В чём преимущества высоковольтных передач постоянного тока? Лэп высоковольтные


Высоковольтные линии электропередач

Главная \ Высоковольтные линии электропередач

                                  

Воздушные линии электропередачи.

ЛЭП являются мощными излучателями ЭМИ промышленной частоты (ПЧ). ЛЭП имеют соответствующее напряжение и подразделяются в зависимости от предназначения на классы: сверхдальние (500 кВ и выше), магистральные (220-330 кВ), распределительные (30-150 кВ), подводящие (менее 20 кВ).

Вокруг проводов ЛЭП создается ЭМП промышленной частоты. Расстояние, на которое распространяются поля, зависит от класса напряжения. Чем больше напряжение, тем дальше от проводов регистрируется зона повышенного ЭМП. Нагрузка ЛЭП, которая определяет величину протекающего тока, меняется в течение суток, сезонов года, следовательно, и меняется зона распространения ЭМП.

В РФ установлены охранные зоны вокруг ЛЭП: при напряженности ЛЭП 330 кВ - 20 метров, 500 кВ - 30 м, 750 кВ - 40 м, 1150 кВ - 50 м. (Санитарные нормы и правила № 2971-84).

Однако внутри зданий, находящихся вблизи ЛЭП, напряженность электричесокго поля может быть выше допустимых значений - 0,5 кВ/м внутри здания и 1 кВ/м в местах возможного пребывания людей. В этих случаях необходимы заземления, установка защитных экранов. Низкочастотное магнитное поле экранировать невозможно.

В США силовые линии электропередачи могут находиться на расстоянии не менее 1000 метров от жилых помещений.

В 1996 году Национальная академия наук США подтвердила и объявила о наличии прямой связи с возможным риском 1,5 между возможностью заболеть злокачественной опухолью и удалённостью места проживания человека от ЛЭП.

В городе, как правило, электромагнитная обстановка напряженнее, чем в незаселенных регионах. Даже в течение суток создаваемая напряженность ЭМП может изменяться и превышать естественный ЭМ фон пригородной зоны, сельской местности в десятки, сотни раз - как пример, за счет работы промышленных предприятий, проложенного под землей кабеля и т.д.

Для населения по ЭП ПЧ (электрическое поле промышленной частоты) в 70-х годах  были введены жесткие нормативы (№2971-84 Санитарные нормы и правила «Защита населения от воздействия электрического поля, создаваемого воздушными линиями электропередачи переменного тока промышленной частоты»). Все объекты электроснабжения строятся и проектируются в соответствии  с этими санитарными нормами.

ПДУ ЭП ПЧ для населения (кВ/м)

Внутри жилых зданий

0,5

Открытая территория зоны жилой застройки

1

Населенная местность вне зоны жилой застройки (земли городов в пределах городской черты в границах их перспективного развития на 10 лет, пригородные и зеленые зоны, курорты, земли поселков городского типа в пределах поселковой черты и сельских насаленных пунктов - в черте этих пунктов), а также территории огородов и садов

5

Участки пересечения высоковольтных линий с автомобильными дорогами I - IV категорий

10

Населенная местность (незастроенные местности, эпизодически посещаемые людьми, доступные для транспорта и сельскохозяйственные угодья)

15

Труднодоступная местность (недоступная для транспорта и сельскохозяйственных машин) и на участках, специально отгороженных для исключения доступа населения

20

Магнитные поля промчастоты для населения не регламентируются. Для поизводственных условий ПДУ МП промчастоты разработаны (ПДУ № 3206-85)

 

bez-emi.ru

Высоковольтная линия электропередачи - это... Что такое Высоковольтная линия электропередачи?

 Высоковольтная линия электропередачи         Линия электропередачи напряжением выше 1 кв. В. л. э. бывают воздушные и подземные (подводные). Воздушной В. л. э. называют устройство для передачи и распределения электрической энергии по проводам, расположенным на открытом воздухе и закреплённым на опорах при помощи изоляторов и арматуры. Опоры, изготовленные из дерева, железобетона или металла, отстоят одна от другой на 50—500 м в зависимости от марки провода и типа опоры (см. Опора линий электропередачи (См. Опоры линий электропередачи)). Расстояние от провода до земли составляет не менее 6—8 м. Подземные (подводные) В. л. э., в которых используются провода в специальной изоляции (см. Силовой кабель), применяют для распределения энергии на территории городов и промышленных предприятий, а также при переходе через широкие водные преграды.

         М. С. Либкинд.

Большая советская энциклопедия. — М.: Советская энциклопедия. 1969—1978.

  • Высокович Владимир Константинович
  • Высоковск

Смотреть что такое "Высоковольтная линия электропередачи" в других словарях:

  • Линия электропередачи — Высоковольтная линия электропередачи. ЛИНИЯ ЭЛЕКТРОПЕРЕДАЧИ (ЛЭП), электроустановка для передачи электроэнергии на расстояние, состоящая из проводов (кабелей) и вспомогательных устройств (изоляторов, муфт и т.д.). Различают воздушные ЛЭП, провода …   Иллюстрированный энциклопедический словарь

  • Высоковольтная линия постоянного тока — (HVDC) используется для передачи больших электрических мощностей по сравнению с системами переменного тока. При передаче электроэнергии на большие расстояния устройства системы HVDC менее дороги и имеют более низкие электрические потери. Даже при …   Википедия

  • Высоковольтная линия постоянного тока Волгоград-Донбасс — Высоковольтная линия постоянного тока Волгоград Донбасс …   Википедия

  • Высоковольтная линия постоянного тока Экибастуз-Центр — Высоковольтная линия постоянного тока Экибастуз Центр  незаконченная линия электропередачи между Экибастузом в Казахстане и Тамбовом в России, строительство которой было начато в 1978 году. Планировалось построить линию длиной 2 400… …   Википедия

  • Высоковольтная линия постоянного тока Кабора-Басса — Высоковольтная линия постоянного тока Кабора Басса  HVDC линия между гидроэлектростанцией Кабора Басса в Мозамбике, и Йоханнесбургом, ЮАР. Биполярная ЛЭП может передавать мощность до 1920 МВт при напряжении +/ 533 кВ и токе 1800 ампер. В… …   Википедия

  • Высоковольтная линия постоянного тока Лейте-Лусон — на Филиппинах соединяет геотермальные электростанции на острове Лейте и южную часть острова Лусон. Линия была введена в эксплуатацию 10 августа 1998. ЛЭП начинается на преобразовательной станции в городе Ормок (провинция Лейте) и заканчивается на …   Википедия

  • Высоковольтная линия постоянного тока Хэнам-Чеджудо — Высоковольтная линия постоянного тока Хэнам Чеджудо  101 километровая HVDC кабельная линия, соединяющая материковую Южную Корею с островом Чеджудо (Южная Корея). Линия была запущена в эксплуатацию в 1996 году. Линия предназначена для… …   Википедия

  • Высоковольтная линия постоянного тока Каприви — Высоковольтная линия постоянного тока Каприви  HVDC линия, соединяющая подстанцию Zambezi (северо восточная часть Намибии, Каприви) и подстанцию Gerus в центральной части. В ноябре 2007 года ABB выиграла заказ на 180 миллионов $ от… …   Википедия

  • Линия электропередачи — Линии электропередачи …   Википедия

  • Высоковольтная линия постоянного тока Basslink — Basslink  высоковольтная линия постоянного тока (HVDC), проложенная через Бассов пролив и соединяющая электростанцию Лой Янг на австралийском континенте с по …   Википедия

dic.academic.ru

Высоковольтные линии постоянного и переменного тока

В 1919 г. инженер Михаил Осипович Доливо-Добровольский написал работу «О пределах применимости трехфазного переменного тока для передачи электроэнергии на расстояние». Проведя исследования, он доказал, что при электропередачах большой мощности и на очень дальнее расстояние произойдет обратный переход от переменного тока к постоянному. [30]

 

Считается, что ушли в прошлое времена, когда решался вопрос, каким быть электросетям в мире – сетям постоянного или переменного тока (так называемая «война токов или напряжений», имевшая место на рубеже 19-20 веков). В настоящее время большинство сетей – это сети переменного напряжения с частотой 50 / 60 Гц. Тем не менее, последние события в энергетике показывают, что старая дискуссия может вернуться.

 

В настоящее время идут процессы, которые могут потеснить монополию переменного тока

 

1) Развитие высоковольтных систем постоянного тока (ЛПТ / HVDC систем) в системах электропередачи продолжается благодаря следующим преимуществам [1]:
  • Отсутствуют потери на излучение, так электромагнитные волны излучает только проводник с переменным током.
  • В сети нет реактивной (паразитной) мощности и, следовательно, затрат на борьбу с ней, т.е. нет коэффициента мощности и необходимости его улучшения.
  • Экономия на материалах опор ЛЭП, проводов.

Основное преимущество HVDC – это возможность передать большее количество энергии на большое расстояние с меньшими капитальными затратами и меньшими потерями, чем в HVAC линиях [1]. В зависимости от уровня напряжения и конструкционных особенностей потери составляют около 3% на 1км [1]. HVDC позволяют более эффективно использовать энергетические источники удаленные от нагрузочных центров.

Основные примеры, где использование HVDC более эффективно, чем HVAC:

  • Подводные кабели (например, 250 км Балтийский кабель между Швецией и Германией [1], 600 км кабель NorNed между Норвегией и Голландией, 290 км связка Basslink между Австралийским материком и Тасманией [1]). В подводных кабелях линии переменного тока неэффективны по причине потерь на токи Фуко в солёной воде.
  • Дальнемагистральные мощные линии электропередачи типа «конечная точка – конечная точка» без промежуточных ответвлений, например, в удаленных (незаселенных) областях.
  • Увеличение мощности существующей силовой сети в ситуациях, где дополнительные провода устанавливать трудно или дорого.
  • Передача мощности и стабилизация между несинхронизированными распределительными системами переменного напряжения (Power transmission and stabilization between unsynchronised AC distribution systems).
  • Подключение удалённой генерирующей электростанции к главной сети, например: Nelson River DC Transmission System.
  • Стабилизация преобладающей AC сети за счет того, что HVDC не вносит вклад в общий ток КЗ системы (Stabilizing a predominantly AC power-grid, without increasing prospective short circuit current).
  • Снижение цены линии электропередачи. HVDC нуждается в меньшем количестве проводников так как нет необходимости поддержки многофазных систем. Так же, из-за отсутствия скин-эффекта могут использоваться более тонкие проводники.
  • Облегчение передачи (обмена) энергией между странами (районами, сетями), которые используют разные частоты промышленной сети.
  • Синхронизация сетей переменного напряжения, выработанного ВИЭ [1].

