17.09.2024

Медь удельное сопротивление: Удельное сопротивление меди – таблица

Содержание

Сопротивление медного кабеля | Полезные статьи

Несмотря на то, что медь – один из лучших проводников электричества, она обладает сопротивлением. Оно незначительно – поэтому, например, при прокладке трасс небольшой длины (например, в квартире) им можно пренебречь.

Однако при прокладке трасс большой длины сопротивление медного кабеля имеет решающее значение – поскольку никому не хочется получить на «выходе» значительно меньшее напряжение, чем на «входе».

Сопротивление жилы медного кабеля

Существует три способа узнать сопротивление жилы медного кабеля – получить его из таблицы, рассчитать или же измерить специальным прибором (омметром). Первый вариант наиболее прост, но при этом не слишком точен. Таблицы, в которых указывается номинальное электросопротивление токоведущих жил медного кабеля в расчёт на 1 км длины, приведены в ГОСТ 22483-2012.

Дело в том, что табличные величины сопротивления указываются для кабелей определённого сечения и с определённым составом проводника. На практике же выясняется, что состав медного сплава может отличаться от нормативов. Особенно если речь заходит о некачественных, бюджетных кабелях.

Второй способ получения сопротивления медного кабеля – расчёт по формуле. Потребуется указать следующие значения:

  • Удельное сопротивление меди ρ, которое варьируется в зависимости от процентного содержания меди в сплаве от 0,01724 до 0,018 Ом×мм²/м;
  • Длину медного кабеля в метрах;
  • Сечение кабеля S в мм².

Далее используется следующая формула:

Полученное сопротивление R– это сопротивление всего проводника на произвольную длину. Так что этой формулой удобно пользоваться при расчётах как длинных, так и коротких линий.

Якорь И третий вариант – это измерить сопротивление проводника самостоятельно. Он наиболее точен, поскольку показывает фактическое значение. Тем не менее, главный минус этого способа заключается в трудоёмкости.

Измерение электросопротивления токоведущих жил производится одинарным, двойным или одинарно-двойным мостом с постоянным напряжением. Конкретная методика и принципиальные схемы описываются ГОСТ 7229-76.

Сопротивление изоляции кабелей медных

Измерение сопротивления изоляции кабелей с медными токоведущими жилами является частью испытаний кабельных линий. Эти процедуры проводятся при положительной температуре окружающего воздуха.

Дело в том, что в изоляции кабеля могут находиться микрокапли влаги. При отрицательных температурах они замерзают. Кристаллы льда, в свою очередь, являются диэлектриками, то есть ток они не проводят. И, как следствие, измерения медных кабелей при отрицательной температуре не выявят наличия вкраплений влаги в изоляции.

Для измерения сопротивления изоляции используется мегаомметр. Нормативы подразумевают, что его погрешность должна составлять не более 0,2%. Так, одним из допускаемых соответствующим госреестром устройств является SonelMIC-2500 – гигаомметр, предназначенный для измерения сопротивления изоляции, степени её увлажнённости и старения.

В общем виде процедура измерения сопротивления изоляции медных кабелей проводится следующим образом:

  1. С кабеля снимается напряжение. Его отсутствие проверяется специальным устройством;
  2. Устанавливается испытательное заземление на стороне, где проводится измерение;
  3. Жилы с другой стороны разводятся на значительное расстояние друг от друга;
  4. На каждую жилу подаётся напряжение. На кабели с изоляцией из бумаги, ПВХ, полимеров и резины подаётся постоянное напряжение, а на кабели с изоляцией из сшитого полиэтилена – переменное;
  5. В течение одной минуты замеряется сопротивление изоляции.

Измерение проходит следующим образом:

  • Предположим, измеряется сопротивление изоляции жилы «А»;
  • Тогда испытательное заземление подключается к жилам «В» и «С»;
  • Один конец мегаомметра подключается к жиле «А», второй – к заземляющему устройству («земле»).

Стоит отметить, что конкретная методика измерения зависит от типа кабеля – низковольтный силовой, высоковольтный силовой, контрольный. Вышеприведённый алгоритм имеет общий характер.

Удельное сопротивление электротехнических материалов зависит. Удельное сопротивление меди и алюминия для расчетов

Электрический ток возникает в результате замыкания цепи с разностью потенциалов на зажимах. Силы поля воздействуют на свободные электроны и они перемещаются по проводнику. В процессе этого путешествия, электроны встречаются с атомами и передают им часть своей накопившейся энергии. В результате этого их скорость уменьшается. Но, из-за воздействия электрического поля, она снова набирает обороты. Таким образом, электроны постоянно испытывают на себе сопротивление, именно поэтому электрический ток нагревается.

Свойство вещества, превращать электроэнергию в тепло во время воздействия тока, и является электрическим сопротивлением и обозначается, как R, его измерительной единицей является Ом. Величина сопротивления зависит, главным образом от способности различных материалов проводить ток.
Впервые, о сопротивляемости заявил немецкий исследователь Г. Ом.

Для того, чтобы узнать зависимость силы тока от сопротивления, известный физик провел множество экспериментов. Для опытов он использовал различные проводники и получал различные показатели.
Первое, что определил Г. Ом — это то, что удельное сопротивление зависит от длинны проводника. То есть, если увеличивалась длинна проводника, сопротивление тоже увеличивалось. В результате, эта связь была определена, как прямо пропорциональная.

Вторая зависимость — это площадь поперечного сечения. Её можно было определить путем поперечного среза проводника. Площадь той фигуры, что образовалась на срезе и есть площадь поперечного сечения. Здесь связь получилась обратно пропорциональная. То есть чем больше была площадь поперечного сечения, тем меньше становилось сопротивление проводника.

И третья, важная величина, от которой зависит сопротивление, это материал. В результате того, что Ом использовал в опытах различные материалы, он обнаружил различные свойства сопротивляемости. Все эти опыты и показатели были сведены в таблицу из которой видно, различное значение удельной сопротивляемости у различных веществ.

Известно, что самые лучшие проводники — металлы. А какие из металлов лучшие проводники? В таблице показано, что наименьшей сопротивляемостью обладают медь и серебро. Медь используется чаще из-за меньшей стоимости, а серебро применяют в наиболее важных и ответственных приборах.

Вещества с высоким удельным сопротивлением в таблице, плохо проводят электрический ток, а значит могут быть прекрасными изоляционными материалами. Вещества обладающие этим свойством в наибольшей степени, это фарфор и эбонит.

Вообще, удельное электрическое сопротивление является очень важным фактором, ведь, определив его показатель, мы можем узнать из какого вещества сделан проводник. Для этого необходимо измерить площадь сечения, узнать силу тока с помощью вольтметра и амперметра, а также измерить напряжение. Таким образом мы узнаем значение удельного сопротивления и, с помощью таблицы легко выйдем на вещество. Получается, что удельное сопротивление — это в роде отпечатков пальцев вещества. Кроме этого, удельное сопротивление важно при планировании длинных электрических цепей: нам необходимо знать этот показатель, чтобы соблюдать баланс между длинной и площадью.

Есть формула, определяющая, что сопротивление равно 1 ОМ, если при напряжении 1В, его сила тока равняется 1А. То есть, сопротивление единичной площади и единичной длинны, сделанного из определенного вещества и есть удельное сопротивление.

Надо отметить также, что показатель удельного сопротивления напрямую зависит от частоты вещества. То есть от того имеет ли он примеси. Та, добавление всего одного процента марганца увеличивает сопротивляемость самого проводящего вещества — меди, в три раза.

