредственного измерения. Кроме измерений, сигналы с данных устройств используются системами защиты и сигнализации.

Включение трансформатора тока

Трансформатор тока подключается в цепь последовательно с нагрузкой. Соответственно, ток в первичной обмотке в точности равен току нагрузки. На вторичной обмотке получается напряжение, пропорциональное коэффициенту трансформации тока.

Коэффициент трансформации определяется таким же образом, как и для трансформаторов напряжения, но с поправкой на ток холостого хода, который вызван намагничиванием и потерями в магнитопроводе.

Данные устройства тока имеют специфические области применения, поэтому их строго классифицируют по нескольким критериям:

По назначению бывают защитные, измерительные, лабораторные, промежуточные;По типу установки – внутренние, наружные, переносные, накладные, встроенные;По типу конструкции – одно,- и многовитковые или шинные;По типу изоляции – сухие, масляно-бумажные, с компаундной заливкой или газонаполненные;По рабочему напряжению. Для трансформаторов тока отечественного производства установлен ряд стандартных рабочих напряжений от 0.66 до 1150 кВ;По номинальному первичному току.

Также существует диапазон градаций от 1 до 40000 А. Это основной показатель, по которому выбирается необходимый трансформатор тока;По номинальному вторичному току. Обычно 1 или 5 А, но в некоторых случаях может быть 2 или 2.5 А;По мощности вторичной нагрузки – от 1 до 120 ВА;По числу ступеней преобразования – одно,- и многоступенчатые.

К сведению.Характеристики, определяющие тип и назначение трансформаторов тока, указываются на заводской бирке изделия.

Коэффициент трансформации трансформатора тока в характеристиках не указывается, но его легко определить самостоятельно, зная значения первичного и вторичного токов, указанных в технических характеристиках. Коэффициент трансформации тока равен их отношению:

Включение согласующего трансформатора

N=I1/I2.

В отличие от аналогичных устройств, токовые трансформаторы нельзя включать без нагрузки, поскольку это приведет к выходу их из строя и появлению на выходных клеммах опасно высокой ЭДС.

Трансформатор сопротивления

Подобное устройство можно назвать еще согласующим трансформатором, так как его задача – согласовывать сопротивления источника и нагрузки для точной передачи сигнала в различных каскадах электронных схем. В данном случае не важны значения напряжений и токов в цепях, поскольку определяющим является согласованная работа каскадов с разными сопротивлениями, которые и трансформируют трансформатор сопротивления.

Включение трансформатора тока

Включение согласующего трансформатора

Коэффициент трансформации трансформатора сопротивления также определяется отношением количества витков обмоток, но в отношении сопротивления нагрузки и источника используется квадратичная зависимость, формула такова:

Ri=N2·Rn.

Автотрансформатор

Таким образом, если известны сопротивления нагрузки и источника, требуемый коэффициент трансформации находится из зависимости:

N=√Ri/Rn.

В дальнейшем найденный коэффициент трансформации используется для расчета обмоток.

Видео

Источники:

  • dic.academic.ru
  • www.kakprosto.ru
  • electric-220.ru
  • elquanta.ru

2.3 — Определение коэффициента трансформации трансформатора.

Коэффициентом
трансформации трансформаторов называется
отношение напряжения обмотки высшего
напряжения (ВН) к напряжению обмотки
низшего напряжения (НН) при холостом
ходе:

Кл = U1/U2

Где: Кл- коэффициент
трансформации линейных напряжений;

U1 —
линейное напряжение обмотки ВН;

U2 —
линейное напряжение обмотки НН.

При
определении коэффициента трансформации
однородных трансформаторов или фазного
коэффициента трансформации трехфазных

трансформаторов
отношение напряжения можно приравнять
к отношению чисел витков обмотки

Кф
=U1ф/U2ф=W1/W2

где: Кф — фазный
коэффициент трансформации;

U1ф,U2ф — фазные напряжения
обмоток ВН и НН соответственно;

WI,W2 — число витков обмоток
ВН и НН соответственно.