Преимущества и недостатки HVDC по другому источнику [2]:

A. Преимущества HVDC

  • Большая передаваемая мощность для проводника одного сечения (нет излучения, нет скин-эффекта и др.).
  • Более простая конструкция линии (нет реактивных компенсаторов и др.).
  • Может быть использован возврат через землю (ОЛВЗ). Имеется в виду, что меньше потери на токи Фуко и др., т.к. в HVAC линиях также используется ОЛВЗ / SWER.
  • В случае ОЛВЗ каждый проводник может работать как независимая цепь.
  • Нет зарядного тока, т.е. переменного тока идущего на подзаряд емкостей линии (No charging current. Additional current must flow in the cable to charge the cable capacitance). Это особенно важно в подземных / подводных кабелях. Поэтому в подводных ЛЭП HVDC используется уже несколько десятилетий.
  • Нет скин эффекта.
  • Кабели могут работать при более высоком градиенте напряжения (так как нет токов Фуко).
  • Коэффициент мощности линии всегда равен единице: реактивной мощности нет, линия не требует реактивной компенсации.
  • Меньше коронный разряд и радиопомехи, особенно в плохую погоду, для проводника с теми же самыми диаметром и RMS напряжением как в HVAC.
  • Синхронная работа не требуется.
  • Следовательно, дистанция линии не ограничена требованиями стабильности.
  • Может соединять системы переменного напряжения с разными частотами.
  • Низкий ток КЗ в линии с постоянным током (Low short-circuit current on DC line).
  • Не вносит вклад в ток КЗ AC линии (Does not contribute to short-circuit current of a A.C system).
  • Регулирование перетоков мощности легко осуществляется / контролируется (Tie-line power is easily controlled).

B. Недостатки HVDC

  • Конверторы дороги.
  • Конверторы сопряжения с HVAC сталкиваются с проблемой реактивной мощности.
  • Конверторы генерируют гармоники, требуются фильтры.
  • Мультитерминальную (сеть с множеством потребителей) систему построить нелегко (Multiterminal or network operation is not easy) [2].

Дальние дистанции технически недостижимы для линий HVAC без промежуточных станций компенсации реактивной мощности. Частота и промежуточные реактивные компоненты вызывают проблемы стабильности AC линии. С другой стороны HVDC линия электропередачи не имеет проблемы стабильности из-за отсутствия частоты, и следовательно, нет ограничения на длину линии. Цена на единицу длины для HVDC линии ниже, чем для HVAC при той же мощности и надёжности. Однако, цена терминального оборудования (оборудования конечных станций) HVDC линии значительно выше чем HVAC. Наибольшее ценовое преимущество HVDC линии достигается на расстояниях свыше 500-800 км. HVDC линии меньше воздействует на человека и на природу в целом, это делает HVDC более «дружелюбной» по отношению к окружающей среде [2].

 

Преимущества HVDC [9]:

Высоковольтные DC и сверхвысоковольтные DC системы – это совершенные технологии, превосходно подходящие для целей интеграции различных источников энергии таких, как солнце и ветер в локальные электрические сети. Это особенно важно для крупномасштабных оффшорных проектов ветроэлектростанций, или крупномасштабных СЭС. HVDC имеют многочисленные преимущества над традиционной HVAC ЛЭП. Одно из главных преимуществ HVDC – малые потери при передаче энергии, в отличие от больших потерь в HVAC линиях.

Основное практическое правило выглядит следующим образом: на каждые 1000 км DC линии потери составляют менее 3% (на примере линии 5000 МВт, 800 кВ). Обычно потери DC линии на 30-40% меньше, чем потери для линий AC, при тех же уровнях напряжения. Поэтому для ЛЭП большой длины DC (ЛПТ) являются единственным приемлемым решением, как с технической, так экономической точки зрения. Подтверждение можно можно почерпнуть из  опытных данных, представленных ниже и полученных на HVAC и HVDC Transmission system for the Nelson River Bipole  [1, 2]. Из графиков сравнения затрат на строительство стандартной ЛЭП и ЛПТ, видно что начиная с расстояния 450 миль ЛПТ более выгодны, и с дальнейшим ростом расстояния выгода растёт.

 

 

На рисунке ниже показана наземная ЛЭП: площадь занимаемая HVDC оптимальна и составляет около одной трети площади HVAC. HVDC это два проводника, а HVAC это три проводника плюс нейтраль, в результате установочная цена на милю для HVDC ниже.

HVDC лучше HVAC для оффшорных (вне береговых) подводных проектов. Для подводных систем электропередачи, потери в AC линии из-за её ёмкости очень велики, что делает HVDC экономически выгоднее на более коротких дистанциях, чем на земле.

 

 

Благодаря преимуществам (см. выше) одна и таже ЛЭП может передать в 3 раза больше энергии при переходе с технологии HVAC к HVDC [19]:

 

 

Преимущества HVDC [12]:

Особенность системы ABB HVDC Light – возможность стабилизировать напряжение линий переменного тока, а так же возможность использования для связи с изолированными удаленными источниками генерации в местах, где строительство новых воздушных линий сверхвысокого напряжения слишком затратно. Это важно для ветряных электростанций, так как они значительно удалены и разница в скорости ветра может привести к значительным колебаниям напряжения.

Так же система HVDC выгодна для подземных подводных кабелей. Вот примеры реализованных проектов:

  • Протяженный подземный кабель (70 км Gotland HVDC Light) от ветряной электростанции (Швеция).
  • Протяженный подземный кабель (59 км Terranora interconnector и 180 км Murraylink) между двумя сетями (Австралия) [12] и др.

Замечание: HVDC имеют много особенностей, которые продолжают изучаться и часто не могут быть отнесены только к преимуществам или только недостаткам, например, коронный разряд не только приводит к потерям и радиошумам, но и вырабатывает озон.

Таким образом, преимущества HVDC для подводных и подземных применений обусловлены отсутствием токов Фуко, а преимущества на дальних дистанциях – малой занимаемой площадью из-за меньшего расстояния между проводами и отсутствия скин-эффекта (нет необходимости разбивать проводники на несколько меньших, работает весь объем провода, независимо от сечения) и проблем коэффициента мощности.

Недостатки HVDC связаны со использованием сложных преобразователей (конверторов), необходимостью их контроля и обслуживания [1].

С начала развития линий постоянного тока с 1880-х годов и до середины 20 века во многих странах было предпринято несколько попыток построения ЛПТ систем (Италия, Швейцария, Германия и др.). Только затем началось существенное развитие DC систем. После Великой Отечественной Войны в СССР были введены в строй ЛПТ ЛЭП 30 МВт ЛПТ Кашира–Москва (1951 г), 750 МВт Волгоград–Донбасс (1964 г) и др. С тех пор число ЛПТ ЛЭП в мире увеличилось и продолжает расти.

Достигнуты большие мощности и расстояния ЛПТ ЛЭП, например – UHVDC Xiangjiaba-Shanghai 2,071 км 7200 МВт ±800 кВ (от ГЭС Xiangjiaba до Шанхая) [1,11]. Количество реализованных и проектируемых ЛПТ ЛЭП за период 2000 г - 2013 г превысило количество всех построенных в 20 веке ЛПТ ЛЭП. В общем, рост ЛПТ систем касается только сферы большой энергетики, так как традиционно в бытовом применении (и для большинства промышленных нагрузок) во всём мире используется переменное напряжение 50 или 60 Гц.

Ниже приведена карта HVDC линий Европы (многие из которых обслуживают объекты возобновляемой энергетики такие, как ветро- и гидро- электростанции), а также проектируемые HVDC Китая [4,5].

 

 

 

2) Возобновляемая энергетика как «локомотивная отрасль» тянет за собой развитие систем / линий постоянного тока (ЛПТ / HVDC) за счёт их преимущества

В связи с прохождением пика потребления углеводородов в результате роста цен на газ и нефть резко возрастает роль возобновляемых источников энергии, а также всех смежных с ними отраслях, том числе строительстве ЛПТ. Линии переменного тока AC эффективны в системах с машинной генерацией напряжения синусоидальной формы, например: ДЭС, ТЭС, АЭС и т.п.. А для таких возобновляемых источников энергии, таких как ВЭС и СЭС более эффективны в работе ЛПТ.

Это связано с тем что:

  • Данные ВИЭ не могут самостоятельно генерировать переменное напряжение с фиксированной частотой и напряжением (как генераторы на обычных ЭС). Это связано с нестабильностью альтернативных источников энергии  (Солнце, ветер) и актуальной проблемой выгодного аккумулирования энергии. Поэтому для ВИЭ требуются импульсные преобразователи, которым легче работать с ЛПТ. Наоборот, паровые, дизельные, газовые и др. приводы генераторов обычных ЭС изначально легко дают фиксированное переменное напряжение («стабильное напряжение, стабильная частота»).

Выходит, что эффективность ЛЭП переменного тока как бы «привязана» к нефти, газу др. НВИЭ. Исключением являются ГЭС  (ВИЭ), но ГЭС не могут работать круглосуточно и поэтому также нуждаются в объединении сетей (в ГЭС с накопительным водохранилищем работа на номинальную мощность производится периодически т.к. вода аккумулируется в периоды пониженных нагрузок). ГЭС работающие на водотоке не годны для выработки больших мощностей – см. ниже.

Рассмотрим распространенную ситуацию с централизованной электростанцией в регионе, когда электростанция – это одиночный центр, питающий весь окружающий регион. В этом случае никакие объединения электросетей не требуются или требуются только для аварийного режима. Речь может идти об объединении единиц ЭС – ЭС на ВИЭ (ВЭС СЭС и др.), сильно рассредоточенными по большой территории, поэтому вопрос объединения десятков, сотен, и более единиц ЭС в единую сеть крайне важен. А в случае объединения ЛПТ выигрывает по сравнению с ЛЭП переменного тока по простоте и эффективности.

