Сварочный инвертор(160 А) - асимметричный (косой) мост с регенеративным снаббером ключей. Косой мост сварочный инвертор


Сварочный инвертор — асимметричный (косой мост) с микроконтроллерным управлением

Силоваячасть сблоком питания и драйверами.

Схемасиловой части с блоком питания и драйверами.

……….Представленный на схеме сварочный инверторпостроен по схеме однотактного прямохода. На первичную обмоткусварочного трансформатора с помощью двух ключей подаются однополярныеимпульсы выпрямленного сетевого напряжения с заполнением не более 42%.  Магнитопровод трансформатора испытывает одностороннееподмагничивание. В паузах между импульсами магнитопроводразмагничивается по так называемой частной петле. Размагничивающий токблагодаря обратно включенным диодам возвращает магнитную энергию,запасённую в сердечнике трансформатора обратно в источник, подзаряжаяконденсаторы (2 x 1000 мкф x 400 В) накопителя. ……….На прямом ходу энергия передаётся внагрузку через сварочный трансформатор и прямо включенные диодывыпрямителя (2x150EBU04). В паузе между импульсами ток в нагрузкеподдерживается благодаря энергии, накопленной в дросселе. Электрическаяцепь в этом случае замыкается через обратные диоды (2x150EBU04). Хорошоизвестно, что на эти диоды приходится бОльшая нагрузка, чем на прямые.Причина – ток в паузе течёт дольше чем в импульсе.   ……….Конденсатор 1200 мкф x 250 В включенный всварочные провода через резистор 4,3 Ом обеспечивает чёткое зажиганиедуги. Пожалуй, это одно из удачных схемных решений для поджига в косоммосте.

……….Ключи косого моста работают в режимежёсткого переключения. Причём режим включения заведомо облегчен всегдаприсутствующей индуктивностью рассеивания сварочного трансформатора. И,поскольку к моменту включения ключей считается, что магнитопровод трансформатора полностью размагничен, то по причине отсутствия тока впервичной обмотке, потерями на включение можно пренебречь.  Потерина выключение – очень существенные. Для их снижения параллельнокаждому ключу установлены RCD-снабберы.

……….Для обеспечения чёткой работы ключей, вмоменты между включениями на их затворы подаётся отрицательноенапряжение благодаря специальной схеме включения драйверов. Каждыйдрайвер питается от гальванически изолированного источника (около 25 В)блока питания. Напряжение питания «верхнего” драйвераиспользуется для включения реле К1, контакты которого шунтируютпусковой резистор.

……….Блок питания (классический маломощныйфлайбэк) имеет 3 гальванически изолированных выхода. При исправныхдеталях начинает работать сразу. Напряжение для драйверов –23-25В. Напряжение 12 В используется для питания блока управления.

……….Существенные радиаторы нужно предусмотретьдля входного выпрямителя, ключей и выходного выпрямителя. От размеровэтих радиаторов и интенсивности их обдува  будет зависетьпостоянная времени работы аппарата. Поскольку аппарат обеспечиваетсущественный сварочный ток (до 180 А), ключи нужно обязательно припаятьк медным пластинам толщиной 4 мм, затем эти «бутерброды”прикрутить к радиаторам через теплопроводную пасту. О том как этосделать написано здесь  Вместе крепления ключей посадочное место радиатора должно быть идеальноплоским без сколов и раковин. Желательно чтобы в месте крепления ключейрадиатор имел сплошное тело толщиной не менее 10 мм. Как показалапрактика для лучшего отвода тепла не нужно изолировать ключи отрадиатора. Лучше изолировать радиатор от корпуса аппарата.  Вобдув нужно поставить также трансформатор, дроссель и обязательно всерезисторы мощностью 25 и 30 Вт. Остальные элементы схемы в радиаторах иобдуве не нуждаются.

Блок управления

Схема блока управления полномостовымсварочным инвертором

……….Блок управления построен на основераспространённого ШИМ-контроллера TL494 с задействованием одного каналарегулирования. Этот канал стабилизирует ток в дуге. Задание токаформирует микроконтроллер с помощью модуля CCP1 в режиме ШИМ на частотепримерно 75 кГц. Заполнение ШИМ будет определять напряжение наконденсаторе C1. Величина этого напряжения определяет величинусварочного тока.

……….С помощью микроконтроллера выполняется также блокировка инвертора. Если на вход DT(4) TL494 будет подан высокийлогический уровень,  то импульсы на выходе Out исчезнут и инверторостановится. Появление логического нуля на выходе RA4 микроконтроллераприведёт к плавному старту инвертора, то есть к постепенному увеличениюзаполнения импульсов на выходе Out до максимального. Блокировкаинвертора используется в момент включения и при превышении температурырадиаторов.

Вот что получилосьв железе. Блокпитания, драйвера и блок управления на одной плате..В моём аппарате индикатор и клавиатураподключены к блоку управления через компьютерный шлейф. Шлейф проходитв непосредственной близости от радиаторов ключей и трансформатора. Вчистом виде такой конструктив приводил к ложному нажатию на клавиши.Пришлось применить следующие спец. меры.    На шлейфодето ферритовое кольцо К28x16x9. Шлейф скручен (насколько позволялаего длина).  Для клавиатуры и термостатов использованыдополнительные подтягивающие резисторы 1,8К, зашунтированныекерамическими конденсаторами 100 пкф. Такое схемное решениеобеспечило  помехоустойчивость клавиатуры, полностью исключеныложные нажатия клавиш.

……….Хотя, моё мнение – нужно недопускать помехи в блок управления. Для этого блок управления долженбыть отделён от силовой части сплошным металлическим листом.    

