Проводники электрического тока. Какие бывают проводники


Проводники и их классификация

Проводники – вещества, хорошо проводящие электрический ток, т.е. обладающие высокой электропроводностью (небольшим удельным электросопротивлением r ~ 10-6 ¸ 10-4 Ом×м).

К проводникам относятся: металлы и их сплавы, графит, некоторые окислы и сернистые соединения металлов, электролиты и плазма.

Носителями зарядов в проводниках являются:

а) в металлах и их сплавах - квазисвободные электроны проводимости;

б) в электролитах - положительные и отрицательные ионы;

в) в плазме - свободные электроны и ионы.

Все проводники можно подразделить на проводники первого и второго рода.

Проводники первого рода - металлы и их сплавы, графит, некоторые окислы и сернистые соединения металлов.

Проводники второго рода - электролиты (растворы солей кислот и щелочей).

Отличительными особенностями проводников первого рода являются:

а) электрический ток в них представляет собой упорядоченное движение квазисвободных электронов проводимости, при этом никаких химических изменений в проводниках не происходит;

б) кристаллическое строение. Это последовательность правильно расположенных групп ионов, образующих пространственную кристаллическую решетку, в межузельном пространстве которой находятся квазисвободные электроны проводимости.

 

 

2.2. Электростатическое поле в полости идеального проводника и у его поверхности. Электростатическая защита. Распределение зарядов в объеме проводника и по его поверхности

В отсутствие внешнего электрического поля заряды узлов кристаллической решетки металлических проводников скомпенсированы зарядами квазисвободных электронов проводимости. В поле на электроны проводимости действуют сила

. (2.1)

В результате происходит перераспределение электрических зарядов в объёме проводника (электростатическая индукция), которое приводит к появлению внутри проводника "собственного" электрического поля с напряженностью E', направление которого противоположно направлению вектора напряженности внешнего электрического поля Eo. Поэтому условием перераспределения (движения) электрических зарядов в объёме проводника может служить выражение

E = Eo + E' ¹ 0, (2.2)

где E – напряженность результирующего электрического поля.

Перераспределение электрических зарядов в объёме проводника (рис. 2.1, а) приводит к искажению внешнего электрического поля (рис. 2.1, б).

 

При

E= Eo + E' = 0 (2.3)

перераспределение электрических зарядов внутри проводника прекращается (рис. 2.1б). Выражение (2.3) называют условием равновесия зарядов в проводнике.

Таким образом, нескомпенсированные электрические заряды (в заряженном проводнике) могут находиться только на его поверхности.

Доказать приведенное утверждение можно, воспользовавшись теоремой Остроградского – Гаусса:

.

Так как внутри проводника E = 0, то En = E×cosa = 0, . Следовательно,

,

что и требовалось доказать.

Между поверхностной плотностью заряда проводника и напряженностью электрического поля вблизи его поверхности существует связь, которую можно установить из следующих рассуждений.

Поток вектора напряженности электрического поля E через замкнутую цилиндрическую поверхность, перпендикулярную некоторой площадке dS поверхности проводника (рис. 2.2),

Ф'E = Ф'o + Ф''o + Ф'б + Ф''б. (2.4)

Так как внутри проводника электри-ческое поле отсут-ствует (E = 0), то Ф''о и Ф''б внутри прово-дника равны нулю. Поток вектора нпряженности электрического поля через боковую поверх-ность вне проводника Ф'б тоже равен нулю, так как проекция вектора напряженности электрического поля на направление положительной нормали (En) в любой точке боковой поверхности равна нулю. Следовательно,

. (2.5)

Согласно теореме Остроградского - Гаусса

. (2.6)

В нашем случае можно принять

.

Таким образом

,

а

. (2.7)

Следовательно, напряженность электрического поля вблизи поверхности проводника пропорциональна поверхностной плотности его заряда.

С этим связан тот факт, что у выпуклых частей проводника напряженность электрического поля и поверхностная плотность электрических зарядов больше, чем у вогнутых (рис. 2. 3). Особенно велики они на остриях. В результате вблизи выпуклых частей проводника возникает ионизация и движение ионов, молекул газа, возникает так называемый "электрический ветер". Заряд проводника при этом уменьшается. Он как бы стекает с поверхности проводника. Такое явление называют истечением заряда с поверхности проводника (с острия).

