Для чего нужен конденсатор. Виды, характеристики. Конденсаторы что это такое


Что такое конденсатор в физике определение. Конденсаторы. Конденсатор переменной емкости

Слайд 2

Цель урока:

Сформировать понятие электроемкости; Ввести новую характеристику – электроемкость конденсатора, и ее единицу измерения. Рассмотреть виды конденсаторов и где они применяются

Слайд 3

Повторим… 1 вариант 1) Кем и когда была создана теория электромагнитного поля и в чем заключается ее суть. 2) Перечислите виды электромагнитных волн. Инфракрасное излучение, его свойства и влияние на организм человека. 2 вариант 1) Что называют электромагнитной волной?. Какими основными свойствами обладает электромагнитная волна? 2) Перечислите виды электромагнитных волн. Рентгенвоское излучение, его свойства и влияние на организм человека.

Наряду с резисторами и индукторами конденсаторы составляют одну из трех основных категорий пассивных компонентов. Ежегодно во всем мире производится около двух триллионов таких устройств. Наиболее распространенным типом является керамический конденсатор, но есть много других видов, таких как пленочные конденсаторы, которые обеспечивают отличную изоляцию и стабильность, а также электролитические конденсаторы с большими значениями емкости. Различные типы используются по-разному, чтобы оптимально использовать их соответствующие свойства и функции.

Слайд 4

Конденсатор представляет собой два проводника, разделенные слоем диэлектрика, толщина которого мала по сравнению с размерами проводников. Электроемкость конденсатора равна где q – заряд положительной обкладки, U – напряжение между обкладками. Электроемкость конденсатора зависит от его геометрической конструкции и электрической проницаемости заполняющего его диэлектрика и не зависит от заряда обкладок. Конденсатор

■ Принцип работы и базовая конструкция конденсаторов

Основной формой конденсатора являются два электрода, обращенные друг к другу, с промежутком между ними. Другими словами, электрический заряд накапливается между двумя электродами. Когда между двумя электродами вставлен так называемый диэлектрик, эффект диэлектрической поляризации приводит к более высокому заряду. Числовое значение, выражающее, сколько заряда конденсатор может удерживать, называется электростатической емкостью или короткой емкостью.

■ Основные свойства конденсатора: «накапливает электрический заряд»

Конденсатор, как следует из его названия, способен хранить довольно большой электрический заряд при условии, что его конструкция позволяет использовать большую площадь поверхности электрода и диэлектрик с подходящей высокой диэлектрической постоянной. Как только разность электрических потенциалов между электродами равна напряжению источника питания, ток прекращается и процесс зарядки заканчивается, что означает, что конденсатор заряжен. Процессы заряда и разряда проиллюстрированы на графике ниже.

Слайд 5

Электроёмкостью двух проводников называют отношение заряда одного из проводников к разности потенциалов между этим проводником и соседним. Единица измерения ёмкости – фарад – [ Ф ] Это надо знать:

Слайд 6

Электроемкость плоского конденсатора равна где S– площадь каждой из обкладок, d– расстояние между ними, ε – диэлектрическая проницаемость вещества между обкладками. При этом предполагается, что геометрические размеры пластин велики по сравнению с расстоянием между ними. Запомните, что…

Поскольку электроды конденсатора разделены диэлектриком, ток будет протекать мгновенно в проводнике во время процесса зарядки, но ток фактически не пройдет через диэлектрик внутри конденсатора. Другими словами, конденсатор блокирует поток постоянного тока. Напротив, когда источник питания переменного тока подключен, электроды поочередно повторяют цикл зарядки и разрядки, каждый раз изменяя ориентацию электрического поля. Поскольку он отличается от обычного тока проводимости, этот тип тока называется током смещения.

Слайд 7

Энергия конденсатора

W = qU/2 W=q2 /2C U

Слайд 8

Типы конденсаторов

Слайд 9

В настоящее время широко применяются бумажные конденсаторы для напряжений в несколько сот вольт и ёмкостью в несколько микрофарад. В таких конденсаторах обкладками служат две длинные ленты тонкой металлической фольги, а изолирующей прокладкой между ними – несколько более широкая бумажная лента, пропитанная парафином. Бумажной лентой покрывается одна из обкладок, затем ленты туго свёртываются в рулон и укладываются в специальный корпус. Такой конденсатор, имея размеры спичечного коробка, обладает ёмкостью 10мкФ (металлический шар такой ёмкости имел бы радиус 90км). Бумажный конденсатор

■ Основные свойства конденсатора: «чем выше частота, тем выше емкость, тем легче проходит ток»

Однако способность пропускать ток не одинакова для каждого типа тока. Это зависит от частоты переменного тока, а также от емкости конденсатора. Степень, в которой ток может проходить легко, обозначается величиной, называемой емкостным реактивным сопротивлением. Ниже приведено уравнение емкостного сопротивления конденсатора. Дефибрилляция - это применение заданного электрического тока через миокард, чтобы вызвать синхронную деполяризацию сердечной мышцы с целью превращения дисритмии в нормальный синусовый ритм.

Слайд 10

Керамический конденсатор В радиотехнике применяют керамические конденсаторы. Диэлектриком в них служит специальная керамика. Обкладки керамических конденсаторов изготавливаются в виде слоя серебра, нанесённого на поверхность керамики и защищённого слоем лака. Керамические конденсаторы изготавливаются на ёмкости о единиц до сотен пикофарад и на напряжения от сотен до тысяч вольт.

Основной причиной внезапной смерти является фибрилляция желудочков; единственным эффективным способом лечения которого является ранняя дефибрилляция. Наиболее важным компонентом дефибриллятора является конденсатор, который хранит большое количество энергии в виде электрического заряда, а затем высвобождает его в течение короткого периода времени. Конденсатор состоит из пары проводников, разделенных изолятором. Проводники теряют и легко набирают электроны и, следовательно, позволяют течь течь; в то время как изоляторы не теряют свои электроны и вряд ли пропускают ток.

Слайд 11

Конденсатор переменной емкости.

Запишите устройство конденсатора

Слайд 12

Запишите какова их электроемкость.

Слайд 13

ПРИМЕНЕНИЕ КОНДЕНСАТОРОВ

  • Слайд 14

    Какова электроемкость конденсатора, если заряд конденсатора 10 нКл, а разность потенциалов 20 кВ. А теперь задача…

    Слайд 15

    Максимальное рабочее напряжение - это напряжение, которое при превышении приводит к разрыву и диэлектрике диэлектрика, часто с катастрофическими результатами. Емкость - это способность хранить заряд. Конденсаторы обычно имеют значения микрофарад, нанофарад или пикофарад. Для простого конденсатора емкость пропорциональна площ

  • elektrokomplektnn.ru

    Большая Энциклопедия Нефти и Газа. Проходные конденсаторы что это такое

    Проходной конденсатор - Большая Энциклопедия Нефти и Газа, статья, страница 5

    Проходной конденсатор

    Cтраница 5

    В качестве фильтров, подавляющих радиопомехи, рекомендуется применять защитные конденсаторы типа КЗ и проходные конденсаторы типа КБП.  [62]

    Измерения производятся на частоте 250 Мгц выводы гнезд для эмиттера и коллектора монтируются на проходных конденсаторах; вывод экрана соединяется с землей.  [64]

    На автомобиле ЗИЛ-131 параллельно генератору и реле-регулятору включается конденсаторный фильтр типа РФ-200, состоящий из проходного конденсатора емкостью 1 мкф.  [65]

    В фильтрах типа ФР-81 и ФР-82 применены тороидальные катушки, намотанные на альсиферовые сердечники типа ТЧ-60 и проходные конденсаторы типа КБП с креплением скобой.  [66]

    Однако практика показывает, что в упрощенных и даже высокоэффективных системах при применении для фильтраций помех отдатчиков проходных конденсаторов емкостью 0 15 мкф уровни поля получаются менее 2 мкв во всем диапазоне частот от 0 15 до 150 Мгц.  [67]

    Подавление радиопомех в проводе, идущем от параллельной обмотки, как правило, может быть осуществлено одним проходным конденсатором емкостью 0 25 мкф.  [69]

    Положительный выброс продифференцированного импульса, совпадающий во времени с моментом прохождения заднего фронта строчного гасящего импульса, через проходной конденсатор 2С15 поступает на диоды 2Д5, 2Д6 и открывает их. При этом разделительный конденсатор 2С14 заряжается по цепи: 7R8a, 7R9, корпус, 7R13, 2R29, 2Д6, 2Д5 до напряжения, соответствующего амплитуде гасящего импульса таким образом, что на его выводе, подключенном к управляющей сетке лампы 2Л1, возникает положительное напряжение.  [70]

    Второй ( внешний) конденсатор рекомендуется устанавливать на выходные ( якорные) концы машины Для указанных целей предпочтительны проходные конденсаторы.  [72]

    Страницы:      1    2    3    4    5

    www.ngpedia.ru

    проходной конденсатор - это... Что такое проходной конденсатор?

     проходной конденсатор

    1) Engineering: duct capacitor, feed-through capacitor

    2) Electronics: feedthrough capacitor

    3) Automation: capacitor bushing

    Универсальный русско-английский словарь. Академик.ру. 2011.