Настройка инвертора

……….Силовая часть пока обесточена.Предварительно проверенный блок питания подключаем к блоку управления ивключаем его в сеть. На индикаторе загорятся все восьмёрки, затемвключится реле и, если контакты термостатов замкнуты, то индикаторпокажет задание тока 20 А. Осциллографом проверяем напряжение назатворах ключей. Там должны быть прямоугольные импульсы с фронтами неболее 200 нс, частотой 40-50 кГц напряжением 13-15В в положительнойобласти и 10 В – в отрицательной. Причём в отрицательной областиимпульс должен быть заметно длиннее.

……….Если всё так, собираем полностью схемуинвертора и включаем его в сеть. На индикацию сначала будут выведенывосьмёрки, затем должно включиться реле и индикатор покажет 20 А.Кликая кнопками, пробуем изменять задание тока. Изменение задания токадолжно пропорционально изменять напряжение на конденсаторе C1. Если изменив задание тока не нажимать на кнопки более 1 минуты, топроизойдёт запись задания в энергонезависимую память. На индикаторекратковременно появится сообщение «ЗАПС”. При последующемвключении инвертора величина задания тока будет равна значению, котороезаписалось.

……….Если всё так, устанавливаем задание 20 А ивключаем в сварочные провода нагрузочный реостат сопротивлением 0,5 Ом.Реостат должен выдерживать протекание тока не менее 60 А. К выводамшунта подключаем вольтметр магнитоэлектрической системы со шкалой на 75мВ, например прибор Ц 4380. На нагруженном инверторе пытаемся изменятьзадание тока, и по показаниям вольтметра контролируем ток. В этомрежиме реостат может издавать звук, напоминающий звон. Его не стоитбоятся – это работает токоограничение. Ток должен менятьсяпропорционально заданию. Выставляем задание тока 50 А. Если показаниявольтметра не соответствуют 50 А, то на выключенном инверторе впаиваемсопротивление R1 другого номинала. Подбирая сопротивление R1 добиваемсясоответствие задания тока измеренному.

……….Проверяем работу термозащиты. Для этогообрываем цепь термостатов. На индикаторе высветиться надпись»EroC”. Импульсы на затворах ключей должны исчезнутьВосстанавливаем цепь термостатов. Индикатор должен показатьустановленный ток. На затворах ключей должны появиться импульсы. Ихдлительность должна плавно увеличится до максимальной.

……….Если всё так, можно попытаться варить.После 2-3-х минут сварки током 120-150 А выключаем инвертор из сети иищем 2 самых горячих радиатора. На них нужно установить защитныетермостаты. По возможности термостаты устанавливаются вне зоны обдува.

Прошивка для микроконтроллера PIC16F628:

В HEX формате :     kosoy.rar      В SFR формате :      kosoy.sfr

Автор конструкции:  Руслан Липин

Связаться с автором можно по email (указан на схеме)

elektro-shemi.ru

Сварочные инверторы. Схемы подключения высокочастотных преобразователей

Довольно  часто для построения сварочного инвертора применяют основные  три типа высокочастотных преобразователей, а именно преобразователи включенные по схемам: асимметричный или косой мост, полумост, а также полный мост. При этом резонансные преобразователи являются подвидами схем полумоста и полного моста. По системе управления данные устройства можно поделить на: ШИМ (широтно-импульсной модуляцией), ЧИМ (регулирование частоты), фазовое управления, а также могут существовать комбинации всех трех систем.

Содержание:

Все выше перечисленные преобразователи имеют свои плюсы и минусы. Разберемся с каждым в отдельности.

Система полумост с ШИМ

Блок схема показана ниже:

Это, пожалуй, один из самых простых, но не менее надежных преобразователей семейства двухтактных. «Раскачка» напряжения первичной обмотки трансформатора силового будет равна половине напряжения питания – это недостаток данной схемы. Но если посмотреть с другой стороны, то можно применить трансформатор с меньшим сердечником, не опасаясь при этом захода в зону насыщения, что одновременно является и плюсом. Для сварочных инверторов имеющих мощность порядка 2-3 кВт такой силовой модуль вполне перспективен.

Поскольку силовые транзисторы работают в режиме жесткого переключения, то для их нормальной работы необходимо ставить драйверы. Это связано с тем, что при работе в таком режиме, транзисторам необходим высококачественный управляющий сигнал. Также обязательно наличие безтоковой паузы, чтоб не допустить одновременное открытие транзисторов, результатом чего станет выход последних из строя.

Резонансный полумост

Довольно перспективный вид полумостового преобразователя, его схема показана ниже:

Резонансный полумост будет немного проще, чем полумост с ШИМ. Это обусловлено наличием индуктивности резонансной, которая ограничивает максимальный ток транзисторов, а коммутация транзисторов происходит в нуле тока или напряжения. Ток, протекающий по силовой цепи, будет иметь форму синусоиды, что снимет нагрузку с конденсаторных фильтров. При таком построении схемы необязательно необходимы драйверы, переключение может осуществляться обычным импульсным трансформатором. Качество управляющих импульсов в данной схеме не столь существенно как в предыдущей, но безтоковая пауза все равно должна быть.

В данном случае можно обойтись без токовой защиты, а форма вольт-амперной характеристики ВАХ будет иметь падающий вид, что не требует ее параметрического формирования.

Выходной ток будет ограничиваться только индуктивностью намагничивания трансформатора и соответственно сможет достигать довольно таки значительных величин, в случае, когда возникнет короткое замыкание КЗ. Данное свойство положительно влияет на поджиг и горение дуги, но и его также необходимо учитывать при подборе выходных диодов.

Как правило, выходные параметры регулируются изменением частоты. Но и регулирование фазное тоже дает немного своих плюсов и является более перспективным для сварочных инверторов. Он позволяет обойти такое неприятное явление как совпадение режима короткого замыкания с резонансом, а также увеличивает диапазон регулирования выходных параметров. Применение фазовой регулировки может позволить изменять выходной ток в диапазоне от 0 до Imax.

