Open Library - открытая библиотека учебной информации. Магнитное поле его свойства и характеристики


Магнитное поле и его характеристики

Магнитное поле и его характеристики

Из многочисленных опытов известно, что, подобно тому, как в пространстве, которое окружает электрические заряды, возникает электростатическое поле, так и в пространстве, которое окружает токи и постоянные магниты, возникает силовое поле, называемое магнитным. Наличие магнитного поля определяется по силовому действию на помещенные в него проводники с током или постоянные магниты. Термин «магнитное поле» связывают с ориентацией магнитной стрелки под действием поля, которое создается током (это явление впервые открыто датским физиком X. Эрстедом (1777—1851)).

Как мы уже знаем, электрическое поле оказывает силовое воздействие как на неподвижные, так и на движущиеся в нем электрические заряды. У магнитного поля важнейшая особенность состоит в том, что оно оказывает силовое воздействие только на движущиеся в этом поле электрические заряды. Из опытов известно, что характер воздействия магнитного поля на ток меняется в зависимости от формы проводника, по которому течёт ток, от расположения проводника относительно магнитного поля и от направления тока. Значит, чтобы охарактеризовать магнитное поле, необходимо исследовать его воздействие на определенный ток.

При изучении характеристик электростатического поля использовались точечные заряды, аналогично, при изучении характеристик магнитного поля используется замкнутый плоский контур с током (рамка с током), у которого линейные размеры малы по сравнению с расстоянием до токов, образующих данное магнитное поле. Ориентация контура в пространстве задается направлением нормали к контуру. Направление нормали задается правилом правого винта: за положительное направление нормали берётся направление поступательного движения винта, у которого головка вращается в направлении текущего в рамке тока (рис. 1).

Рис.1

Опыты демонстрируют, что магнитное поле воздействует на рамку с током, поворачивая ее определенным образом, тем самым определяется направление внешнего магнитного поля. Этот результат применяется для выбора направления магнитного поля. За направление магнитного поля в данной точке пространства принимается направление, вдоль которого располагается положительная нормаль к рамке (рис. 2). За направление магнитного поля может быть также принято направление, совпадающее с направлением силы, воздействующую на северный полюс магнитной стрелки, которая помещена в данную точку. Так как оба полюса магнитной стрелки лежат в близких точках поля, то силы, которые действуют на оба полюса, равны друг другу. Значит, на магнитную стрелку действует пара сил, которая поворачивает ее так, чтобы ось стрелки, которая соединяет южный полюс с северным, совпадала с направлением поля.

Рис.2

Рамку с током можно также использовать и для количественного описания магнитного поля. Поскольку на рамку с током воздействует магнитное поле и оказывает на рамку ориентирующее действие, то на нее в магнитном поле действует пара сил. Вращающий момент этих сил зависит как от свойств поля в данной точке, так и от свойств самой рамки и задается формулой

(1)

где pm — вектор магнитного момента рамки с током (В — вектор магнитной индукции, количественная характеристика магнитного поля). Для плоского контура с током I

(2)

где n — единичный вектор нормали к поверхности рамки, S — площадь поверхности контура (рамки). Таким образом, направление pm совпадает с направлением положительной нормали.

Если в точку магнитного поля помещать рамки с различными магнитными моментами, то на них оказывают действие различные вращающие моменты, но при этом отношение Мmax/рm (Мmax — максимальный вращающий момент) для всех контуров одинаково и поэтому может служить характеристикой магнитного поля, которая называется магнитной индукцией:

^ в данной точке однородного магнитного поля задается максимальным вращающим моментом, который действует на рамку с магнитным моментом, равным единице, когда нормаль к рамке перпендикулярна направлению поля. Отметим, что вектор В может быть также определен из закона Ампера и из выражения для силы Лоренца.