Поверхностное распределение зарядов на проводниках используется для передачи заряда от одного проводника к другому, в устройстве электростатических машин для получения больших разностей потенциала.

Условие E = 0 внутри проводника используется для устройства электростатической защиты приборов от влияния внешних электрических полей. С этой целью достаточно поместить прибор внутрь проводника – экрана.

Внутри проводника

,

что возможно при

E = 0, , . (2.8)

Таким образом, весь объём проводника, при условии равновесия заряда, является эквипотенциальным.

Поверхность такого проводника также является эквипотенциальной, так как при перемещении по ней в каждой точке вектор напряженности электрического поля E перпендикулярен направлению перемещения (E ^ l), cosa = 0. Следовательно,

; .

Это означает, что при соединении проводников с различными потенциалами происходит выравнивание потенциалов на проводниках за счет переноса зарядов от одних проводников к другим. Это происходит до тех пор, пока у всех проводников потенциал не станет одним и тем же.

Равенство потенциала на всех соединенных между собой проводниках используется для экспериментального определения потенциала в различных точках электрического поля.

2.3. Электроемкость уединенного проводника и ее физический смысл

Опыты показывают, что изменение заряда проводника приводит к изменению его потенциала, а отношение изменения заряда dq (Dq) к изменению потенциала dj (Dj) для данного проводника остается величиной постоянной. Это отношение и называют электрической емкостью (электроемкостью) уединенного проводника. Следовательно, каждый проводник можно характеризовать электроемкостью (отношением)

или , (2.9)

где k - коэффициент пропорциональности, зависящий от выбора системы единиц измерения физических величин.

В системе СИ k = 1, поэтому

или . (2.10)

Таким образом, электроемкость уединенного проводника – это физическая величина, численно равная количеству электричества, на которое необходимо изменить заряд проводника, чтобы его потенциал изменился на единицу. В этом и заключается физический смысл электроемкости уединенного проводника.

Так как при q = 0, j = 0, а изменение заряда проводника Dq пропорционально изменению его потенциала Dj, то и заряд проводника q пропорционален его потенциалу j. Следовательно,

. (2.11)

В системе СИ

. (2.12)

Экспериментальные данные говорят о том, что электроемкость (емкость) проводника зависит только от формы его поверхности, линейных размеров, расположения проводника относительно других проводников и диэлектрической проницаемости среды, окружающей проводник.

За единицу емкости принимается емкость такого проводника, потенциал которого изменяется на единицу при изменении его заряда на единицу.

В системе СИ единицей емкости является Фарада. 1 Ф = 1 Кл/В = = 10-6 мкФ = 10-12 пФ.

Похожие статьи:

poznayka.org

проводники - это... Что такое проводники?

вещества, хорошо проводящие электрический ток, то есть обладающие высокой электропроводностью (>104—106 Ом-1·см-1), благодаря наличию в них большого количества подвижных заряженных частиц. Делятся на электронные (металлы), ионные (электролиты) и смешанные, где имеет место движение как электронов, так и ионов (например, плазма).