При измерении
линейного коэффициента трансформации
трехфазного трансформатора равенство
отношения высшего и низшего линейных
напряжения обмоток и соответственно
числа витков ВН и НН сохраняется лишь
при одинаковых группах соединения этих
обмоток.

Если первичная и
вторичная обмотки соединены по одинаковой
схеме, например, обе в звезду, обе в
треугольник и так далее, фазный и линейный
коэффициенты трансформации равны друг
другу. При различных схемах соединений
обмоток, например, одной в звезду, а
другой в треугольник, линейньй и фазный
коэффициенты трансформации неодинаковы
(они в данном случае отличаются друг от
друга в 3 раз).

Определение
коэффициента трансформации производится
на всех ответвлениях обмоток и для вех
фаз. Эти измерения, кроме проверки самого
коэффициента трансформации дают
возможность проверить также правильность
установки переключателя напряжения на
соответствующих ступенях, а также
целостность обмоток.

Для определения
коэффициента трансформации применяют
метод двух вольтметров (рис.2)

Рис.2 Определение
коэффициента трансформации.

Со стороны высокого
напряжения (ВН) подводится трехфазовое
напряжение 220 В и измеряется напряжение
на вторичной обмотке.

Внимание! Напряжение
подводится только к обмоткам ВН (А, В,
С).

Результаты измерений
заносятся в таблицу 2. Пределы измерения
вольтметров: PV1-250 В,PV2-15В.

Таблица 2.

Положение
переключателя

UAB

U

Kав

UАС

Uас

Kас

UВС

Uвс

Kвс

1

2

3

Примечание: В
данной работе трансформатор имеет одно
положение переключателя.

Коэффициент
трансформации отдельных фаз, замеренных
на одних и тех же ответвлениях не должен
отличаться друг от друга более чем на
2%.

2.4. Определение группы соединения обмоток трансформатора.

Группа
соединения обмоток трансформатора
имеет особо важное значение для
параллельной работы его с другими
трансформаторами.

Метод
двух вольтметров для определения группы
соединения обмоток является распространенным
и доступным. Метод основан на совмещении
векторных диаграмм первичного и
вторичного напряжений, измерении
напряжений между соответствующими
выводами и последующем сравнении этих
напряжений с условным.

Для
проведения опыта собирают схему,
показанную на рис.3.

Рис.3
Определение группы соединения обмоток
трансформатора методом двух вольтметров.

Вводы
А-а соединяют между собой, а на линейные
вводы А, В, С обмотки ВН подают трехфазовое
напряжение 220 В. это напряжение измеряется
вольтметром PV1.
вольтметром PV2
измеряется
напряжение между вводами В-в, С-с, В-с,
С-в. измеренные напряжения сравнивают
с условным Uусл.
Условное напряжение определяется по
формуле:

Uусл=U

Кл2+1

Где
U
– линейное напряжение на вводах обмотки
НН во время опыта В.

Кл
– линейный коэффициент трансформации.

U=Uл1л;
Кл=UВН/UНН;

Где
Uл1
– линейное напряжение, подведенное к
обмотке ВН при опыте.

Результаты
измерений группы соединений заносятся
в таблицу 3

Таблица 3

Вводы
обмоток

Напряжение
на вводах

Кл

U2

Uусл

В-в

С-с

С-в

В-с

Полученные
напряжения сравнивают с условным
напряжением. На основании сравнения и
по таблице 4 определяется группа
соединений обмоток трансформатора.

Таблица 4

Группа
соединения

0

1

2

3

4

5

6

7

8

9

10

11

Угловое
смещение

0

30

60

90

120

150

180

210

240

270

300

330

Сравнение
на вводах Uусл

В-в

М

М

М

Р

Б

Б

Б

Б

Б

Р

М

М

В-с

М

Р

Б

Б

Б

Б

Б

Р

М

М

М

М

С-в

М

М

М

М

М

Б

Б

Б

Б

Б

Б

Р

С-с

М

М

М

Р

Б

Б

Б

Б

Б

Р

М

М

Примечание:
М – меньше, Б – больше, Р – равно.