^  — закон взаимодействия постоянных токов. Установлен Андре Мари Ампером в 1820. Из закона Ампера следует, что параллельные проводники с постоянными токами, текущими в одном направлении, притягиваются, а в противоположных — отталкиваются. Законом Ампера называется также закон, определяющий силу, с которой магнитное поле действует на малый отрезок проводника с током. Сила , с которой магнитное поле действует на элемент объёма dV проводника с током плотности , находящегося в магнитном поле с индукцией :

.

Если ток течёт по тонкому проводнику, то , где  — «элемент длины» проводника — вектор, по модулю равный dl и совпадающий по направлению с током. Тогда предыдущее равенство можно переписать следующим образом:

Направление силы определяется по правилу вычисления векторного произведения, которое удобно запомнить при помощи правила левой руки.

Модуль силы Ампера можно найти по формуле:

,

где α — угол между векторами магнитной индукции и тока.

Сила dF максимальна когда элемент проводника с током расположен перпендикулярно линиям магнитной индукции ():

.

^  — сила, с которой, в рамках классической физики, электромагнитное поле действует на точечную заряженную частицу. Иногда, силой Лоренца называют силу, действующую на движущийся со скоростью заряд лишь со стороны магнитного поля, нередко же полную силу — со стороны электромагнитного поля вообще,[1] иначе говоря, со стороны электрического и магнитного полей в СИ:

Названа в честь голландского физика Хендрика Лоренца, который вывел выражение для этой силы в 1892 году. За три года до Лоренца правильное выражение было найдено Хевисайдом[2]. (О́ливер Хе́висайд (англ. Oliver Heaviside, 18 мая, 1850 — 3 февраля, 1925) — английский учёный-самоучка, инженер, математик и физик. Впервые применил комплексные числа для изучения электрических цепей, разработал технику применения преобразования Лапласа для решения дифференциальных уравнений, переформулировал уравнения Максвелла в терминах трехмерных векторов, напряженностей электрического и магнитного полей и электрической и магнитной индукций, и, независимо от других математиков, создал векторный анализ. Несмотря на то, что Хевисайд большую часть жизни был не в ладах с научным сообществом, его работы изменили облик математики и физики.)

Частным случаем силы Лоренца является сила Ампера.

Поскольку магнитное поле есть силовое поле, то его, по аналогии с электрическим, графически изображают с помощью линий магнитной индукции — линий, касательные к которым в каждой точке совпадают с направлением вектора В. Их направление задается правилом правого винта: головка винта, который ввинчивают по направлению тока, вращается в направлении линий магнитной индукции.

Линии магнитной индукции можно обнаружить с помощью железных опилок, которые намагничиваются в исследуемом поле и ведут себя подобно небольшим магнитным стрелкам. На рис. 3а даны линии магнитной индукции магнитного поля кругового тока, на рис. 3б — линии магнитной индукции поля соленоида (соленоид - равномерно намотанная на цилиндрическую поверхность проволочная спираль, по которой идет электрический ток).

Линии магнитной индукции всегда замкнуты и охватывают проводники с током. В этом их различии от линий напряженности электростатического поля, являющихся разомкнутыми (они, как ранее рассматривалось, начинаются на положительных зарядах и кончаются на отрицательных).

На ряс. 4 даны линии магнитной индукции полосового магнита; они выходят из северного полюса и входят в южный. Вначале думалось, что здесь видна полная аналогия с линиями напряженности электростатического поля и полюсы магнитов играют роль так называемых «магнитных зарядов» (магнитных монополей). Однако, опыты показали, что, разрезая магнит на части, его полюсы разделять нельзя, т. е. в отличие от электрических зарядов свободные «магнитные заряды» не существуют, поэтому линии магнитной индукции не могут обрываться на полюсах. В дальнейшем было показано, что внутри полюсовых магнитов существует магнитное поле, по свойствам аналогичное полю внутри соленоида, и линии магнитной индукции данного магнитного поля являются продолжением линий магнитной индукции вне магнита. Значит, для постоянных магнитов линии магнитной индукции их магнитного поля также являются замкнутыми.