Эта таблица демонстрирует величину удельного электрического сопротивления некоторых веществ.

Материалы с высокой проводимостью

Медь

Как мы уже говорили медь чаще всего применяется в качестве проводника. Это объясняется не только её низкой сопротивляемостью. Медь имеет такие преимущества, как высокая прочность, стойкость к коррозии, легкость в использовании и хорошая обрабатываемость. Хорошими марками меди считается М0 и М1. В них количество примесей не превышает 0,1%.

Высокая стоимость металла и его преобладающая в последнее время дефицитность побуждает производителей применять в качестве проводника алюминий. Также, используются сплавы меди с различными металлами.
Алюминий

Этот металл значительно легче меди, но алюминий обладает большими значениями теплоемкости и температуры плавления. В связи с этим для того, что довести его до расплавленного состояния требуется больше энергии, чем меди. Тем не менее нужно учитывать факт дефицитности меди.
В производстве электротехнических изделий применяется, как правило, алюминий марки А1. Он содержит не более 0,5% примесей. А металл наивысшей частоты — это алюминий марки АВ0000.
Железо

Дешевизна и доступность железа омрачается его высокой удельной сопротивляемостью. Кроме того, она быстро подвергается коррозии. По этой причине стальные проводники часто покрывают цинком. Широко используется так называемый биметалл — это сталь покрытая для защиты медью.
Натрий

Натрий, тоже доступный и перспективный материал, но его сопротивляемость почти в три раза больше меди. Кроме того, металлический натрий обладает высокой химической активностью, что обязывает покрывать такой проводник герметичной защитой. Она же должна защищать проводник от механических повреждений, так как натрий очень мягкий и достаточно непрочный материал.

Сверхпроводимость

В таблице ниже, указано удельное сопротивление веществ при температуре 20 градусов. Указание температуры неслучайно, ведь удельное сопротивление напрямую зависит от этого показателя. Это объясняется тем, что при нагревании, повышается и скорость атомов, а значит вероятность встречи их с электронами тоже увеличится.

Интересно, что происходит с сопротивляемостью в условиях охлаждения. Впервые поведение атомов при очень низких температурах заметил Г. Камерлинг-Оннес в 1911 году. Он охладил ртутную проволоку до 4К и обнаружил падение её сопротивляемости до нуля. Изменение показателя удельной сопротивляемости у некоторых сплавов и металлов в условиях низкой температуры, физик назвал сверхпроводимостью.

Сверхпроводники переходят в состояние сверхпроводимости при охлаждении, и, при этом их оптические и структурные характеристики не меняются. Главное открытие состоит в том, что электрические и магнитные свойства металлов в сверхпроводящем состоянии сильно отличаются от их же свойств в обычном состоянии, а также от свойств других металлов, которые при понижении температуры не могут переходить в это состояние.
Применение сверхпроводников осуществляется, главным образом, в получении сверхсильного магнитного поля, сила которого достигает 107 А/м. Также разрабатываются системы сверхпроводящих линий электропередач.

Похожие материалы.

Поэтому важно знать параметры всех используемых элементов и материалов. И не только электрические, но и механические. И иметь в распоряжении какие-то удобные справочные материалы, позволяющие сравнивать характеристики разных материалов и выбирать для проектирования и работы именно то, что будет оптимальным в конкретной ситуации.
В линиях передачи энергии, где задачей ставится наиболее продуктивно, то есть с высоким КПД, довести энергию до потребителя, учитывается как экономика потерь, так и механика самих линий. От механики — то есть устройства и расположения проводников, изоляторов, опор, повышающих/понижающих трансформаторов, веса и прочности всех конструкций, включая провода, растянутые на больших расстояниях, а также от выбранных для выполнения каждого элемента конструкции материалов, зависит и конечная экономическая эффективность линии, ее работы и затрат на эксплуатацию. Кроме того, в линиях, передающих электроэнергию, более высоки требования на обеспечение безопасности как самих линий, так и всего окружающего, где они проходят. А это добавляет затрат как на обеспечение проводки электроэнергии, так и на дополнительный запас прочности всех конструкций.

Для сравнения данные обычно приводятся к единому, сопоставимому виду. Зачастую к таким характеристикам добавляется эпитет «удельный», а сами значения рассматриваются на неких унифицированных по физическим параметрам эталонах. Например, удельное электрическое сопротивление — это сопротивление (ом) проводника, выполненного из какого-то металла (меди, алюминия, стали, вольфрама, золота), имеющего единичную длину и единичное сечение в используемой системе единиц измерения (обычно в СИ). Кроме того, оговаривается температура, так как при нагревании сопротивление проводников может вести себя по-разному. За основу берутся нормальные средние условия эксплуатации — при 20 градусах Цельсия. А там, где важны свойства при изменении параметров среды (температуры, давления), вводятся коэффициенты и составляются дополнительные таблицы и графики зависимостей.

Виды удельного сопротивления

Так как сопротивление бывает:

  • активное — или омическое, резистивное, — происходящее от затрат электроэнергии на нагревание проводника (металла) при прохождении в нем электрического тока, и
  • реактивное — емкостное или индуктивное, — которое происходит от неизбежных потерь на создание всякими изменениями тока, проходящего через проводник электрических полей, то и удельное сопротивление проводника бывает двух разновидностей:
  1. Удельное электрическое сопротивление постоянному току (имеющее резистивный характер) и
  2. Удельное электрическое сопротивление переменному току (имеющее реактивный характер).

Здесь удельное сопротивление 2 типа является величиной комплексной, оно состоит из двух компонент ТП — активной и реактивной, так как резистивное сопротивление существует всегда при прохождении тока, независимо от его характера, а реактивное бывает только при любом изменении тока в цепях. В цепях постоянного тока реактивное сопротивление возникает только при переходных процессах, которые связаны с включением тока (изменение тока от 0 до номинала) или выключением (перепад от номинала до 0). И их учитывают обычно только при проектировании защиты от перегрузок.

В цепях же переменного тока явления, связанные с реактивными сопротивлениями, гораздо более многообразны. Они зависят не только от собственно прохождения тока через некоторое сечение, но и от формы проводника, причем зависимость не является линейной.

Дело в том, что переменный ток наводит электрическое поле как вокруг проводника, по которому протекает, так и в самом проводнике. И от этого поля возникают вихревые токи, которые дают эффект «выталкивания» собственно основного движения зарядов, из глубины всего сечения проводника на его поверхность, так называемый «скин-эффект» (от skin — кожа). Получается, вихревые токи как бы «воруют» у проводника его сечение. Ток течет в некотором слое, близком к поверхности, остальная толщина проводника остается неиспользуемой, она не уменьшает его сопротивление, и увеличивать толщину проводников просто нет смысла. Особенно на больших частотах. Поэтому для переменного тока измеряют сопротивления в таких сечениях проводников, где все его сечение можно считать приповерхностным. Такой провод называется тонким, его толщина равна удвоенной глубине этого поверхностного слоя, куда вихревые токи и вытесняют текущий в проводнике полезный основной ток.

Разумеется, уменьшением толщины круглых в сечении проводов не исчерпывается эффективное проведение переменного тока. Проводник можно утончить, но при этом сделать его плоским в виде ленты, тогда сечение будет выше, чем у круглого провода, соответственно, и сопротивление ниже. Кроме того, простое увеличение площади поверхности даст эффект увеличения эффективного сечения. Того же можно добиться, используя многожильный провод вместо одножильного, к тому же, многожилка по гибкости превосходит одножилку, что часто тоже бывает ценно. С другой стороны, принимая во внимание скин-эффект в проводах, можно сделать провода композитными, выполнив сердцевину из металла, обладающего хорошими прочностными характеристиками, например, стали, но невысокими электрическими. При этом поверх стали делается алюминиевая оплетка, имеющая меньшее удельное сопротивление.