Ассиметричный или «косой» мост

Это однотактный, прямоходовой преобразователь, блок схема которого приведена ниже:

Данный тип преобразователя довольно популярен как у простых радиолюбителей, так и у производителей сварочных инверторов. Самые первые сварочные инверторы строились именно по таким схемам – асимметричный или «косой»  мост. Помехозащищенность, довольно широкий диапазон регулирования выходного тока, надежность и простота – эти все качества до сих пор привлекают производителей до сих пор.

Довольно высокие токи, проходящие через транзисторы, повышенное требование к качеству управляющего импульса, что приводит к необходимости использовать мощные драйвера для управления транзисторами, а высокие требования к выполнению монтажных работ в этих устройствах и наличие больших импульсных токов, которые в свою очередь повышают требования к конденсаторным фильтрам – это существенные недостатки такого типа преобразователя. Также для поддерживания нормальной работы транзисторов необходимо добавление RCD цепочек – снабберов.

Но несмотря на выше перечисленные недостатки и низкий КПД устройства по схеме асимметричный или «косой» мост все еще применяются в сварочных инверторах. В данном случае транзисторы Т1 и Т2 будут работать синфазно, то есть закрываться и открываться одновременно. В данном случае накопление энергии будет происходить не в трансформаторе, а в катушке дросселя Др1. Именно поэтому для того, чтоб получить одинаковую мощность с мостовым преобразователем необходим удвоенный ток через транзисторы, так как рабочий цикл при этом не будет превышать 50%. Более подробно данную систему мы рассмотрим в следующих статьях.

Полный мост с ШИМ

Представляет собой классический двухтактный преобразователь, блок схема которого показана ниже:

Данная  схема позволяет получать мощность в 2 раза больше, чем при включении типа полумост и в 2 раза больше чем при включении типа «косой» мост, при этом величины токов и соответственно потери во всех трех случаях будут равны. Это можно объяснить тем, напряжение питания будет равным напряжению «раскачки» первичной обмотки трансформатора силового.

Для того, чтоб получить одинаковые мощности с полумостом (напряжение раскачки 0,5Uпит.) необходим ток в 2 раза! меньше чем для случая полумоста. В схеме полного моста с ШИМ транзисторы будут работать поочередно – Т1, Т3 включены, а Т2, Т4 выключены и соответственно наоборот при изменении полярности. Через трансформатор тока отслеживают  и контролируют значения амплитудное тока протекающего через эту диагональ. Для его регулирования есть два наиболее часто применяемые способы:

  • Оставить неизменным напряжение отсечки, а изменять только длину импульса управления;
  • Проводить изменения уровня отсекающего напряжения по данным с трансформатора тока при этом оставляя неизменным длительность импульса управления;

Оба способа могут позволить проводить изменения выходного тока в довольно больших пределах.  У полного моста с ШИМ недостатки и требования такие же, как и у полумоста с ШИМ. (Смотри выше).

Резонансный мост

Является наиболее перспективной схемой высокочастотного преобразователя для сварочного инвертора, блок схема которого показана ниже:

Резонансный мост не сильно отличается от полного моста с ШИМ. Разница заключается в том, что при резонансном подключении последовательно с обмоткой трансформатора подключают резонансную LC цепочку. Однако ее появление в корне меняет процесс перекачки мощности. Уменьшатся потери, увеличится КПД, снизится нагрузка на входные электролиты и электромагнитные помехи уменьшатся. В данном случае драйверы на силовые транзисторы нужно применять только в случае если будут использованы MOSFET транзисторы, которые имеют емкость затвора более 5000 pF. IGBT могут обойтись лишь наличием импульсного трансформатора. Более подробные описания схем будут приводится в следующих статьях.

Управление выходным током может производится двумя способами – частотным и фазовым. Оба эти способы описывались в резонансном полумосте (смотри выше).

Полный мост с дросселем рассеивания

Схема его ничем практически не отличается от схемы резонансного моста или полумоста, только вместо резонансной цепи LC  последовательно с трансформатором включают не резонансную LC цепь. Емкость С, примерно С≈22мкф х 63В, работает как симметрирующий  конденсатор, а индуктивное сопротивление дросселя L как реактивное сопротивление, величина которого будет линейно изменятся в зависимости от изменения частоты. Преобразователь управляется частотным способом. Как известно нам с электротехники, при увеличении частоты напряжения сопротивление индуктивности возрастет, что уменьшит ток в силовом трансформаторе. Довольно простой и надежный способ. Поэтому довольно большое количество промышленных инверторов строят по такому принципу ограничения выходных параметров.

elenergi.ru

Сварочный инвертор - асимметричный (косой мост) с микроконтроллерным управлением. - Cварочное оборудование - Источники питания

Схема силовой части с блоком питания и драйверами.

    Представленный на схеме сварочный инвертор построен по схеме однотактного прямохода. На первичную обмотку сварочного трансформатора с помощью двух ключей подаются однополярные импульсы выпрямленного сетевого напряжения с заполнением не более 42 %.  Магнитопровод трансформатора испытывает одностороннее подмагничивание. В паузах между импульсами магнитопровод размагничивается по так называемой частной петле. Размагничивающий ток благодаря обратно включенным диодам возвращает магнитную энергию, запасённую в сердечнике трансформатора обратно в источник, подзаряжая конденсаторы (2 x 1000 мкф x 400 В) накопителя.        На прямом ходу энергия передаётся в нагрузку через сварочный трансформатор и прямо включенные диоды выпрямителя (2x150EBU04). В паузе между импульсами ток в нагрузке поддерживается благодаря энергии, накопленной в дросселе. Электрическая цепь в этом случае замыкается через обратные диоды (2x150EBU04). Хорошо известно, что на эти диоды приходится бОльшая нагрузка, чем на прямые. Причина – ток в паузе течёт дольше чем в импульсе.           Конденсатор 1200 мкф x 250 В включенный в сварочные провода через резистор 4,3 Ом обеспечивает чёткое зажигание дуги. Пожалуй, это одно из удачных схемных решений для поджига в косом мосте. 