Причины необходимости объединения ЭС на ВИЭ и выгодности HVDC для этих целей:

  • Парковые ВЭС (Ветроэлектростанции / Wind farms) и СЭС электростанции изначально является сильно рассредоточенными по большой территории на площади несколько десятков и сотен кв. км. Примером могут служить оффшорные, горные, равнинные парковые ВЭС – в среднем от 30 до 300 единичных ВЭС мощностью 1-6 МВт каждая на территории 10-300 кв. км [7].
  • Парковые ЭС на ВИЭ требуют объединения в единую энергосистему, так как источник энергии нестабилен, а дешёвый аккумулятор электроэнергии до сих пор не разработан.
  • Парковые ЭС часто удалены и рассредоточены, так как привязаны к ресурсам солнца и ветра, поэтому требуется много длинных ЛЭП, что более подходит для HVDC технологии.
  • Для объединения многих терминалов (источников и потребителей) HVDC значительно выгоднее (см преимущества выше). Главная причина – не требуется синхронизация, терминалы подключаются параллельно.
  • При использовании HVDC линий упрощается постройка системы «сетевая электростанция». При этом парковая ЭС может выдавать энергию в сеть, принимать энергию из сети в аккумуляторы, передавать / ретранслировать потоки энергии.
  • При использовании HVDC линий упрощается постройка системы «объединённая сетевая электростанция» для большого числа малых частных ЭС / потребителей.
  • При использовании HVDC упрощается построение энергосистемы «силовой интернет», включающей множество мелких и крупных станций типа «источник», «потребитель», «аккумулятор», а также их комбинаций.
  • Даже в настоящее время, когда большинство основных магистральных сетей – HVAC, из-за своей выгодности HVDC используются для сопряжения сетей HVAC, сопряжения сетей HVAC с ЭС на ВИЭ.

 

Пример 1 [13]

Система BorWin1 – одна из крупнейших HVDC систем Германии. Используется для энергетического соединения оффшорного ветропарка BARD Offshore 1 (400 МВт) и других оффшорных ветроферм, расположенных в Германии рядом с Боркумом с Европейской энергетической сетью. Характеристики: мощность 400 МВт, биполярная линия, напряжение 150 кВ. ЛЭП HVDC BorWin1, идущая от оффшорной платформы BorWin Alpha к подстанции Diele, содержит участки 75 км подземного и 125 км подводного кабеля. Запущена в строй в 2009 г.

Вид BARD Offshore 1 с платформы HVDC конвертора
Вид BARD Offshore 1 (cправа платформа HVDC конвертора)

 

 

Пример 2

Система Atlantic Wind Connection (AWC), HVDC магистральная линия длиной 350 миль от Sayreville NJ до Virginia Beach передаёт от 6000 до 7000 MВт мощности от парковой ветроэлектростанции в общую сеть (в процессе строительства).

 

 

А если кто то спросит: «что случится если ветер перестанет дуть?», то мы всегда можем ответить, что ветер всегда дует где-нибудь, мы только должны перебросить энергию туда где она необходима. И сделать это можно с помощью линий HVDC [9].

 

 

3) Рост количества оборудования с импульсными блоками питания способствует развитию систем / линий / преобразователей постоянного тока.

 

4) Рост количества железнодорожных и других контактных сетей способствует развитию систем / линий постоянного тока.

 

5) Рост количества бортовых сетей (авто, корабельных, авиа и других) способствует развитию систем/линий пост. тока.

 

6) Рост внутренних, в т.ч. специального назначения, сетей (внутри зданий, предприятий и др.) способствует развитию систем / линий постоянного тока.

 

Несмотря на то, что линии и оборудование постоянного тока продолжают использоваться и развиваться (см выше), большинство высоковольтных и низковольтных сетей, а также потребителей в мире являются сетями и потребителями переменного тока 50/60 Гц.

Независимо от того как преимущественно будет идти развитие силовой энергетики

  • по пути ЛЭП перем. тока
  • по пути ЛПТ
  • по обоим путям
  • другие альтернативы, например водородная энергетика, сети повышенной частоты и др. пока не могут конкурировать с приведёнными)

в современной электротехнике остаётся и будет оставаться одной из основных задач – задача генерации переменного напряжения, так как эти устройства применяются и в ЛЭП переменного тока и ЛПТ системах.

Общепринятым стандартом здесь является синусоидальное переменное напряжение 50 / 60 Гц, хотя возможны и другие формы сигнала напряжения и стандарты частот.

Спектр решаемых при этом задач очень широк – от обычной генерации напряжения 380 В / 50 Гц с помощью дизельной электростанции в удалённом посёлке, до преобразования высокого постоянного напряжение в высокое переменное синусоидальное напряжение в высоковольтных ЛПТ (линиях электропередач постоянного тока) систем магистральных ЛЭП.

К области техники для генерации переменного напряжения также относятся инверторы, преобразователи частоты, устройства плавного пуска электродвигателей, частотно-регулируемые (управляемые) преобразователи (приводы) моторов (ЧУП, Variable Frequency Drive, VFD), устройства защиты от противотока, ДГУ, ИБП, инверторные, бензиновые и др. генераторные установки, некоторые типы стабилизаторов, активные корректоры КНИ, активные корректоры коэффициента мощности, специальные преобразователи (ЖД, подводные лодки и др.), электрогенераторы, умформеры и др. Данный список можно дополнить специализированными инверторами электрогенераторов на ВИЭ (СЭС, ВЭС и др.) и др.

В энергетике широко распространено применение инверторов для объединения HVDC и HVAC систем. Так же особенностью оборудования, генерирующего переменное напряжение является то, что это оборудование может быть обязательно и необходимо, но при этом сама генерация переменного напряжения не является главной целью.

Например, имеются две высоковольтные линии (системы) постоянного тока 500 кВ и 300 кВ, и требуется их объединить. Объединение достигается с помощью преобразователя с внутренним преобразованием DC-AC-DC, так как без генерации промежуточного переменного (или импульсного) напряжения преобразование DC-DC невозможно.

 

 

 

[30]. Инженеры Россииhttp://rus-eng.org/eng/Dolivo-Dobrovol%27skij%20Mixail%20Osipovich.htmhttp://energomuseum.ru/history/nachalo/

www.xn--80aacyeau1asblh.xn--p1ai

В чём преимущества высоковольтных ЛЭП постоянного тока

В качестве примеров таких случаев можно привести следующие:

  1. Подводные кабели, высокое ёмкостное сопротивление которых приводит к большим потерям при передаче на переменном токе (например, кабельная линия протяженностью 250 км между Швецией и Германией).
  2. Передача электроэнергии от электростанции к потребителю на большие расстояния без промежуточных ответвлений, например, в удалённые районы.
  3. Увеличение пропускной способности существующих электрических сетей в тех случаях, когда установка дополнительных цепей является затруднительной или дорогим решением.
  4. Передача электроэнергии между несинхронизированными распределительными системами переменного тока.
  5. Уменьшение сечения проводов и количества опор для заданной пропускной способности ЛЭП, так как пропускная способность высоковольтных передач постоянного тока выше при заданном диаметре проводника.
  6. Подключение удалённых электростанций к распределительной сети.
  7. Повышение устойчивости системы без увеличения токов КЗ.
  8. Снижение потерь на корону по сравнению с высоковольтными линиями переменного тока той же мощности.
  9. Уменьшение стоимости ЛЭП, т.к. для высоковольтных передач постоянного тока требуется меньше проводников (например, для биполярной высоковольтной передачи постоянного тока требуется 2 проводника, а для высоковольтной линии переменного тока – 3).

Высоковольтная линия постоянного тока пропускной способностью 500 МВт – Энергообъединение Восток-Запад

Компания ABB ввела в эксплуатацию высоковольтную линию постоянного тока пропускной способностью 500 МВт, которая объединила электрические сети Ирландии и Великобритании. Эта ЛЭП обеспечивает передачу электроэнергии между двумя государствами, а также повышает надёжность и безопасность электроснабжения.

Энергообъединение Восток-Запад состоит из кабеля высокого напряжения длиной 262 км, из которых 186 км проходит по дну моря.

 

В результате передачи электроэнергии на переменном токе возникает зарядный ток ёмкости кабеля, вызывающий дополнительные потери мощности, тогда как этот факт играет минимальную роль при передаче электроэнергии на постоянном токе.  Кроме того, мощность переменного тока расходуется на диэлектрические потери.

Высоковольтные линии постоянного тока могут передавать большую мощность по проводнику, т.к. при заданной номинальной мощности постоянное напряжение в линии постоянного тока ниже, чем амплитудное напряжение в линии переменного тока.

Поскольку величина напряжения определяет толщину изоляции и расстояние между проводниками, то расходы на высоковольтные передачи постоянного тока меньше по сравнению с аналогичными передачами переменного тока.

Линии постоянного тока не порождают электромагнитное поле сверхнизких частот (СНЧ), как это характерно для линий переменного тока. Хотя в прошлом высказывались некоторые опасения относительно вреда для здоровья, оказываемого такими полями, в том числе подозрения на рост уровня лейкемии, современное научное сообщество не рассматривает источники СНЧ, и связанные с ними поля, как вредные для здоровья.

Применение оборудования высоковольтных линий постоянного тока не исключает возникновение электрических полей, потому что всё равно существует градиент напряжения между проводником и землей. Но подобные электрические поля не оказывают влияние на здоровье.

Поскольку высоковольтная передача постоянного тока допускает передачу энергии между не синхронизированными системами переменного тока, то это позволяет увеличить устойчивость системы. Этот факт препятствует каскадному распространению аварии из одной части энергосистемы в другую, при этом электроэнергия продолжает поступать в систему и из нее в случае незначительных аварий.

Наличие указанных свойств послужило толчком к более широкому применению технологии высоковольтных передач постоянного тока. Перетоки мощности через линию передачи постоянного тока регулируются за счет использования систем управления или преобразовательных подстанций. Перетоки мощности не зависят от режима работы подключенных энергетических систем.

Таким образом, в отличие от линий переменного тока, связывающих две энергосистемы, межсистемные связи линий постоянного тока могут иметь сколь угодно низкую пропускную способность, исключая проблему слабых связей, и сами линии могут проектироваться с учетом оптимальных перетоков мощности.

Помимо этого, исключены проблемы синхронизации различных систем оперативного управления в разных энергетических системах. Высокоскоростные системы аварийного управления на высоковольтных линиях постоянного тока еще больше увеличивают устойчивость и надежность всей энергосистемы. Более того, регулирование перетоков мощности может быть использовано для устранения колебаний в энергосистемах или на высоковольтных линиях переменного тока, работающих параллельно.

Вышеупомянутые преимущества способствуют применению вставок постоянного тока для разбиения больших энергосистем на несколько несинхронизированых частей.

Например, быстро растущая энергосистема Индии построена в виде нескольких региональных систем, соединенных друг с другом высоковольтными линиями постоянного тока, компенсационными преобразователями с центральным управлением всеми элементами высоковольтной линии постоянного тока.

В Китае высоковольтные линии постоянного тока (800 кВ) так же станут основным средством для передачи больших мощностей на протяжённые расстояния от крупных ГЭС и термальных ЭС.