Кроме скин-эффекта на протекание переменного тока в проводниках влияет возбуждение вихревых токов в окружающих проводниках. Такие токи называются токами наводки, и они наводятся как в металлах, не играющих роль проводки (несущие элементы конструкций), так и в проводах всего проводящего комплекса — играющих роль проводов других фаз, нулевых, заземляющих.

Все перечисленные явления встречаются во всех конструкциях, связанных с электричеством, это еще более усиливает важность иметь в своем распоряжении сводные справочные сведения по самым разным материалам.

Удельное сопротивление для проводников измеряется очень чувствительными и точными приборами, так как для проводки и выбираются металлы, имеющие самое низкое сопротивление -порядка ом *10 -6 на метр длины и кв. мм. сечения. Для измерения же удельного сопротивления изоляции нужны приборы, наоборот, имеющие диапазоны очень больших значений сопротивления — обычно это мегомы. Понятно, что проводники обязаны хорошо проводить, а изоляторы хорошо изолировать.

Таблица

Таблица удельных сопротивлений проводников (металлов и сплавов)

Материал провод-ника

Состав (для сплавов)

Удельное сопротивление ρ
мом × мм 2 / м

медь, цинк, олово, никель, свинец, марганец, железо и др.

Алюминий

Вольфрам

Молибден

медь, олово, алюминий, кремний, бериллий, свинец и др. (кроме цинка)

железо, углерод

медь, никель, цинк

Манганин

медь, никель, марганец

Константан

медь, никель, алюминий

никель, хром, железо, марганец

железо, хром, алюминий, кремний, марганец

Железо как проводник в электротехнике

Железо — самый распространенный в природе и технике металл (после водорода, который металлом тоже является). Он и самый дешевый, и имеет прекрасные прочностные характеристики, поэтому применяется повсюду как основа прочности различных конструкций.

В электротехнике в качестве проводника железо используется в виде стальных гибких проводов там, где нужна физическая прочность и гибкость, а нужное сопротивление может быть достигнуто за счет соответствующего сечения.

Имея таблицу удельных сопротивлений различных металлов и сплавов, можно посчитать сечения проводов, выполненных из разных проводников.

В качестве примера попробуем найти электрически эквивалентное сечение проводников из разных материалов: проволоки медной, вольфрамовой, никелиновой и железной. За исходную возьмем проволоку алюминиевую сечением 2,5 мм.

Нам нужно, чтобы на длине в 1 м сопротивление провода из всех этих металлов равнялось сопротивлению исходной. Сопротивление алюминия на 1 м длины и 2,5 мм сечения будет равно

Где R
– сопротивление, ρ
– удельное сопротивление металла из таблицы, S
– площадь сечения, L
– длина.

Подставив исходные значения, получим сопротивление метрового куска провода алюминия в омах.

После этого разрешим формулу относительно S

Будем подставлять значения из таблицы и получать площади сечений для разных металлов.

Так как удельное сопротивление в таблице измерено на проводе длиной в 1 м, в микроомах на 1 мм 2 сечения, то у нас и получилось оно в микроомах. Чтобы получить его в омах, нужно умножить значение на 10 -6 . Но число ом с 6 нулями после запятой нам получать совсем не обязательно, так как конечный результат все равно находим в мм 2 .

Как видим, сопротивление железа достаточно большое, проволока получается толстая.

Но существуют материалы, у которых оно еще больше, например, никелин или константан.

Электрическое сопротивление
физическая величина, которая показывает, какое препятствие создается току при его прохождении по проводнику
. Единицами измерения служат Омы, в честь Георга Ома. В своем законе он вывел формулу для нахождения сопротивления, которая приведена ниже.

Рассмотрим сопротивление проводников на примере металлов. Металлы имеют внутреннее строение в виде кристаллической решетки. Эта решетка имеет строгую упорядоченность, а её узлами являются положительно заряженные ионы. Носителями заряда в металле выступают “свободные” электроны, которые не принадлежат определенному атому, а хаотично перемещаются между узлами решетки. Из квантовой физики известно, что движение электронов в металле это распространение электромагнитной волны в твердом теле. То есть электрон в проводнике движется со скоростью света (практически), и доказано, что он проявляет свойства не только как частица, но еще и как волна. А сопротивление металла возникает в результате рассеяния электромагнитных волн (то есть электронов) на тепловых колебаниях решетки и её дефектах. При столкновении электронов с узлами кристаллической решетки часть энергии передается узлам, вследствие чего выделяется энергия. Эту энергию можно вычислить при постоянном токе , благодаря закону Джоуля-Ленца – Q=I 2 Rt. Как видите чем больше сопротивление, тем больше энергии выделяется.

Удельное сопротивление

Существует такое важное понятие как удельное сопротивление, это тоже самое сопротивление, только в единице длины. У каждого металла оно свое, например у меди оно равно 0,0175 Ом*мм2/м, у алюминия 0,0271 Ом*мм2/м. Это значит, брусок из меди длиной 1 м и площадью поперечного сечения 1 мм2 будет иметь сопротивление 0,0175 Ом, а такой же брусок, но из алюминия будет иметь сопротивление 0,0271 Ом. Выходит что электропроводность меди выше чем у алюминия. У каждого металла удельное сопротивление свое, а рассчитать сопротивление всего проводника можно по формуле

где p
– удельное сопротивление металла, l – длина проводника, s – площадь поперечного сечения.

Значения удельных сопротивлений приведены в таблице удельных сопротивлений металлов
(20°C)

Вещество

p
, Ом*мм 2 /2

α,10 -3 1/K

Алюминий

0. 0271

Вольфрам

0.055

Железо

0.098

Золото

0.023

Латунь

0.025-0.06

Манганин

0.42-0.48

0,002-0,05

Медь

0.0175

Никель

Константан

0.44-0.52

0.02

Нихром

0. 15

Серебро

0.016

Цинк

0.059

Кроме удельного сопротивления в таблице есть значения ТКС, об этом коэффициенте чуть позже.

Зависимость удельного сопротивления от деформаций

При холодной обработке металлов давлением, металл испытывает пластическую деформацию. При пластической деформации кристаллическая решетка искажается, количество дефектов становится больше. С увеличением дефектов кристаллической решетки, сопротивление течению электронов по проводнику растет, следовательно, удельное сопротивление металла увеличивается. К примеру, проволоку изготавливают методом протяжки, это значит, что металл испытывает пластическую деформацию, в результате чего, удельное сопротивление растет. На практике для уменьшения сопротивления применяют рекристаллизационный отжиг, это сложный технологический процесс, после которого кристаллическая решетка как бы, “расправляется” и количество дефектов уменьшается, следовательно, и сопротивление металла тоже.

При растяжении или сжатии, металл испытывает упругую деформацию. При упругой деформации вызванной растяжением, амплитуды тепловых колебаний узлов кристаллической решетки увеличиваются, следовательно, электроны испытывают большие затруднения, и в связи с этим, увеличивается удельное сопротивление. При упругой деформации вызванной сжатием, амплитуды тепловых колебаний узлов уменьшаются, следовательно, электронам проще двигаться, и удельное сопротивление уменьшается.