ПРОВОДНИКИ́, вещества, хорошо проводящие электрический ток благодаря наличию в них большого количества подвижных заряженных частиц. К хорошим проводникам обычно относят вещества с удельным сопротивлением 10-6 ом.см. Проводниками электрического тока (проводниковыми материалами) могут быть твердые тела, жидкости, а при соответствующих условиях и газы. Твердыми проводниками являются металлы (см. МЕТАЛЛЫ), металлические сплавы (см. СПЛАВЫ), некоторые модификации углерода, а также твердые электролиты (см. ТВЕРДЫЕ ЭЛЕКТРОЛИТЫ). К жидким проводникам относятся жидкие металлы (см. ЖИДКИЕ МЕТАЛЛЫ) и различные электролиты (см. ЭЛЕКТРОЛИТЫ). Механизм прохождения тока в металлах в твердом и жидком состоянии обусловлен направленным движением свободных электронов, поэтому их называют проводниками с электронной электропроводностью или проводниками 1 рода. При низких температурах многие металлы и сплавы переходят в сверхпроводящее состояние (см. Сверхпроводники (см. СВЕРХПРОВОДНИКИ)). Проводимость в твердых электролитах обеспечивается переносом заряда одним типом ионов. Механизм прохождения тока в жидких электролитах, или проводниках 2 рода, связан с переносом вместе с электрическими зарядами ионов. Проводниками 2 рода являются растворы (в основном водные) кислот, щелочей и солей, а также расплавы ионных соединений. В результате прохождения тока через такие проводники состав электролита постепенно меняется, а на электродах выделяются продукты электролиза. Все газы и пары при низких напряженностях электрического поля не являются проводниками. Однако, если напряженность поля выше некоторого критического значения, то газ может стать проводником, обладающим электронной и ионной электропроводностями. В ионизированных газах и парах веществ, в том числе в парах металлов, прохождение электрического тока будет обусловлено движением как электронов, так и ионов, и механизм проводимости будет смешанным. Сильно ионизированный газ, в котором концентрации положительных и отрицательных зарядов равны, называется плазмой (см. ПЛАЗМА).

dic.academic.ru

Проводники и диэлектрики

Проводники

К проводникам относятся все металлы и их сплавы, а также электротехнический уголь(каменный уголь, графит, сажа, смола и т.д.)К жидким проводникам относятся:вода, раствор солей, кислот и щелочей.К газообразным относятся ионизированные газы.Электрический ток в твердых проводниках-это направленное движение свободных электронов под действием ЭДС.ЭДС-электронно-движущая сила.

Свойства проводников:

  1. Электрические
    • Удельное сопротивление веществ от которого зависит электропроводимость
    • Сверхпроводимость-это свойство некоторых материалов при температуре равной 101(-273) проводить эл.ток без препятствий, т.е. удельное сопротивление этих материалов равно нулю
  2. Физические
    • плотность
    • температура плавления
  3. Механические
    • Прочность на изгиб, растяжение и т.д., а также способность обрабатываться на станках
  4. Химические
    • Свойства взаимодействовать с окружающей или противостоять коррозии
    • Свойства соединятся при помощи пайки, сварки

Диэлектрики

Не пропускают электрический ток.Диэлектрики обладают высоким удельным сопротивлением.Используются для защиты проводника от влаги, механических повреждений, пыли.

Диэлектрики бывают
  • твердые-все неметаллы;
  • жидкие-масла, синтетические жидкости СОВОЛ, СОВТОЛ
  • газообразные-все газы:воздух, кислород, азот и т.д.
Свойства диэлектриков:
  1. Электрические свойства
    • Электрический пробой-устанавление большого тока, под действием высокого электрического напряжения к электроиоляционному материалу определенной толщины.
    • Электрическая прочность-это величина, равная напряжению, при котором может быть пробит электроизоляционному материал толщиной в единицу длины.
  2. Физико-химические свойства
    • Нагревостойкость-это способность диэлектрика длительно выдерживать заданную рабочую температуру без заметного изменения своих электроизоляционных качеств.
    • Холодостойкость-способность материала переносить резкие перепады температуры, от +120, до - 120
    • Смачиваемость-способность материала отторгать влагу, испытания проводятся в климатических камерах, типа ELKA, где изделие подвергается увлажнению, создается ТУМАН и мгновенный перепад температуры-СУШКА, и так несколько циклов!
  3. Химические
    • Должны противостоять активной(агрессивной) среде
    • Способность склеиваться
    • Растворение в лаках и растворителях, склеиваться
  4. Механические
    • Защита металлических проводников от коррозии
    • Радиационная стойкость
    • Вязкость(для жидких диэлектриков)
    • Вязкость-время истечения жидкости из сосуда, имеющего определенную форму и отверстие
    • Предел прочности, твердости
    • Обработка инструментом

Читайте также:

www.modelzd.ru

Проводники электрического тока первого и второго рода и процессы в них

 

Электропроводники первого и второго рода

Проводниками электрического тока могут быть совсем разные вещества. Например, и кусок металлической проволоки, и морская вода являются электропроводниками. Но электроток в них различен по своей природе. Поэтому они разделены на две группы:

  • первого рода с проводимостью, основанной на электронах;
  • второго рода с проводимостью, основанной на ионах.