Источник: Electrical Engineering Portal

digitalsubstation.com

Высоковольтная линия постоянного тока — WiKi

Высоковольтная линия электропередачи постоянного тока (HVDC) использует для передачи электроэнергии постоянный ток, в отличие от более распространенных линий электропередач (ЛЭП) переменного тока. Высоковольтные ЛЭП постоянного тока могут оказаться более экономичными при передаче больших объёмов электроэнергии на большие расстояния. Использование постоянного тока для подводных ЛЭП позволяет избежать потерь реактивной мощности, из-за большой ёмкости кабеля неизбежно возникающих при использовании переменного тока. В определённых ситуациях ЛЭП постоянного тока могут оказаться полезными даже на коротких расстояниях, несмотря на высокую стоимость оборудования.

ЛЭП постоянного тока позволяет транспортировать электроэнергию между несинхронизированными энергосистемами переменного тока, а также помогает увеличить надёжность работы, предотвращая каскадные сбои из-за рассинхронизации фазы между отдельными частями крупной энергосистемы. ЛЭП постоянного тока также позволяет передавать электроэнергию между энергосистемами переменного тока, работающими на разных частотах, например, 50 и 60 Гц. Такой способ передачи повышает стабильность работы энергосистем, так как в случае необходимости они могут использовать резервы энергии из несовместимых с ними энергосистем.

Современный способ передачи HVDC использует технологию, разработанную в 30-х годах XX века шведской компанией ASEA. Одни из первых систем HVDC были введены в строй в Советском Союзе в 1950 году между городами Москва и Кашира (была использована немецкая трофейная техника Проект «Эльба»), и в Швеции в 1954 году от материковой части страны до острова Готланд, с мощностью системы 10-20 МВт[1].

Самая длинная HVDC линия в мире в настоящее время находится в Бразилии и служит для передачи электроэнергии, вырабатываемой двумя ГЭС Санто-Антонио (англ.)русск. и Жирау (англ.)русск. с городом Сан-Паулу. Её общая длина — 2400 км, мощность — 3,15 ГВт.

HVDC системы в Западной Европе. Красным отмечены существующие линии, зелёным — строящиеся (линия, соединяющая Францию и Испанию — INELFE — уже построена[2]), синим — предложенные. Многие из них передают электроэнергию от возобновляемых источников, таких как вода и ветер.

Принцип работы

Мощность равна произведению напряжения на ток (P = U * I). Таким образом, увеличив напряжение, можно уменьшить передаваемый по проводу ток и, как следствие, можно уменьшить сечение провода, необходимого для передачи этой мощности, что удешевит ЛЭП.

На сегодняшний день не существует способа без больших потерь изменять в широких пределах напряжение постоянного тока. Самым эффективным устройством для изменения величины напряжения является трансформатор, работающий на переменном токе. Поэтому на входе всех высоковольтных ЛЭП постоянного тока устанавливается трансформатор для повышения напряжения переменного тока и оборудование для преобразования переменного тока в постоянный, а на выходе — оборудование преобразования постоянного тока в переменный и трансформатор для понижения напряжения этого переменного тока.

Первым способом преобразования больших мощностей из постоянного тока в переменный и обратно была система мотор-генератор, разработанная швейцарским инженером Рене Тюри. Простыми словами, на входе ЛЭП двигатель переменного тока вращает генератор постоянного тока, а на выходе — двигатель постоянного тока вращает генератор переменного тока. Такая система имела довольно низкий КПД и низкую надёжность.

Практическое применение ЛЭП постоянного тока стало возможным только с появлением мощного дугового электроприбора под названием ртутный (англ.)русск. вентиль.

Позднее появились мощные полупроводниковые приборы — тиристоры, биполярные транзисторы с изолированным затвором (IGBT), мощные полевые транзисторы с изолированным затвором (MOSFET) и запираемые тиристоры (GTO).

История высоковольтных ЛЭП постоянного тока

  HVDC в 1971: этот ртутный вентиль рабочим напряжением 150 кВ преобразовывал переменный ток в постоянный для передачи от гидроэлектростанций Манитобы в отдалённые города.

Первая ЛЭП постоянного тока для передачи электроэнергии на большое расстояние была запущена в 1882 году на линии Мисбах-Мюнхен. Она передавала энергию от вращаемого паровой машиной генератора постоянного тока на печь стекольного завода. Передаваемая мощность составляла всего 2,5 кВт и на линии не было преобразователей постоянного тока в переменный.

Первая ЛЭП, использующая разработанный швейцарским инженером Рене Тюри (Rene Thury) метод преобразования токов генератор-двигатель, была построена в 1889 году в Италии компанией Acquedotto de Ferrari-Galliera. Для увеличения напряжения пары генератор-двигатель были соединены последовательно. Каждая группа была изолирована от земли и приводилась в движение основным двигателем. Линия работала на постоянном токе, с напряжением до 5000 В на каждой машине, некоторые машины имели двойные коммутаторы для уменьшения напряжения на каждом коммутаторе. Эта система передавала мощность 630 кВт на постоянном напряжении 14 кВ на расстояние 120 км[3][4].

По ЛЭП Moutiers-Lyon передавалась вырабатываемая ГЭС мощность 8600 кВт на расстояние 124 мили, включая 6 миль подземного кабеля. Для преобразования тока использовались восемь последовательно соединенных генераторов с двойными коммутаторами, выдававшими на выходе напряжение в 150 кВ. Эта линия работала примерно с 1906 по 1936 гг.

К 1913 году в мире действовало пятнадцать ЛЭП системы Тюри[5], работавших на постоянном напряжении 100 кВ, которые использовались до 1930-х, но вращающиеся электрические машины были ненадёжны, дороги в обслуживании и имели низкий КПД. В первой половине 20-го столетия были опробованы и другие электромеханические устройства, но они не получили широкого распространения[6].

Для преобразования высокого постоянного напряжения в низкое было предложено сначала заряжать последовательно соединённые аккумуляторы, а затем подключать их параллельно и подсоединять к потребителю[7]. В начале XX века существовало, как минимум, две ЛЭП постоянного тока, использовавших этот принцип, но дальнейшего развития эта технология не получила из-за ограниченной ёмкости аккумуляторов, неэффективного цикла заряда/разряда и трудностей переключения между последовательным и параллельным соединением.

В период с 1920 по 1940 гг. для преобразования тока использовались ртутные вентили. В 1932 г. Дженерал Электрик применила в Mechanicville, Нью-Йорк ртутные вентили на ЛЭП постоянного тока напряжением 12 кВ, которая также использовалась для преобразования генерируемого переменного тока частотой 40 Гц в переменный ток нагрузки частотой 60 Гц. В 1941 г. была разработана 115-километровая подземная кабельная линия, мощностью 60 МВт, напряжением +/-200 кВ, для города Берлина, использовавшая ртутные вентили (Проект Эльба), но вследствие краха Третьего Рейха в 1945 проект не был завершен[8]. Использование кабеля объяснялось тем, что во время военного времени подземный кабель будет менее заметной целью бомбардировок. Оборудование было вывезено в Советский Союз и там было введено в эксплуатацию в 1950 году[9].

Дальнейшее использование ртутных вентилей в 1954 г. положило начало современным высоковольтным ЛЭП постоянного тока. Первая такая ЛЭП была создана компанией ASEA между материковой Швецией и островом Готланд. Ртутные вентили использовались на всех ЛЭП, строившихся до 1975 г., но позднее были вытеснены полупроводниковыми приборами. С 1975 по 2000 гг. для преобразования тока широко применялись тиристоры, которые сейчас активно вытесняются полевыми транзисторами[10]. С переходом на более надёжные полупроводниковые приборы были проложены десятки подводных высоковольтных ЛЭП постоянного тока.

На данный момент в мире осталось всего две ЛЭП с преобразователями на ртутных вентилях, все остальные были демонтированы или заменены преобразователями на тиристорах. Ртутные вентили используются на ЛЭП между Северным и Южным островами Новой Зеландии и ЛЭП Vancouver Island в Канаде.

Преимущества высоковольтных ЛЭП постоянного тока по сравнению с ЛЭП переменного тока

Основным преимуществом высоковольтных ЛЭП постоянного тока является возможность передавать большие объёмы электроэнергии на большие расстояния с меньшими потерями, чем у ЛЭП переменного тока. В зависимости от напряжения линии и способа преобразования тока потери могут быть снижены до 3 % на 1000 км. Передача энергии по высоковольтной ЛЭП постоянного тока позволяет эффективно использовать источники электроэнергии, удалённые от энергоузлов нагрузки.

В ряде случаев высоковольтная ЛЭП постоянного тока более эффективна, чем ЛЭП переменного тока:

  • При передаче энергии по подводному кабелю, который имеет довольно высокую ёмкость, приводящую при использовании переменного тока к потерям на реактивную мощность (например, 250-км линия Baltic Cable между Швецией и Германией[11])).
  • Передача энергии в энергосистеме напрямую от электростанции к потребителю, без дополнительных 'отводов'О чём речь?, например, в удалённые районы.
  • Увеличение пропускной способности существующей энергосистемы в случаях, когда установить дополнительные ЛЭП переменного тока сложно или слишком дорого.
  • Передача энергии и стабилизация между несинхронизированными энергосистемами переменного тока.
  • Присоединение удалённой электрической станции к энергосистеме[источник не указан 382 дня], например, линия Nelson River Bipole.
  • Уменьшение стоимости линии за счёт уменьшения количества проводников. Кроме того, могут использоваться более тонкие проводники, так как HVDC не подвержен поверхностному эффекту.
  • Упрощается передача энергии между энергосистемами, использующими разные стандарты напряжения и частоты переменного тока.
  • Синхронизация с сетью переменного тока энергии, производимой возобновляемыми источниками энергии.

Длинные подводные кабели имеют высокую ёмкость. В то время как этот факт имеет минимальную роль для передачи электроэнергии на постоянном токе, переменный ток приводит к зарядке и разрядке ёмкости кабеля, вызывая дополнительные потери мощности. Кроме того, мощность переменного тока расходуется на диэлектрические потери.

Высоковольтная ЛЭП постоянного тока может передавать бо́льшую мощность по проводнику, так как для данной номинальной мощности постоянное напряжение в линии постоянного тока ниже, чем амплитудное напряжение в линии переменного тока. Мощность переменного тока определяет действующее значение напряжения, но оно составляет только приблизительно 71 % максимального амплитудного напряжения, которое и определяет фактическую толщину изоляции и расстояние между проводниками. Поскольку у линии постоянного тока действующее значение напряжения равно амплитудному, становится возможным передавать на 41 % больше мощности по существующей линии электропередачи с проводниками и изоляцией того же размера, что на переменном токе, что снижает затраты.