До сих пор мы рассматривали макроскопические токи, которые текут в проводниках. Но по предположению французского физика А. Ампера, в любом теле существуют микротоки, обусловленные движением электронов в атомах и молекулах. Эти микротоки создают своё магнитное поле и могут, к примеру, поворачиваться в магнитных полях макротоков. Например, если рядом с каким-либо телом поместить проводник с током (макро ток), то под действием магнитного поля данного макротока микротоки во всех атомах определенным образом изменят свое направление, при этом создавая в теле дополнительное магнитное поле. Вектор магнитной индукции В характеризует результирующее магнитное поле, которое создается всеми макро- и микротоками, т. е. при одном и том же токе и прочих равных условиях вектор В в различных средах будет иметь разные значения.

Магнитное поле макротоков описывается вектором напряженности Н. Для однородной изотропной среды вектор магнитной индукции связан с вектором напряженности следующим выражением:

где μ0 — магнитная постоянная, μ — безразмерная величина — магнитная проницаемость среды, которая показывает, во сколько раз магнитное поле макротоков Н увеличивается за счет поля микротоков среды.

При сопоставлении векторных характеристик электростатического (Е и D) и магнитного (В и Н) полей, отметим, что аналогом вектора напряженности электростатического поля Е является вектор магнитной индукции В, поскольку векторы Е и В задают силовые действия этих полей и зависят от свойств среды. При этом, аналогом вектора электрического смещения D является вектор напряженности Н магнитного поля.

^ Магнитное поле постоянных токов различной формы исследовалось французскими учеными Ж. Био (1774—1862) и Ф. Саваром (1791—1841). Результаты их опытов были обобщены французским ученым П. Лапласом.

^ для проводника с током I, элемент dl которого создает в некоторой точке А (рис. 1) индукцию поля dB, справедливо равенство:

(1)

где dl - вектор, по модулю равный длине dl элемента проводника и совпадающий по направлению с током, r - радиус-вектор, который проведен из элемента dl проводника в точку А поля, r - модуль радиуса-вектора r. Направление dB перпендикулярно dl и r, т. е. перпендикулярно плоскости, в которой они лежат, и совпадает с направлением касательной к линии магнитной индукции. Это направление может быть найдено по правилу правого винта: направление вращения головки винта дает направление dB, если поступательное движение винта совпадает с направлением тока в элементе.

Модуль вектора dB задается выражением

(2)

где α — угол между векторами dl и r.

Аналогично электрическому, для магнитного поля выполняется принцип суперпозиции: магнитная индукция результирующего поля, создаваемого несколькими токами или движущимися зарядами, равна векторной сумме магнитных индукций складываемых полей, создаваемых каждым током или движущимся зарядом в отдельности:

(3)

Расчёт характеристик магнитного поля (В и Н) в общем случае достаточно сложен. Однако если распределение тока имеет какую-либо симметрию, то применение закона Био — Савара — Лапласа совместно с принципом суперпозиции дает возможность просто рассчитать некоторые поля. Рассмотрим два примера.

1. ^ — тока, текущего по тонкому прямому бесконечному проводу (рис. 2).

В произвольной точке А, удаленной на расстояние R от оси проводника, векторы d^ от всех элементов тока имеют одинаковое направление, которое перпендикулярно плоскости чертежа («к вам»). Значит, сложение всех векторов dB можно заменить сложением их модулей. За постоянную интегрирования возьмем угол α (угол между векторами dl и r) и выразим через него все остальные величины. Из рис. 2 следует, что

(радиус дуги CD вследствие малости dl равен r, и угол FDC по этой же причине можно считать прямым). Подставив эти формулы в (2), получим, что магнитная индукция, которая создаётся одним элементом проводника, равна

(4)

Поскольку угол α для всех элементов прямого тока изменяется в пределах от 0 до π, то, согласно (3) и (4),

Значит, магнитная индукция поля прямого тока

(5)

2. ^ (рис. 3). Как видно из рисунка, каждый элемент кругового проводника с током создает в центре магнитное поле одинакового направления - вдоль нормали от витка. Значит, сложение векторов dB также можно заменить сложением их модулей. Поскольку расстояние всех элементов проводника до центра кругового тока одинаково и равно R и все элементы проводника перпендикулярны радиусу-вектору (sinα=1), то, используя (2),

Тогда

Следовательно, магнитная индукция поля в центре кругового проводника с током

Рис.3

zavantag.com

Магнитное поле, его свойства и характеристики.