Электропроводники первого рода это все металлы и углерод. Представителями второго рода являются кислоты, щёлочи, растворы и расплавы солей, которые называют «электролитами».

  • Ток в проводниках течёт при любых значениях напряжения и прямо пропорционален величине напряжения.

Наилучшими электропроводниками при обычных условиях являются серебро, золото, медь и алюминий. Медь и алюминий наиболее широко используются для изготовления различных проводов и кабелей из-за более низкой цены. Хорошим жидким проводником первого рода является ртуть. Хорошо проводит электрический ток и углерод. Но из-за отсутствия гибкости его применение невозможно. Однако созданная относительно недавно форма углерода графен позволяет изготавливать нити и шнуры из нитей.

Но графеновые шнуры имеют сопротивление, которое для токопроводов является недопустимо большим. Поэтому их используют в электронагревателях. В этом качестве графеновый шнур превосходит металлические проволочные аналоги на основе сплава никеля и хрома, поскольку может обеспечить более высокую температуру. Аналогичным образом используются проволочные электропроводники из вольфрама. Из них изготовлены спирали ламп накаливания и электроды газоразрядных ламп. Вольфрам является самым тугоплавким электропроводником.

Процессы в проводниках

Электрический ток, протекающий в проводнике, оказывает на него определённые воздействия. В любом случае происходит увеличение температуры. Но возможны также и химические реакции, которые приводят к изменению физических и химических свойств. Наибольшим изменениям подвержены электропроводники второго рода. Электрический ток в них вызывает электрохимическую реакцию, называемую электролизом.

В результате ионы проводника второго рода получают вблизи электрических полюсов необходимые заряды и восстанавливаются до состояния, которое было до появления кислоты, щёлочи или соли. Электролиз широко используется для получения многих чистых химических веществ из природного сырья. Способом электролиза расплавов получают чистый алюминий и некоторые другие металлы.

Проводники первого и второго рода могут не только проводить электрический ток при подаче на них внешнего напряжения. При взаимодействии, например свинца с кислотой, то есть проводника первого рода с проводником второго рода, возникает электрохимическая реакция, обеспечивающая выделение электрической энергии. На этом основано устройство аккумуляторов.

Электропроводники первого рода также могут изменяться при контакте друг с другом. Например, контакт медного и алюминиевого проводника является плохим решением без специального покрытия его. Влажности воздуха оказывается достаточно для разрушения в месте контакта электрохимической реакцией. Поэтому рекомендуется защищать подобные соединения лаком или аналогичными веществами.

У некоторых проводников первого рода при значительном охлаждении возникает особое состояние, пребывая в котором они не оказывают электрическому току сопротивление. Это явление называется сверхпроводимостью. Классическая сверхпроводимость соответствует значению температуры, близкой к состоянию  жидкого гелия. Однако по мере выполнения исследований обнаружились новые сверхпроводники с более высокими значениями температуры.

  • Экономически оправданное использование сверхпроводимости является одной из приоритетных целей современной энергетики.

Электрический ток может течь не только в проводниках первого и второго рода. Есть ещё полупроводники и газы, которые так же проводят электроток. Но это уже совсем другая история…

podvi.ru

Проводники и диэлектрики в электричестве

Все материалы, существующие в природе, различаются своими электрическими свойствами. Таким образом, из всего многообразия физических веществ в отдельные группы выделяются диэлектрические материалы и проводники электрического тока. 

Что представляют собой проводники?

Проводник – это такой материал, особенностью которого является наличие в составе свободно передвигающихся заряженных частиц, которые распространены по всему веществу. 

Проводящими электрический ток веществами являются расплавы металлов и сами металлы, недистиллированная вода, раствор солей, влажный грунт, человеческое тело.

Металл – это самый лучший проводник электрического тока. Также и среди неметаллов есть хорошие проводники, например, углерод. 