    Ключи косого моста работают в режиме жёсткого переключения. Причём режим включения заведомо облегчен всегда присутствующей индуктивностью рассеивания сварочного трансформатора. И, поскольку к моменту включения ключей считается, что магнитопровод  трансформатора полностью размагничен, то по причине отсутствия тока в первичной обмотке, потерями на включение можно пренебречь.  Потери на выключение – очень существенные. Для их снижения параллельно каждому ключу установлены RCD-снабберы. 

    Для обеспечения чёткой работы ключей, в моменты между включениями на их затворы подаётся отрицательное напряжение благодаря специальной схеме включения драйверов. Каждый драйвер питается от гальванически изолированного источника (около 25 В) блока питания. Напряжение питания “верхнего” драйвера используется для включения реле К1, контакты которого шунтируют пусковой резистор. 

    Блок питания (классический маломощный флайбэк) имеет 3 гальванически изолированных выхода. При исправных деталях начинает работать сразу. Напряжение для драйверов – 23-25В. Напряжение 12 В используется для питания блока управления. 

    Существенные радиаторы нужно предусмотреть для входного выпрямителя, ключей и выходного выпрямителя. От размеров этих радиаторов и интенсивности их обдува  будет зависеть постоянная времени работы аппарата. Поскольку аппарат обеспечивает существенный сварочный ток (до 180 А), ключи нужно обязательно припаять к медным пластинам толщиной 4 мм, затем эти “бутерброды” прикрутить к радиаторам через теплопроводную пасту. О том как это сделать написано здесь  В месте крепления ключей посадочное место радиатора должно быть идеально плоским без сколов и раковин. Желательно чтобы в месте крепления ключей радиатор имел сплошное тело толщиной не менее 10 мм. Как показала практика для лучшего отвода тепла не нужно изолировать ключи от радиатора. Лучше изолировать радиатор от корпуса аппарата.  В обдув нужно поставить также трансформатор, дроссель и обязательно все резисторы мощностью 25 и 30 Вт. Остальные элементы схемы в радиаторах и обдуве не нуждаются.  

 

 

Блок управления

 

Схема блока управления полномостовым сварочным инвертором

Блок управления построен на основе распространённого ШИМ-контроллера TL494 с задействованием одного канала регулирования. Этот канал стабилизирует ток в дуге. Задание тока формирует микроконтроллер с помощью модуля CCP1 в режиме ШИМ на частоте примерно 75 кГц. Заполнение ШИМ будет определять напряжение на конденсаторе C1. Величина этого напряжения определяет величину сварочного тока.

С помощью микроконтроллера выполняется так же блокировка инвертора. Если на вход DT(4) TL494 будет подан высокий логический уровень,  то импульсы на выходе Out исчезнут и инвертор остановится. Появление логического нуля на выходе RA4 микроконтроллера приведёт к плавному старту инвертора, то есть к постепенному увеличению заполнения импульсов на выходе Out до максимального. Блокировка инвертора используется в момент включения и при превышении температуры радиаторов.

Вот что получилось в железе. Блок питания, драйвера и блок управления на одной плате.

В моём аппарате индикатор и клавиатура подключены к блоку управления через компьютерный шлейф. Шлейф проходит в непосредственной близости от радиаторов ключей и трансформатора. В чистом виде такой конструктив приводил к ложному нажатию на клавиши. Пришлось применить следующие спец. меры.    На шлейф одето ферритовое кольцо К28x16x9. Шлейф скручен (насколько позволяла его длина).  Для клавиатуры и термостатов использованы дополнительные подтягивающие резисторы 1,8К, зашунтированные керамическими конденсаторами 100 пкф. Такое схемное решение обеспечило  помехоустойчивость клавиатуры, полностью исключены ложные нажатия клавиш.

Хотя, моё мнение – нужно не допускать помехи в блок управления. Для этого блок управления должен быть отделён от силовой части сплошным металлическим листом. 

    

Настройка инвертора

Силовая часть пока обесточена. Предварительно проверенный блок питания подключаем к блоку управления и включаем его в сеть. На индикаторе загорятся все восьмёрки, затем включится реле и, если контакты термостатов замкнуты, то индикатор покажет задание тока 20 А. Осциллографом проверяем напряжение на затворах ключей. Там должны быть прямоугольные импульсы с фронтами не более 200 нс, частотой 40-50 кГц напряжением 13-15В в положительной области и 10 В – в отрицательной. Причём в отрицательной области импульс должен быть заметно длиннее.

Если всё так, собираем полностью схему инвертора и включаем его в сеть. На индикацию сначала будут выведены восьмёрки, затем должно включиться реле и индикатор покажет 20 А. Кликая кнопками, пробуем изменять задание тока. Изменение задания тока должно пропорционально изменять напряжение на конденсаторе C1.  Если изменив задание тока не нажимать на кнопки более 1 минуты, то произойдёт запись задания в энергонезависимую память. На индикаторе кратковременно появится сообщение “ЗАПС”. При последующем включении инвертора величина задания тока будет равна значению, которое записалось.

Если всё так, устанавливаем задание 20 А и включаем в сварочные провода нагрузочный реостат сопротивлением 0,5 Ом. Реостат должен выдерживать протекание тока не менее 60 А. К выводам шунта подключаем вольтметр магнитоэлектрической системы со шкалой на 75 мВ, например прибор Ц 4380. На нагруженном инверторе пытаемся изменять задание тока, и по показаниям вольтметра контролируем ток. В этом режиме реостат может издавать звук, напоминающий звон. Его не стоит боятся – это работает токоограничение. Ток должен меняться пропорционально заданию. Выставляем задание тока 50 А. Если показания вольтметра не соответствуют 50 А, то на выключенном инверторе впаиваем сопротивление R1 другого номинала. Подбирая сопротивление R1 добиваемся соответствие задания тока измеренному.