Электротехника Магнитное поле, его свойства и характеристики.

просмотров - 64

Магнитное поле и его характеристики

[1] гл.14

План лекции:

1. Магнитное поле. Индукция и напряженность магнитного поля.

2. Магнитный поток. Теорема Гаусса для магнитного потока.

3. Закон Био-Савара-Лапласа и его применение для расчета магнитных полей.

4. Теорема о циркуляции вектора (закон полного тока) и ее применение для расчета магнитных полей.

Магнитное поле - форма существования материи, окружающей движущиеся электрические заряды (проводники с током, постоянные магниты).

Это название обусловлено тем, что, как обнаружил в 1820 году датский физик Ханс Эрстед, оно оказывает ориентирующее действие на магнитную стрелку. Опыт Эрстеда: под проволокой с током помещалась магнитная стрелка, вращающаяся на игле. При включении тока она устанавливалась перпендикулярно проволоке; при изменении направления тока поворачивалась в противоположную сторону.

Основные свойства магнитного поля:

1) порождается движущимися электрическими зарядами, проводниками с током, постоянными магнитами и переменным электрическим полем;

2) действует с силой на движущиеся электрические заряды, проводники с током, намагниченные тела;

3) переменное магнитное поле порождает переменное электрическое поле.

Из опыта Эрстеда следует, что магнитное поле имеет направленный характер и должно иметь векторную силовую характеристику. Ее обозначают и называют магнитной индукцией.

Магнитное поле изображается графически с помощью магнитных силовых линий или линий магнитной индукции. Магнитными силовыми линиями называются линии, вдоль которых в магнитном поле располагаются желœезные опилки или оси маленьких магнитных стрелок. В каждой точке такой линии вектор направлен по касательной.

Линии магнитной индукции всœегда замкнуты, что говорит об отсутствии в природе магнитных зарядов и вихревом характере магнитного поля.

Условно они выходят из северного полюса магнита и входят в южный. Густота линий выбирается так, чтобы число линий через единицу площади, перпендикулярную магнитному полю, было пропорционально величинœе магнитной индукции.

Магнитное соленоида с током
 
 
Направление линий определяется правилом правого винта. Соленоид - катушка с током, витки которой расположены вплотную друг к другу, а диаметр витка много меньше длины катушки.

Магнитное поле внутри соленоида является однородным. Магнитное поле принято называть однородным, если вектор в любой точке постоянен.

Магнитное поле соленоида аналогично магнитному полю полосового магнита.

Соленоид с током представляет собой электромагнит.

Опыт показывает, что для магнитного поля, как и для электрического, справедлив принцип суперпозиции: индукция магнитного поля, создаваемого несколькими токами или движущимися зарядами, равна векторной сумме индукций магнитных полей, создаваемых каждым током или зарядом:

Вектор вводится одним из 3-х способов:

а) из закона Ампера;

б) по действию магнитного поля на рамку с током;

в) из выражения для силы Лоренца.

Ампер экспериментально установил, что сила с которой магнитное поле действует на элемент проводника с током I, находящегося в магнитном поле, прямо пропорциональна силе

тока I и векторному произведению элемента длины на магнитную индукцию :

- закон Ампера

Направление вектора может быть найдено согласно общим правилам векторного произведения, откуда следует правило левой руки: если ладонь левой руки расположить так, чтобы магнитные силовые линии входили в нее, а 4 вытянутых пальца направить по току, то отогнутый большой палец покажет направление силы.

Сила, действующая на провод конечной длины, найдется интегрированием по всœей длинœе.