Поскольку высоковольтная ЛЭП постоянного тока допускает передачу энергии между несинхронизированными распределительными системами переменного тока, это позволяет увеличить устойчивость системы, препятствуя каскадному распространению аварии с одной части энергосистемы на другую. Изменения в нагрузке, приводящие к десинхронизации отдельных частей электрической сети переменного тока, не будут затрагивать линию постоянного тока, и переток мощности через линию постоянного тока будет стабилизировать электрическую сеть переменного тока. Величину и направление перетока мощности через линию постоянного тока можно непосредственно регулировать и изменять для поддержания необходимого состояния электрических сетей переменного тока с обоих концов линии постоянного тока.

Недостатки

Основным недостатком высоковольтной ЛЭП постоянного тока является необходимость преобразования типа тока из переменного в постоянный и обратно. Используемые для этого устройства требуют дорогостоящих запасных частей, так как, фактически, являются уникальными для каждой линии.[источник не указан 1143 дня]

Преобразователи тока дороги и имеют ограниченную перегрузочную способность. На малых расстояниях потери в преобразователях могут быть больше, чем в аналогичной по мощности ЛЭП переменного тока.[источник не указан 1143 дня]

В отличие от ЛЭП переменного тока, реализация мультитерминальных ЛЭП постоянного тока крайне сложна, так как требует расширения существующих схем до мультитерминальных. Управление перетоком мощности в мультитерминальной системе постоянного тока требует наличия хорошей связи между всеми потребителями. Выключатели цепей постоянного тока высокого напряжения имеют более сложное устройство, так как перед размыканием контактов нужно уменьшить ток в цепи до нуля, иначе образуется электрическая дуга, приводящая к чрезмерному износу контактов. Разветвлённые линии редки. Одна из них работает в системе Hydro Quebec — New England от Radisson к Sandy Pond[12]. Другая система — ЛЭП, соединяющая Сардинию и материковую Италию, которая была перестроена в 1989, чтобы выдавать мощность на остров Корсика[13].

Стоимость HVDC передачи

Обычно разработчики высоковольтных ЛЭП постоянного тока, такие как Alstom Grid, Siemens и ABB, не публикуют информацию о стоимости проекта, так как эти сведения составляют коммерческую тайну.

Стоимость широко меняется в зависимости от специфических особенностей проекта, таких как номинальная мощность, длина линии, воздушный или подводный способ прокладки трассы, стоимость земли, и изменение электрической сети переменного тока каждого конца линии. Может потребоваться детальное сравнение стоимости линии постоянного тока против стоимости линии переменного тока. Там, где технические преимущества линии постоянного тока не играют роли, выбор делается по экономическому сравнению вариантов.

Основываясь на некоторых проектах, можно выделить некоторую информацию о стоимости проекта ЛЭП постоянного тока:

Для 8-ГВт 40-км линии, проложенной под Ла-Маншем, приблизительные затраты на первичное оборудование для биполярной HVDC линии на 500 кВ мощностью 2000 МВт (исключая подъездные пути, береговые работы, согласование, технику, страхование, и т. д.) составили: преобразовательные станции — ~£110 M, подводный кабель + монтаж — ~£1 M/km[значимость факта?].

Так, для четырёхлинейной ЛЭП между Англией и Францией мощностью 8 ГВт стоимость установочных работ составила немного более £750 M. Также £200-300 M были израсходованы на дополнительные береговые работы[14][значимость факта?].

Выпрямление и инвертирование

Составляющие

  Два из трех тиристорных комплектов вентилей, использованных для передачи мощности на большое расстояния от дамбы в Манитобе

Ранее в линиях HVDC использовали ртутные выпрямители, которые были ненадёжны. Два устройства HVDC, использующие ртутные выпрямители, всё ещё в процессе эксплуатации (на 2008 год). Тиристоры были впервые использованы в устройствах HVDC в 1960-х. Тиристор — полупроводниковое устройство, подобное диоду, но с дополнительным выводом — управляющим электродом, который используется для включения прибора в определенный момент времени. Также применяются биполярные транзисторы с изолированным затвором (БТИЗ), которые имеет лучшую управляемость, но большую стоимость.

Поскольку напряжение в устройствах HVDC в некоторых случаях доходит до 800 кВ, превышая напряжение пробоя полупроводникового прибора, преобразователи HVDC построены с использованием большого количества последовательно соединённых полупроводниковых приборов.

Низковольтные управляющие цепи, используемые для включения и выключения тиристоров, должны быть гальванически развязаны от высоких напряжений линии электропередачи. Обычно такая развязка оптическая, прямая или непрямая. В непрямой системе управления низковольтная управляющая электроника посылает световые импульсы по оптоволокну к электронике управления высоким напряжением. Прямой вариант обходится без электроники на высоковольной стороне: световые импульсы от управляющей электроники, непосредственно переключают фототиристоры.

Переключающий элемент в сборе, независимо от его конструкции, обычно называется вентилем.

Выпрямители и инверторы

В выпрямлении и инверсии используются по существу одни и те же агрегаты. Многие подстанции настроены таким образом, чтобы они могли работать и как выпрямители, и как инверторы. Со стороны линии переменного тока набор трансформаторов, часто из трёх отдельных однофазных трансформаторов, развязывает преобразовательную станцию от сети переменного тока, обеспечивая заземление и гарантируя корректное постоянное напряжение. Выходы этих трансформаторов подключены к выпрямителям по мостовой схеме, сформированной большим числом вентилей. Базовая конфигурация выпрямителя содержит шесть вентилей. Схема работает с фазовым сдвигом в шестьдесят градусов, поэтому в выпрямленном напряжении содержится значительное число гармоник.

Для улучшения гармонического состава применяется схема с 12 вентилями (двенадцатиимпульсный режим). Преобразовательный трансформатор имеет две вторичные обмотки (или используются два трансформатора), одна из которых имеет соединение «звезда», а другая — «треугольник», тем самым обеспечивая сдвиг фазы в 30 градусов между напряжениями на вторичных обмотках трансформатора. К каждой из вторичных обмоток подключен выпрямительный мост, содержащий 6 вентилей, выводы постоянного тока которых соединены. Тем самым обеспечивается двенадцатиимпульсный режим с лучшим гармоническим составом.

В дополнение к преобразовательным трансформаторам, наличие реактивной составляющей линии помогает фильтровать гармоники.

Типы схем

Монополярная

В монополярной схеме один из выводов выпрямителя заземляют. Другой вывод, с электрическим потенциалом выше или ниже заземлённого, связан с линией электропередачи. Заземлённый вывод может быть связан или не связан с соответствующим выводом инверторной станции посредством второго проводника.

При отсутствии второго металлического проводника обратный ток протекает в земле между заземлёнными выводами двух подстанций. Таким образом, это однопроводная схема с земным возвратом. Проблемы, которые создает ток, протекающий в земле или воде, включают:

  • Электрохимическую коррозию проложенных в грунте длинных металлических объектов, таких как трубопроводы
  • Выделение хлора и другие изменения состава морской воды от протекающего тока при использовании её в качестве второго проводника.
  • Возникающее из-за несбалансированного тока магнитное поле, влияющее на магнитные навигационные компасы судов, проходящих над подводным кабелем.

Эти воздействия могут быть устранены установкой металлического обратного проводника между заземлёнными выводами обоих преобразователей монополярной линии электропередачи. Так как эти выводы заземлены, нет необходимости в установке изоляции обратного провода на полное напряжение передачи, что делает обратный провод менее дорогостоящим, чем проводник высокого напряжения. Решение об использовании металлического обратного провода основывается на экономических, технических и экологических факторах[15].

Современные монополярные системы воздушной сети передают примерно 1500 МВт. При использовании подземного или подводного кабеля обычное значение составляет 600 МВт.

Большинство монополярных систем разработаны для будущего расширения до биполярной схемы. Опоры линии электропередачи могут быть разработаны так, чтобы нести два проводника, даже если первоначально используется только один провод в монополярной системе. Второй проводник не используется или используется параллельно с другим (как в случае Балтийского кабеля (англ.)русск.).

Биполярная

В биполярной передаче используется пара проводников, противоположной полярности, каждый под высоким напряжением относительно земли. Стоимость биполярной линии электропередачи выше монополярной схемы с обратным проводом, так как оба проводника должны иметь изоляцию на полное напряжение. Однако преимущества биполярной передачи делают её более привлекательной по сравнению с монополярной. При нормальной нагрузке в земле протекают незначительные токи, как и в случае монополярной передачи с металлическим обратным проводом. Это уменьшает потери в земле и снижает экологическое воздействие. При аварии на одной из линий биполярной системы она может продолжать работать, передавая приблизительно половину номинальной мощности по неповреждённой линии в монополярном режиме с использованием земли в роли обратного проводника. На очень неблагоприятной местности второй проводник может быть проведён на независимом наборе опор ЛЭП, чтобы при повреждении одной из линий часть мощности передавалась потребителю. Так как для данной номинальной мощности по каждому проводнику биполярной линии протекает только половина тока монополярной линии, стоимость каждого проводника меньше по сравнению с высоковольтным проводником монополярной линии той же мощности.

Биполярное устройство также может быть дополнительно оснащено металлическим обратным проводником.

Биполярные устройства могут передавать до 3200 МВт на напряжении +/-600 кВ. Подводная кабельная линия, первоначально сооруженная как монополярная, может быть модернизирована дополнительными кабелями и работать в биполярном режиме.

Вставка постоянного тока

Вставка постоянного тока является станцией, в которой и инверторы и выпрямители находятся в одном месте, обычно в одном и том же здании. Линия постоянного тока выполняется настолько короткой, насколько возможно. Вставки постоянного тока используются для: соединения магистральных линий различной частоты (как в Японии), соединения двух электрических сетей той же самой номинальной частоты, но разных нефиксированных фазовых сдвигов (как до 1995/96 в коммуне Этценрихт).

Величина постоянного напряжения в промежуточной схеме вставки постоянного тока может быть выбрана свободно из-за малой длины линии. Обычно постоянное напряжение выбирают настолько низким, насколько возможно, чтобы построить меньший зал для преобразователей и избежать последовательных соединений вентилей. По этой же причине во вставке постоянного тока используют сильноточные вентили.

Системы с линиями электропередачи

Самая общая конфигурация линии HVDC — это две преобразовательные станции инвертор/выпрямитель, связанные воздушной линией. Такая же конфигурация обычно используется в соединении несинхронизированных энергосистем, в передаче энергии на большие расстояния, и в случае использования подводных кабелей.

Мультитерминальная HVDC линия, соединяющая более двух пунктов, редка. Конфигурация мультитерминальной системы может быть последовательной, параллельной, или гибридной (последовательно-параллельной). Параллельная конфигурация чаще используется для передачи энергии от больших электростанций, а последовательная — от менее мощных электростанций. Например, система Quebec-New England мощностью 2000 МВт, открытая в 1992, в настоящее время является крупнейшей мультитерминальной HVDC системой в мире[16].