Все, существующие в природе проводники электрического тока, характеризуются двумя свойствами:

  • показатель сопротивления;
  • показатель электропроводности.
Сопротивление возникает из-за того, что электроны при движении испытывают столкновение с атомами и ионами, которые являются своеобразным препятствием. Именно поэтому проводникам присвоена характеристика электрического сопротивления. Обратной сопротивлению величиной является электропроводность. 

Электропроводность – это характеристика (способность) физического вещества проводить ток. Поэтому свойствами надежного проводника являются низкое сопротивление потоку движущихся электронов и, следовательно, высокая электропроводность. То есть, лучший проводник характеризуется большим показателем проводимости.  

Например кабельная продукция: медный кабель обладает большей электропроводностью по сравнению с алюминиевым.

Что представляют собой диэлектрики?

Диэлектрики – это такие физические вещества, в которых при заниженных температурах отсутствуют электрические заряды. В состав таких веществ входят лишь атомы нейтрального заряда и молекулы. Заряды нейтрального атома имеют тесную связь друг с другом, поэтому лишены возможности свободного перемещения по всему веществу. 

Самым лучшим диэлектриком является газ. Другие непроводящие электрический ток материалы – это стеклянные, фарфоровые, керамические изделия, а также резина, картон, сухое дерево, смолы и пластмассы. 

Диэлектрические предметы – это изоляторы, свойства которых главным образом зависимы от состояния окружающей атмосферы. Например, при высокой влажности некоторые диэлектрические материалы частично лишаются своих свойств. 

Проводники и диэлектрики широко используются в сфере электротехники для решения различных задач. 

Например, вся кабельно-проводниковая продукция изготавливается из металлов, как правило, из меди или алюминия. Оболочка проводов и кабелей полимерная, также, как и вилках всех электрических приборов. Полимеры – отличные диэлектрики, которые не допускают пропуска заряженных частиц. 

Серебряные, золотые и платиновые изделия – очень хорошие проводники. Но их отрицательная характеристика, которая ограничивает использование, состоит в очень высокой стоимости.

Поэтому применяются такие вещества в сферах, где качество гораздо важнее цены, которая за него уплачивается (оборонная промышленность и космос). 

Медные и алюминиевые изделия также являются хорошими проводниками, при этом имеют не столь высокую стоимость. Следовательно, использование медных и алюминиевых проводов распространено повсеместно. 

Вольфрамовые и молибденовые проводники имеют менее хорошие свойства, поэтому используются в основном в лампочках накаливания и нагревательных элементах высокой температуры. Плохая электропроводность может существенно нарушить работу электросхемы. 

Диэлектрики также различаются между собой своими характеристиками и свойствами. Например, в некоторых диэлектрических материалах также присутствуют свободные электрически заряды, пусть и в небольшом количестве. Свободные заряды возникают из-за тепловых колебаний электронов, т.е. повышение температуры все-таки в некоторых случаях провоцирует отрыв электронов от ядра, что понижает изоляционные свойства материала. Некоторые изоляторы отличаются большим числом «оторванных» электронов, что говорит о плохих изоляционных свойствах. 

Самый лучший диэлектрик – полный вакуум, которого очень трудно добиться на планете Земля. 

Полностью очищенная вода также имеет высокие диэлектрические свойства, но таковой даже не существует в реальности. При этом стоит помнить, что присутствие каких-либо примесей в жидкости наделяет ее свойствами проводника. 

Главный критерий качества любого диэлектрического материала – это степень соответствия возложенным на него функциям в конкретной электрической схеме. Например, если свойства диэлектрика таковы, что утечка тока совсем незначительная и не приносит никакого ущерба работе схемы, то диэлектрик является надежным. 

Что такое полупроводник?

Промежуточное место между диэлектриками и проводниками занимают полупроводники. Главное отличие проводников заключается в зависимости степени электропроводности от температуры и количества примесей в составе. При том материалу свойственны характеристики и диэлектрика, и проводника. 

С ростом температуры электропроводность полупроводников растет, а степень сопротивления при этом падает. При понижении температуры сопротивление стремится к бесконечности. То есть, при достижении нулевой температуры полупроводники начинают вести себя как изоляторы. 