2.5
Определение сопротивления обмоток
трансформатора постоянному току.

При
заданном измерении могут выявится
следующие характерные дефекты:

а)
недоброкачественная пайка и плохие
контакты в обмотке и в присоединении
вводов;

б)
обрыв одного или нескольких параллельных
проводников в обмотке.

Измерение
сопротивления обмоток в данном случае
производится мостовым методом – мостом
Р 353. Измерение производится на всех
ответвлениях и на всех фазах. При наличии
выведенной нейтрали (0) измерение
производится между фазными выводами и
нулем. Если обмотка соединена в «звезду»,
то сопротивление фазы можно определить
/1/

RA=(RAB+RAC-RBC)/2

RВ=(RВА+RВС-RАC)/2

RС=(RСB+RСА-RАВ)/2

Где
RAB,
RВС,
RАС
– сопротивления на линейных зажимах
АВ, ВС, АС.

При
соединении обмоток в звезду RАВ=RA+RВ,
RВС=RВ+RС,
RСА=RС+RА,
где RA,
RВ,
RС
– сопротивления фазных обмоток А-Х,
B-Y,
C-Z.

Полученные
значения сопротивления разных фаз при
одном положении переключателя не должны
отличаться друг от друга более чем на
2%. Данные измерений следует занести в
таблицу 5.

Таблица 5

Положение
переключателя

Обмотка
ВН

Обмотка
НН

Примечание

RAB

RВС

RАС

RA

RВ

RС

Rао

Rbo

Rсо

1

2

3

Примечание
в данной работе трансформатор имеет
одно положение переключателя.

  1. Назначение,
    устройство и работа прибора Э236.

Прибор
Э236 предназначен для контроля технического
состояния и испытания изоляции при
техническом обслуживании и ремонте
якорей автотракторных генераторов,
стартеров и электродвигателей постоянного
тока с номинальным напряжением 12 и 24 В.
Диаметр проверяемых якорей от 25 до 180
мм при питании прибора от однофазной
электрической цепи переменного тока
напряжением 220В. /2/

Рис.4
Вид на лицевую панель прибора Э236

Конструктивно
прибор представляет собой настольную
измерительную установку, имеющую
дроссель, измерительную цепь, контактные
устройства.

С
черным проводом (левое) контактное
устройство используется при испытании
электрической прочности изоляции. При
нажатии рукоятки стержень утопает до
упора, замыкая цепь. В свободном состоянии
цепь обесточена.

С
синим проводом (правое) контактное
устройство служит для снятия с коллектора
наводимой в якоре ЭДС, и применяется
при определении короткозамкнутых секций
и витков, обрывов и т.д. Верхняя пластина
устройства – подвижная и позволяет
установить в зависимости от шага и
ширины пластин коллектора якоря
необходимый размер между торцами
пластин. В нерабочем положении оба
контактных устройства должны быть
установлены на задней стенке прибора
в кронштейнах.

На
рис.5 приведена принципиальная
электрическая схема прибора.

Рис.5
Принципиальная электрическая схема
прибора Э236.

Дроссель
L1
имеет основную обмотку (1000 витков
проводом ПЭВ-2 диаметром 0,4мм) для создания
магнитного потока в магнитопроводе и
проверяемом якоре, и дополнительную
обмотку (1100 витков проводом ПЭВ-2 диаметром
0,2мм). Питание обмоток дросселя
осуществляется напряжением 220В. Основная
обмотка дросселя имеет отвод от 54 витка,
что обеспечивает питание лампы HL2,
служащей для сигнализации включенного
состояния прибора. Для защиты питающей
сети от перегрузок и КЗ в цепи основной
обмотки установлен предохранитель F1.