Влияние температуры на удельное сопротивление

Как мы уже выяснили выше, причиной сопротивления в металле являются узлы кристаллической решетки и их колебания. Так вот, при увеличении температуры, тепловые колебания узлов увеличиваются, а значит, удельное сопротивление также увеличивается. Существует такая величина как температурный коэффициент сопротивления
(ТКС), который показывает насколько увеличивается, или уменьшается удельное сопротивление металла при нагреве или охлаждении. Например, температурный коэффициент меди при 20 градусах по цельсию равен 4. 1
· 10 − 3 1/градус. Это означает что при нагреве, к примеру, медной проволоки на 1 градус цельсия, её удельное сопротивление увеличится на 4.1
· 10 − 3 Ом. Удельное сопротивление при изменении температуры можно вычислить по формуле

где r это удельное сопротивление после нагрева, r 0 – удельное сопротивление до нагрева, a – температурный коэффициент сопротивления, t 2 – температура до нагрева, t 1 — температура после нагрева.

Подставив наши значения, мы получим: r=0,0175*(1+0.0041*(154-20))=0,0271 Ом*мм 2 /м. Как видите наш брусок из меди длиной 1 м и площадью поперечного сечения 1 мм 2 , после нагрева до 154 градусов, имел бы сопротивление, как у такого же бруска, только из алюминия и при температуре равной 20 градусов цельсия.

Свойство изменения сопротивления при изменении температуры, используется в термометрах сопротивления. Эти приборы могут измерять температуру основываясь на показаниях сопротивления. У термометров сопротивления высокая точность измерений, но малые диапазоны температур.

На практике, свойства проводников препятствовать прохождению
тока используются очень широко. Примером может служить лампа накаливания, где нить из вольфрама, нагревается за счет высокого сопротивления металла, большой длины и узкого сечения. Или любой нагревательный прибор, где спираль разогревается благодаря высокому сопротивлению. В электротехнике, элемент главным свойством которого является сопротивление, называется – резистор . Резистор применяется практически в любой электрической схеме.

На практике нередко приходится рассчитывать сопротивление различных проводов. Это можно сделать с помощью формул или по данным, приведенным в табл. 1.

Влияние материала проводника учитывается с помощью удельного сопротивления, обозначаемого греческой буквой? и представляющего собой длиной 1 м и площадью поперечного сечения 1 мм2. Наименьшим удельным сопротивлением? = 0,016 Ом мм2/м обладает серебро. Приведем среднее значение удельного соп
ротивления некоторых проводников:

Серебро — 0,016,
Свинец —
0,21,
Медь —
0,017,
Никелин —
0,42,
Алюминий —
0,026,
Манганин —
0,42,
Вольфрам —
0,055,
Константан —
0,5,
Цинк —
0,06,
Ртуть —
0,96,
Латунь —
0,07,
Нихром —
1,05,
Сталь —
0,1,
Фехраль —
1,2,
Бронза фосфористая —
0,11,
Хромаль —
1,45.

При различных количествах примесей и при разном соотношении компонентов, входящих в состав реостатных сплавов, удельное сопротивление может несколько измениться.

Сопротивление рассчитывается по формуле:

где R — сопротивление, Ом; удельное сопротивление, (Ом мм2)/м; l — длина провода, м; s — площадь сечения провода, мм2.

Если известен диаметр провода d, то площадь его сечения равна:

Измерить диаметр провода лучше всего с помощью микрометра, но если его нет, то следует намотать плотно 10 или 20 витков провода на карандаш и измерить линейкой длину намотки. Разделив длину намотки на число витков, найдем диаметр провода.

Для определения длины провода известного диаметра из данного материала, необходимой для получения нужного сопротивления, пользуются формулой

Таблица 1.

Примечание.
1. Данные для проводов, не указанных в таблице, надо брать как некоторые средние значения. Например, для провода из никелина диаметром 0,18 мм можно приблизительно считать, что площадь сечения равна 0,025 мм2, сопротивление одного метра 18 Ом, а допустимый ток равен 0,075 А.

2. Для другого значения плотности тока данные последнего столбца нужно соответственно изменить; например, при плотности тока, равной 6 А/мм2, их следует увеличить в два раза.

Пример 1.
Найти сопротивление 30 м медного провода диаметром 0,1 мм.

Решение.
Определяем по табл. 1 сопротивление 1 м медного провода, оно равно 2,2 Ом. Следовательно, сопротивление 30 м провода будет R = 30 2,2 = 66 Ом.

Расчет по формулам дает следующие результаты: площадь сечения провода: s= 0,78 0,12 = 0,0078 мм2. Так как удельное сопротивление меди равно 0,017 (Ом мм2)/м, то получим R = 0,017 30/0,0078 = 65,50м.

Пример 2.
Сколько никелинового провода диаметром 0,5 мм нужно для изготовления реостата, имеющего сопротивление 40 Ом?

Решение.
По табл. 1 определяем сопротивление 1 м этого провода: R= 2,12 Ом: Поэтому, чтобы изготовить реостат сопротивлением 40 Ом, нужен провод, длина которого l= 40/2,12=18,9 м.

Проделаем тот же расчет по формулам. Находим площадь сечения провода s= 0,78 0,52 = 0,195 мм2. А длина провода будет l = 0,195 40/0,42 = 18,6 м.

Вещества и материалы, способные проводить электрический ток, называют проводниками. Остальные относят к диэлектрикам. Но чистых диэлектриков не бывает, все они тоже проводят ток, но его величина очень мала.

Но и проводники по-разному проводят ток. Согласно формуле Георга Ома, ток, протекающий через проводник, линейно пропорционален величине приложенного к нему напряжения, и обратно пропорционален величине, называемой сопротивлением.

Единицу измерения сопротивления назвали Омом в честь ученого, открывшего эту зависимость. Но выяснилось, что проводники, изготовленные из разных материалов и имеющие одинаковые геометрические размеры, обладают разным электрическим сопротивлением. Чтобы определить сопротивление проводника известного длины и сечения, ввели понятие удельного сопротивления — коэффициента, зависящего от материала.

В итоге сопротивление проводника известной длины и сечения будет равно

Удельное сопротивление применимо не только к твердым материалам, но и к жидкостям. Но его величина зависит еще и от примесей или других компонентов в исходном материале. Чистая вода не проводит электрический ток, являясь диэлектриком. Но в природе дистиллированной воды не бывает, в ней всегда встречаются соли, бактерии и другие примеси. Этот коктейль – проводник электрического тока, обладающий удельным сопротивлением.

Внедряя в металлы различные добавки, получают новые материалы – сплавы
, удельное сопротивление которых отличается от того, что было у исходного материала, даже если добавка в него в процентном соотношении незначительна.


Зависимость удельного сопротивления от температуры

Удельные сопротивления материалов приводятся в справочниках для температуры, близкой к комнатной (20 °С). При увеличении температуры увеличивается сопротивление материала. Почему так происходит?

Электрического тока внутри материала проводят свободные электроны
. Они под действием электрического поля отрываются от своих атомов и перемещаются между ними в направлении, заданным этим полем. Атомы вещества образуют кристаллическую решетку, между узлами которой и движется поток электронов, называемый еще «электронным газом». Под действием температуры узлы решетки (атомы) колеблются. Сами электроны тоже движутся не по прямой, а по запутанной траектории. При этом они часто сталкиваются с атомами, изменяя траекторию движения. В некоторые моменты времени электроны могут двигаться в сторону, обратную направлению электрического тока.