    • проходной коммуникационный канал
    • проходной конец калибра
    Смотреть что такое "проходной конденсатор" в других словарях:
    • проходной конденсатор — — [Я.Н.Лугинский, М.С.Фези Жилинская, Ю.С.Кабиров. Англо русский словарь по электротехнике и электроэнергетике, Москва, 1999 г.] Тематики электротехника, основные понятия EN duct capacitorfeedthrough capacitor …   Справочник технического переводчика

    • проходной конденсатор для подавления помех — — [Л.Г.Суменко. Англо русский словарь по информационным технологиям. М.: ГП ЦНИИС, 2003.] Тематики информационные технологии в целом EN duct capacitor …   Справочник технического переводчика

    • проходной конденсатор (некоаксиальный) — 1.5.8 проходной конденсатор (некоаксиальный) (lead through capacitor (non coaxial): Конденсатор, через электроды которого или параллельно им пропускают токи источника питания. См. рисунки 4a 4d. Рисунок 4а Проходной конденсатор для симметричного… …   Словарь-справочник терминов нормативно-технической документации

    • проходной конденсатор (коаксиальный) — 1.5.7 проходной конденсатор (коаксиальный) (lead through capacitor (coaxial): Конденсатор с центральным токоведущим проводником, окруженным емкостным элементом, который расположен симметрично относительно центрального проводника и наружной… …   Словарь-справочник терминов нормативно-технической документации

    • коаксиальный проходной конденсатор — Конденсатор цилиндрической конструкции, один из выводов которого представляет собой стержень, проходящий по оси конденсатора, по которому протекает ток внешней цепи. [ГОСТ 21415 75] Тематики конденсаторы для электронной аппаратуры EN coaxial feed …   Справочник технического переводчика

    • некоаксиальный проходной конденсатор — Конденсатор, по электродам или выводам которого протекает ток внешней цепи. [ГОСТ 21415 75] Тематики конденсаторы для электронной аппаратуры EN non coaxial feed through capacitor DE nichtkoaxialer Durchführungskondensator FR condensateur de… …   Справочник технического переводчика

    • Коаксиальный проходной конденсатор — 46. Коаксиальный проходной конденсатор D. Koaxialer Durchführungskondensator E. Coaxial feed through capacitor F. Condensateur de traversée coaxial Источник: ГОСТ 21415 75: Конденсаторы. Термины и определения оригинал документа …   Словарь-справочник терминов нормативно-технической документации

    • ГОСТ Р МЭК 60384-14-2004: Конденсаторы постоянной емкости для электронной аппаратуры. Часть 14. Групповые технические условия на конденсаторы постоянной емкости для подавления электромагнитных помех и соединения с питающими магистралями — Терминология ГОСТ Р МЭК 60384 14 2004: Конденсаторы постоянной емкости для электронной аппаратуры. Часть 14. Групповые технические условия на конденсаторы постоянной емкости для подавления электромагнитных помех и соединения с питающими… …   Словарь-справочник терминов нормативно-технической документации

    • ГОСТ 21415-75: Конденсаторы. Термины и определения — Терминология ГОСТ 21415 75: Конденсаторы. Термины и определения оригинал документа: 13. Анод конденсатора D. Kondensatoranode E. Anode of a capacitor F. Anode d un condensateur Положительный электрод полярного конденсатора Определения термина из… …   Словарь-справочник терминов нормативно-технической документации

    • номинальная температура — 3.4. номинальная температура : Максимально допустимая температура, при которой котел может функционировать в нормальных условиях эксплуатации при максимальной установке регулятора температуры воды [ЕН 303 1]. Источник …   Словарь-справочник терминов нормативно-технической документации

    • номинальная температура (проходного конденсатора или последовательно соединенной RC-сборки) — 1.5.14 номинальная температура (проходного конденсатора или последовательно соединенной RC сборки) (rated temperature (of a lead through capacitor or series RC unit): Максимальная температура окружающей среды, при которой проходной конденсатор… …   Словарь-справочник терминов нормативно-технической документации

    universal_ru_en.academic.ru

    Что такое конденсатор, типы конденсаторов и их обозначение на схемах. Замена проходных конденсаторов магнетрона

    Проходные конденсаторы – не новость в радиоэлектронной промышленности: они были открыты сразу за обычными двухобкладочными конденсаторами и находили применение в высокочастотных узлах ламповых устройств аппаратуры связи. Сегодня значение проходных конденсаторов представляется в новом ракурсе.

    Увеличение рабочих частот цифровых интегральных схем является сейчас основной устойчивой тенденцией в электро

    xn--90adflmiialse2m.xn--p1ai

    Для чего нужен конденсатор. Виды, характеристики

    Конденсаторы представляют собой электронные компоненты, используемые для хранения электрического заряда. Конденсаторы могут иметь различную форму, но всегда похожи друг на друга внутри.

    Конденсатор, как правило, состоит из двух электропроводящих пластин (электродов), которые изолированы друг от друга диэлектриком.Величина (емкость) накопленного заряда определяется поверхностью электродов и расстояния между ними. Большая площадь и меньшее расстояние обеспечивает более высокую емкость.

    Для расчета емкости мы используем следующее соотношение:

    С = e х A / d

    • C = емкость в фарадах
    • A = площадь в м2
    • d = расстояние между электродами
    • е = диэлектрическая проницаемость диэлектрика

    Единицей измерения емкости является фарад. Один фарад — это такая емкость, при которой заряд в 1 кулон создает напряжение между обкладками в 1 вольт.

    Обозначение конденсатора на схемах:

    Для того, чтобы лучше понять взаимосвязь между параметрами конденсатора, рассмотрим следующую упрощенную эквивалентную схему:

    • Rs — последовательное сопротивление выводов и электродов, электролита, а также потери в диэлектрике.
    • Ls — индуктивность выводов и электрод.
    • C – емкость.
    • Rр — сопротивление изоляции в диэлектрике.

    Виды конденсаторов

    Постоянные конденсаторы

    Бумажные конденсаторы (KLMP, KSMP) в большинстве заменены пластиковыми. Несмотря на высокую диэлектрическую проницаемость бумажных конденсаторов они крупнее и дороже, чем пластиковые.

    Преимущества бумажных конденсаторов — устойчивость к импульсному напряжению, низкое содержание углерода (приблизительно 3%, для сравнения у пластиковых 40…70%) приводит к хорошему самовосстановлению и небольшой риск возгорания. В настоящее время бумажные конденсаторы используются исключительно для подавления помех.

    Конденсаторы полистирольные и полиэфирные (KSF, MKSE, MKSF, MKSP) конденсаторы изготавливаются из металлизированной полиэфирной пленки.

    Слюдяные конденсаторы (КСО) многослойные, построены так же, как и керамические конденсаторы, электрод может быть выполнен из серебра. Слюда является минералом, добываемым в шахтах Индии, где его качество особенно высоко.

    Этот материал очень твердый и прочный, отличается тем, что он разделяется на тонкие пластины, которые могут быть оснащены электродами.Электрические свойства, например, сопротивление изоляции, потери и стабильность вполне сопоставимы с лучшими искусственными диэлектриками и керамикой.

    Слюдяные конденсаторы, тем не менее, являются относительно крупными и дорогими, в результате чего в значительной степени подлежат замене полипропиленовыми конденсаторами. Слюдяные конденсаторы часто используется в высокочастотных схемах, которые требуют не только низкие потери, но и высокую стабильность частоты и температуры. Они изготавливаются емкостью от 1 пФ и до 0,1 мкФ.

    Керамические конденсаторы (KCP, КФП, КЧР, KFR) производятся из одной или нескольких керамических пластин с нанесением металлического напыления (электроды). Керамический конденсатор с одним слоем диэлектрика называется «однослойным». Когда конденсатор состоит из нескольких слоев диэлектрика, его называют многослойный. Керамические конденсаторы изготавливаются емкостью от 0,5 пФ и до нескольких сотен микрофарад. Конденсаторы емкостью больше чем 10 мкФ достаточно редки из-за высокой цены.

    Электролитические конденсаторы (KEN, KEO, SME, T, UL, KERMS) имеют алюминиевые или танталовые электроды. Поверхность анода (положительный полюс) покрыт очень тонким слоем оксида, который действует в качестве диэлектрика. Для того чтобы уменьшить расстояние между оксидным слоем и катодом (отрицательный полюс) используют электролит с низким сопротивлением.

    Алюминиевые влажные электролитические конденсаторы. Они содержат электролит, состоящий из борной кислоты, этиленгликоля, соли и растворителя. Электроды вытравливаются в кислотной ванне, чтобы получить пористую поверхность. Таким образом, поверхность возрастает до 300 раз.

    Танталовые конденсаторы. Они имеют в качестве диэлектрика оксид тантала с превосходными электрическими свойствами. Анод конденсатора выполнен путем спеканием порошка тантала. Около 50% объема состоит из пор, в результате чего внутренняя поверхность в 100 раз больше, чем внешняя.

    После нанесения покрытия на слой оксида тантала, образующегося в кислотной ванне, конденсатор погружают в раствор диоксида марганца, заполняющий все поры. Контакт с катодом, который состоит из электропроводной серебряной краски, получается путем покрытия слоем углерода в виде графита.

    Переменные конденсаторы

    Эти конденсаторы имеют переменную емкость с воздушным диэлектриком (AM, FM) или керамические оборотные конденсаторы.Воздушный конденсатор выполнен из двух параллельных сборок пластин ( ротора и статора ), которые изменяют свое положение из-за чего меняется и емкость такого конденсатора.

    Параметры конденсаторов

    • Номинальная емкость — значение емкости. Фактическая емкость на практике равна номинальной емкости с учетом допусков связанных с изменением диэлектрической проницаемости диэлектрика вследствие изменения окружающей температуры. Значения допусков зависят от типа диэлектрика.
    • Номинальное напряжение — максимально допустимое напряжение, которое может быть на конденсаторе. Это напряжение, как правило, является суммой постоянного напряжения и пикового значения переменного напряжения.
    • Сопротивление изоляции конденсатора — это электрическое сопротивление конденсатора постоянному току определенного напряжения. Оно характеризует качество диэлектрика и качество его изготовления.

    fornk.ru

    Конденсатор электрический - это... Что такое Конденсатор электрический?

    Основа конструкции конденсатора — две токопроводящие обкладки, между которыми находится диэлектрик

    Слева - конденсаторы для поверхностного монтажа; справа - конденсаторы для объёмного монтажа; сверху - керамические; снизу - электролитические.

    Различные конденсаторы для объёмного монтажа

    Конденса́тор — двухполюсник с определённым значением ёмкости и малой омической проводимостью; устройство для накопления энергии электрического поля. Конденсатор является пассивным электронным компонентом. Обычно состоит из двух электродов в форме пластин (называемых обкладками), разделённых диэлектриком, толщина которого мала по сравнению с размерами обкладок.

    История

    В 1745 году в Лейдене немецкий физик Эвальд Юрген фон Клейст и голландский физик Питер ван Мушенбрук создали первый конденсатор — «лейденскую банку».