Работа
прибора.

Испытание
электрической прочности изоляции
обмоток и других изолированных деталей
производится приложением к ним
действующего значения испытательного
напряжения величиной 0,22 кВ, частотой
50 Гц, мощностью 25 Вт, снятого с дополнительной
обмотки дросселя с помощью контактного
устройства А1.

При
пробое изоляции загорается лампа HL1.
Резистор R1
совместно с лампой HL1
обеспечивает необходимую мощность
испытательной схемы.

Принцип
действия прибора при контроле технического
состояния обмоток якоря основан на
сравнении ЭДС, которые индуцируются в
секциях обмотки якоря под действием
магнитного потока, создаваемого
дросселем.

Амплитудное
значение ЭДС, наводимой в обмотке якоря,
снимается с помощью контактного
устройства А2 и регистрируется по
индикаторному прибору pmA,
который подключен к пиковому детектору

выполненному
на транзисторе VT1
и конденсаторе С1.

Для
увеличения чувствительности схемы в
качестве выпрямительного элемента
пикового детектора используется
коллекторно-базовый переход транзистора
VT1.

Для
защиты индикаторного прибора от
перегрузок применен диод VD1,
включенный в прямом направлении, и
резистор R2,
которым устанавливается рабочий ток
диода.

Чувствительность
измерительного прибора регулируется
переменным резистором R3.

Внимание!
Прикасаться к частям испытываемого
оборудования во время испытания изоляции
не допускается!

    1. Порядок
      проверки прибора на работоспособность.

  1. Внешним
    осмотром убедиться в отсутствии наружных
    повреждений прибора.

  2. Поставить
    переключатель в положение «0» и включить
    прибор в сеть.

  3. Поставить
    переключатель в положение «1», при этом
    загорится сигнальная лампа «~220В».
    Нажать штырем левого контактного
    устройства (с черным проводом) на полюса
    до упора и убедиться в наличии тока в
    цепи (лампа « » должна загореться).

  4. Поставте
    переключатель в положение «0».

  5. Уложите
    якорь генератора (стартера, двигателя
    постоянного тока) на полюса дросселя
    и поставьте переключатель в положение
    «2». Коснитесь пластинами контактного
    устройства (с синим проводом) соседних
    пластин коллектора и, вращяя якорь,
    убедитесь в возможности регулировки
    положения стрелки индикатора
    измерительного прибора. Поставьте
    переключатель в положение «0» и снимите
    якорь.

  6. Перед
    проверкой якорь очищается от пыли и
    грязи и производится его внешний осмотр.

    1. Определение
      короткозамкнутой секции обмотки якоря.

3.2.1.
Определение при помощи стальной пластины.

  1. Уложите
    якорь генератора на полюса дросселя.

  2. Поставьте
    переключатель в положение «2».

  3. Возьмите
    пластину сломанного ножевого полотна
    и, слегка касаясь поверхности якоря,
    медленно поворачивайте якорь вокруг
    его оси руками или механическим зажимным
    устройством.

При
наличии короткого замыкания в какой
либо секции, пластина будет притягиваться
и вибрировать над пазами, в которых
расположена эта секция.

  1. Поставьте
    переключатель в положение «0», снимите
    якорь с полюсов дросселя.

3.2.2.
Определение при помощи измерительного
прибора.

  1. Уложите
    якорь на полюса дросселя и установите
    переключатель в положение «2».

  2. Установите
    контактное устройство (правое) так,
    чтобы пластины устройства были прижаты
    к двум рядом расположенным пластинам
    коллектора, на которых ЭДС секции
    максимальная.

  3. Установите
    ручной регулятора «»
    стрелку индикатора в средней части
    шкалы.

  4. Не
    отнимая контактного устройства,
    проворачиваем ротор на несколько
    миллиметров вперед и назад, находим
    положение якоря, при котором стрелка
    индикатора максимально отклонится.
    Запомните это показание.