С увеличением температуры амплитуда колебаний атомов увеличивается. Соударение электронов с ними происходит чаще, движение потока электронов замедляется. Физически это выражается в увеличении удельного сопротивления.

Примером использования зависимости удельного сопротивления от температуры служит работа лампы накаливания. Вольфрамовая спираль, из которой сделана нить накала, в момент включения имеет малое удельное сопротивление. Бросок тока в момент включения быстро ее разогревает, удельное сопротивление увеличивается, а ток – уменьшается, становясь номинальным.

Тот же процесс происходит и с нагревательными элементами из нихрома. Поэтому и рассчитать их рабочий режим, определив длину нихромовой проволоки известного сечения для создания требуемого сопротивления, не получается. Для расчетов нужно удельное сопротивление нагретой проволоки, а в справочниках приведены значения для комнатной температуры. Поэтому итоговую длину спирали из нихрома подгоняют экспериментально. Расчетами же определяют примерную длину, а при подгонке понемногу укорачивают нить участок за участком.

Температурный коэффициент сопротивления

Но не во всех устройствах наличие зависимости удельного сопротивления проводников от температуры приносит пользу. В измерительной технике изменение сопротивления элементов схемы приводит к появлению погрешности.

Для количественного определения зависимости сопротивления материала от температуры введено понятие температурного коэффициента сопротивления (ТКС)
. Он показывает, насколько изменяется сопротивление материала при изменении температуры на 1°С.

Для изготовления электронных компонентов – резисторов, используемых в схемах измерительной аппаратуры, применяются материалы с низким ТКС. Они стоят дороже, но зато параметры устройства не изменяются в широком диапазоне температур окружающей среды.

Но свойства материалов с высоким ТКС тоже используются. Работа некоторых датчиков температуры основана на изменении сопротивления материала, из которого изготовлен измерительный элемент. Для этого нужно поддерживать стабильное напряжение питания и измерять ток, проходящий через элемент. Откалибровав шкалу прибора, измеряющего ток, по образцовому термометру, получают электронный измеритель температуры. Этот принцип используется не только для измерений, но и для датчиков перегрева. Отключающих устройство при возникновении ненормальных режимов работы, приводящих к перегреву обмоток трансформаторов или силовых полупроводниковых элементов.

Используются в электротехнике и элементы, изменяющие свое сопротивление не от температуры окружающей среды, а от тока через них – терморезисторы
. Пример их использования – системы размагничивания электронно-лучевых трубок телевизоров и мониторов. При подаче напряжения сопротивление резистора минимально, ток через него проходит в катушку размагничивания. Но этот же ток нагревает материал терморезистора. Его сопротивление увеличивается, уменьшая ток и напряжение на катушке. И так – до полного его исчезновения. В итоге на катушку подается синусоидальное напряжение с плавно уменьшающейся амплитудой, создающее в ее пространстве такое же магнитное поле. Результат – к моменту разогрева нити накала трубки она уже размагничена. А схема управления остается в запертом состоянии, пока аппарат не выключат. Тогда терморезисторы остынут и будут готовы к работе снова.

Явление сверхпроводимости

А что будет, если температуру материала уменьшать? Удельное сопротивление будет уменьшаться. Есть предел, до которого уменьшается температура, называемый абсолютным нулем
. Это —273°С
. Ниже этого предела температур не бывает. При этом значении удельное сопротивление любого проводника равно нулю.

При абсолютном нуле атомы кристаллической решетки перестают колебаться. В итоге электронное облако движется между узлами решетки, не соударяясь с ними. Сопротивление материала становится равным нулю, что открывает возможности для получения бесконечно больших токов в проводниках небольших сечений.

Явление сверхпроводимости открывает новые горизонты для развития электротехники. Но пока еще существуют сложности, связанные с получением в бытовых условиях сверхнизких температур, необходимых для создания этого эффекта. Когда проблемы будут решены, электротехника перейдет на новый уровень развития.

Примеры использования значений удельного сопротивления при расчетах

Мы уже познакомились с принципами расчета длины нихромовой проволоки для изготовления нагревательного элемента. Но есть и другие ситуации, когда необходимы знания удельных сопротивлений материалов.

Для расчета контуров заземляющих устройств
используются коэффициенты, соответствующие типовым грунтам. Если же тип грунта в месте устройства контура заземления неизвестен, то для правильных расчетов предварительно измеряют его удельное сопротивление. Так результаты расчетов оказываются точнее, что исключает подгонку параметров контура при изготовлении: добавление числа электродов, приводящее к увеличению геометрических размеров заземляющего устройства.

Удельное сопротивление материалов, из которых изготовлены кабельные линии и шинопроводы, используется для расчетов их активного сопротивления. В дальнейшем при номинальном токе нагрузки с его помощью рассчитывается величина напряжения в конце линии
. Если его величина окажется недостаточной, то заблаговременно увеличивают сечения токопроводов.

Расчет удельного сопротивления металлов, в частности, меди. Сопротивление меди в зависимости от температуры

Часто в электротехнической литературе встречается понятие «удельное меди». И невольно задаешься вопросом, а что же это такое?

Понятие «сопротивление» для любого проводника непрерывно связано с пониманием процесса протекания по нему электрического тока. Так как речь в статье пойдет о сопротивлении меди, то и рассматривать нам следует ее свойства и свойства металлов.

Когда речь идет о металлах, то невольно вспоминаешь, что все они имеют определенное строение — кристаллическую решетку. Атомы находятся в узлах такой решетки и совершают относительно них Расстояния и местоположение этих узлов зависит от сил взаимодействия атомов друг с другом (отталкивания и притяжения), и различны для разных металлов. А вокруг атомов по своим орбитам вращаются электроны. Их удерживает на орбите тоже равновесие сил. Только это к атому и центробежная. Представили себе картинку? Можно назвать ее, в некотором плане, статической.

А теперь добавим динамики. На кусок меди начинает действовать электрическое поле. Что же происходит внутри проводника? Электроны, сорванные силой электрического поля со своих орбит, устремляются к его положительному полюсу. Вот Вам и направленное движение электронов, а вернее, электрический ток. Но на пути своего движения они натыкаются на атомы в узлах кристаллической решетки и электроны, еще продолжающие вращаться вокруг своих атомов. При этом они теряют свою энергию и изменяют направление движения. Теперь становится немного понятнее смысл фразы «сопротивление проводника»? Это атомы решетки и вращающиеся вокруг них электроны оказывают сопротивление направленному движению электронов, сорванных электрическим полем со своих орбит. Но понятие сопротивление проводника можно назвать общей характеристикой. Более индивидуально характеризует каждый проводник удельное сопротивление. Меди в том числе. Эта характеристика индивидуальна для каждого металла, поскольку напрямую зависит только от формы и размеров кристаллической решетки и, в некоторой мере, от температуры. При повышении температуры проводника атомы совершают более интенсивное колебание в узлах решетки. А электроны вращаются вокруг узлов с большей скоростью и на орбитах большего радиуса. И, естественно, что свободные электроны при движении встречают и большее сопротивление. Такова физика процесса.

Для нужд электротехнической сферы налажено широкое производство таких металлов, как алюминий и медь, удельное сопротивление которых достаточно мало. Из этих металлов изготавливают кабели и различного типа провода, которые широко используются в строительстве, для производства бытовых приборов, изготовления шин, обмоток трансформаторов и других электротехнических изделий.

Как нам известно из закона Ома, ток на участке цепи находится в следующей зависимости: I=U/R
. Закон был выведен в результате серии экспериментов немецким физиком Георгом Омом в XIX веке. Он заметил закономерность: сила тока на каком-либо участке цепи прямо зависит от напряжения, которое к этому участку приложено, и обратно — от его сопротивления.