Проверяем работу термозащиты. Для этого обрываем цепь термостатов. На индикаторе высветиться надпись “EroC”. Импульсы на затворах ключей должны исчезнуть Восстанавливаем цепь термостатов. Индикатор должен показать установленный ток. На затворах ключей должны появиться импульсы. Их длительность должна плавно увеличится до максимальной.

Если всё так, можно попытаться варить. После 2-3-х минут сварки током 120-150 А выключаем инвертор из сети и ищем 2 самых горячих радиатора. На них нужно установить защитные термостаты. По возможности термостаты устанавливаются вне зоны обдува.

Автор конструкции:  Руслан Липин

АРХИВ:Скачать

cxema.my1.ru

Силовая электроника своими руками

    Представленный на схеме сварочный инвертор построен по схеме однотактного прямохода. На первичную обмотку сварочного трансформатора с помощью двух ключей подаются однополярные импульсы выпрямленного сетевого напряжения с заполнением не более 42 %.  Магнитопровод трансформатора испытывает одностороннее подмагничивание. В паузах между импульсами магнитопровод размагничивается по так называемой частной петле. Размагничивающий ток благодаря обратно включенным диодам возвращает магнитную энергию, запасённую в сердечнике трансформатора обратно в источник, подзаряжая конденсаторы (2 x 1000 мкф x 400 В) накопителя.      На прямом ходу энергия передаётся в нагрузку через сварочный трансформатор и прямо включенные диоды выпрямителя (2x150EBU04). В паузе между импульсами ток в нагрузке поддерживается благодаря энергии, накопленной в дросселе. Электрическая цепь в этом случае замыкается через обратные диоды (2x150EBU04). Хорошо известно, что на эти диоды приходится бОльшая нагрузка, чем на прямые. Причина – ток в паузе течёт дольше чем в импульсе.         Конденсатор 1200 мкф x 250 В включенный в сварочные провода через резистор 4,3 Ом обеспечивает чёткое зажигание дуги. Пожалуй, это одно из удачных схемных решений для поджига в косом мосте.

    Ключи косого моста работают в режиме жёсткого переключения. Причём режим включения заведомо облегчен всегда присутствующей индуктивностью рассеивания сварочного трансформатора. И, поскольку к моменту включения ключей считается, что магнитопровод  трансформатора полностью размагничен, то по причине отсутствия тока в первичной обмотке, потерями на включение можно пренебречь.  Потери на выключение – очень существенные. Для их снижения параллельно каждому ключу установлены RCD-снабберы.

    Для обеспечения чёткой работы ключей, в моменты между включениями на их затворы подаётся отрицательное напряжение благодаря специальной схеме включения драйверов. Каждый драйвер питается от гальванически изолированного источника (около 25 В) блока питания. Напряжение питания “верхнего” драйвера используется для включения реле К1, контакты которого шунтируют пусковой резистор.

    Блок питания (классический маломощный флайбэк) имеет 3 гальванически изолированных выхода. При исправных деталях начинает работать сразу. Напряжение для драйверов – 23-25В. Напряжение 12 В используется для питания блока управления.

    Существенные радиаторы нужно предусмотреть для входного выпрямителя, ключей и выходного выпрямителя. От размеров этих радиаторов и интенсивности их обдува  будет зависеть постоянная времени работы аппарата. Поскольку аппарат обеспечивает существенный сварочный ток (до 180 А), ключи нужно обязательно припаять к медным пластинам толщиной 4 мм, затем эти “бутерброды” прикрутить к радиаторам через теплопроводную пасту. О том как это сделать написано здесь.  В месте крепления ключей посадочное место радиатора должно быть идеально плоским без сколов и раковин. Желательно чтобы в месте крепления ключей радиатор имел сплошное тело толщиной не менее 10 мм. Как показала практика для лучшего отвода тепла не нужно изолировать ключи от радиатора. Лучше изолировать радиатор от корпуса аппарата.  В обдув нужно поставить также трансформатор, дроссель и обязательно все резисторы мощностью 25 и 30 Вт. Остальные элементы схемы в радиаторах и обдуве не нуждаются.

Блок управления.

Блок управления построен на основе распространённого ШИМ-контроллера TL494 с задействованием одного канала регулирования. Этот канал стабилизирует ток в дуге. Задание тока формирует микроконтроллер с помощью модуля CCP1 в режиме ШИМ на частоте примерно 75 кГц. Заполнение ШИМ будет определять напряжение на конденсаторе C1. Величина этого напряжения определяет величину сварочного тока.

С помощью микроконтроллера выполняется так же блокировка инвертора. Если на вход DT(4) TL494 будет подан высокий логический уровень,  то импульсы на выходе Out исчезнут и инвертор остановится. Появление логического нуля на выходе RA4 микроконтроллера приведёт к плавному старту инвертора, то есть к постепенному увеличению заполнения импульсов на выходе Out до максимального. Блокировка инвертора используется в момент включения и при превышении температуры радиаторов.

Вот что получилось в железе. Блок питания, драйвера и блок управления на одной плате.

        В моём аппарате индикатор и клавиатура подключены к блоку управления через компьютерный шлейф. Шлейф проходит в непосредственной близости от радиаторов ключей и трансформатора. В чистом виде такой конструктив приводил к ложному нажатию на клавиши. Пришлось применить следующие спец. меры.    На шлейф одето ферритовое кольцо К28x16x9. Шлейф скручен (насколько позволяла его длина).  Для клавиатуры и термостатов использованы дополнительные подтягивающие резисторы 1,8К, зашунтированные керамическими конденсаторами 100 пкф. Такое схемное решение обеспечило  помехоустойчивость клавиатуры, полностью исключены ложные нажатия клавиш.