  5. Поворачивайте
    якорь генератора так, чтобы рядом
    расположенная пластина коллектора
    занимала положение предыдущей. Показания
    прибора при этом не должны изменяться
    более чем на 1
    деление шкалы. Проверьте таким образом
    весь коллектор.

Если
имеется короткозамкнутая секция, то
при касании коллекторных пластин этой
секции стрелка индикатора упадет до
нуля (если короткое замыкание близко к
коллектору), или показания будут
значительно ниже, чем на остальных
позициях (если короткое замыкание между
витками в центре якоря, или на
противоположном коллектору конце
якоря).

  1. Поставьте
    переключатель в положение «0», снимите
    якорь с полюсов дросселя.

  2. Измерение
    ЭДС в секциях обмотки якоря нужно
    производить при одном выбранном
    неизменном положении контактного
    устройства по отношению к коллектору.

  3. Якорь
    стартера имеет 1 или 2 витка в каждой
    секции, что при проверке усложняет
    определение короткозамкнутых секций,
    т.к. их сопротивление при этом меняется
    незначительно. Но все показания
    индикатора дают возможность увидеть
    в какой секции имеется замыкание.
    Разница в отклонении стрелки индикатора
    будет зависеть от того, насколько
    надежно короткое замыкание и где
    расположено (если у коллектора, то
    показания индикатора будут равны 0,
    если же в якоре, то они будут отличаться
    на несколько делений).

    1. Определение
      обрывов в обмотке якоря.

  1. Уложите
    якорь на полюса дросселя и установите
    переключатель в положение «2».

Установите
контактное устройство (правое) так,
чтобы пластины устройства были прижаты
к двум рядом расположенным пластинам
коллектора и поверните рукоятку
регулятора так, чтобы индикатор показал
наличие тока в цепи. Поворачивая якорь,
касайтесь поочередно щупами соседних

  1. пластин
    коллектора. Проведите проверку всего
    якоря. Если в секции имеется обрыв, то
    стрелка индикатора не отклонится при
    касании пластин коллектора этой секции.

  2. Поставьте
    переключатель в положение «0», снимите
    якорь с полюсов дросселя.

    1. Определение
      замыкания на массу обмотки якоря.

  1. Уложите
    якорь на полюса дросселя и установите
    переключатель в положение «1».

Коснитесь
поочередно 2-х – 3-х пластин коллектора
штырем левого контактного устройства,
нажимая при этом на рукоятку до упора.

Если
обмотка якоря на «массу» не замкнута,
лампа « » не загорится (левая). Загорание
лампы указывает на наличие замыкания
с «массой».

4.
Содержание отчета.

Отчет
должен содержать цель работы, таблицы
и схемы исследований, общее заключение
о состоянии трансформатора и якоря
генератора.

5.
Контрольные вопросы по диагностике
трансформатора.

      1. Какие
        неисправности встречаются в силовых
        трансформаторах?

      2. Какими
        приборами и как определить витковое
        замыкание в обмотках трансформатора?

      3. Что
        такое коэффициент абсорбции?

      4. С
        какой целью и как измеряется сопротивление
        обмотки трансформатора постоянному
        току?

      5. С
        какой целью и как определяется
        коэффициент трансформации?

      6. Как
        изменяется коэффициент абсорбции в
        зависимости от степени увлажнения
        изоляции и чем это объясняется?

      7. При
        измерении коэффициента трансформации
        получены следующие данные: Кав=25;
        Квс=25;
        Кас=10.
        Определить неисправность в трансформаторе.

6.
Контрольные вопросы по диагностике
якоря генератора.

  1. Какие
    неисправности встречаются в якорях
    генераторов?

  2. Каков
    порядок проверки прибора Э236 на
    работоспособность?

  3. Как
    определить короткозамкнутую секцию
    обмотки якоря?

  4. Как
    определить обрыв в обмотке якоря?