Позже было установлено, что сопротивление участка зависит от его геометрических характеристик следующим образом: R=ρl/S
,

где l- длина проводника, S — площадь его поперечного сечения, а ρ — некий коэффициент пропорциональности.

Таким образом, сопротивление определяется геометрией проводника, а также таким параметром, как удельное сопротивление (далее — у. с.) — так назвали этот коэффициент. Если взять два проводника с одинаковым сечением и длиной и поставить их в цепь по очереди, то, измеряя силу тока и сопротивление, можно увидеть, что в двух случаях эти показатели будут разными. Таким образом, удельное электрическое сопротивление
— это характеристика материала, из которого сделан проводник, а если быть еще более точным, то вещества.

Проводимость и сопротивление

У.с. показывает способность вещества препятствовать прохождению тока. Но в физике есть и обратная величина — проводимость. Она показывает способность проводить электрический ток. Выглядит она так:

σ=1/ρ, где ρ — это и есть удельное сопротивление вещества.

Если говорить о проводимости, то она определяется характеристиками носителей зарядов в этом веществе. Так, в металлах есть свободные электроны. На внешней оболочке их не больше трех, и атому выгоднее их «отдать», что и происходит при химических реакциях
с веществами из правой части таблицы Менделеева. В ситуации же, когда мы располагаем чистым металлом, он имеет кристаллическую структуру, в которой эти наружные электроны общие. Они-то и переносят заряд, если приложить к металлу электрическое поле.

В растворах носителями заряда являются ионы.

Если говорить о таких веществах, как кремний, то по своим свойствам он является полупроводником
и работает несколько по иному принципу, но об этом позже. А пока разберемся, чем же отличаются такие классы веществ, как:

  1. Проводники;
  2. Полупроводники;
  3. Диэлектрики.

Проводники и диэлектрики

Есть вещества, которые ток почти не проводят. Они называются диэлектриками. Такие вещества способны поляризоваться в электрическом поле, то есть их молекулы могут поворачиваться в этом поле в зависимости от того, как распределены в них электроны
. Но поскольку электроны эти не являются свободными, а служат для связи между атомами, ток они не проводят.

Проводимость диэлектриков почти нулевая, хотя идеальных среди них нет (это такая же абстракция, как абсолютно черное тело или идеальный газ).

Условной границей понятия «проводник» является ρ

Между этими двумя классами существуют вещества, называемые полупроводниками. Но выделение их в отдельную группу веществ связано не столько с их промежуточным состоянием в линейке «проводимость — сопротивление», сколько с особенностями этой проводимости в различных условиях.

Зависимость от факторов внешней среды

Проводимость — не совсем постоянная величина. Данные в таблицах, откуда берут ρ для расчетов, существуют для нормальных условий среды, то есть для температуры 20 градусов. В реальности для работы цепи сложно подобрать такие идеальные условия; фактически у.с. (а стало быть, и проводимость) зависят от следующих факторов:

  1. температура;
  2. давление;
  3. наличие магнитных полей;
  4. свет;
  5. агрегатное состояние.

Разные вещества имеют свой график изменения этого параметра в разных условиях. Так, ферромагнетики (железо и никель) увеличивают его при совпадении направления тока с направлением силовых линий магнитного поля. Что касается температуры, то зависимость здесь почти линейная (существует даже понятие температурного коэффициента сопротивления, и это тоже табличная величина). Но направление этой зависимости различно: у металлов оно повышается с повышением температуры, а у редкоземельных элементов и растворов электролитов увеличивается — и это в пределах одного агрегатного состояния.

У полупроводников зависимость от температуры не линейная, а гиперболическая и обратная: при повышении температуры их проводимость увеличивается. Это качественно отличает проводники от полупроводников. Вот так выглядит зависимость ρ от температуры у проводников:

Здесь представлены удельное сопротивление меди, платины и железа. Немного другой график у некоторых металлов, например, ртути — при понижении температуры до 4 К она теряет его почти полностью (такое явление называется сверхпроводимостью).

А для полупроводников эта зависимость будет примерно такая:

При переходе в жидкое состояние ρ металла увеличивается, а вот дальше все они ведут себя по-разному. Например, у расплавленного висмута оно ниже, чем при комнатной температуре, а у меди — в 10 раз выше нормального. Никель выходит из линейного графика еще при 400 градусах, после чего ρ падает.

Зато у вольфрама температурная зависимость настолько высока, что это становится причиной перегорания ламп накаливания. При включении ток нагревает спираль, и ее сопротивление увеличивается в несколько раз.

Также у. с. сплавов зависит от технологии их производства. Так, если мы имеем дело с простой механической смесью, то сопротивление такого вещества можно посчитать по среднему, а вот оно же у сплава замещения (это когда два и более элемента складываются в одну кристаллическую решетку) будет иным, как правило, куда большим. Например, нихром, из которого делают спирали для электроплиток, имеет такую цифру этого параметра, что этот проводник при включении в цепь греется до красноты (из-за чего, собственно, и используется).

Вот характеристика ρ углеродистых сталей:

Как видно, при приближении к температуре плавления оно стабилизируется.

Удельное сопротивление различных проводников

Как бы то ни было, а при расчетах используется ρ именно в нормальных условиях. Приведем таблицу, по которой можно сравнить эту характеристику у разных металлов:

Как видно из таблицы, лучший проводник — это серебро. И только его стоимость мешает массово применять его в производстве кабеля. У.с. алюминия тоже небольшое, но меньше, чем у золота. Из таблицы становится понятно, почему проводка в домах либо медная, либо алюминиевая.

В таблицу не включен никель, у которого, как мы уже сказали, немного необычный график зависимости у. с. от температуры. Удельное сопротивление никеля после повышения температуры до 400 градусов начинает не расти, а падать. Интересно он ведет себя и в других сплавах замещения. Вот так ведет себя сплав меди и никеля в зависимости от процентного соотношения того и другого:

А этот интересный график показывает сопротивление сплавов Цинк — магний:

В качестве материалов для изготовления реостатов используют высокоомные сплавы, вот их характеристики:

Это сложные сплавы, состоящие из железа, алюминия, хрома, марганца, никеля. -7 Ом · м.

Разница между у. с. различных проводников определяет и их применение. Так, медь и алюминий массово применяются при производстве кабеля, а золото и серебро — в качестве контактов в ряде радиотехнических изделий. Высокоомные проводники нашли свое место среди производителей электроприборов (точнее, они и создавались для этого).

Изменчивость этого параметра в зависимости от условий внешней среды легла в основу таких приборов, как датчики магнитного поля, терморезисторы, тензодатчики, фоторезисторы.

Каждое вещество способно проводить ток в разной степени, на эту величину влияет сопротивление материала. Обозначается удельное сопротивление меди, алюминия, стали и любого другого элемента буквой греческого алфавита ρ. Эта величина не зависит от таких характеристик проводника, как размеры, форма и физическое состояние, обычное же электросопротивление учитывает эти параметры. Измеряется удельное сопротивление в Омах, умноженных на мм² и разделенных на метр.


Категории и их описание

Любой материал способен проявлять два типа сопротивления в зависимости от подаваемого на него электричества. Ток бывает переменным или постоянным, что значительно влияет на технические показатели вещества. Так, существуют такие сопротивления:

  1. Омическое. Проявляется под воздействием постоянного тока. Характеризует трение, которое создается движением электрически заряженных частиц в проводнике.
  2. Активное. Определяется по такому же принципу, но создается уже под действием переменного тока.