При I = const, B=const, F = B×I×l×sina

В случае если a =900, F = B×I×l

Индукция магнитного поля - векторная физическая величина, численно равная силе, действующей в однородном магнитном поле на проводник единичной длины с единичной силой тока, расположенный перпендикулярно магнитным силовым линиям.

1Тл - индукция однородного магнитного поля, в котором на проводник длиной 1м с током в 1А, расположенный перпендикулярно магнитным силовым линиям, действует сила 1Н.

До сих пор мы рассматривали макротоки, текущие в проводниках. При этом, согласно предположению Ампера, в любом телœе существуют микроскопические токи, обусловленные движением электронов в атомах. Эти микроскопические молекулярные токи создают свое магнитное поле и могут поворачиваться в полях макротоков, создавая в телœе дополнительное магнитное поле. Вектор характеризует результирующее магнитное поле, создаваемое всœеми макро- и микротоками, ᴛ.ᴇ. при одном и том же макротоке вектор в различных средах имеет разные значения.

Магнитное поле макротоков описывается вектором магнитной напряженности .

Для однородной изотропной среды

,

m0= 4p×10-7Гн/м - магнитная постоянная, m0= 4p×10-7Н/А2,

m - магнитная проницаемость среды, показывающая, во сколько раз магнитное поле макротоков изменяется за счет поля микротоков среды.

oplib.ru

Магнитное поле, его свойства и характеристики.

Электротехника Магнитное поле, его свойства и характеристики.

просмотров - 71

Магнитное поле - форма существования материи, окружающей движущиеся электрические заряды (проводники с током, постоянные магниты).

Это название обусловлено тем, что, как обнаружил в 1820 году датский физик Ханс Эрстед, оно оказывает ориентирующее действие на магнитную стрелку. Опыт Эрстеда: под проволокой с током помещалась магнитная стрелка, вращающаяся на игле. При включении тока она устанавливалась перпендикулярно проволоке; при изменении направления тока поворачивалась в противоположную сторону.

Основные свойства магнитного поля:

1) порождается движущимися электрическими зарядами, проводниками с током, постоянными магнитами и переменным электрическим полем;

2) действует с силой на движущиеся электрические заряды, проводники с током, намагниченные тела;

3) переменное магнитное поле порождает переменное электрическое поле.

Из опыта Эрстеда следует, что магнитное поле имеет направленный характер и должно иметь векторную силовую характеристику. Ее обозначают и называют магнитной индукцией.

Магнитное поле изображается графически с помощью магнитных силовых линий или линий магнитной индукции. Магнитными силовыми линиями называются линии, вдоль которых в магнитном поле располагаются желœезные опилки или оси маленьких магнитных стрелок. В каждой точке такой линии вектор направлен по касательной (рис. 1а).

Магнитное поле принято называть однородным, если вектор в любой точке постоянен (рис.1б).

Линии магнитной индукции всœегда замкнуты, что говорит об отсутствии в природе магнитных зарядов и вихревом характере магнитного поля (рис. 2).

Условно они выходят из северного полюса магнита и входят в южный. Густота линий выбирается так, чтобы число линий через единицу площади, перпендикулярную магнитному полю, было пропорционально величинœе магнитной индукции.

 
 
 
 

Направление линий определяется правилом правого винта.

Соленоид - катушка с током, витки которой расположены вплотную друг к другу, а диаметр витка много меньше длины катушки. Магнитное поле внутри соленоида является однородным. Магнитное поле соленоида аналогично магнитному полю полосового магнита (рис. 2). Соленоид с током представляет собой электромагнит.

Опыт показывает, что для магнитного поля, как и для электрического, справедлив принцип суперпозиции: индукция магнитного поля, создаваемого несколькими токами или движущимися зарядами, равна векторной сумме индукций магнитных полей, создаваемых каждым током или зарядом:

.

Вектор вводится одним из 3-х способов:

а) из закона Ампера;

б) по действию магнитного поля на рамку с током;

в) из выражения для силы Лоренца.