Трехполярная

Запатентованная в 2004 году схема предназначена для перевода существующих линий электропередачи переменного тока на HVDC. Два из трех проводников схемы работают в биполярном режиме. Третий проводник используется как параллельный монополь, оборудованный реверсными вентилями (параллельными вентилями, включенными в обратной полярности). Параллельный монополь периодически уменьшает ток от одного полюса или другого, переключая полярность на несколько минут. Без изменения полярности в системе с параллельным монополем, который был бы загружен на +/-100 % по нагреву, биполярные проводники были бы нагружены или на 137 % или на 37 %. В случае с изменяющейся полярностью, суммарный среднеквадратичный тепловой эффект такой же, как и в случае, если бы каждый из проводников работал при номинальном токе. Это позволяет пропускать большие токи по биполярным проводникам, и наиболее полно использовать третий проводник для передачи энергии. Даже когда энергопотребление низкое, высокие токи могут циркулировать по проводам линии для удаления с них льда.

Преобразование существующей линии переменного тока в трёхполярную систему позволяет передавать до 80 % больше мощности при том же самом фазном напряжении с использованием той же самой линии передачи, опор и проводников. Некоторые линии переменного тока не могут быть нагружены до их теплового предела из-за проблем устойчивости системы, надежности и реактивной мощности, которые не существуют в HVDC линии.

Трёхполярная система работает без обратного провода. Так как авария одного полюса преобразователя или проводника приводит только к малой потере производительности, а обратный ток, протекающий в земле, не возникает, надежность этой схемы высока, без времени, требуемого на переключение.

На 2005 год не было преобразований существующих линий переменного тока в трёхполярную систему, хотя линия электропередачи в Индии была преобразована в биполярную HVDC.

Коронный разряд

Коронный разряд — это характерная форма самостоятельного газового разряда, возникающего в резко неоднородных полях. Это явление может вызвать значительные потери мощности, создавать слышимые и радиочастотные помехи, производить ядовитые смеси, такие как оксиды азота и озон, создавать видимое свечение.

Линии электропередачи и переменного и постоянного тока могут создавать коронные разряды, в первом случае в форме колеблющихся частиц, в последнем — постоянного потока. Коронный разряд вызывает потери мощности, которые могут составлять примерно половину от всех потерь на единицу длины линии переменного тока высокого напряжения, несущего то же самое количество мощности. В монополярной передаче выбор полярности проводника определяется степенью создания коронных разрядов, влияния на окружающую среду. Отрицательные коронные разряды производят значительно больше озона чем коронные разряды положительной величины, воздействуя на здоровье. Использование напряжения положительной величины уменьшает объём создаваемого озона монополярной линии HVDC.

Применение

Краткий обзор

Способность управления потоком мощности, соединение несинхронизированных систем переменного тока, эффективное использование при передаче энергии подводными кабелями делают HVDC системы привлекательными для использования на межнациональном уровне. Ветроэлектростанции часто располагаются на расстоянии 10-12 км от берега (а иногда и дальше) и требуют подводных кабелей и синхронизации полученной энергии. При передаче энергии на очень большие расстояния, например в отдалённые районы Сибири, Канады и скандинавского севера, выбор обычно склоняется в сторону меньшей стоимости линии HVDC. Другие применения HVDC систем были отмечены выше.

Объединения электрической сети переменного тока

Линии электропередачи переменного тока могут связывать только синхронизированные электрические сети переменного тока, которые работают на той же самой частоте и в фазе. Много зон, которые желают поделиться энергией, имеют несинхронизированные электрические сети. Энергосистемы Великобритании, северной Европы и континентальной Европы не объединены в единую синхронизированную электрическую сеть. У Японии есть электрические сети на 60 Гц и на 50 Гц. Континентальная Северная Америка, работая на частоте 60 Гц, разделена на области, которые несинхронизированы: Восток, Запад, Техас, Квебек и Аляска. Бразилия и Парагвай, которые совместно используют огромную гидроэлектростанцию Итайпу, работают на 60 Гц и 50 Гц соответственно. Устройства HVDC позволяют связать несинхронизированные электрические сети переменного тока, а также добавить возможность управления напряжением переменного тока и потоком реактивной мощности.

Генератор, связанный длинной линией электропередачи переменного тока, может стать неустойчивым и выпасть из синхронизации с отдаленной энергосистемой переменного тока. Линия HVDC может сделать выполнимым использование удаленных электростанций. Ветряные электростанции, расположенные на расстоянии от берега, могут использовать устройства HVDC, чтобы собрать энергию у большого числа несинхронизированных генераторов для передачи на берег подводным кабелем.

Однако, обычно линия питания HVDC связывает две области распределения мощности энергосистемы переменного тока. Устройства, выполняющие преобразование между переменным и постоянным токами, значительно увеличивают стоимость передаваемой энергии. Выше определенного расстояния (приблизительно 50 км для подводных кабелей, и примерно 600—800 км для воздушных линий), меньшая стоимость электрических проводников HVDC перевешивает стоимость электроники.

Преобразовательная электроника также предоставляет возможность эффективно управлять энергосистемой посредством управления величиной и перетоком мощности, что дает дополнительное преимущество существования HVDC линий — потенциальное увеличение устойчивости энергосистемы.

Использование меньшего напряжения

Развитие биполярных транзисторов с изолированным затвором (IGBT) и запираемых тиристоров (GTO) сделало малые системы HVDC экономичнее. Они могут быть установлены в существующих энергосистемах переменного тока для стабилизации мощности без увеличения тока короткого замыкания, как в случае установки дополнительной линии электропередачи переменного тока. Такие устройства разрабатываются фирмами АВВ и Siemens и называются «HVDC Light» и «HVDC PLUS» соответственно. Использование таких приборов расширило использование HVDC до блоков в несколько десятков мегаватт и линий в несколько километров воздушной линии. Разница между двумя технологиями — в понятии автономного инвертора напряжения (VSI), тогда как «HVDC Light» использует широтно-импульсную модуляцию, «HVDC PLUS» выполнен на многоуровневом инверторе.

См. также

Примечания

  1. ↑ Narain G. Hingorani in IEEE Spectrum magazine, 1996.
  2. ↑ About INELFE | Drupal (англ.). www.inelfe.eu. Проверено 20 апреля 2017.
  3. ↑ ACW’s Insulator Info — Book Reference Info — History of Electrical Systems and Cables
  4. ↑ R. M. Black The History of Electric Wires and Cables, Peter Perigrinus, London 1983 ISBN 086341 001 4 pages 94-96
  5. ↑ Alfred Still, Overhead Electric Power Transmission, McGraw Hill, 1913 page 145, available from the Internet Archive
  6. ↑ «Shaping the Tools of Competitive Power»
  7. ↑ Thomas P. Hughes, Networks of Power
  8. ↑ «HVDC TransmissionF» Архивировано 8 апреля 2008 года.
  9. ↑ IEEE — IEEE History Center Архивировано 6 марта 2006 года.
  10. ↑ Vijay K. Sood. HVDC and FACTS Controllers: Applications Of Static Converters In Power Systems. — Springer-Verlag. — P. 1. — «The first 25 years of HVDC transmission were sustained by converters having mercury arc valves till the mid-1970s. The next 25 years till the year 2000 were sustained by line-commutated converters using thyristor valves. It is predicted that the next 25 years will be dominated by force-commutated converters [4]. Initially, this new force-commutated era has commenced with Capacitor Commutated Converters (CCC) eventually to be replaced by self-commutated converters due to the economic availability of high power switching devices with their superior characteristics.». — ISBN 978-1402078903.
  11. ↑ ABB HVDC website
  12. ↑ "HVDC multi-terminal system "  (недоступная ссылка — история). ABB Asea Brown Boveri (23 октября 2008). Проверено 12 декабря 2008. Архивировано 7 декабря 2008 года.
  13. ↑ The Corsican tapping: from design to commissioning tests of the third terminal of the Sardinia-Corsica-Italy HVDC Billon, V.C.; Taisne, J.P.; Arcidiacono, V.; Mazzoldi, F.; Power Delivery, IEEE Transactions on Volume 4, Issue 1, Jan. 1989 Page(s):794 — 799
  14. ↑ Source works for a prominent UK engineering consultancy but has asked to remain anonymous and is a member of Claverton Energy Research Group
  15. ↑ Basslink Архивировано 13 сентября 2003 года. project
  16. ↑ ABB HVDC Transmission Québec — New England (недоступная ссылка) website

ru-wiki.org

Как определить напряжение ЛЭП по виду изоляторов ВЛ?

Итак, перед вами стоит вопрос: "Сколько вольт в ЛЭП?" и нужно узнать напряжение в линии электропередач в киловольтах (кВ). Стандартные значения можно определить по изоляторам ВЛ и внешнему виду проводов ЛЭП на столбах.

Для повышения эффективности передачи электроэнергии и снижения потерь в воздушных и кабельных линиях, электрические сети разбивают на участки с разными классами напряжения ЛЭП.

Классификация ЛЭП по напряжению

  1. Низший класс напряжения ЛЭП – до 1 кВ;
  2. Средний класс напряжения – от 1 кВ до 35 кВ;
  3. Высокий класс напряжения – от 110 кВ до 220 кВ;
  4. Сверхвысокий класс ВЛ – от 330 кВ до 500 кВ;
  5. Ультравысокий класс ВЛ – от 750 кВ. 

Сколько вольт опасно для человека?

Высокое напряжение воздействует на человека опасным для здоровья образом, так как ток (переменный или постоянный) способен не только поразить человека, но и нанести ожоги. Сеть 220 в, 50 Гц уже достаточно опасна так, как считается, что постоянное или переменное напряжение, которое превышает 36 вольт и ток 0,15А убивает человека. В связи с этим, в ряде случаев даже ток осветительной сети может оказаться смертельным для человека. Поэтому высоковольные провода подвешивают на определенной высоте на ЛЭП опорах. Высота столба ЛЭП зависит от стрелы провеса провода, расстояния от провода до поверхности земли, типа опоры и т. п

С ростом рабочего напряжения в проводах ЛЭП увеличиваются размеры и сложность конструкций опор электропередач. Если для передачи напряжения 220/380 В используются обычные железобетонные (иногда деревянные) опоры с фарфоровыми линейными изоляторами, то воздушные линии мощность 500 кВ имеют внешний вид совсем иной. Опора ВЛ 500 кВ представляет собой сборную металлическую П-образную конструкцию высотой до нескольких десятков метров, к которым три провода крепятся с помощью траверс посредством гирлянд изоляторов. В воздушных линиях электропередач максимального напряжения ЛЭП 1150 кВ для каждого из трех проводов предусмотрена отдельностоящая металлическая опора ЛЭП.