  5. Как
    определить замыкание на массу обмотки
    якоря?

6.
Литература.

1.
Технические указания по производству
пусконаладочных работ и лабораторных
испытаний электрической части сельских
электростанций, электросетей и
потребительских электроустановок. М.:
1961.

  1. Паспорт
    прибора для проверки якорей генераторов
    и стартеров. Модель Э236. 1978. Новгород.

Учебно-методическое
издание

Методические
указания к лабораторным работам по
эксплуатации электрооборудования для
студентов специальности 110302 «Электрификация
и автоматизация сельского хозяйства»
очного и заочного обучения / сост.
В.В.Шмигель. –

Ярославль:
ООО «ИНВЕСТ», 2009. –51 С.

Гл.
редактор А.Б. Абрамова

Редактор
выпуска И.К. Укоев

Корректор
В.А. Бабаян

@
ООО «ИНВЕСТ» Ярославская область, г.
Ярославль.

Лицензия
на издательскую деятельность ЛР №
020384. Выдана 07.06.2000.

Компьютерный
набор. Подписано в печать 15/01/2009.

Заказ
№579. Тираж 100 экз. Усл. Печ л 0,75. Бумага
офсетная. Отпечатано

10/03/2009.

Отпечатано
с готовых оригинал-макетов.

Преобразование нормализатора

в Informatica с ПРИМЕРОМ

Guru99

  • Home
  • Testing

      • Back
      • Agile Testing
      • BugZilla
      • Cucumber
      • 000
      • 000
      • 000 JB 9000 9000 9000 Testing
      • 000 База данных
      • 000 Testing

        Назад

      • JUnit
      • LoadRunner
      • Ручное тестирование
      • Мобильное тестирование
      • Mantis
      • Почтальон
      • QTP
      • Назад
      • Центр качества (ALM)
      • SAPUA
      • Управление тестированием
      • TestLink
  • SAP

      • Назад
      • ABAP
      • APO
      • Начинающий
      • Basis
      • BODS
      • BI
      • BPC
      • CO
      • Назад
      • CRM
      • Crystal Reports
      • MM
      • Crystal Reports
      • Заработная плата
      • Назад
      • PI / PO
      • PP
      • SD
      • SAPUI5
      • Безопасность
      • Менеджер решений
      • Successfactors
      • SAP Back Tutorials
    • Apache
    • AngularJS
    • ASP.Net
    • C
    • C #
    • C ++
    • CodeIgniter
    • СУБД
    • JavaScript
    • Назад
    • Java
    • JSP
    • Kotlin
    • Linux
    • Kotlin
    • Linux
    • js

    • Perl
    • Назад
    • PHP
    • PL / SQL
    • PostgreSQL
    • Python
    • ReactJS
    • Ruby & Rails
    • Scala
    • SQL
    • 000

      0004 SQL

    • UML
    • VB.Net
    • VBScript
    • Веб-службы
    • WPF
  • Обязательно учите!

      • Назад
      • Бухгалтерский учет
      • Алгоритмы
      • Android
      • Блокчейн
      • Business Analyst
      • Веб-сайт сборки
      • CCNA
      • Облачные вычисления
        • 0004 COBOL 9000 Compiler

              0004 9000 Встроенный 9000 Compiler

              9000

            • Ethical Hacking
            • Учебные пособия по Excel
            • Программирование на Go
            • IoT
            • ITIL
            • Jenkins
            • MIS
            • Сетевые подключения
            • Операционная система
            • Назад
            • Управление проектами Обзоры

            • Salesforce
            • SEO
            • Разработка программного обеспечения
            • VB A
        • Big Data

            • Назад
            • AWS
            • BigData
            • Cassandra
            • Cognos
            • Хранилище данных
            • 0005

              HBOps

              HBOps

            • MicroStrategy

        .