    Свойства конденсатора

    Конденсатор в цепи постоянного тока может проводить ток в момент включения его в цепь (происходит заряд или перезаряд конденсатора), по окончании переходного процесса ток через конденсатор не течет, так как его обкладки разделены диэлектриком. В цепи же переменного тока он проводит колебания переменного тока посредством циклической перезарядки конденсатора.

    В терминах метода комплексных амплитуд конденсатор обладает комплексным импедансом

    ,

    где — мнимая единица, — частота[1] протекающего синусоидального тока, — ёмкость конденсатора. Отсюда также следует, что реактивное сопротивление конденсатора равно: . Для постоянного тока частота равна нулю, следовательно, реактивное сопротивление конденсатора бесконечно (в идеальном случае).

    При изменении частоты изменяются диэлектрическая проницаемость диэлектрика и степень влияния паразитных параметров — собственной индуктивности и сопротивления потерь. На высоких частотах любой конденсатор можно рассматривать как последовательный колебательный контур, образуемый ёмкостью , собственной индуктивностью и сопротивлением потерь .

    Резонансная частота конденсатора равна

    При конденсатор в цепи переменного тока ведёт себя как катушка индуктивности. Следовательно, конденсатор целесообразно использовать лишь на частотах , на которых его сопротивление носит ёмкостный характер. Обычно максимальная рабочая частота конденсатора примерно в 2—3 раза ниже резонансной.

    Конденсатор может накапливать электрическую энергию. Энергия заряженного конденсатора:

    где — напряжение (разность потенциалов), до которого заряжен конденсатор.

    Обозначение конденсаторов на схемах

    В России условные графические обозначения конденсаторов на схемах должны соответствовать ГОСТ 2.728-74[2] либо международному стандарту IEEE 315-1975:

    Обозначениепо ГОСТ 2.728-74 Описание
    Конденсатор постоянной ёмкости
    Поляризованный конденсатор
    Подстроечный конденсатор переменной ёмкости

    На электрических принципиальных схемах номинальная ёмкость конденсаторов обычно указывается в микрофарадах (1 мкФ = 106 пФ) и пикофарадах, но нередко и в нанофарадах. При ёмкости не более 0,01 мкФ, ёмкость конденсатора указывают в пикофарадах, при этом допустимо не указывать единицу измерения, т.е. постфикс «пФ» опускают. При обозначении номинала ёмкости в других единицах указывают единицу измерения (пикоФарад). Для электролитических конденсаторов, а также для высоковольтных конденсаторов на схемах, после обозначения номинала ёмкости, указывают их максимальное рабочее напряжение в вольтах (В) или киловольтах (кВ). Например так: «10 мк x 10 В». Для переменных конденсаторов указывают диапазон изменения ёмкости, например так: «10 – 180». В настоящее время изготавливаются конденсаторы с номинальными ёмкостями из десятичнологарифмических рядов значений Е3, Е6, Е12, Е24, т.е. на одну декаду приходится 3, 6, 12, 24 значения, так, чтобы значения с соответствующим допуском (разбросом) перекрывали всю декаду.

    Характеристики конденсаторов

    Основные параметры

    Ёмкость

    Основной характеристикой конденсатора является его ёмкость. В обозначении конденсатора фигурирует значение номинальной ёмкости, в то время как реальная ёмкость может значительно меняться в зависимости от многих факторов. Реальная ёмкость конденсатора определяет его электрические свойства. Так, по определению ёмкости, заряд на обкладке пропорционален напряжению между обкладками (q = CU). Типичные значения ёмкости конденсаторов составляют от единиц пикофарад до сотен микрофарад. Однако существуют конденсаторы с ёмкостью до десятков фарад.

    Ёмкость плоского конденсатора, состоящего из двух параллельных металлических пластин площадью каждая, расположенных на расстоянии друг от друга, в системе СИ выражается формулой: , где — относительная диэлектрическая проницаемость среды, заполняющей пространство между пластинами (эта формула справедлива, лишь когда много меньше линейных размеров пластин).

    Для получения больших ёмкостей конденсаторы соединяют параллельно. При этом напряжение между обкладками всех конденсаторов одинаково. Общая ёмкость батареи параллельно соединённых конденсаторов равна сумме ёмкостей всех конденсаторов, входящих в батарею.

    или

    Если у всех параллельно соединённых конденсаторов расстояние между обкладками и свойства диэлектрика одинаковы, то эти конденсаторы можно представить как один большой конденсатор, разделённый на фрагменты меньшей площади.

    При последовательном соединении конденсаторов заряды всех конденсаторов одинаковы. Общая ёмкость батареи последовательно соединённых конденсаторов равна

    или

    Эта ёмкость всегда меньше минимальной ёмкости конденсатора, входящего в батарею. Однако при последовательном соединении уменьшается возможность пробоя конденсаторов, так как на каждый конденсатор приходится лишь часть разницы потенциалов источника напряжения.

    Если площадь обкладок всех конденсаторов, соединённых последовательно, одинакова, то эти конденсаторы можно представить в виде одного большого конденсатора, между обкладками которого находится стопка из пластин диэлектрика всех составляющих его конденсаторов.

    Удельная ёмкость

    Конденсаторы также характеризуются удельной ёмкостью — отношением ёмкости к объёму (или массе) диэлектрика. Максимальное значение удельной ёмкости достигается при минимальной толщине диэлектрика, однако при этом уменьшается его напряжение пробоя.

    Номинальное напряжение

    Другой, не менее важной характеристикой конденсаторов является номинальное напряжение — значение напряжения, обозначенное на конденсаторе, при котором он может работать в заданных условиях в течение срока службы с сохранением параметров в допустимых пределах.

    Номинальное напряжение зависит от конструкции конденсатора и свойств применяемых материалов. При эксплуатации напряжение на конденсаторе не должно превышать номинального. Для многих типов конденсаторов с увеличением температуры допустимое напряжение снижается.

    Полярность

    Конденсаторы, разрушившиеся без взрыва из-за температуры и напряжения, не соответствующих рабочим.

    Многие конденсаторы с оксидным диэлектриком (электролитические) функционируют только при корректной полярности напряжения из-за химических особенностей взаимодействия электролита с диэлектриком. При обратной полярности напряжения электролитические конденсаторы обычно выходят из строя из-за химического разрушения диэлектрика с последующим увеличением тока, вскипанием электролита внутри и, как следствие, с вероятностью взрыва корпуса.

    Взрывы электролитических конденсаторов — довольно распространённое явление. Основной причиной взрывов является перегрев конденсатора, вызываемый в большинстве случаев утечкой или повышением эквивалентного последовательного сопротивления вследствие старения (актуально для импульсных устройств). Для уменьшения повреждений других деталей и травматизма персонала в современных конденсаторах большой ёмкости устанавливают клапан или выполняют насечку на корпусе (часто можно заметить её в форме буквы X, K или Т на торце). При повышении внутреннего давления открывается клапан или корпус разрушается по насечке, испарившийся электролит выходит в виде едкого газа, и давление спадает без взрыва и осколков.

    Паразитные параметры

    Реальные конденсаторы, помимо ёмкости, обладают также собственными сопротивлением и индуктивностью. С высокой степенью точности, эквивалентную схему реального конденсатора можно представить следующим образом:

    Электрическое сопротивление изоляции конденсатора — r

    Сопротивление изоляции — это сопротивление конденсатора постоянному току, определяемое соотношением r = U / Iут , где U — напряжение, приложенное к конденсатору, Iут — ток утечки.

    Эквивалентное последовательное сопротивление — R

    Эквивалентное последовательное сопротивление (ЭПС, англ. ESR) обусловлено главным образом электрическим сопротивлением материала обкладок и выводов конденсатора и контакта(-ов) между ними, а также потерями в диэлектрике. Обычно ЭПС возрастает с увеличением частоты тока, протекающего через конденсатор.

    В большинстве случаев этим параметром можно пренебречь, но иногда (напр., в случае использования электролитических конденсаторов в фильтрах импульсных блоков питания) достаточно малое его значение может быть жизненно важным для надёжности устройства (см., напр., Capacitor plague(англ.)).

    Эквивалентная последовательная индуктивность — L

    Эквивалентная последовательная индуктивность обусловлена, в основном, собственной индуктивностью обкладок и выводов конденсатора. На низких частотах (до единиц килогерц) обычно не учитывается в силу своей незначительности.

    Тангенс угла потерь

    Тангенс угла потерь - отношение мнимой и вещественной части комплексной диэлектрической проницаемости.

    Потери энергии в конденсаторе определяются потерями в диэлектрике и обкладках. При протекании переменного тока через конденсатор векторы напряжения и тока сдвинуты на угол , где — угол диэлектрических потерь. При отсутствии потерь . Тангенс угла потерь определяется отношением активной мощности Pа к реактивной Pр при синусоидальном напряжении определённой частоты. Величина, обратная , называется добротностью конденсатора. Термины добротности и тангенса угла потерь применяются также для катушек индуктивности и трансформаторов.

    Температурный коэффициент ёмкости (ТКЕ)

    ТКЕ — относительное изменению емкости при изменении температуры окружающей среды на один градус Цельсия (Кельвина). Таким образом значение ёмкости от температуры представляется линейной формулой:

    ,

    где ΔT - увеличение температуры в °C или °К относительно нормальных условий, при которых специфицировано значение ёмкости. TKE применяется для характеристики конденсаторов со значительной линейной зависимостью ёмкости от температуры. Однако ТКЕ определяется не для всех типов конденсаторов. Конденсаторы, имеющие нелинейную зависимость емкости от температуры, и конденсаторы с большими уходами емкости от воздействия температуры окружающей среды в обозначении имеют указание на относительное изменение емкости в рабочем диапазоне температур.

    Диэлектрическое поглощение

    Если заряженный конденсатор быстро разрядить до нулевого напряжения путём подключения низкоомной нагрузки, а затем снять нагрузку и наблюдать за напряжением на выводах конденсатора, то мы увидим, что напряжение медленно повышается. Это явление получило название диэлектрическое поглощение или адсорбция электрического заряда. Конденсатор ведёт себя так, словно параллельно ему подключено множество последовательных RC-цепочек с различной постоянной времени. Интенсивность проявления этого эффекта зависит в основном от свойств диэлектрика конденсатора. Подобный эффект можно наблюдать и на большинстве электролитических конденсаторов, но в них он является следствием химических реакций между электролитом и обкладками. Наименьшим диэлектрическим поглощением обладают конденсаторы с органическими диэлектриками: тефлон (фторопласт), полистирол, полиэтилентерефталат, поликарбонат.