        Хотя, моё мнение – нужно не допускать помехи в блок управления. Для этого блок управления должен быть отделён от силовой части сплошным металлическим листом. 

Настройка инвертора.    

Силовая часть пока обесточена. Предварительно проверенный блок питания подключаем к блоку управления и включаем его в сеть. На индикаторе загорятся все восьмёрки, затем включится реле и, если контакты термостатов замкнуты, то индикатор покажет задание тока 20 А. Осциллографом проверяем напряжение на затворах ключей. Там должны быть прямоугольные импульсы с фронтами не более 200 нс, частотой 40-50 кГц напряжением 13-15В в положительной области и 10 В – в отрицательной. Причём в отрицательной области импульс должен быть заметно длиннее.

Если всё так, собираем полностью схему инвертора и включаем его в сеть. На индикацию сначала будут выведены восьмёрки, затем должно включиться реле и индикатор покажет 20 А. Кликая кнопками, пробуем изменять задание тока. Изменение задания тока должно пропорционально изменять напряжение на конденсаторе C1.  Если изменив задание тока не нажимать на кнопки более 1 минуты, то произойдёт запись задания в энергонезависимую память. На индикаторе кратковременно появится сообщение “ЗАПС”. При последующем включении инвертора величина задания тока будет равна значению, которое записалось.

Если всё так, устанавливаем задание 20 А и включаем в сварочные провода нагрузочный реостат сопротивлением 0,5 Ом. Реостат должен выдерживать протекание тока не менее 60 А. К выводам шунта подключаем вольтметр магнитоэлектрической системы со шкалой на 75 мВ, например прибор Ц 4380. На нагруженном инверторе пытаемся изменять задание тока, и по показаниям вольтметра контролируем ток. В этом режиме реостат может издавать звук, напоминающий звон. Его не стоит боятся – это работает токоограничение. Ток должен меняться пропорционально заданию. Выставляем задание тока 50 А. Если показания вольтметра не соответствуют 50 А, то на выключенном инверторе впаиваем сопротивление R1 другого номинала. Подбирая сопротивление R1 добиваемся соответствие задания тока измеренному.

Проверяем работу термозащиты. Для этого обрываем цепь термостатов. На индикаторе высветиться надпись “EroC”. Импульсы на затворах ключей должны исчезнуть Восстанавливаем цепь термостатов. Индикатор должен показать установленный ток. На затворах ключей должны появиться импульсы. Их длительность должна плавно увеличится до максимальной.

Если всё так, можно попытаться варить. После 2-3-х минут сварки током 120-150 А выключаем инвертор из сети и ищем 2 самых горячих радиатора. На них нужно установить защитные термостаты. По возможности термостаты устанавливаются вне зоны обдува.

ruslanlipin.narod.ru

Своими руками сварочный инвертор на тиристорах: инструкция по сборке

Сварочный инвертор — это достаточно популярный аппарат, который является необходимым и в домашнем хозяйстве, и на промышленном предприятии. Это не удивительно, ведь те источники питания, которыми пользовались раньше (преобразователи, трансформаторы, выпрямители), обладали многими недостатками. Среди них можно назвать массу и габариты, большую энергоемкость, но маленький диапазон регулирования режима сварки и низкую частоту преобразования. Сделав своими руками сварочный инвертор на тиристорах, вы получите мощный блок питания для необходимых работ. Также это поможет существенно сэкономить вам средства, хотя все равно потребует определенных трудовых и материальных затрат.

Схема тиристорного сварочног инвертора с частотой до 1000гц.

Сварочный инвертор: особенности и функции аппарата

Работа инвертора заключается в том, чтобы преобразовывать переменный сетевой ток в его постоянный высокочастотный аналог.

Это происходит в несколько этапов. К выпрямительному блоку из сети идет ток. Там, после трансформации, напряжение из переменного становится постоянным. А инвертор производит обратное преобразование, то есть поступающее постоянное напряжение снова становится переменным, но с уже более высокой частотой. После этого напряжение понижается трансформатором, через выходной выпрямитель происходит модификация этого параметра в высокочастотное постоянное напряжение.

Конструкция сварочного инвертора и его особенности

Благодаря тому что в конструкции аппарата отсутствуют тяжелые детали, он является очень компактным и легким. В нее входят следующие составляющие:

Устройство простого инвертора с перекрестными связями.

  • инвертор;
  • сетевой и выходной выпрямители;
  • дроссель;
  • высокочастотный трансформатор.

Даже начинающие сварщики могут работать с такими аппаратами. Их применяют как в быту, так и в строительной сфере или в автосервисах. Благодаря тому что присутствует регулировка рабочих режимов, варить можно и тонкие, и толстые металлы. А повышенные условия горения дуги и формирования сварного шва дают вам возможность варить сварочными инверторами любые сплавы, черные и цветные металлы, используя все возможные технологии их сварки.

Преимущества использования инвертора

В области сварного оборудования такие аппараты пользуются особым спросом из-за множества своих преимуществ и достоинств. Сделав инвертор своими руками, вы получите:

Устройство сварочного инвертора .

  • возможность варить сложные цветные металлы и конструкционные стали;
  • защиту от перегревов, колебаний сетевого напряжения, перегрузов по току;
  • высокую стабильность сварного тока даже при том, что напряжение может колебаться в сети;
  • качественно сформированный шов;
  • при сварке практически не будет разбрызгивания;
  • горение дуги будет стабилизированным в заданном ключе, даже если наблюдается внешнее неблагоприятное воздействие;
  • многие другие полезные в работе функции.

Схемы инвертора своими руками

Взяв за основу то, как строится схема и как управляется сам процесс инверторного преобразования, выделяют несколько видов аппаратов, которые являются самыми распространенными в использовании. Варианты полного моста и полумоста относятся к двум двухтактным схемам, а «косой» мост — к однотактной. Схема полного моста, которую называют двухтактной, работает с двухполярными импульсами. Они подаются на ключевые транзисторы (которые являются парными), а те запирают и открывают электрическую цепь.