В связи с этим определений удельной величины тоже два. Для постоянного тока она равна сопротивлению, которое оказывает единица длины проводящего материала единичной фиксированной площади сечения. Потенциальное электрополе воздействует на все проводники, а также полупроводники и растворы, способные проводить ионы. Эта величина определяет проводящие свойства самого материала. Форма проводника и его размеры не учитываются, поэтому ее можно назвать базовой в электротехнике и материаловедении.

При условии прохождения переменного тока удельная величина рассчитывается с учетом толщины проводящего материала. Здесь уже происходит воздействие не только потенциального, но и вихревого тока, кроме того, принимается во внимание частота электрических полей. Удельное сопротивление этого типа больше, чем при постоянном токе, поскольку здесь идет учет положительной величины сопротивления вихревому полю. Также эта величина зависит от формы и размеров самого проводника. Именно эти параметры и определяют характер вихревого движения заряженных частиц.

Переменный ток вызывает в проводниках определенные электромагнитные явления. Они очень важны для электротехнических характеристик проводящего материала:

  1. Скин-эффект характеризуется ослаблением электромагнитного поля тем больше, чем дальше оно проникает в среду проводника. Это явление также носит название поверхностного эффекта.
  2. Эффект близости снижает плотность тока благодаря близости соседних проводов и их влиянию.

Эти эффекты являются очень важными при расчете оптимальной толщины проводника, так как при использовании провода, у которого радиус больше глубины проникновения тока в материал, остальная его масса останется незадействованной, а следовательно, такой подход будет неэффективным. В соответствии с проведенными расчетами эффективный диаметр проводящего материала в некоторых ситуациях будет следующим:

  • для тока в 50 Гц — 2,8 мм;
  • 400 Гц — 1 мм;
  • 40 кГц — 0,1 мм.

Ввиду этого для высокочастотных токов активно применяется использование плоских многожильных кабелей, состоящих из множества тонких проводов.

Характеристики металлов

Удельные показатели металлических проводников содержатся в специальных таблицах. По этим данным можно производить необходимые дальнейшие расчеты. Пример такой таблицы удельных сопротивлений можно увидеть на изображении.

На таблице видно, что наибольшей проводимостью обладает серебро — это идеальный проводник среди всех существующих металлов и сплавов. Если рассчитать, сколько потребуется провода из этого материала для получения сопротивления в 1 Ом, то выйдет 62,5 м. Проволоки из железа для такой же величины понадобится целых 7,7 м.

Какими бы замечательными свойствами ни обладало серебро, оно является слишком дорогим материалом для массового использования в электросетях, поэтому широкое применение в быту и промышленности нашла медь. По величине удельного показателя она стоит на втором месте после серебра, а по распространенности и простоте добычи намного лучше его. Медь обладает и другими преимуществами, позволившими ей стать самым распространенным проводником. К ним относятся:

Для применения в электротехнике используют рафинированную медь, которая после плавки из сульфидной руды проходит процессы обжигания и дутья, а далее обязательно подвергается электролитической очистке. После такой обработки можно получить материал очень высокого качества (марки М1 и М0), который будет содержать от 0,1 до 0,05% примесей. Важным нюансом является присутствие кислорода в крайне малых количествах, так как он негативно влияет на механические характеристики меди.

Часто этот металл заменяют более дешевыми материалами — алюминием и железом, а также различными бронзами (сплавами с кремнием, бериллием, магнием, оловом, кадмием, хромом и фосфором). Такие составы обладают более высокой прочностью по сравнению с чистой медью, хотя и меньшей проводимостью.

Преимущества алюминия

Хоть алюминий обладает большим сопротивлением и более хрупок, его широкое использование объясняется тем, что он не настолько дефицитен, как медь, а следовательно, стоит дешевле. Удельное сопротивление алюминия составляет 0,028, а его низкая плотность обеспечивает ему вес в 3,5 раза меньше, чем медь.

Для электрических работ применяют очищенный алюминий марки А1, содержащий не более 0,5% примесей. Более высокую марку АВ00 используют для изготовления электролитических конденсаторов, электродов и алюминиевой фольги. Содержание примесей в этом алюминии составляет не более 0,03%. Существует и чистый металл АВ0000
, включающий не более 0,004% добавок. Имеют значение и сами примеси: никель, кремний и цинк незначительно влияют на проводимость алюминия, а содержание в этом металле меди, серебра и магния дает ощутимый эффект. Наиболее сильно уменьшают проводимость таллий и марганец.

Алюминий отличается хорошими антикоррозийными свойствами. При контакте с воздухом он покрывается тонкой пленкой окиси, которая и защищает его от дальнейшего разрушения. Для улучшения механических характеристик металл сплавляют с другими элементами.

Показатели стали и железа

Удельное сопротивление железа по сравнению с медью и алюминием имеет очень высокие показатели, однако благодаря доступности, прочности и устойчивости к деформациям материал широко используют в электротехническом производстве.

Хоть железо и сталь, удельное сопротивление которой еще выше, имеют существенные недостатки, изготовители проводникового материала нашли методы их компенсирования. В частности, низкую стойкость к коррозии преодолевают путем покрытия стальной проволоки цинком или медью.

Свойства натрия

Металлический натрий также очень перспективен в проводниковом производстве. По показателям сопротивления он значительно превышает медь, однако имеет плотность в 9 раз меньше, чем у неё. Это позволяет использовать материал в изготовлении сверхлёгких проводов.

Металлический натрий очень мягкий и совершенно неустойчив к любого рода деформационным воздействиям, что делает его использование проблемным — провод из этого металла должен быть покрыт очень прочной оболочкой с крайне малой гибкостью. Оболочка должна быть герметичной, так как натрий проявляет сильную химическую активность в самых нейтральных условиях. Он моментально окисляется на воздухе и демонстрирует бурную реакцию с водой, в том числе и с содержащейся в воздухе.

Еще одним плюсом использования натрия является его доступность. Его можно получить в процессе электролиза расплавленного хлористого натрия, которого в мире существует неограниченное количество. Другие металлы в этом плане явно проигрывают.

Чтобы рассчитать показатели конкретного проводника, необходимо произведение удельного числа и длины проволоки разделить на площадь ее сечения. В результате получится значение сопротивления в Омах. Например, чтобы определить, чему равно сопротивление 200 м проволоки из железа с номинальным сечением 5 мм², нужно 0,13 умножить на 200 и разделить полученный результат на 5. Ответ — 5,2 Ом.

Правила и особенности вычисления

Для измерения сопротивления металлических сред пользуются микроомметрами. Сегодня их выпускают в цифровом варианте, поэтому проведенные с их помощью измерения отличаются точностью. Объяснить ее можно тем, что металлы обладают высоким уровнем проводимости и имеют крайне маленькое сопротивление. Для примера, нижний порог измерительных приборов имеет значение 10 -7 Ом.

С помощью микроомметров можно быстро определить, насколько качественен контакт и какое сопротивление проявляют обмотки генераторов, электродвигателей и трансформаторов, а также электрические шины. Можно вычислить присутствие включений другого металла в слитке. Например, вольфрамовый кусок, покрытый позолотой, показывает вдвое меньшую проводимость, чем полностью золотой. Тем же способом можно определить внутренние дефекты и полости в проводнике.