    Классификация конденсаторов

    Основная классификация конденсаторов проводится по типу диэлектрика в конденсаторе. Тип диэлектрика определяет основные электрические параметры конденсаторов: сопротивление изоляции, стабильность ёмкости, величину потерь и др.

    По виду диэлектрика различают:

    • Конденсаторы вакуумные (обкладки без диэлектрика находятся в вакууме).
    • Конденсаторы с газообразным диэлектриком.
    • Конденсаторы с жидким диэлектриком.
    • Конденсаторы с твёрдым неорганическим диэлектриком: стеклянные (стеклоэмалевые, стеклокерамические, стеклоплёночные), слюдяные, керамические, тонкослойные из неорганических плёнок.
    • Конденсаторы с твёрдым органическим диэлектриком: бумажные, металлобумажные, плёночные, комбинированные — бумажноплёночные, тонкослойные из органических синтетических плёнок.
    • Электролитические и оксидно-полупроводниковые конденсаторы. Такие конденсаторы отличаются от всех прочих типов прежде всего своей огромной удельной ёмкостью. В качестве диэлектрика используется оксидный слой на металлическом аноде. Вторая обкладка (катод) — это или электролит (в электролитических конденсаторах) или слой полупроводника (в оксидно-полупроводниковых), нанесённый непосредственно на оксидный слой. Анод изготовляется, в зависимости от типа конденсатора, из алюминиевой, ниобиевой или танталовой фольги или спеченного порошка.

    Кроме того, конденсаторы различаются по возможности изменения своей ёмкости:

    • Постоянные конденсаторы — основной класс конденсаторов, не меняющие своей ёмкости (кроме как в течение срока службы).
    • Переменные конденсаторы — конденсаторы, которые допускают изменение ёмкости в процессе функционирования аппаратуры. Управление ёмкостью может осуществляться механически, электрическим напряжением (вариконды, варикапы) и температурой (термо­конденсаторы). Применяются, например, в радиоприемниках для перестройки частоты резонансного контура.
    • Подстроечные конденсаторы — конденсаторы, ёмкость которых изменяется при разовой или периодической регулировке и не изменяется в процессе функционирования аппаратуры. Их используют для подстройки и выравнивания начальных ёмкостей сопрягаемых контуров, для периодической подстройки и регулировки цепей схем, где требуется незначительное изменение ёмкости.

    В зависимости от назначения можно условно разделить конденсаторы на конденсаторы общего и специального назначения. Конденсаторы общего назначения используются практически в большинстве видов и классов аппаратуры. Традиционно к ним относят наиболее распространённые низковольтные конденсаторы, к которым не предъявляются особые требования. Все остальные конденсаторы являются специальными. К ним относятся высоковольтные, импульсные, помехоподавляюшие, дозиметрические, пусковые и другие конденсаторы.

    Применение конденсаторов

    Конденсаторы находят применение практически во всех областях электротехники.

    • Так как конденсатор способен длительное время сохранять заряд, то его можно использовать в качестве элемента памяти или устройства хранения электрической энергии.
    • Измерительный преобразователь (ИП) малых перемещений: малое изменение расстояния между обкладками очень заметно сказывается на ёмкости конденсатора.
    • ИП влажности воздуха (изменение состава диэлектрика приводит к изменению емкости)
    • ИП влажности древесины
    • В схемах РЗиА конденсаторы используются для реализации логики работы некоторых защит. В частности, в схеме работы АПВ использование конденсатора позволяет обеспечить требуемую кратность срабатывания защиты.

    Внешние ссылки

    Смотри также

    Ссылки

    1. ↑ Частота в радианах в секунду.
    2. ↑ ГОСТ 2.728-74 (2002)

    dal.academic.ru

    Конденсатор - это... Что такое Конденсатор?

    Основа конструкции конденсатора — две токопроводящие обкладки, между которыми находится диэлектрик

    Слева - конденсаторы для поверхностного монтажа; справа - конденсаторы для объёмного монтажа; сверху - керамические; снизу - электролитические.

    Различные конденсаторы для объёмного монтажа

    Конденса́тор — двухполюсник с определённым значением ёмкости и малой омической проводимостью; устройство для накопления энергии электрического поля. Конденсатор является пассивным электронным компонентом. Обычно состоит из двух электродов в форме пластин (называемых обкладками), разделённых диэлектриком, толщина которого мала по сравнению с размерами обкладок.

    История

    В 1745 году в Лейдене немецкий физик Эвальд Юрген фон Клейст и голландский физик Питер ван Мушенбрук создали первый конденсатор — «лейденскую банку».

    Свойства конденсатора

    Конденсатор в цепи постоянного тока может проводить ток в момент включения его в цепь (происходит заряд или перезаряд конденсатора), по окончании переходного процесса ток через конденсатор не течет, так как его обкладки разделены диэлектриком. В цепи же переменного тока он проводит колебания переменного тока посредством циклической перезарядки конденсатора.

    В терминах метода комплексных амплитуд конденсатор обладает комплексным импедансом

    ,

    где — мнимая единица, — частота[1] протекающего синусоидального тока, — ёмкость конденсатора. Отсюда также следует, что реактивное сопротивление конденсатора равно: . Для постоянного тока частота равна нулю, следовательно, реактивное сопротивление конденсатора бесконечно (в идеальном случае).

    При изменении частоты изменяются диэлектрическая проницаемость диэлектрика и степень влияния паразитных параметров — собственной индуктивности и сопротивления потерь. На высоких частотах любой конденсатор можно рассматривать как последовательный колебательный контур, образуемый ёмкостью , собственной индуктивностью и сопротивлением потерь .

    Резонансная частота конденсатора равна

    При конденсатор в цепи переменного тока ведёт себя как катушка индуктивности. Следовательно, конденсатор целесообразно использовать лишь на частотах , на которых его сопротивление носит ёмкостный характер. Обычно максимальная рабочая частота конденсатора примерно в 2—3 раза ниже резонансной.

    Конденсатор может накапливать электрическую энергию. Энергия заряженного конденсатора:

    где — напряжение (разность потенциалов), до которого заряжен конденсатор.

    Обозначение конденсаторов на схемах

    В России условные графические обозначения конденсаторов на схемах должны соответствовать ГОСТ 2.728-74[2] либо международному стандарту IEEE 315-1975:

    Обозначениепо ГОСТ 2.728-74 Описание
    Конденсатор постоянной ёмкости
    Поляризованный конденсатор
    Подстроечный конденсатор переменной ёмкости

    На электрических принципиальных схемах номинальная ёмкость конденсаторов обычно указывается в микрофарадах (1 мкФ = 106 пФ) и пикофарадах, но нередко и в нанофарадах. При ёмкости не более 0,01 мкФ, ёмкость конденсатора указывают в пикофарадах, при этом допустимо не указывать единицу измерения, т.е. постфикс «пФ» опускают. При обозначении номинала ёмкости в других единицах указывают единицу измерения (пикоФарад). Для электролитических конденсаторов, а также для высоковольтных конденсаторов на схемах, после обозначения номинала ёмкости, указывают их максимальное рабочее напряжение в вольтах (В) или киловольтах (кВ). Например так: «10 мк x 10 В». Для переменных конденсаторов указывают диапазон изменения ёмкости, например так: «10 – 180». В настоящее время изготавливаются конденсаторы с номинальными ёмкостями из десятичнологарифмических рядов значений Е3, Е6, Е12, Е24, т.е. на одну декаду приходится 3, 6, 12, 24 значения, так, чтобы значения с соответствующим допуском (разбросом) перекрывали всю декаду.

    Характеристики конденсаторов

    Основные параметры

    Ёмкость

    Основной характеристикой конденсатора является его ёмкость. В обозначении конденсатора фигурирует значение номинальной ёмкости, в то время как реальная ёмкость может значительно меняться в зависимости от многих факторов. Реальная ёмкость конденсатора определяет его электрические свойства. Так, по определению ёмкости, заряд на обкладке пропорционален напряжению между обкладками (q = CU). Типичные значения ёмкости конденсаторов составляют от единиц пикофарад до сотен микрофарад. Однако существуют конденсаторы с ёмкостью до десятков фарад.

    Ёмкость плоского конденсатора, состоящего из двух параллельных металлических пластин площадью каждая, расположенных на расстоянии друг от друга, в системе СИ выражается формулой: , где — относительная диэлектрическая проницаемость среды, заполняющей пространство между пластинами (эта формула справедлива, лишь когда много меньше линейных размеров пластин).

    Для получения больших ёмкостей конденсаторы соединяют параллельно. При этом напряжение между обкладками всех конденсаторов одинаково. Общая ёмкость батареи параллельно соединённых конденсаторов равна сумме ёмкостей всех конденсаторов, входящих в батарею.

    или

    Если у всех параллельно соединённых конденсаторов расстояние между обкладками и свойства диэлектрика одинаковы, то эти конденсаторы можно представить как один большой конденсатор, разделённый на фрагменты меньшей площади.

    При последовательном соединении конденсаторов заряды всех конденсаторов одинаковы. Общая ёмкость батареи последовательно соединённых конденсаторов равна

    или

    Эта ёмкость всегда меньше минимальной ёмкости конденсатора, входящего в батарею. Однако при последовательном соединении уменьшается возможность пробоя конденсаторов, так как на каждый конденсатор приходится лишь часть разницы потенциалов источника напряжения.

    Если площадь обкладок всех конденсаторов, соединённых последовательно, одинакова, то эти конденсаторы можно представить в виде одного большого конденсатора, между обкладками которого находится стопка из пластин диэлектрика всех составляющих его конденсаторов.

    Удельная ёмкость

    Конденсаторы также характеризуются удельной ёмкостью — отношением ёмкости к объёму (или массе) диэлектрика. Максимальное значение удельной ёмкости достигается при минимальной толщине диэлектрика, однако при этом уменьшается его напряжение пробоя.