Схема инвертора «косой» мост.

Полумостовая схема будет отличаться от предыдущего варианта тем, что потребление тока у нее повышенное. Как ключи выступают транзисторы, работающие по той же двухтактной модели. На каждый из них подается половина входного напряжения сети. Мощность инвертора, в сравнении по току с полным мостом, составляет половину значения. Подобная схема имеет свои преимущества в маломощных устройствах. К тому же можно использовать группу транзисторов, а не один очень мощный.

Последний вариант — «косой» мост. Это инверторы, которые работают по однотактному принципу. Тут вы будете иметь дело с однополярными импульсами. Одновременное открытие транзисторных ключей исключит возможность короткого замыкания. Но среди недостатков этой схемы выделяют подмагничивание магнитопровода трансформатора.

Посмотрите на одну из стандартных схем инвертора. Это конструкция по проекту Ю.Негуляева. Чтобы собрать такой аппарат в домашних условиях, потребуется ваше желание, готовность к работе и необходимая элементная база, которую вы сможете либо найти на радиорынке, либо выпаять из старой бытовой техники.

Инструкция по сборке аппарата

Стандартная схема инвертора по проекту Ю.Негуляева

Возьмите 6-миллиметровую плиту из дюралюминия. Присоедините к ней все отдающие тепло проводники и провода. Учтите, что здесь провод не нужно опоясывать термоизолирующим материалом. Используя старую схему (к примеру, компьютера), вам не придется отдельно искать транзисторы и тиристоры.

Далее подготовьте специальный высокомощный вентилятор (вы можете воспользоваться даже автомобильным радиатором). Он будет обдувать все, включая резонансный дроссель. Не забудьте прижать последний к вашей основе с помощью прокладочного уплотнителя.

Для изготовления самого дроссельного прибора возьмите шесть медных сердечников. Их можно найти на рынке или сделать самому из деталей ненужного старого телевизора. Прижмите диоды к основанию схемы, а потом присоедините к ним стабилизаторы напряжения и изоляционные уплотнители.

Ставя трансформатор, заизолируйте проводниковые пучки с помощью изоленты или фторопластовой полосы. Разведите проводники в разные стороны, чтобы они не контачили и не вызывали сбоев в работе. На полевом транзисторе понадобится провести монтаж силового поля, чтобы продлить работоспособность вашего инвертора. Для этого возьмите медный провод 2-миллиметрового сечения. Залужив его, обмотайте в несколько слоев обычной ниткой. Так вы защитите ваш проводник от разных повреждений и при пайке, и при сварке. Чтобы закрепить монтаж, используйте изолирующие пяточки. Так вы еще и перенесете на них нагрузку с транзисторов.

Дюралюминиевые пластины послужат в качестве своеобразных прокладок для того, чтобы прижать к радиатору транзисторы и тиристоры. Вы можете прикрепить их с помощью небольших винтов.

Позаботьтесь о вторичной обмотке, потому что так у вас будет лучше функционировать вентиляция трансформатора. Выводите ее при необходимости на цилиндры из феррита. Еще одним вариантом может послужить средневолновой приемник питания, а оттуда энергия пойдет к сердечникам и далее по схеме.

Не забудьте и о настройке сварочного инвертора для того, чтобы аппарат функционировал исправно.

moyasvarka.ru

Силовая электроника своими руками

    Большинство деталей инвертора расположены на односторонней плате. На другой маленькой плате расположены светодиды индикации с резисторами 200 Ом, 200 Ом и 1,8 кОм. Эта  плата размещается на лицевой панели инвертора и соединяется с основной платой с помощью 5-проводного шлейфа. К дорожкам маленькой платы припаиваются проводники кнопок "ButtonUp" и "ButtonDown".  Эти кнопки устанавливаются на лицевую панель рядом со светодиодами.     Основная плата крепится к радиаторам ключей. Радиаторы должны быть изолированы от корпуса инвертора и друг от друга. Проводники, соединяющие драйвер верхнего ключа с затвором припаиваются отдельно со сторны дорожек основной платы. Проводники датчика температуры также припаиваются к дорожкам. Сам датчик вклеивается в отверстие наименее обдуваемого радиатора ключа. Диоды размагничивания и снабберные диоды монтируются планарным способом непосредсвенно к токоведущим частям платы, которые служат для них теплотводом..       Радиатор выходных диодов имеет существенные размеры. На него непосредственно направлен воздушный поток вентилятора. Детали снабберов выходных диодов, трансформатор тока, пусковой резистор, блокировочные конденсаторы цепи постоянного тока 300 В, снабберные конденсаторы ключей и RC-цепочка облегчения поджига монтируются навесным монтажом.    

Настройка инвертора.    

Трансформатор отключен от высоковольтной части. Вместо трансформатора подключаем лампочку на 220 В мощностью от 40 до 100 Вт.  Датчик температуры ещё не вклеен в радиатор. Включаем инвертор в сеть. Через пару секунд должно включиться реле. Лампочка загорится, но не в полный накал. Зелёный светодод зажигается при наличии питания + 5 В. Красный светодиод должен быть погашен. Если горит - проверяем правильность подключения датчика температуры.    

Если всё так, с помощью паяльника, либо с помощью лампочки, которая светится начинаем нагревать датчик температуры. При тепереатуре, примерно 55 градусов должен включиться вентилятор. В этот момент нужно проверить напряжение на ообмотках обеих реле. Если напряжение выходит за пределы от 11 до 14 В, необходимо подбирать сопротивления резисторов R2 и R3. 