Полупроводниками являются кремний и германий.

Статья по теме: Электрический ток и его скорость

www.elektro.ru

Виды проводников

Количество просмотров публикации Виды проводников - 908

Основные сведения о проводниковых материалах

Проводниковые материалы

К проводниковым материалам относятся вещества, основным свойством которых является электропроводность. Проводниками электрического тока могут служить твердые тела, жидкости, а при соответствующих условиях и газы. Газы и пары, в т.ч. и пары металлов, при низких напряженностях электрического поля не являются проводниками. При этом если напряженность поля выше некоторого критического значения, обеспечивающего начало ударной и фотоионизации, то газ может стать проводником, обладающим электронной и ион­ной электропроводностями. Все проводниковые материалы подразделяются на проводники первого и второго рода.

Твердые проводники являются важнейшими проводниковыми материалами, широко применяемыми в радиоэлектронике и электротехнике. К ним относят металлы и их сплавы. По характеру применения в радиоэлектронной технике металлические материалы разделяют на металлы высокой проводимости и сплавы высокого сопротивления.

Особенности поведения электронов в металлах.

В классической электронной теории металлов были введены представления об электронном газе, состоящем из коллективизированных (свободных) электронов, концентрация которых принималась равной числу атомов в единице объёма металла. К электронному газу применялись понятия и законы статистики обычных газов. Гипотеза об электронном газе была подтверждена рядом опытов. При этом не всœе вопросы удалось решить с точки зрения классической электронной теории металлов, так как возникли некоторые противоречия с опытными данными. Οʜᴎ заключались в расхождении кривых зависимости удельного сопротивления от температуры, наблюдаемой на опыте и теоретической, несоответствии теоретически получаемых значений теплоемкости металлов опытным данным.

Эти противоречия удалось объяснить с помощью квантовой волновой механики. В соответствии с этой теорией электроны в металлах следует рассматривать при обычных температурах как ʼʼвырожденныйʼʼ газ. В этом состоянии энергия газа практически не зависит от изменения температуры. Тепловое движение почти не изменяет энергию электронов, а тепловая энергия расходуется на тепловые колебания узлов кристаллической решетки. Вследствие этого средняя тепловая скорость электронов не изменяется при изменении температуры. Средняя скорость направленного движения электронов под действием электрического поля зависит от вероятности столкновения электронов с узлами кристаллической решетки, что приводит к уменьшению их средней скорости.

В электронном газе, который находится в состоянии вырождения, скорости хаотического движения электронов определяются не температурой тела, а концентрацией свободных электронов. В металлах она достигает около 1028м3 , что обусловлено особенностью металлической связи, ᴛ.ᴇ. практически всœе валентные электроны в металлах свободны. При этом энергии эти электронов различны.

Все уровни с энергией меньше уровня Ферми с вероятностью большей 0,5 заполнены электронами, и наоборот уровни с энергией большей уровня Ферми с вероятностью 0,5 свободны от электронов. Распределœение электронов по уровням энергии можно представить рисунком 4.1.

Для того чтобы описывать движение электрона в твердом телœе, как свободное перемещение заряженной частицы без учета периодического поля кристаллической решетки вводится понятие об эффективной массе m°, которая должна быть и больше и меньше массы свободного электрона и даже иметь положительный или отрицательный знак. Металлы с преобладанием положительных эффективных масс носителœей заряда (к примеру, алюминий) называют электронными, противоположные (к примеру, цинк, молибден) – дырочными. Первые характеризуются отрицательными знаками коэффициента Холла и термо-э.д.с. При этом, для ряда металлов, к примеру меди, серебра, золота͵ коэффициент Холла имеет отрицательный знак, а термо-э.д.с. положительный, что говорит о большой сложности их электронного строения и неприменимости к ним простейших моделœей.