Важная роль при прокладке высоковольтных ЛЭП принадлежит типу линейных изоляторов, вид и конструкция которых зависят от напряжения в линии электропередач. Поэтому напряжение ЛЭП легко узнать по внешнему виду изолятора ВЛ.

 Штыревые фарфоровые изоляторы используются для подвешивания самых легких проводов в воздушных линиях небольшой мощности 0,4-10 кВ. Штыревые изоляторы этого типа имеют значительные недостатки, основными из которых являются недостаточная электрическая прочность (ограничение напряжения ЛЭП 0,4-10 кВ) и неудовлетворительный способ закрепления на изоляторе проводов ВЛ, создающие в эксплуатации возможность повреждений проводов в местах их креплений при автоколебаниях подвески. Поэтому в последнее время штыревые изоляторы полностью уступили место подвесным. Изоляторы ВЛ подвесного типа, применяющиеся у нас в контактной сети, имеют несколько иной внешний вид и размеры.

При напряжении в ЛЭП свыше 35 кВ используются подвесные изоляторы ВЛ, внешний вид которых представляет собой фарфоровую или стеклянную тарелку-изолятор, шапки из ковкого чугуна и стержня. Для обеспечения необходимой изоляции изоляторы собирают в гирлянды. Размеры гирлянды зависят от напряжения линии и типа изоляторов высоковольтных линий.

Приблизительно определить напряжение ЛЭП, мощность линии по внешнему виду, простому человеку бывает трудно, но, как правило, это можно сделать простым способом — точно посчитать количество и узнать сколько изоляторов в гирлянде крепления провода (в ЛЭП до 220 кВ), или число проводов в одной связке («пучке») для линий от 330 кВ и выше..

Сколько вольт в высоковольтных проводах ЛЭП?

 Электрические линии малого напряжения - это ЛЭП-35 кВ (напряжение 35000 Вольт) легко определить самому визуально, т.к. они имеют в каждой гирлянде небольшое количество изоляторов - 3-5 штук.

ЛЭП 110 кВ - это уже 6-10 высоковольтных изоляторов в гирляндах, если число тарелок от 10-ти до 15-ти, значит это ВЛ 220 кВ.

Если вы можете видеть, что высоковольтные провода раздваиваются (расщепление) тогда — ЛЭП 330 кВ, если количество проводов подходящих на каждую траверса ЛЭП уже три (в каждой высоковольтной цепи) — то напряжение ВЛ 500 кВ, если количество проводов в связке четыре - мощность ЛЭП 750 кВ.

 Для более точного определения напряжения ВЛ обратитесь к специалистам в местное энергетическое предприятие.

Количество изоляторов на ЛЭП (в гирлянде ВЛ)

Количество подвесных изоляторов в гирляндах ВЛ на металлических и железобетонных опорах ЛЭП в условиях чистой атмосферы (с обычным полевым загрязнением).

Тип изолятора по ГОСТ ВЛ 35 кВ ВЛ 110 кВ ВЛ 150 кВ ВЛ 220 кВ ВЛ 330 кВ ВЛ 500 кВ
ПФ6-А (П-4,5) 3 7 9 13 19 -
ПФ6-Б (ПМ-4,5) 3 7 10 14 20 -
ПФ6-В (ПФЕ-4,5) 3 7 9 13 19 -
(ПФЕ-11) - 6 8 11 16 21
ПФ16-А - 6 8 11 17 23
ПФ20-А (ПФЕ-16) - - - 10 14 20
(ПФ-8,5) - 6 8 11 16 22
(П-11) - 6 8 11 15 21
ПС6-А (ПС-4,5) 3 8 10 14 21 -
ПС-11 (ПС-8,5) 3 7 8 12 17 24
ПС16-А - 6 8 11 16 22
ПС16-Б - 6 8 12 17 24
ПС22-А - - - 10 15 21
ПС30-А - - - 11 16 22

sbk.ltd.ua

Линия электропередачи - это... Что такое Линия электропередачи?

Линии электропередачи Линии электропередачи (Шарья)

Линия электропередачи (ЛЭП) — один из компонентов электрической сети, система энергетического оборудования, предназначенная для передачи электроэнергии посредством электрического тока. Также электрическая линия в составе такой системы, выходящая за пределы электростанции или подстанции.[1]

Различают воздушные и кабельные линии электропередачи.

По ЛЭП также передают информацию при помощи высокочастотных сигналов (по оценкам[каким?], в СНГ используется порядка 60 тысяч ВЧ-каналов по ЛЭП) и ВОЛС. Используются они для диспетчерского управления, передачи телеметрических данных, сигналов релейной защиты и противоаварийной автоматики.

Воздушные линии электропередачи

Линия электропередачи 500 кВ

Воздушная линия электропередачи (ВЛ) — устройство, предназначенное для передачи или распределения электрической энергии по проводам, находящимся на открытом воздухе и прикреплённым с помощью траверс (кронштейнов), изоляторов и арматуры к опорам или другим сооружениям (мостам, путепроводам).

Состав ВЛ

Документы, регулирующие ВЛ

Конструкция ВЛ, её проектирование и строительство регулируются Правилами устройства электроустановок (ПУЭ) и Строительными нормами и правилами (СНиП).

Классификация ВЛ

По роду тока

В основном, ВЛ служат для передачи переменного тока и лишь в отдельных случаях (например, для связи энергосистем, питания контактной сети и другие) используются линии постоянного тока. Линии постоянного тока имеют меньшие потери на емкостную и индуктивную составляющие. Так, в Ростовской области была построена экспериментальная линия постоянного тока на 500 кВ. Однако широкого распространения такие линии не получили.

По назначению
  • сверхдальние ВЛ напряжением 500 кВ и выше (предназначены для связи отдельных энергосистем)
  • магистральные ВЛ напряжением 220 и 330 кВ (предназначены для передачи энергии от мощных электростанций, а также для связи энергосистем и объединения электростанций внутри энергосистем — к примеру, соединяют электростанции с распределительными пунктами)
  • распределительные ВЛ напряжением 35, 110 и 150 кВ (предназначены для электроснабжения предприятий и населённых пунктов крупных районов — соединяют распределительные пункты с потребителями)
  • ВЛ 20 кВ и ниже, подводящие электроэнергию к потребителям.
По напряжению
  • ВЛ до 1000 В (ВЛ низшего класса напряжений)
  • ВЛ выше 1000 В
    • ВЛ 1–35 кВ (ВЛ среднего класса напряжений)
    • ВЛ 110–220 кВ (ВЛ высокого класса напряжений)
    • ВЛ 330–750 кВ (ВЛ сверхвысокого класса напряжений)
    • ВЛ выше 750 кВ (ВЛ ультравысокого класса напряжений)

Эти группы существенно различаются, в основном — требованиями в части расчётных условий и конструкций.

В сетях СНГ общего назначения переменного тока 50 Гц, согласно ГОСТ 721-77, должны использоваться следующие номинальные междуфазные напряжения: 380 В; (6)[2], 10, 20, 35, 110, 220, 330, 500, 750 и 1150 кВ. Могут также существовать сети, построенные по устаревшим стандартам с номинальными межфазными напряжениями: 220 В, 3 и 150 кВ.

Самой высоковольтной ЛЭП в мире является линия Экибастуз-Кокчетав, номинальное напряжение — 1150 кВ. Однако, в настоящее время линия эксплуатируется под вдвое меньшим напряжением — 500 кВ.

Номинальное напряжение для линий постоянного тока не регламентировано, чаще всего используются напряжения: 150, 400 (Выборгская ПС — Финляндия) и 800 кВ.

В специальных сетях могут использоваться и другие классы напряжений, в основном это касается тяговых сетей железных дорог (27,5 кВ, 50 Гц переменного тока и 3,3 кВ постоянного тока), метрополитена (825 В постоянного тока), трамваев и троллейбусов (600 В постоянного тока).

По режиму работы нейтралей в электроустановках
  • Трёхфазные сети с незаземлёнными (изолированными) нейтралями (нейтраль не присоединена к заземляющему устройству или присоединена к нему через аппараты с больши́м сопротивлением). В СНГ такой режим нейтрали используется в сетях напряжением 3—35 кВ с малыми токами однофазных замыканий на землю.
  • Трёхфазные сети с резонансно-заземлёнными (компенсированными) нейтралями (нейтральная шина присоединена к заземлению через индуктивность). В СНГ используется в сетях напряжением 3–35 кВ с большими токами однофазных замыканий на землю.
  • Трёхфазные сети с эффективно-заземлёнными нейтралями (сети высокого и сверхвысокого напряжения, нейтрали которых соединены с землёй непосредственно или через небольшое активное сопротивление). В России это сети напряжением 110, 150 и частично 220 кВ, в которых применяются трансформаторы (автотрансформаторы требуют обязательного глухого заземления нейтрали).
  • Сети с глухозаземлённой нейтралью (нейтраль трансформатора или генератора присоединяется к заземляющему устройству непосредственно или через малое сопротивление). К ним относятся сети напряжением менее 1 кВ, а также сети напряжением 220 кВ и выше.
По режиму работы в зависимости от механического состояния
  • ВЛ нормального режима работы (провода и тросы не оборваны)
  • ВЛ аварийного режима работы (при полном или частичном обрыве проводов и тросов)
  • ВЛ монтажного режима работы (во время монтажа опор, проводов и тросов)

Основные элементы ВЛ

  • Трасса — положение оси ВЛ на земной поверхности.
  • Пикеты (ПК) — отрезки, на которые разбита трасса, длина ПК зависит от номинального напряжения ВЛ и типа местности.
  • Нулевой пикетный знак обозначает начало трассы.
  • Центровой знак на трассе строящейся ВЛ обозначает центр расположения опоры.
  • Производственный пикетаж — установка пикетных и центровых знаков на трассе в соответствии с ведомостью расстановки опор.
  • Фундамент опоры — конструкция, заделанная в грунт или опирающаяся на него и передающая ему нагрузку от опоры, изоляторов, проводов (тросов) и от внешних воздействий (гололёда, ветра).
  • Основание фундамента — грунт нижней части котлована, воспринимающий нагрузку.
  • Пролёт (длина пролёта) — расстояние между центрами двух опор, на которых подвешены провода. Различают промежуточный пролёт (между двумя соседними промежуточными опорами) и анкерный пролёт (между анкерными опорами). Переходный пролёт — пролёт, пересекающий какое-либо сооружение или естественное препятствие (реку, овраг).
  • Угол поворота линии — угол α между направлениями трассы ВЛ в смежных пролётах (до и после поворота).
  • Стрела провеса — вертикальное расстояние между низшей точкой провода в пролёте и прямой, соединяющей точки его крепления на опорах.
  • Габарит провода — вертикальное расстояние от провода в пролёте до пересекаемых трассой инженерных сооружений, поверхности земли или воды.
  • Шлейф (петля) — отрезок провода, соединяющий на анкерной опоре натянутые провода соседних анкерных пролётов.