    Номинальное напряжение

    Другой, не менее важной характеристикой конденсаторов является номинальное напряжение — значение напряжения, обозначенное на конденсаторе, при котором он может работать в заданных условиях в течение срока службы с сохранением параметров в допустимых пределах.

    Номинальное напряжение зависит от конструкции конденсатора и свойств применяемых материалов. При эксплуатации напряжение на конденсаторе не должно превышать номинального. Для многих типов конденсаторов с увеличением температуры допустимое напряжение снижается.

    Полярность

    Конденсаторы, разрушившиеся без взрыва из-за температуры и напряжения, не соответствующих рабочим.

    Многие конденсаторы с оксидным диэлектриком (электролитические) функционируют только при корректной полярности напряжения из-за химических особенностей взаимодействия электролита с диэлектриком. При обратной полярности напряжения электролитические конденсаторы обычно выходят из строя из-за химического разрушения диэлектрика с последующим увеличением тока, вскипанием электролита внутри и, как следствие, с вероятностью взрыва корпуса.

    Взрывы электролитических конденсаторов — довольно распространённое явление. Основной причиной взрывов является перегрев конденсатора, вызываемый в большинстве случаев утечкой или повышением эквивалентного последовательного сопротивления вследствие старения (актуально для импульсных устройств). Для уменьшения повреждений других деталей и травматизма персонала в современных конденсаторах большой ёмкости устанавливают клапан или выполняют насечку на корпусе (часто можно заметить её в форме буквы X, K или Т на торце). При повышении внутреннего давления открывается клапан или корпус разрушается по насечке, испарившийся электролит выходит в виде едкого газа, и давление спадает без взрыва и осколков.

    Паразитные параметры

    Реальные конденсаторы, помимо ёмкости, обладают также собственными сопротивлением и индуктивностью. С высокой степенью точности, эквивалентную схему реального конденсатора можно представить следующим образом:

    Электрическое сопротивление изоляции конденсатора — r

    Сопротивление изоляции — это сопротивление конденсатора постоянному току, определяемое соотношением r = U / Iут , где U — напряжение, приложенное к конденсатору, Iут — ток утечки.

    Эквивалентное последовательное сопротивление — R

    Эквивалентное последовательное сопротивление (ЭПС, англ. ESR) обусловлено главным образом электрическим сопротивлением материала обкладок и выводов конденсатора и контакта(-ов) между ними, а также потерями в диэлектрике. Обычно ЭПС возрастает с увеличением частоты тока, протекающего через конденсатор.

    В большинстве случаев этим параметром можно пренебречь, но иногда (напр., в случае использования электролитических конденсаторов в фильтрах импульсных блоков питания) достаточно малое его значение может быть жизненно важным для надёжности устройства (см., напр., Capacitor plague(англ.)).

    Эквивалентная последовательная индуктивность — L

    Эквивалентная последовательная индуктивность обусловлена, в основном, собственной индуктивностью обкладок и выводов конденсатора. На низких частотах (до единиц килогерц) обычно не учитывается в силу своей незначительности.

    Тангенс угла потерь

    Тангенс угла потерь - отношение мнимой и вещественной части комплексной диэлектрической проницаемости.

    Потери энергии в конденсаторе определяются потерями в диэлектрике и обкладках. При протекании переменного тока через конденсатор векторы напряжения и тока сдвинуты на угол , где — угол диэлектрических потерь. При отсутствии потерь . Тангенс угла потерь определяется отношением активной мощности Pа к реактивной Pр при синусоидальном напряжении определённой частоты. Величина, обратная , называется добротностью конденсатора. Термины добротности и тангенса угла потерь применяются также для катушек индуктивности и трансформаторов.

    Температурный коэффициент ёмкости (ТКЕ)

    ТКЕ — относительное изменению емкости при изменении температуры окружающей среды на один градус Цельсия (Кельвина). Таким образом значение ёмкости от температуры представляется линейной формулой:

    ,

    где ΔT - увеличение температуры в °C или °К относительно нормальных условий, при которых специфицировано значение ёмкости. TKE применяется для характеристики конденсаторов со значительной линейной зависимостью ёмкости от температуры. Однако ТКЕ определяется не для всех типов конденсаторов. Конденсаторы, имеющие нелинейную зависимость емкости от температуры, и конденсаторы с большими уходами емкости от воздействия температуры окружающей среды в обозначении имеют указание на относительное изменение емкости в рабочем диапазоне температур.

    Диэлектрическое поглощение

    Если заряженный конденсатор быстро разрядить до нулевого напряжения путём подключения низкоомной нагрузки, а затем снять нагрузку и наблюдать за напряжением на выводах конденсатора, то мы увидим, что напряжение медленно повышается. Это явление получило название диэлектрическое поглощение или адсорбция электрического заряда. Конденсатор ведёт себя так, словно параллельно ему подключено множество последовательных RC-цепочек с различной постоянной времени. Интенсивность проявления этого эффекта зависит в основном от свойств диэлектрика конденсатора. Подобный эффект можно наблюдать и на большинстве электролитических конденсаторов, но в них он является следствием химических реакций между электролитом и обкладками. Наименьшим диэлектрическим поглощением обладают конденсаторы с органическими диэлектриками: тефлон (фторопласт), полистирол, полиэтилентерефталат, поликарбонат.

    Классификация конденсаторов

    Основная классификация конденсаторов проводится по типу диэлектрика в конденсаторе. Тип диэлектрика определяет основные электрические параметры конденсаторов: сопротивление изоляции, стабильность ёмкости, величину потерь и др.

    По виду диэлектрика различают:

    • Конденсаторы вакуумные (обкладки без диэлектрика находятся в вакууме).
    • Конденсаторы с газообразным диэлектриком.
    • Конденсаторы с жидким диэлектриком.
    • Конденсаторы с твёрдым неорганическим диэлектриком: стеклянные (стеклоэмалевые, стеклокерамические, стеклоплёночные), слюдяные, керамические, тонкослойные из неорганических плёнок.
    • Конденсаторы с твёрдым органическим диэлектриком: бумажные, металлобумажные, плёночные, комбинированные — бумажноплёночные, тонкослойные из органических синтетических плёнок.
    • Электролитические и оксидно-полупроводниковые конденсаторы. Такие конденсаторы отличаются от всех прочих типов прежде всего своей огромной удельной ёмкостью. В качестве диэлектрика используется оксидный слой на металлическом аноде. Вторая обкладка (катод) — это или электролит (в электролитических конденсаторах) или слой полупроводника (в оксидно-полупроводниковых), нанесённый непосредственно на оксидный слой. Анод изготовляется, в зависимости от типа конденсатора, из алюминиевой, ниобиевой или танталовой фольги или спеченного порошка.

    Кроме того, конденсаторы различаются по возможности изменения своей ёмкости:

    • Постоянные конденсаторы — основной класс конденсаторов, не меняющие своей ёмкости (кроме как в течение срока службы).
    • Переменные конденсаторы — конденсаторы, которые допускают изменение ёмкости в процессе функционирования аппаратуры. Управление ёмкостью может осуществляться механически, электрическим напряжением (вариконды, варикапы) и температурой (термо­конденсаторы). Применяются, например, в радиоприемниках для перестройки частоты резонансного контура.
    • Подстроечные конденсаторы — конденсаторы, ёмкость которых изменяется при разовой или периодической регулировке и не изменяется в процессе функционирования аппаратуры. Их используют для подстройки и выравнивания начальных ёмкостей сопрягаемых контуров, для периодической подстройки и регулировки цепей схем, где требуется незначительное изменение ёмкости.

    В зависимости от назначения можно условно разделить конденсаторы на конденсаторы общего и специального назначения. Конденсаторы общего назначения используются практически в большинстве видов и классов аппаратуры. Традиционно к ним относят наиболее распространённые низковольтные конденсаторы, к которым не предъявляются особые требования. Все остальные конденсаторы являются специальными. К ним относятся высоковольтные, импульсные, помехоподавляюшие, дозиметрические, пусковые и другие конденсаторы.

    Применение конденсаторов

    Конденсаторы находят применение практически во всех областях электротехники.

    • Так как конденсатор способен длительное время сохранять заряд, то его можно использовать в качестве элемента памяти или устройства хранения электрической энергии.
    • Измерительный преобразователь (ИП) малых перемещений: малое изменение расстояния между обкладками очень заметно сказывается на ёмкости конденсатора.
    • ИП влажности воздуха (изменение состава диэлектрика приводит к изменению емкости)
    • ИП влажности древесины
    • В схемах РЗиА конденсаторы используются для реализации логики работы некоторых защит. В частности, в схеме работы АПВ использование конденсатора позволяет обеспечить требуемую кратность срабатывания защиты.

    Внешние ссылки

    Смотри также

    Ссылки

    1. ↑ Частота в радианах в секунду.
    2. ↑ ГОСТ 2.728-74 (2002)

    biograf.academic.ru

    Конденсатор - это... Что такое Конденсатор?

    Основа конструкции конденсатора — две токопроводящие обкладки, между которыми находится диэлектрик

    Слева - конденсаторы для поверхностного монтажа; справа - конденсаторы для объёмного монтажа; сверху - керамические; снизу - электролитические.

    Различные конденсаторы для объёмного монтажа

    Конденса́тор — двухполюсник с определённым значением ёмкости и малой омической проводимостью; устройство для накопления энергии электрического поля. Конденсатор является пассивным электронным компонентом. Обычно состоит из двух электродов в форме пластин (называемых обкладками), разделённых диэлектриком, толщина которого мала по сравнению с размерами обкладок.

    История

    В 1745 году в Лейдене немецкий физик Эвальд Юрген фон Клейст и голландский физик Питер ван Мушенбрук создали первый конденсатор — «лейденскую банку».

    Свойства конденсатора

    Конденсатор в цепи постоянного тока может проводить ток в момент включения его в цепь (происходит заряд или перезаряд конденсатора), по окончании переходного процесса ток через конденсатор не течет, так как его обкладки разделены диэлектриком. В цепи же переменного тока он проводит колебания переменного тока посредством циклической перезарядки конденсатора.