Продолжаем нагревать датчик температуры. При тепературе, примерно 71 градус должен загореться красный светодиод, лампочка должна погаснуть, вентилятор продолжает вращаться.. Дальнейший нагрев не имеет смысла, так как ни к каким изменениям режимов работы инвертора это не приведёт. Термозащита выполнила свою функцию.

Убираем датчик тепературы из зоны нагрева, датчик начинает остывать. При температуре, примерно 55 градусов, должна загореться лампочка, а при 40 градусах должен отключиться вентилятор.

Если всё так, убираем лампочку, подключаем трансформатор согласно схемы соблюдая фазировку обмоток. То же относится к трансформатору тока. Вклеиваем датчик температуры в отверстие радиатора. Включам инвертор в сеть. При первом включении задание тока устанавливается минимальным. Кликая кнопками  увеличиваем и уменьшаем задание тока.  Всего 16 позиций. Активное изменение задания сопровождается кратковременным зажиганием красного светодиода и характерным щелчком в трансформаторе. Если задание минимально (1-я позиция), то клик кнопки "ButtonDown" не приведёт к зажиганию красного светодиода и не будет щелчка в трансформаторе. Такая же реакция будет при клике кнопки "ButtonUp" если задание уже максимально (16 позиция). Выключение инвертора из сети не изменит текущего задания, поскольку при каждом изменении задания происходит его запись в энергонезависимую память мироконтроллера.

Если всё так, нагружаем инвертор мощным реостатом сопротивлением 0,25 Ом и замеряем ток нагрузки. Ток должен изменяться примерно на 5-7 А при изменении задания на 1 позицию. При этом соответственно должна изменятся ширина импульсов на затворах ключей. 

Если всё так, можно пробовать варить. Пределы задания тока можно изменить если впаять резистор R1 другого номинала. Увеличение этого сопротивления приведёт к увеличению максимального и минимального тока, уменьшение - к уменьшению.

ruslanlipin.narod.ru

Сварочный мостовой инвертор

Существует несколько схем управления инвертором, входящим в состав сварочного преобразователя. Все они основаны на мостовом принципе. В качестве элементов управления

используются транзисторные (или тиристорные) ключи, которые закрывают цепи при подаче напряжения. В зависимости от типа используемых ключей, сварочный мостовой инвертор может быть выполнен по однополярной и двухполярной схеме.

Наиболее популярны следующие схемы и их вариации:

  • полный мост (двухполярная схема). Ее разновидность – резонансный полный мост.
  • «косой мост» (ассимитричный) – однополярный.
  • полумост, двухполярный. Ее разновидность – резонансный полумост.
Эти три схемы и их вариации наиболее часто используются в сварочных инверторах, но не ограничивают другие принципы управления.

Сварочный мостовой инвертор по классической схеме полного моста позволяет снять мощность в два раза больше чем с полумостом, при одинаковых значениях силы тока. Схема представлена на схеме 1.

Транзисторные ключи полного моста открываются по диагонали, Т1 и Т3; Т2 и Т4. Когда одна пара ключей открыта, вторая пара запирается. Высокочастотный трансформатор инвертора отслеживает амплитуду протекающего тока. Выходные параметры тока регулируются: изменением времени импульса, при неизменном напряжении по отсечки или изменением отсечного напряжения трансформатора, при постоянной длительности импульсов по времени. Резонансный полный мост мало чем отличается от обычного.

Схема резонаторного полумоста изображена на схеме 2.

Полумост является однополярной схемой. Недостатком ее состоит в половинном питании по напряжению. Этот недостаток используется в инверторах малой мощности с положительной стороны. Возможно использование меньшего размера магнитного сердечника без опасения достижения его насыщения. Транзисторные ключи полумоста работают в режиме переключения. Между импульсами существует «мертвое» время. Недостаточная по времени пауза может способствовать пробою транзисторов. Отличие резонансного полумоста от классической схемы состоит в том, что коммутация (ключей) происходит в нулевых точках по току и напряжению. В этом случае необходимость использования драйверов отпадает. Резонансная схема позволяет обойти защиту по току, а ее падающая вольтамперная характеристика не нуждается в дополнительном формировании. Выходной ток ограничивается индуктивностью магнитопровода трансформатора в процессе намагничивания. Резонансный принцип не позволяет избежать временных пауз в работе ключей.

Не смотря на существенные различия схем, работа мостового инвертора основывается на использовании ключей в виде транзисторов или силовых тиристоров.

Читайте также

industrika.ru


Видеоматериалы

24.10.2018

Опыт пилотных регионов, где соцнормы на электроэнергию уже введены, показывает: граждане платить стали меньше

Подробнее...
23.10.2018

Соответствует ли вода и воздух установленным нормативам?

Подробнее...
22.10.2018

С начала года из ветхого и аварийного жилья в республике были переселены десятки семей

Подробнее...
22.10.2018

Столичный Водоканал готовится к зиме

Подробнее...
17.10.2018

Более 10-ти миллионов рублей направлено на капитальный ремонт многоквартирных домов в Лескенском районе

Подробнее...

Актуальные темы

13.05.2018

Формирование энергосберегающего поведения граждан

 

Подробнее...
29.03.2018

ОТЧЕТ о деятельности министерства энергетики, ЖКХ и тарифной политики Кабардино-Балкарской Республики в сфере государственного регулирования и контроля цен и тарифов в 2012 году и об основных задачах на 2013 год

Подробнее...
13.03.2018

Предложения организаций, осуществляющих регулируемую деятельность о размере подлежащих государственному регулированию цен (тарифов) на 2013 год

Подробнее...
11.03.2018

НАУЧИМСЯ ЭКОНОМИТЬ В БЫТУ

 
Подробнее...

inetpriem


<< < Ноябрь 2013 > >>
Пн Вт Ср Чт Пт Сб Вс
        1 2 3
4 5 6 7 8 9 10
11 12 13 14 15 16 17
18 19 20 21 22 23 24
25 26 27 28 29 30  

calc

banner-calc

.