Кабельные линии электропередачи

Кабельная линия электропередачи (КЛ) — линия для передачи электроэнергии или отдельных её импульсов, состоящая из одного или нескольких параллельных кабелей с соединительными, стопорными и концевыми муфтами (заделками) и крепёжными деталями, а для маслонаполненных линий, кроме того, с подпитывающими аппаратами и системой сигнализации давления масла.

По классификации кабельные линии аналогичны воздушным линиям.

Кабельные линии делят по условиям прохождения

  • Подземные
  • По сооружениям
  • Подводные
К кабельным сооружениям относятся
  • Кабельный тоннель — закрытое сооружение (коридор) с расположенными в нём опорными конструкциями для размещения на них кабелей и кабельных муфт, со свободным проходом по всей длине, позволяющим производить прокладку кабелей, ремонт и осмотр кабельных линий.
  • Кабельный канал — непроходное сооружение, закрытое и частично или полностью заглубленное в грунт, пол, перекрытие и т. п. и предназначенное для размещения в нём кабелей, укладку, осмотр и ремонт которых возможно производить лишь при снятом перекрытии.
  • Кабельная шахта — вертикальное кабельное сооружение (как правило, прямоугольного сечения), у которого высота в несколько раз больше стороны сечения, снабженное скобами или лестницей для передвижения вдоль него людей (проходные шахты) или съемной полностью или частично стенкой (непроходные шахты).
  • Кабельный этаж — часть здания, ограниченная полом и перекрытием или покрытием, с расстоянием между полом и выступающими частями перекрытия или покрытия не менее 1,8 м.
  • Двойной пол — полость, ограниченная стенами помещения, междуэтажным перекрытием и полом помещения со съемными плитами (на всей или части площади).
  • Кабельный блок — кабельное сооружение с трубами (каналами) для прокладки в них кабелей с относящимися к нему колодцами.
  • Кабельная камера — подземное кабельное сооружение, закрываемое глухой съемной бетонной плитой, предназначенное для укладки кабельных муфт или для протяжки кабелей в блоки. Камера, имеющая люк для входа в неё, называется кабельным колодцем.
  • Кабельная эстакада — надземное или наземное открытое горизонтальное или наклонное протяженное кабельное сооружение. Кабельная эстакада может быть проходной или непроходной.
  • Кабельная галерея  — надземное или наземное закрытое полностью или частично (например, без боковых стен) горизонтальное или наклонное протяженное проходное кабельное сооружение.
Пожарная безопасность кабельных сооружений

Основная статья: Пожары в электроустановках

При пожарах в кабельных помещениях в начальный период происходит медленное развитие горения и только спустя некоторое время скорость распространения горения существенно увеличивается. Практика свидетельствует, что при реальных пожарах в кабельных туннелях наблюдаются температуры до 600 °C и выше. Это объясняется тем, что в реальных условиях горят кабели, которые длительное время находятся под токовой нагрузкой и изоляция которых прoгревается изнутри до температуры 80 °C и выше. Может возникнуть одновременное воспламенение кабелей в нескольких местах и на значительной длине. Связано это с тем, что кабель находится под нагрузкой и eгo изоляция нагревается до температуры, близкой к температуре самовоспламенения[3].

Кабель состоит из множества конструктивных элементов, для изготовления которых используют широкий спектр горючих материалов, в число которых входят материалы, имеющие низкую температуру воспламенения, материалы склонные к тлению. Также в конструкцию кабеля и кабельных конструкций входят металлические элементы. В случае пожара или токовой перегрузки происходит прогрев этих элементов до температуры порядка 500—600 ˚C, которая превышает температуру воспламенения (250–350 ˚C) многих полимерных материалов, входящих в конструкцию кабеля, в связи с чем возможно их повторное воспламенение от прогретых металлических элементов после прекращения подачи огнетушащего вещества. В связи с этим необходимо выбирать нормативные показатели подачи огнетушащих веществ, чтобы обеспечивать ликвидацию пламенного горения, а также исключить возможность повторного воспламенения[4].

Длительное время в кабельных помещениях применялись установки пенного тушения. Однако опыт эксплуатации выявил ряд недостатков:

  • ограниченный сpoк хранения пенообразователя и недопустимость хранения их водных растворов;
  • неустойчивость в работе;
  • сложность наладки;
  • необходимость специального ухода за устройством дозировки пенообразователя;
  • быстрое разрушение пены при высокой (около 800 °C) температуре среды при пожаре.

Исследования показали, что распыленная вода обладает большей огнетушащей способностью по сравнению с воздушно-механической пеной, так как она хорошо смачивает и охлаждает горящие кабели и строительные конструкции[5].

Линейная скорость распространения пламени для кабельных сооружений (горение кабелей) составляет 1,1 м/мин[6].

По типу изоляции

Изоляция кабельных линий делится на два основных типа:

  • жидкостная
    • кабельным нефтяным маслом
  • твёрдая
    • бумажно-масляная
    • поливинилхлоридная (ПВХ)
    • резино-бумажная (RIP)
    • сшитый полиэтилен (XLPE)
    • этилен-пропиленовая резина (EPR)

Здесь не указана изоляция газообразными веществами и некоторые виды жидкостной и твёрдой изоляции из-за их относительно редкого применения в момент написания статьи.

Высокотемпературные сверхпроводники

HTS кабель

Технология высокотемпературной сверхпроводимости (HTS), разработанная «Sumitomo Electric», применяется в демонстрационной системе силовой сети, запущенной в эксплуатацию в июле 2006 в США (Лонг-Айленд). При напряжении 138 кВ передаётся мощность в 574 МВА на длину 600 метров.

Потери в ЛЭП

Потери электроэнергии в проводах зависят от силы тока, поэтому при передаче её на дальние расстояния, напряжение многократно повышают (во столько же раз уменьшая силу тока) с помощью трансформатора, что при передаче той же мощности позволяет значительно снизить потери. Однако с ростом напряжения начинают происходить различные разрядные явления.

В воздушных линиях сверхвысокого напряжения присутствуют потери активной мощности на корону (коронный разряд). Коронный разряд возникает, когда напряжённость электрического поля E у поверхности провода превысит пороговую величину Eкр, которую можно вычислить по эмпирической формуле Пика: МВ/м, где r - радиус провода в метрах, β - отношение плотности воздуха к нормальной.[7] Напряженность электрического поля прямо пропорциональна напряжению на проводе и обратно пропорциональна его радиусу, поэтому бороться с потерями на корону можно, увеличивая радиус проводов, а также (в меньшей степени) - применяя расщепление фаз, т.е. используя в каждой фазе несколько проводов, удерживаемых специальными распорками на расстоянии 40-50 см. Потери на корону приблизительно пропорциональны произведению U(U-Uкр).

Потери на корону резко возрастают с ростом напряжения, среднегодовые потери на ЛЭП напряжением 500 кВ составляют около 12 кВт/км, при напряжении 750 кВ - 37 кВт/км, при 1150 кВ - 80 кВт/км. Потери также резко возрастают при осадках, особенно изморози, и могут достигать 1200 кВт/км[8].

Потери в ЛЭП переменного тока

Важной величиной, влияющей на экономичность ЛЭП переменного тока, является величина, характеризующая соотношение между активной и реактивной мощностями в линии — cos φ. Активная мощность — часть полной мощности, прошедшей по проводам и переданной в нагрузку; Реактивная мощность — это мощность, которая генерируется линией, её зарядной мощностью (ёмкостью между линией и землёй), а также самим генератором, и потребляется реактивной нагрузкой(индуктивной нагрузкой). Потери активной мощности в линии зависят и от передаваемой реактивной мощности. Чем больше переток реактивной мощности - тем больше потери активной.

При длине ЛЭП переменного тока более нескольких тысяч километров наблюдается ещё один вид потерь — радиоизлучение. Так как такая длина уже сравнима с длиной электромагнитной волны частотой 50 Гц, провод работает как антенна.

См. также

Литература

  • Электромонтажные работы. В 11 кн. Кн. 8. Ч. 1. Воздушные линии электропередачи: Учеб. пособие для ПТУ / Магидин Ф. А.; Под ред. А. Н. Трифонова. — М.: Высшая школа, 1991. — 208 с. — ISBN 5-06-001074-0
  • Рожкова Л. Д., Козулин В. С. Электрооборудование станций и подстанций: Учебник для техникумов. — 3-е изд., перераб. и доп. — М.: Энергоатомиздат, 1987. — 648 с.: ил. ББК 31.277.1 Р63
  • Проектирование электрической части станций и подстанций: Учеб. пособие / Петрова С.С.; Под ред. С.А. Мартынова. — Л.: ЛПИ им. М. И. Калашникова, 1980. — 76 с. — УДК 621.311.2(0.75.8)

Ссылки

Примечания

veter.academic.ru


Видеоматериалы

24.10.2018

Опыт пилотных регионов, где соцнормы на электроэнергию уже введены, показывает: граждане платить стали меньше

Подробнее...
23.10.2018

Соответствует ли вода и воздух установленным нормативам?

Подробнее...
22.10.2018

С начала года из ветхого и аварийного жилья в республике были переселены десятки семей

Подробнее...
22.10.2018

Столичный Водоканал готовится к зиме

Подробнее...
17.10.2018

Более 10-ти миллионов рублей направлено на капитальный ремонт многоквартирных домов в Лескенском районе

Подробнее...

Актуальные темы

13.05.2018

Формирование энергосберегающего поведения граждан

 

Подробнее...
29.03.2018

ОТЧЕТ о деятельности министерства энергетики, ЖКХ и тарифной политики Кабардино-Балкарской Республики в сфере государственного регулирования и контроля цен и тарифов в 2012 году и об основных задачах на 2013 год

Подробнее...
13.03.2018

Предложения организаций, осуществляющих регулируемую деятельность о размере подлежащих государственному регулированию цен (тарифов) на 2013 год

Подробнее...
11.03.2018

НАУЧИМСЯ ЭКОНОМИТЬ В БЫТУ

 
Подробнее...

inetpriem


<< < Ноябрь 2013 > >>
Пн Вт Ср Чт Пт Сб Вс
        1 2 3
4 5 6 7 8 9 10
11 12 13 14 15 16 17
18 19 20 21 22 23 24
25 26 27 28 29 30  

calc

banner-calc

.