Поведение электронов в металлах описывается статистикой Ферми-Дирака. При температуре 0 К концентрация электронов равняется:

(4.1)

где h - постоянная Планка;

WF - энергия уровня Ферми;

m° - эффективная масса

Вследствие того, что электронный газ находится в состоянии вырождения, в процессе электропроводности принимают участие не всœе свободные электроны, а только те, энергия которых больше энергии Ферми. Под влиянием электрического поля проходит рассеивание электронов под большими углами в процессе их упругих столкновений с узлами кристаллической решетки. Вследствие этого возрастает избыток быстрых электронов, которые двигаются против направления поля, и дефицит быстрых электронов с противоположным направлением скорости. Концентрация свободных электронов в чистых металлах отличается незначительно и практически не зависит от температуры, поскольку в вырожденном электронном газе энергия Ферми изменяется незначительно. Согласно квантовой теории электропроводность металлов s равняется:

σ = e2 n λвол/(m°×VT) = (e2 n2/3 λвол /h )·(8π/3)1/3 ( 4.2)

где VT - тепловая скорость электронов;

е – заряд электрона;

п – количество электронов

λвол - длина свободного пробега электронов, которая зависит от температуры.

То есть, как видно из (4.2) электропроводность металлов не должна зависеть от температуры. При этом такая зависимость существует. Это можно объяснить волновым характером движения электронов.

Из физики известно, что электроны имеют свойство корпускулярно-волнового дуализма. То есть движение электронов можно рассматривать как перемещение плоских волн. В периодическом потенциальном поле, ĸᴏᴛᴏᴩᴏᴇ имеет идеальная кристаллическая решетка, такая волна должна перемещаться без потерь (без затухания). Это означает, что длина пробега электронов должна быть бесконечной, тогда согласно (4.2) и электропроводность металлов тоже должна быть бесконечной. Но в реальной действительности в кристаллах всœегда имеют место дефекты решетки: динамические - тепловые колебания узлов кристаллической решетки, и статические - одномерные, линœейные дефекты решетки.

Эти дефекты сыграют роль центров рассеивания, которые ограничивают длину свободного пробега электронов, и вследствие этого металлы имеют конечное удельное сопротивление. Τᴀᴋᴎᴍ ᴏϬᴩᴀᴈᴏᴍ, удельное сопротивление металлических проводников зависит в первую очередь от средней длины свободного пробега электронов.

referatwork.ru

Проводники, диэлектрики, полупроводники

     Все вещества состоят из атомов и молекул, имеющих положительно заряженные ядра и отрицательно заряженные электроны. Атомы и молекулы электрически нейтральны, так как заряд ядра равен суммарному заряду

электронов, окружающих ядро. При наличии внешних факторов (повышение температуры, электрическое поле и т.д.) атом или молекула теряет электрон. Этот атом превращается в положительный ион, а электрон, оторвавшийся от атома, может присоединиться к другому атому, превратив его в отрицательный ион, остаться свободным. Процесс образования ионов называют ионизацией. Количество свободных электронов или ионов в единице объема вещества называется концентрацией заряженных частиц. Таким образом, в веществе, которую поместили в электрическое поле, под действием сил поля возникает процесс движения свободных электронов или ионов в направлении сил поля, назвали электрическим током.

 

     Свойство вещества проводить ток под действием электрического поля называется электропроводностью вещества, которая зависит от концентрации свободных электрически заряженных частиц. Чем больше концентрация заряженных частиц, тем больше электропроводность вещества. Все вещества в зависимости от электропроводности делятся на:

1 Проводник. Обладают очень большой электропроводностью. Проводники делятся на две группы. К проводникам первой группе относятся металлы (медь, алюминий, серебро и т.д.) и их сплавы, в которых возможно перемещение только электронов. То есть в металлах электроны очень слабо связаны с ядрами атомов и легко от них отделяются. В металлах явление электрического тока связано с движением свободных электронов, которые обладают очень большой подвижностью и находятся в состоянии теплового движения. Эту электропроводность называют электронной. Проводники используются для изготовления проводов, ЛЭП, обмоток электрических машин и т.п.. К проводникам второй группе относятся водные растворы солей, кислот и т.д., которые называют электролитами. Под действием раствора молекулы вещества распадаются на положительные и отрицательные ионы, которые под действием электрического поля начнут перемещаться. Ионы электролита при прохождении тока начнут осаждатися на электродах, опущенных в электролит. Процесс выделения вещества из электролитов электрическим током называется электролизом. Его используют для добычи цветных металлов из растворов их соединений (медь, алюминий), а также для покрытия металлов защитным слоем другого металла (например, хромирование).