    В терминах метода комплексных амплитуд конденсатор обладает комплексным импедансом

    ,

    где — мнимая единица, — частота[1] протекающего синусоидального тока, — ёмкость конденсатора. Отсюда также следует, что реактивное сопротивление конденсатора равно: . Для постоянного тока частота равна нулю, следовательно, реактивное сопротивление конденсатора бесконечно (в идеальном случае).

    При изменении частоты изменяются диэлектрическая проницаемость диэлектрика и степень влияния паразитных параметров — собственной индуктивности и сопротивления потерь. На высоких частотах любой конденсатор можно рассматривать как последовательный колебательный контур, образуемый ёмкостью , собственной индуктивностью и сопротивлением потерь .

    Резонансная частота конденсатора равна

    При конденсатор в цепи переменного тока ведёт себя как катушка индуктивности. Следовательно, конденсатор целесообразно использовать лишь на частотах , на которых его сопротивление носит ёмкостный характер. Обычно максимальная рабочая частота конденсатора примерно в 2—3 раза ниже резонансной.

    Конденсатор может накапливать электрическую энергию. Энергия заряженного конденсатора:

    где — напряжение (разность потенциалов), до которого заряжен конденсатор.

    Обозначение конденсаторов на схемах

    В России условные графические обозначения конденсаторов на схемах должны соответствовать ГОСТ 2.728-74[2] либо международному стандарту IEEE 315-1975:

    Обозначениепо ГОСТ 2.728-74 Описание
    Конденсатор постоянной ёмкости
    Поляризованный конденсатор
    Подстроечный конденсатор переменной ёмкости

    На электрических принципиальных схемах номинальная ёмкость конденсаторов обычно указывается в микрофарадах (1 мкФ = 106 пФ) и пикофарадах, но нередко и в нанофарадах. При ёмкости не более 0,01 мкФ, ёмкость конденсатора указывают в пикофарадах, при этом допустимо не указывать единицу измерения, т.е. постфикс «пФ» опускают. При обозначении номинала ёмкости в других единицах указывают единицу измерения (пикоФарад). Для электролитических конденсаторов, а также для высоковольтных конденсаторов на схемах, после обозначения номинала ёмкости, указывают их максимальное рабочее напряжение в вольтах (В) или киловольтах (кВ). Например так: «10 мк x 10 В». Для переменных конденсаторов указывают диапазон изменения ёмкости, например так: «10 – 180». В настоящее время изготавливаются конденсаторы с номинальными ёмкостями из десятичнологарифмических рядов значений Е3, Е6, Е12, Е24, т.е. на одну декаду приходится 3, 6, 12, 24 значения, так, чтобы значения с соответствующим допуском (разбросом) перекрывали всю декаду.

    Характеристики конденсаторов

    Основные параметры

    Ёмкость

    Основной характеристикой конденсатора является его ёмкость. В обозначении конденсатора фигурирует значение номинальной ёмкости, в то время как реальная ёмкость может значительно меняться в зависимости от многих факторов. Реальная ёмкость конденсатора определяет его электрические свойства. Так, по определению ёмкости, заряд на обкладке пропорционален напряжению между обкладками (q = CU). Типичные значения ёмкости конденсаторов составляют от единиц пикофарад до сотен микрофарад. Однако существуют конденсаторы с ёмкостью до десятков фарад.

    Ёмкость плоского конденсатора, состоящего из двух параллельных металлических пластин площадью каждая, расположенных на расстоянии друг от друга, в системе СИ выражается формулой: , где — относительная диэлектрическая проницаемость среды, заполняющей пространство между пластинами (эта формула справедлива, лишь когда много меньше линейных размеров пластин).

    Для получения больших ёмкостей конденсаторы соединяют параллельно. При этом напряжение между обкладками всех конденсаторов одинаково. Общая ёмкость батареи параллельно соединённых конденсаторов равна сумме ёмкостей всех конденсаторов, входящих в батарею.

    или

    Если у всех параллельно соединённых конденсаторов расстояние между обкладками и свойства диэлектрика одинаковы, то эти конденсаторы можно представить как один большой конденсатор, разделённый на фрагменты меньшей площади.

    При последовательном соединении конденсаторов заряды всех конденсаторов одинаковы. Общая ёмкость батареи последовательно соединённых конденсаторов равна

    или

    Эта ёмкость всегда меньше минимальной ёмкости конденсатора, входящего в батарею. Однако при последовательном соединении уменьшается возможность пробоя конденсаторов, так как на каждый конденсатор приходится лишь часть разницы потенциалов источника напряжения.

    Если площадь обкладок всех конденсаторов, соединённых последовательно, одинакова, то эти конденсаторы можно представить в виде одного большого конденсатора, между обкладками которого находится стопка из пластин диэлектрика всех составляющих его конденсаторов.

    Удельная ёмкость

    Конденсаторы также характеризуются удельной ёмкостью — отношением ёмкости к объёму (или массе) диэлектрика. Максимальное значение удельной ёмкости достигается при минимальной толщине диэлектрика, однако при этом уменьшается его напряжение пробоя.

    Номинальное напряжение

    Другой, не менее важной характеристикой конденсаторов является номинальное напряжение — значение напряжения, обозначенное на конденсаторе, при котором он может работать в заданных условиях в течение срока службы с сохранением параметров в допустимых пределах.

    Номинальное напряжение зависит от конструкции конденсатора и свойств применяемых материалов. При эксплуатации напряжение на конденсаторе не должно превышать номинального. Для многих типов конденсаторов с увеличением температуры допустимое напряжение снижается.

    Полярность

    Конденсаторы, разрушившиеся без взрыва из-за температуры и напряжения, не соответствующих рабочим.

    Многие конденсаторы с оксидным диэлектриком (электролитические) функционируют только при корректной полярности напряжения из-за химических особенностей взаимодействия электролита с диэлектриком. При обратной полярности напряжения электролитические конденсаторы обычно выходят из строя из-за химического разрушения диэлектрика с последующим увеличением тока, вскипанием электролита внутри и, как следствие, с вероятностью взрыва корпуса.

    Взрывы электролитических конденсаторов — довольно распространённое явление. Основной причиной взрывов является перегрев конденсатора, вызываемый в большинстве случаев утечкой или повышением эквивалентного последовательного сопротивления вследствие старения (актуально для импульсных устройств). Для уменьшения повреждений других деталей и травматизма персонала в современных конденсаторах большой ёмкости устанавливают клапан или выполняют насечку на корпусе (часто можно заметить её в форме буквы X, K или Т на торце). При повышении внутреннего давления открывается клапан или корпус разрушается по насечке, испарившийся электролит выходит в виде едкого газа, и давление спадает без взрыва и осколков.

    Паразитные параметры

    Реальные конденсаторы, помимо ёмкости, обладают также собственными сопротивлением и индуктивностью. С высокой степенью точности, эквивалентную схему реального конденсатора можно представить следующим образом:

    Электрическое сопротивление изоляции конденсатора — r

    Сопротивление изоляции — это сопротивление конденсатора постоянному току, определяемое соотношением r = U / Iут , где U — напряжение, приложенное к конденсатору, Iут — ток утечки.

    Эквивалентное последовательное сопротивление — R

    Эквивалентное последовательное сопротивление (ЭПС, англ. ESR) обусловлено главным образом электрическим сопротивлением материала обкладок и выводов конденсатора и контакта(-ов) между ними, а также потерями в диэлектрике. Обычно ЭПС возрастает с увеличением частоты тока, протекающего через конденсатор.

    В большинстве случаев этим параметром можно пренебречь, но иногда (напр., в случае использования электролитических конденсаторов в фильтрах импульсных блоков питания) достаточно малое его значение может быть жизненно важным для надёжности устройства (см., напр., Capacitor plague(англ.)).

    Эквивалентная последовательная индуктивность — L

    Эквивалентная последовательная индуктивность обусловлена, в основном, собственной индуктивностью обкладок и выводов конденсатора. На низких частотах (до единиц килогерц) обычно не учитывается в силу своей незначительности.

    Тангенс угла потерь

    Тангенс угла потерь - отношение мнимой и вещественной части комплексной диэлектрической проницаемости.

    Потери энергии в конденсаторе определяются потерями в диэлектрике и обкладках. При протекании переменного тока через конденсатор векторы напряжения и тока сдвинуты на угол , где — угол диэлектрических потерь. При отсутствии потерь . Тангенс угла потерь определяется отношением активной мощности Pа к реактивной Pр при синусоидальном напряжении определённой частоты. Величина, обратная , называется добротностью конденсатора. Термины добротности и тангенса угла потерь применяются также для катушек индуктивности и трансформаторов.

    Температурный коэффициент ёмкости (ТКЕ)

    ТКЕ — относительное изменению емкости при изменении температуры окружающей среды на один градус Цельсия (Кельвина). Таким образом значение ёмкости от температуры представляется линейной формулой:

    ,

    где ΔT - увеличение температуры в °C или °К относительно нормальных условий, при которых специфицировано значение ёмкости. TKE применяется для характеристики конденсаторов со значительной линейной зависимостью ёмкости от температуры. Однако ТКЕ определяется не для всех типов конденсаторов. Конденсаторы, имеющие нелинейную зависимость емкости от температуры, и конденсаторы с большими уходами емкости от воздействия температуры окружающей среды в обозначении имеют указание на относительное изменение емкости в рабочем диапазоне температур.

    Диэлектрическое поглощение

    Если заряженный конденсатор быстро разрядить до нулевого напряжения путём подключения низкоомной нагрузки, а затем снять нагрузку и наблюдать за напряжением на выводах конденсатора, то мы увидим, что напряжение медленно повышается. Это явление получило название диэлектрическое поглощение или адсорбция электрического заряда. Конденсатор ведёт себя так, словно параллельно ему подключено множество последовательных RC-цепочек с различной постоянной времени. Интенсивность проявления этого эффекта зависит в основном от свойств диэлектрика конденсатора. Подобный эффект можно наблюдать и на большинстве электролитических конденсаторов, но в них он является следствием химических реакций между электролитом и обкладками. Наименьшим диэлектрическим поглощением обладают конденсаторы с органическими диэлектриками: тефлон (фторопласт), полистирол, полиэтилентерефталат, поликарбонат.