Ампер экспериментально установил, что сила (рис. 3), с которой магнитное поле действует на элемент проводника с током I, находящегося в магнитном поле, прямо пропорциональна силе

тока I и векторному произведению элемента длины на магнитную индукцию .

Закон Ампера: .

Направление вектора может быть найдено согласно общим правилам векторного произведения, откуда следует правило левой руки: если ладонь левой руки расположить так, чтобы магнитные силовые линии входили в нее, а 4 вытянутых пальца направить по току, то отогнутый большой палец покажет направление силы (рис. 4).

Сила, действующая на провод конечной длины, найдется интегрированием по всœей длинœе.

.

При .

В случае если ,

.

Индукция магнитного поля - векторная физическая величина, численно равная силе, действующей в однородном магнитном поле на проводник единичной длины с единичной силой тока, расположенный перпендикулярно магнитным силовым линиям.

1Тл - индукция однородного магнитного поля, в котором на проводник длиной 1м с током в 1А, расположенный перпендикулярно магнитным силовым линиям, действует сила 1Н.

До сих пор мы рассматривали макротоки, текущие в проводниках. При этом, согласно предположению Ампера, в любом телœе существуют микроскопические токи, обусловленные движением электронов в атомах. Эти микроскопические молекулярные токи создают свое магнитное поле (рис. 5) и могут поворачиваться в полях макротоков, создавая в телœе дополнительное магнитное поле. Вектор характеризует результирующее магнитное поле, создаваемое всœеми макро- и микротоками, ᴛ.ᴇ. при одном и том же макротоке вектор в различных средах имеет разные значения.

Магнитное поле макротоков описывается вектором магнитной напряженности .

Для однородной изотропной среды

,

m0= 4p×10-7Гн/м - магнитная постоянная, m - магнитная проницаемость среды, показывающая, во сколько раз магнитное поле макротоков изменяется за счет поля микротоков среды.

oplib.ru

Магнитное поле и его характеристики

 

С давних времён это явление вызывало немало вопросов, более того, до сих пор оно остаётся загадочным. Многие учёные занимались изучением свойств магнитного поля, потому что его потенциал и возможности применения уже тогда казались, без преувеличения огромными.

Как же образуется магнитное поле? Когда электрический ток проходит по проводнику, он создаёт вокруг себя магнитное поле, которое является одной из разновидностей материи, существующей в окружающем нас мире. Это поле обладает некой энергией, проявляющейся в электромагнитных силах, а также способной воздействовать на электрические заряды и на электрический ток в целом.

Влияние магнитного поля на поток заряженных частиц выражается в том, что они отклоняются от своей первоначальной траектории движения в перпендикулярном полю направлении. Магнитное поле, также иногда называют электродинамическим. Такое определение рождается из того, что это поле возникает только вокруг движущихся зарядов, при этом действие магнитного поля,также распространяется только на частицы, находящиеся в движении.

Динамическим магнитное поле называется из-за своего строения. Это некая область пространства, в котором находятся бионы – передатчики всех возможных в нём взаимодействий. Они постоянно вращаются, т. е., находятся в движении. Отсюда и динамическая характеристика поля - данное явление возникает, когда бионы приходят в движение, т. е., начинают вращаться. 

Вывести их из состояния покоя способен лишь движущийся заряд. Когда он попадает в зону магнитного поля, то воздействуя на бион и, притягивает один из его полюсов. Таким образом, все бионы начинают вращаться. Если не будет заряда, то и бионы не будут вращаться, так как нет никаких других сил, которые бы воздействовали на него.

Электромагнитное поле

Магнитное поле не может существовать само по себе, как уже было сказано, причиной его возникновения является электрический заряд. Следовательно, магнитные и электрические поля неразрывно связаны между собой. Они всегда существуют в едином электромагнитном поле.

Взаимодействие их происходит следующим образом: изменения в электрическом поле заставляют меняться и магнитное поле, также верно и обратное утверждение, если изменения происходят в магнитном поле, то это сразу отражается на характеристиках электрического поля.