        Исчисление II — Тест соотношения

        Онлайн-заметки Павла

        Заметки

        Быстрая навигация

        Скачать

        • Перейти к
        • Заметки

        • Проблемы с практикой

        • Проблемы с назначением

        • Показать / Скрыть
        • Показать все решения / шаги / и т. Д.
        • Скрыть все решения / шаги / и т. Д.
        • Разделы
        • Абсолютная сходимость
        • Корневой тест
        • Разделы
        • Параметрические уравнения и полярные координаты
        • Векторы
        • Классы
        • Алгебра

        • Исчисление I

        • Исчисление II

        • Исчисление III

        • Дифференциальные уравнения

        • Дополнительно
        • Алгебра и триггерный обзор

        • Распространенные математические ошибки

        • Праймер для комплексных чисел

        • Как изучать математику

        • Шпаргалки и таблицы

        • Разное
        • Свяжитесь со мной
        • Справка и настройка MathJax
        • Мои студенты
        • Заметки Загрузки
        • Полная книга
        • Текущая глава
        • Текущий раздел
        • Practice Problems Загрузок
        • Полная книга — Только проблемы
        • Полная книга — Решения
        • Текущая глава — Только проблемы
        • Текущая глава — Решения
        • Текущий раздел — Только проблемы
        • Текущий раздел — Решения
        • Проблемы с назначением Загрузок
        • Полная книга
        • Текущая глава
        • Текущий раздел
        • Прочие товары
        • Получить URL для загружаемых элементов
        • Распечатать страницу в текущем виде (по умолчанию)
        • Показать все решения / шаги и распечатать страницу
        • Скрыть все решения / шаги и распечатать страницу
        • Дом
        • Классы
        • Алгебра

        .Преобразование рангов на

        в Informatica с ПРИМЕРОМ

        Guru99

        • Home
        • Testing

            • Back
            • Agile Testing
            • BugZilla
            • Cucumber
            • Database Testing
            • 9000 9000 J4000

            • 9000 J4 Назад
            • JUnit
            • LoadRunner
            • Ручное тестирование
            • Мобильное тестирование
            • Mantis
            • Почтальон
            • QTP
            • Назад
            • Центр качества (ALM)
            • SAP Testing
            • Управление тестированием
            • TestLink
        • SAP

            • Назад
            • 900 04 ABAP

            • APO
            • Начинающий
            • Basis
            • BODS
            • BI
            • BPC
            • CO
            • Назад
            • CRM
            • Crystal Reports
            • Расчет заработной платы
            • Назад
            • PI / PO
            • PP
            • SD
            • SAPUI5
            • Безопасность
            • Менеджер решений
            • Successfactors
            • SAP Back Tutorials
          • Apache
          • AngularJS
          • ASP.Net
          • C
          • C #
          • C ++
          • CodeIgniter
          • СУБД
          • JavaScript
          • Назад
          • Java
          • JSP
          • Kotlin
          • Linux
          • Kotlin
          • Linux
          • js

          • Perl
          • Назад
          • PHP
          • PL / SQL
          • PostgreSQL
          • Python
          • ReactJS
          • Ruby & Rails
          • Scala
          • SQL
          • 000

            0004 SQL

          • UML
          • VB.Net
          • VBScript
          • Веб-службы
          • WPF
      • Обязательно учите!

          • Назад
          • Бухгалтерский учет
          • Алгоритмы
          • Android
          • Блокчейн
          • Business Analyst
          • Веб-сайт сборки
          • CCNA
          • Облачные вычисления
            • 0004 COBOL 9000 Compiler

                  0004 9000 Встроенный 9000 Compiler

                  9000

                • Ethical Hacking
                • Учебные пособия по Excel
                • Программирование на Go
                • IoT
                • ITIL
                • Jenkins
                • MIS
                • Сетевые подключения
                • Операционная система
                • Назад
                • Управление проектами Обзоры

                • Salesforce
                • SEO
                • Разработка программного обеспечения
                • VB A
            • Big Data

                • Назад
                • AWS
                • BigData
                • Cassandra
                • Cognos
                • Хранилище данных
                • 0005

                  HBOps

                  HBOps

                • MicroStrategy

            .