    Классификация конденсаторов

    Основная классификация конденсаторов проводится по типу диэлектрика в конденсаторе. Тип диэлектрика определяет основные электрические параметры конденсаторов: сопротивление изоляции, стабильность ёмкости, величину потерь и др.

    По виду диэлектрика различают:

    • Конденсаторы вакуумные (обкладки без диэлектрика находятся в вакууме).
    • Конденсаторы с газообразным диэлектриком.
    • Конденсаторы с жидким диэлектриком.
    • Конденсаторы с твёрдым неорганическим диэлектриком: стеклянные (стеклоэмалевые, стеклокерамические, стеклоплёночные), слюдяные, керамические, тонкослойные из неорганических плёнок.
    • Конденсаторы с твёрдым органическим диэлектриком: бумажные, металлобумажные, плёночные, комбинированные — бумажноплёночные, тонкослойные из органических синтетических плёнок.
    • Электролитические и оксидно-полупроводниковые конденсаторы. Такие конденсаторы отличаются от всех прочих типов прежде всего своей огромной удельной ёмкостью. В качестве диэлектрика используется оксидный слой на металлическом аноде. Вторая обкладка (катод) — это или электролит (в электролитических конденсаторах) или слой полупроводника (в оксидно-полупроводниковых), нанесённый непосредственно на оксидный слой. Анод изготовляется, в зависимости от типа конденсатора, из алюминиевой, ниобиевой или танталовой фольги или спеченного порошка.

    Кроме того, конденсаторы различаются по возможности изменения своей ёмкости:

    • Постоянные конденсаторы — основной класс конденсаторов, не меняющие своей ёмкости (кроме как в течение срока службы).
    • Переменные конденсаторы — конденсаторы, которые допускают изменение ёмкости в процессе функционирования аппаратуры. Управление ёмкостью может осуществляться механически, электрическим напряжением (вариконды, варикапы) и температурой (термо­конденсаторы). Применяются, например, в радиоприемниках для перестройки частоты резонансного контура.
    • Подстроечные конденсаторы — конденсаторы, ёмкость которых изменяется при разовой или периодической регулировке и не изменяется в процессе функционирования аппаратуры. Их используют для подстройки и выравнивания начальных ёмкостей сопрягаемых контуров, для периодической подстройки и регулировки цепей схем, где требуется незначительное изменение ёмкости.

    В зависимости от назначения можно условно разделить конденсаторы на конденсаторы общего и специального назначения. Конденсаторы общего назначения используются практически в большинстве видов и классов аппаратуры. Традиционно к ним относят наиболее распространённые низковольтные конденсаторы, к которым не предъявляются особые требования. Все остальные конденсаторы являются специальными. К ним относятся высоковольтные, импульсные, помехоподавляюшие, дозиметрические, пусковые и другие конденсаторы.

    Применение конденсаторов

    Конденсаторы находят применение практически во всех областях электротехники.

    • Так как конденсатор способен длительное время сохранять заряд, то его можно использовать в качестве элемента памяти или устройства хранения электрической энергии.
    • Измерительный преобразователь (ИП) малых перемещений: малое изменение расстояния между обкладками очень заметно сказывается на ёмкости конденсатора.
    • ИП влажности воздуха (изменение состава диэлектрика приводит к изменению емкости)
    • ИП влажности древесины
    • В схемах РЗиА конденсаторы используются для реализации логики работы некоторых защит. В частности, в схеме работы АПВ использование конденсатора позволяет обеспечить требуемую кратность срабатывания защиты.

    Внешние ссылки

    Смотри также

    Ссылки

    1. ↑ Частота в радианах в секунду.
    2. ↑ ГОСТ 2.728-74 (2002)

    dal.academic.ru

    Конденсатор - это... Что такое Конденсатор?

    Основа конструкции конденсатора — две токопроводящие обкладки, между которыми находится диэлектрик

    Слева - конденсаторы для поверхностного монтажа; справа - конденсаторы для объёмного монтажа; сверху - керамические; снизу - электролитические.

    Различные конденсаторы для объёмного монтажа

    Конденса́тор — двухполюсник с определённым значением ёмкости и малой омической проводимостью; устройство для накопления энергии электрического поля. Конденсатор является пассивным электронным компонентом. Обычно состоит из двух электродов в форме пластин (называемых обкладками), разделённых диэлектриком, толщина которого мала по сравнению с размерами обкладок.

    История

    В 1745 году в Лейдене немецкий физик Эвальд Юрген фон Клейст и голландский физик Питер ван Мушенбрук создали первый конденсатор — «лейденскую банку».

    Свойства конденсатора

    Конденсатор в цепи постоянного тока может проводить ток в момент включения его в цепь (происходит заряд или перезаряд конденсатора), по окончании переходного процесса ток через конденсатор не течет, так как его обкладки разделены диэлектриком. В цепи же переменного тока он проводит колебания переменного тока посредством циклической перезарядки конденсатора.

    В терминах метода комплексных амплитуд конденсатор обладает комплексным импедансом

    ,

    где — мнимая единица, — частота[1] протекающего синусоидального тока, — ёмкость конденсатора. Отсюда также следует, что реактивное сопротивление конденсатора равно: . Для постоянного тока частота равна нулю, следовательно, реактивное сопротивление конденсатора бесконечно (в идеальном случае).

    При изменении частоты изменяются диэлектрическая проницаемость диэлектрика и степень влияния паразитных параметров — собственной индуктивности и сопротивления потерь. На высоких частотах любой конденсатор можно рассматривать как последовательный колебательный контур, образуемый ёмкостью , собственной индуктивностью и сопротивлением потерь .

    Резонансная частота конденсатора равна

    При конденсатор в цепи переменного тока ведёт себя как катушка индуктивности. Следовательно, конденсатор целесообразно использовать лишь на частотах , на которых его сопротивление носит ёмкостный характер. Обычно максимальная рабочая частота конденсатора примерно в 2—3 раза ниже резонансной.

    Конденсатор может накапливать электрическую энергию. Энергия заряженного конденсатора:

    где — напряжение (разность потенциалов), до которого заряжен конденсатор.

    Обозначение конденсаторов на схемах

    В России условные графические обозначения конденсаторов на схемах должны соответствовать ГОСТ 2.728-74[2] либо международному стандарту IEEE 315-1975:

    Обозначениепо ГОСТ 2.728-74 Описание
    Конденсатор постоянной ёмкости
    Поляризованный конденсатор
    Подстроечный конденсатор переменной ёмкости

    На электрических принципиальных схемах номинальная ёмкость конденсаторов обычно указывается в микрофарадах (1 мкФ = 106 пФ) и пикофарадах, но нередко и в нанофарадах. При ёмкости не более 0,01 мкФ, ёмкость конденсатора указывают в пикофарадах, при этом допустимо не указывать единицу измерения, т.е. постфикс «пФ» опускают. При обозначении номинала ёмкости в других единицах указывают единицу измерения (пикоФарад). Для электролитических конденсаторов, а также для высоковольтных конденсаторов на схемах, после обозначения номинала ёмкости, указывают их максимальное рабочее напряжение в вольтах (В) или киловольтах (кВ). Например так: «10 мк x 10 В». Для переменных конденсаторов указывают диапазон изменения ёмкости, например так: «10 – 180». В настоящее время изготавливаются конденсаторы с номинальными ёмкостями из десятичнологарифмических рядов значений Е3, Е6, Е12, Е24, т.е. на одну декаду приходится 3, 6, 12, 24 значения, так, чтобы значения с соответствующим допуском (разбросом) перекрывали всю декаду.

    Характеристики конденсаторов

    Основные параметры

    Ёмкость

    Основной характеристикой конденсатора является его ёмкость. В обозначении конденсатора фигурирует значение номинальной ёмкости, в то время как реальная ёмкость может значительно меняться в зависимости от многих факторов. Реальная ёмкость конденсатора определяет его электрические свойства. Так, по определению ёмкости, заряд на обкладке пропорционален напряжению между обкладками (q = CU). Типичные значения ёмкости конденсаторов составляют от единиц пикофарад до сотен микрофарад. Однако существуют конденсаторы с ёмкостью до десятков фарад.

    Ёмкость плоского конденсатора, состоящего из двух параллельных металлических пластин площадью каждая, расположенных на расстоянии друг от друга, в системе СИ выражается формулой: , где — относительная диэлектрическая проницаемость среды, заполняющей пространство между пластинами (эта формула справедлива, лишь когда много меньше линейных размеров пластин).

    Для получения больших ёмкостей конденсаторы соединяют параллельно. При этом напряжение между обкладками всех конденсаторов одинаково. Общая ёмкость батареи параллельно соединённых конденсаторов равна сумме ёмкостей всех конденсаторов, входящих в батарею.

    или

    Если у всех параллельно соединённых конденсаторов расстояние между обкладками и свойства диэлектрика одинаковы, то эти конденсаторы можно представить как один большой конденсатор, разделённый на фрагменты меньшей площади.

    При последовательном соединении конденсаторов заряды всех конденсаторов одинаковы. Общая ёмкость батареи последовательно соединённых конденсаторов равна

    или

    Эта ёмкость всегда меньше минимальной ёмкости конденсатора, входящего в батарею. Однако при последовательном соединении уменьшается возможность пробоя конденсаторов, так как на каждый конденсатор приходится лишь часть разницы потенциалов источника напряжения.

    Если площадь обкладок всех конденсаторов, соединённых последовательно, одинакова, то эти конденсаторы можно представить в виде одного большого конденсатора, между обкладками которого находится стопка из пластин диэлектрика всех составляющих его конденсаторов.

    Удельная ёмкость

    Конденсаторы также характеризуются удельной ёмкостью — отношением ёмкости к объёму (или массе) диэлектрика. Максимальное значение удельной ёмкости достигается при минимальной толщине диэлектрика, однако при этом уменьшается его напряжение пробоя.

    Номинальное напряжение

    Другой, не менее важной характеристикой конденсаторов является номинальное напряжение — значение напряжения, обозначенное на конденсаторе, при котором он может работать в заданных условиях в течение срока службы с сохранением параметров в допустимых пределах.