Основой этого поля также является заряженные частицы, движущиеся со скоростью света, которая составляет 300 тысяч километров в секунду. Это значит, что и электромагнитное поле распространяется и изменяется именно с этой же скоростью.

Изображение характеристик магнитного поля

Часто приходится сталкиваться с необходимостью изображения магнитного поля графически – на схемах. Так как его свойства важны, и их нужно учитывать при различных расчётах, то обозначать их необходимо. Но как уже было сказано, скорость распространения поля слишком велика, чтобы можно было что-то зафиксировать, поэтому применяются схематические изображения магнитного поля, которые отражают его свойства.

Основным способом обозначения магнитного поля на схемах являются условные силовые линии. Направление каждой такой линии совпадает с направлением действия сил в магнитном поле. Эти линии всегда непрерывны и замкнуты, как и любые силы, действующие здесь. Схема автомобильного двигателя работает по такому же принципу. Подробнее вы можете прочитать в авто журнале - www.avtonerd.ru. Там есть статья подробно описывающая этот процесс в двигателе и коробке передач авто.

Чтобы определить направление силовой линии в любой точке магнитного поля, нужно использовать магнитную стрелку, которая имеет схожие с компасом свойства. Когда стрелка попадает в зону действия поля, её северный полюс начинает показывать в направлении действия сил.

Отсюда идут и привычные обозначения: тот конец постоянного магнита, из которого исходят силовые линии, считается его северным полюсом. Тогда как противоположный конец, в котором силы замыкаются, называется южным полюсом магнита. Силовые линии, которые проходят внутри постоянного магнита не обозначаются на схемах.

Обозначение действующих сил с помощью силовых линий далеко не случайно, их можно обнаружить в любом магнитном поле и увидеть невооружённым взглядом. Сделать это можно с помощью металлических опилок. Насыпав их на лист бумаги, и внеся в магнитное поле, можно увидеть, как они начнут двигаться и выстраиваться в определённом порядке. Получившийся рисунок будет напоминать силовые линии, которые и можно увидеть на схеме.

Магнитное поле и его характеристики – это важнейшее явление в физике, которое находит достаточно широкое применение просто потому, что его нельзя не учитывать во многих вопросах. С ними связаны такие понятия как магнитная индукция и магнитная проницаемость.

Чтобы объяснить причины возникновения магнитного поля, необходимо всегда опираться на научные данные и правильный подход, иначе такой целостной картины может и не сложиться, особенно, в случае, когда нужно объяснять более глобальные взаимодействия.

volt220.ru


Видеоматериалы

24.10.2018

Опыт пилотных регионов, где соцнормы на электроэнергию уже введены, показывает: граждане платить стали меньше

Подробнее...
23.10.2018

Соответствует ли вода и воздух установленным нормативам?

Подробнее...
22.10.2018

С начала года из ветхого и аварийного жилья в республике были переселены десятки семей

Подробнее...
22.10.2018

Столичный Водоканал готовится к зиме

Подробнее...
17.10.2018

Более 10-ти миллионов рублей направлено на капитальный ремонт многоквартирных домов в Лескенском районе

Подробнее...

Актуальные темы

13.05.2018

Формирование энергосберегающего поведения граждан

 

Подробнее...
29.03.2018

ОТЧЕТ о деятельности министерства энергетики, ЖКХ и тарифной политики Кабардино-Балкарской Республики в сфере государственного регулирования и контроля цен и тарифов в 2012 году и об основных задачах на 2013 год

Подробнее...
13.03.2018

Предложения организаций, осуществляющих регулируемую деятельность о размере подлежащих государственному регулированию цен (тарифов) на 2013 год

Подробнее...
11.03.2018

НАУЧИМСЯ ЭКОНОМИТЬ В БЫТУ

 
Подробнее...

inetpriem


<< < Ноябрь 2013 > >>
Пн Вт Ср Чт Пт Сб Вс
        1 2 3
4 5 6 7 8 9 10
11 12 13 14 15 16 17
18 19 20 21 22 23 24
25 26 27 28 29 30  

calc

banner-calc

.