2 Диэлектрики (или электроизоляционные вещества). Вещества с очень малой электропроводностью (газы, резиновые вещества, минеральные масла и т.п.). В этих веществах электроны очень сильно связаны с ядрами атомов и под действием электрического поля редко отделяются от ядер. Т.е. диэлектрики не проводят электрический ток. Это их свойство используют при производстве электрозащитных средств: диэлектрические перчатки, обувь, коврики, изолирующие подставки, накладки, колпаки, изоляторы на электрооборудовании и т.п..

Диэлектрики могут быть: твердые, газообразные, жидкости.

 

3 Полупроводниковые (германий, селен, кремний). Это вещества, которые кроме электронной проводимости, имеют «дырочную» проводимость, которая в большой степени зависит от наличия внешних факторов: света, температуры, электрического или магнитного поля. Эти вещества имеют ковалентную связь (- это химическая связь между двумя электронами соседних атомов на одной орбите). Ковалентная связь очень непрочен. При наличии внешнего фактора он разрушается и появляются свободные электроны (электронная проводимость). В момент образования свободного электрона в ковалентной связи появляется свободный город - «электрона дыра» (эквивалентная протона), которая притягивает к себе электрон из соседнего ковалентной связи. Но тогда образуется новая «дыра», которая вновь притягивает к себе электрон из соседнего ковалентной связи и так далее. Т.е. под действием электрического поля перемещаются «дыры» в направлении поля (навстречу электронам) - движение протонов. Таким образом, при электронной проводимости - электрон проходит весь путь, а при «дырочной» - электроны поочередно замещаются по связям, каждый электрон проходит долю пути. При нарушении связей в полупроводниках одновременно возникает одинаковое количество электронов и «дырок». То есть, проводимость состоит из электронной и «дырочной» и называется собственной проводимостью полупроводника. Свойства полупроводников возможно изменить, если в них внести примеси других веществ. Тем самым увеличить ту или иную проводимость. Это используется в промышленной электронике: диоды, транзисторы, тиристоры. Используют, как усилители, выпрямители, электронные генераторы, стабилизаторы и тому подобное. Их преимущества: малая потеря энергии, стоимость, размер и масса, простота эксплуатации, большой срок работы. Недостаток: зависимость проводимости от температуры.

worldofscience.ru


Видеоматериалы

24.10.2018

Опыт пилотных регионов, где соцнормы на электроэнергию уже введены, показывает: граждане платить стали меньше

Подробнее...
23.10.2018

Соответствует ли вода и воздух установленным нормативам?

Подробнее...
22.10.2018

С начала года из ветхого и аварийного жилья в республике были переселены десятки семей

Подробнее...
22.10.2018

Столичный Водоканал готовится к зиме

Подробнее...
17.10.2018

Более 10-ти миллионов рублей направлено на капитальный ремонт многоквартирных домов в Лескенском районе

Подробнее...

Актуальные темы

13.05.2018

Формирование энергосберегающего поведения граждан

 

Подробнее...
29.03.2018

ОТЧЕТ о деятельности министерства энергетики, ЖКХ и тарифной политики Кабардино-Балкарской Республики в сфере государственного регулирования и контроля цен и тарифов в 2012 году и об основных задачах на 2013 год

Подробнее...
13.03.2018

Предложения организаций, осуществляющих регулируемую деятельность о размере подлежащих государственному регулированию цен (тарифов) на 2013 год

Подробнее...
11.03.2018

НАУЧИМСЯ ЭКОНОМИТЬ В БЫТУ

 
Подробнее...

inetpriem


<< < Ноябрь 2013 > >>
Пн Вт Ср Чт Пт Сб Вс
        1 2 3
4 5 6 7 8 9 10
11 12 13 14 15 16 17
18 19 20 21 22 23 24
25 26 27 28 29 30  

calc

banner-calc

.