            Как интерпретировать коэффициент корреляции r

            1. Образование
            2. Математика
            3. Статистика
            4. Как интерпретировать коэффициент корреляции r

            Дебора Дж. Рамси

            В статистике коэффициент корреляции 13 измеряет силу и направление линейной связи между двумя переменными на диаграмме рассеяния. Значение r всегда находится между +1 и –1. Чтобы интерпретировать его значение, посмотрите, к какому из следующих значений ближе всего ваша корреляция r :

            • Ровно 1. Линейная зависимость идеального спуска (отрицательная)

            • 0,70. Сильный спуск (отрицательная) линейная зависимость

            • 0,50. Отношение умеренного спуска (отрицательное)

            • 0,30. Слабый спуск (отрицательная) линейная зависимость

            • 0. Нет линейной зависимости

            • +0,30. Слабая линейная зависимость подъема (положительная)

            • +0.50. Умеренно восходящие (позитивные) отношения

            • +0,70. Сильный подъем (положительный) линейный ход

            • Ровно +1. Идеальное линейное соотношение подъема (положительное)

            Если диаграмма рассеяния не указывает на наличие хотя бы некоторой линейной зависимости, корреляция не имеет большого значения. Зачем измерять степень линейной взаимосвязи, если не о чем говорить? Однако вы можете принять идею отсутствия линейной связи двумя способами: 1) если никакой связи не существует, вычисление корреляции не имеет смысла, потому что корреляция применяется только к линейным отношениям; и 2) Если существует сильная связь, но она не линейна, корреляция может вводить в заблуждение, потому что в некоторых случаях существует сильная кривая связь.Вот почему так важно сначала изучить диаграмму рассеяния.

            Диаграммы рассеяния с корреляциями а) +1.00; б) –0,50; в) +0,85; и г) +0,15.

            На приведенном выше рисунке показаны примеры того, как выглядят различные корреляции с точки зрения силы и направления отношений. Рисунок (a) показывает корреляцию почти +1, рисунок (b) показывает корреляцию –0,50, рисунок (c) показывает корреляцию +0,85, а рисунок (d) показывает корреляцию +0,15. Сравнивая рисунки (а) и (с), вы видите, что рисунок (а) представляет собой почти идеальную прямую линию в гору, а рисунок (с) показывает очень сильный линейный рисунок подъема (но не такой сильный, как рисунок (а)).Рисунок (b) спускается вниз, но точки несколько разбросаны в более широкой полосе, показывая, что линейная зависимость присутствует, но не такая сильная, как на рисунках (a) и (c). На рисунке (d) ничего не видно (и не должно быть, поскольку его корреляция очень близка к 0).

            Многие люди ошибаются, думая, что корреляция –1 — это плохо, потому что это не указывает на связь. Верно как раз наоборот! Корреляция –1 означает, что данные выстроены по идеальной прямой линии, что является самой сильной отрицательной линейной зависимостью, которую вы можете получить.Знак «-» (минус) просто указывает на отрицательную взаимосвязь, нисходящую линию.

            Насколько близко это значение достаточно близко к –1 или +1, чтобы указать на достаточно сильную линейную зависимость? Большинству статистиков нравится видеть корреляции, превышающие по крайней мере +0,5 или –0,5, прежде чем они будут слишком взволнованы. Однако не ожидайте, что корреляция всегда будет 0,99; помните, это реальные данные, а реальные данные не идеальны.

            Об авторе книги

            Дебора Дж.Рамси, доктор философии, , профессор статистики и специалист по статистике в Государственном университете Огайо. Она является автором книги статистики для чайников, статистики II для чайников, и вероятности для чайников .

            .

  • Добавить комментарий

    Ваш адрес email не будет опубликован. Обязательные поля помечены *