    Номинальное напряжение зависит от конструкции конденсатора и свойств применяемых материалов. При эксплуатации напряжение на конденсаторе не должно превышать номинального. Для многих типов конденсаторов с увеличением температуры допустимое напряжение снижается.

    Полярность

    Конденсаторы, разрушившиеся без взрыва из-за температуры и напряжения, не соответствующих рабочим.

    Многие конденсаторы с оксидным диэлектриком (электролитические) функционируют только при корректной полярности напряжения из-за химических особенностей взаимодействия электролита с диэлектриком. При обратной полярности напряжения электролитические конденсаторы обычно выходят из строя из-за химического разрушения диэлектрика с последующим увеличением тока, вскипанием электролита внутри и, как следствие, с вероятностью взрыва корпуса.

    Взрывы электролитических конденсаторов — довольно распространённое явление. Основной причиной взрывов является перегрев конденсатора, вызываемый в большинстве случаев утечкой или повышением эквивалентного последовательного сопротивления вследствие старения (актуально для импульсных устройств). Для уменьшения повреждений других деталей и травматизма персонала в современных конденсаторах большой ёмкости устанавливают клапан или выполняют насечку на корпусе (часто можно заметить её в форме буквы X, K или Т на торце). При повышении внутреннего давления открывается клапан или корпус разрушается по насечке, испарившийся электролит выходит в виде едкого газа, и давление спадает без взрыва и осколков.

    Паразитные параметры

    Реальные конденсаторы, помимо ёмкости, обладают также собственными сопротивлением и индуктивностью. С высокой степенью точности, эквивалентную схему реального конденсатора можно представить следующим образом:

    Электрическое сопротивление изоляции конденсатора — r

    Сопротивление изоляции — это сопротивление конденсатора постоянному току, определяемое соотношением r = U / Iут , где U — напряжение, приложенное к конденсатору, Iут — ток утечки.

    Эквивалентное последовательное сопротивление — R

    Эквивалентное последовательное сопротивление (ЭПС, англ. ESR) обусловлено главным образом электрическим сопротивлением материала обкладок и выводов конденсатора и контакта(-ов) между ними, а также потерями в диэлектрике. Обычно ЭПС возрастает с увеличением частоты тока, протекающего через конденсатор.

    В большинстве случаев этим параметром можно пренебречь, но иногда (напр., в случае использования электролитических конденсаторов в фильтрах импульсных блоков питания) достаточно малое его значение может быть жизненно важным для надёжности устройства (см., напр., Capacitor plague(англ.)).

    Эквивалентная последовательная индуктивность — L

    Эквивалентная последовательная индуктивность обусловлена, в основном, собственной индуктивностью обкладок и выводов конденсатора. На низких частотах (до единиц килогерц) обычно не учитывается в силу своей незначительности.

    Тангенс угла потерь

    Тангенс угла потерь - отношение мнимой и вещественной части комплексной диэлектрической проницаемости.

    Потери энергии в конденсаторе определяются потерями в диэлектрике и обкладках. При протекании переменного тока через конденсатор векторы напряжения и тока сдвинуты на угол , где — угол диэлектрических потерь. При отсутствии потерь . Тангенс угла потерь определяется отношением активной мощности Pа к реактивной Pр при синусоидальном напряжении определённой частоты. Величина, обратная , называется добротностью конденсатора. Термины добротности и тангенса угла потерь применяются также для катушек индуктивности и трансформаторов.

    Температурный коэффициент ёмкости (ТКЕ)

    ТКЕ — относительное изменению емкости при изменении температуры окружающей среды на один градус Цельсия (Кельвина). Таким образом значение ёмкости от температуры представляется линейной формулой:

    ,

    где ΔT - увеличение температуры в °C или °К относительно нормальных условий, при которых специфицировано значение ёмкости. TKE применяется для характеристики конденсаторов со значительной линейной зависимостью ёмкости от температуры. Однако ТКЕ определяется не для всех типов конденсаторов. Конденсаторы, имеющие нелинейную зависимость емкости от температуры, и конденсаторы с большими уходами емкости от воздействия температуры окружающей среды в обозначении имеют указание на относительное изменение емкости в рабочем диапазоне температур.

    Диэлектрическое поглощение

    Если заряженный конденсатор быстро разрядить до нулевого напряжения путём подключения низкоомной нагрузки, а затем снять нагрузку и наблюдать за напряжением на выводах конденсатора, то мы увидим, что напряжение медленно повышается. Это явление получило название диэлектрическое поглощение или адсорбция электрического заряда. Конденсатор ведёт себя так, словно параллельно ему подключено множество последовательных RC-цепочек с различной постоянной времени. Интенсивность проявления этого эффекта зависит в основном от свойств диэлектрика конденсатора. Подобный эффект можно наблюдать и на большинстве электролитических конденсаторов, но в них он является следствием химических реакций между электролитом и обкладками. Наименьшим диэлектрическим поглощением обладают конденсаторы с органическими диэлектриками: тефлон (фторопласт), полистирол, полиэтилентерефталат, поликарбонат.

    Классификация конденсаторов

    Основная классификация конденсаторов проводится по типу диэлектрика в конденсаторе. Тип диэлектрика определяет основные электрические параметры конденсаторов: сопротивление изоляции, стабильность ёмкости, величину потерь и др.

    По виду диэлектрика различают:

    • Конденсаторы вакуумные (обкладки без диэлектрика находятся в вакууме).
    • Конденсаторы с газообразным диэлектриком.
    • Конденсаторы с жидким диэлектриком.
    • Конденсаторы с твёрдым неорганическим диэлектриком: стеклянные (стеклоэмалевые, стеклокерамические, стеклоплёночные), слюдяные, керамические, тонкослойные из неорганических плёнок.
    • Конденсаторы с твёрдым органическим диэлектриком: бумажные, металлобумажные, плёночные, комбинированные — бумажноплёночные, тонкослойные из органических синтетических плёнок.
    • Электролитические и оксидно-полупроводниковые конденсаторы. Такие конденсаторы отличаются от всех прочих типов прежде всего своей огромной удельной ёмкостью. В качестве диэлектрика используется оксидный слой на металлическом аноде. Вторая обкладка (катод) — это или электролит (в электролитических конденсаторах) или слой полупроводника (в оксидно-полупроводниковых), нанесённый непосредственно на оксидный слой. Анод изготовляется, в зависимости от типа конденсатора, из алюминиевой, ниобиевой или танталовой фольги или спеченного порошка.

    Кроме того, конденсаторы различаются по возможности изменения своей ёмкости:

    • Постоянные конденсаторы — основной класс конденсаторов, не меняющие своей ёмкости (кроме как в течение срока службы).
    • Переменные конденсаторы — конденсаторы, которые допускают изменение ёмкости в процессе функционирования аппаратуры. Управление ёмкостью может осуществляться механически, электрическим напряжением (вариконды, варикапы) и температурой (термо­конденсаторы). Применяются, например, в радиоприемниках для перестройки частоты резонансного контура.
    • Подстроечные конденсаторы — конденсаторы, ёмкость которых изменяется при разовой или периодической регулировке и не изменяется в процессе функционирования аппаратуры. Их используют для подстройки и выравнивания начальных ёмкостей сопрягаемых контуров, для периодической подстройки и регулировки цепей схем, где требуется незначительное изменение ёмкости.

    В зависимости от назначения можно условно разделить конденсаторы на конденсаторы общего и специального назначения. Конденсаторы общего назначения используются практически в большинстве видов и классов аппаратуры. Традиционно к ним относят наиболее распространённые низковольтные конденсаторы, к которым не предъявляются особые требования. Все остальные конденсаторы являются специальными. К ним относятся высоковольтные, импульсные, помехоподавляюшие, дозиметрические, пусковые и другие конденсаторы.

    Применение конденсаторов

    Конденсаторы находят применение практически во всех областях электротехники.

    • Так как конденсатор способен длительное время сохранять заряд, то его можно использовать в качестве элемента памяти или устройства хранения электрической энергии.
    • Измерительный преобразователь (ИП) малых перемещений: малое изменение расстояния между обкладками очень заметно сказывается на ёмкости конденсатора.
    • ИП влажности воздуха (изменение состава диэлектрика приводит к изменению емкости)
    • ИП влажности древесины
    • В схемах РЗиА конденсаторы используются для реализации логики работы некоторых защит. В частности, в схеме работы АПВ использование конденсатора позволяет обеспечить требуемую кратность срабатывания защиты.

    Внешние ссылки

    Смотри также

    Ссылки

    1. ↑ Частота в радианах в секунду.
    2. ↑ ГОСТ 2.728-74 (2002)

    med.academic.ru


    Видеоматериалы

    24.10.2018

    Опыт пилотных регионов, где соцнормы на электроэнергию уже введены, показывает: граждане платить стали меньше

    Подробнее...
    23.10.2018

    Соответствует ли вода и воздух установленным нормативам?

    Подробнее...
    22.10.2018

    С начала года из ветхого и аварийного жилья в республике были переселены десятки семей

    Подробнее...
    22.10.2018

    Столичный Водоканал готовится к зиме

    Подробнее...
    17.10.2018

    Более 10-ти миллионов рублей направлено на капитальный ремонт многоквартирных домов в Лескенском районе

    Подробнее...

    Актуальные темы

    13.05.2018

    Формирование энергосберегающего поведения граждан

     

    Подробнее...
    29.03.2018

    ОТЧЕТ о деятельности министерства энергетики, ЖКХ и тарифной политики Кабардино-Балкарской Республики в сфере государственного регулирования и контроля цен и тарифов в 2012 году и об основных задачах на 2013 год

    Подробнее...
    13.03.2018

    Предложения организаций, осуществляющих регулируемую деятельность о размере подлежащих государственному регулированию цен (тарифов) на 2013 год

    Подробнее...
    11.03.2018

    НАУЧИМСЯ ЭКОНОМИТЬ В БЫТУ

     
    Подробнее...

    inetpriem

    
    << < Ноябрь 2013 > >>
    Пн Вт Ср Чт Пт Сб Вс
            1 2 3
    4 5 6 7 8 9 10
    11 12 13 14 15 16 17
    18 19 20 21 22 23 24
    25 26 27 28 29 30  

    calc

    banner-calc

    .