Формула удельного сопротивления выглядит следующим образом: ρ = Ом · мм 2 /м
. Словами ее можно описать как сопротивление 1 метра проводника
, имеющего площадь сечения 1 мм². Температура подразумевается стандартная — 20 °C.

Влияние температуры на измерение

Нагревание или охлаждение некоторых проводников оказывает значительное влияние на показатели измерительных приборов. В качестве примера можно привести следующий опыт: необходимо подключить к аккумулятору спирально намотанную проволоку и подключить в цепь амперметр.

Чем сильнее нагревается проводник, тем меньше становятся показания прибора. Сила тока имеет обратно пропорциональную зависимость от сопротивления. Следовательно, можно сделать вывод, что в результате нагрева проводимость металла уменьшается. В большей или меньшей степени так ведут себя все металлы, однако изменения проводимости у некоторых сплавов практически не наблюдается.

Примечательно, что жидкие проводники и некоторые твердые неметаллы имеют тенденцию уменьшать свое сопротивление с повышением температуры. Но и эту способность металлов ученые обратили себе на пользу. Зная температурный коэффициент сопротивления (α) при нагреве некоторых материалов, можно определять внешнюю температуру. Например, проволоку из платины, размещенную на каркасе из слюды, помещают в печь, после чего проводят измерение сопротивления. В зависимости от того, насколько оно изменилось, делают вывод о температуре в печи. Такая конструкция называется термометром сопротивления.

Если при температуре t
0 сопротивление проводника равно r
0, а при температуре t
равно rt
, то температурный коэффициент сопротивления равен

Расчет по этой формуле можно производить лишь в определенном интервале температур (примерно до 200 °C).

Электрический ток возникает в результате замыкания цепи с разностью потенциалов на зажимах. Силы поля воздействуют на свободные электроны и они перемещаются по проводнику. В процессе этого путешествия, электроны встречаются с атомами и передают им часть своей накопившейся энергии. В результате этого их скорость уменьшается. Но, из-за воздействия электрического поля, она снова набирает обороты. Таким образом, электроны постоянно испытывают на себе сопротивление, именно поэтому электрический ток нагревается.

Свойство вещества, превращать электроэнергию в тепло во время воздействия тока, и является электрическим сопротивлением и обозначается, как R, его измерительной единицей является Ом. Величина сопротивления зависит, главным образом от способности различных материалов проводить ток.
Впервые, о сопротивляемости заявил немецкий исследователь Г. Ом.

Для того, чтобы узнать зависимость силы тока от сопротивления, известный физик провел множество экспериментов. Для опытов он использовал различные проводники и получал различные показатели.
Первое, что определил Г. Ом — это то, что удельное сопротивление зависит от длинны проводника. То есть, если увеличивалась длинна проводника, сопротивление тоже увеличивалось. В результате, эта связь была определена, как прямо пропорциональная.

Вторая зависимость — это площадь поперечного сечения. Её можно было определить путем поперечного среза проводника. Площадь той фигуры, что образовалась на срезе и есть площадь поперечного сечения. Здесь связь получилась обратно пропорциональная. То есть чем больше была площадь поперечного сечения, тем меньше становилось сопротивление проводника.

И третья, важная величина, от которой зависит сопротивление, это материал. В результате того, что Ом использовал в опытах различные материалы, он обнаружил различные свойства сопротивляемости. Все эти опыты и показатели были сведены в таблицу из которой видно, различное значение удельной сопротивляемости у различных веществ.

Известно, что самые лучшие проводники — металлы. А какие из металлов лучшие проводники? В таблице показано, что наименьшей сопротивляемостью обладают медь и серебро. Медь используется чаще из-за меньшей стоимости, а серебро применяют в наиболее важных и ответственных приборах.

Вещества с высоким удельным сопротивлением в таблице, плохо проводят электрический ток, а значит могут быть прекрасными изоляционными материалами. Вещества обладающие этим свойством в наибольшей степени, это фарфор и эбонит.

Вообще, удельное электрическое сопротивление является очень важным фактором, ведь, определив его показатель, мы можем узнать из какого вещества сделан проводник. Для этого необходимо измерить площадь сечения, узнать силу тока с помощью вольтметра и амперметра, а также измерить напряжение. Таким образом мы узнаем значение удельного сопротивления и, с помощью таблицы легко выйдем на вещество. Получается, что удельное сопротивление — это в роде отпечатков пальцев вещества. Кроме этого, удельное сопротивление важно при планировании длинных электрических цепей: нам необходимо знать этот показатель, чтобы соблюдать баланс между длинной и площадью.

Есть формула, определяющая, что сопротивление равно 1 ОМ, если при напряжении 1В, его сила тока равняется 1А. То есть, сопротивление единичной площади и единичной длинны, сделанного из определенного вещества и есть удельное сопротивление.

Надо отметить также, что показатель удельного сопротивления напрямую зависит от частоты вещества. То есть от того имеет ли он примеси. Та, добавление всего одного процента марганца увеличивает сопротивляемость самого проводящего вещества — меди, в три раза.

Эта таблица демонстрирует величину удельного электрического сопротивления некоторых веществ.

Материалы с высокой проводимостью

Медь

Как мы уже говорили медь чаще всего применяется в качестве проводника. Это объясняется не только её низкой сопротивляемостью. Медь имеет такие преимущества, как высокая прочность, стойкость к коррозии, легкость в использовании и хорошая обрабатываемость. Хорошими марками меди считается М0 и М1. В них количество примесей не превышает 0,1%.

Высокая стоимость металла и его преобладающая в последнее время дефицитность побуждает производителей применять в качестве проводника алюминий. Также, используются сплавы меди с различными металлами.
Алюминий

Этот металл значительно легче меди, но алюминий обладает большими значениями теплоемкости и температуры плавления. В связи с этим для того, что довести его до расплавленного состояния требуется больше энергии, чем меди. Тем не менее нужно учитывать факт дефицитности меди.
В производстве электротехнических изделий применяется, как правило, алюминий марки А1. Он содержит не более 0,5% примесей. А металл наивысшей частоты — это алюминий марки АВ0000.
Железо

Дешевизна и доступность железа омрачается его высокой удельной сопротивляемостью. Кроме того, она быстро подвергается коррозии. По этой причине стальные проводники часто покрывают цинком. Широко используется так называемый биметалл — это сталь покрытая для защиты медью.
Натрий

Натрий, тоже доступный и перспективный материал, но его сопротивляемость почти в три раза больше меди. Кроме того, металлический натрий обладает высокой химической активностью, что обязывает покрывать такой проводник герметичной защитой. Она же должна защищать проводник от механических повреждений, так как натрий очень мягкий и достаточно непрочный материал.

Сверхпроводимость

В таблице ниже, указано удельное сопротивление веществ при температуре 20 градусов. Указание температуры неслучайно, ведь удельное сопротивление напрямую зависит от этого показателя. Это объясняется тем, что при нагревании, повышается и скорость атомов, а значит вероятность встречи их с электронами тоже увеличится.

Интересно, что происходит с сопротивляемостью в условиях охлаждения. Впервые поведение атомов при очень низких температурах заметил Г. Камерлинг-Оннес в 1911 году. Он охладил ртутную проволоку до 4К и обнаружил падение её сопротивляемости до нуля. Изменение показателя удельной сопротивляемости у некоторых сплавов и металлов в условиях низкой температуры, физик назвал сверхпроводимостью.

Сверхпроводники переходят в состояние сверхпроводимости при охлаждении, и, при этом их оптические и структурные характеристики не меняются. Главное открытие состоит в том, что электрические и магнитные свойства металлов в сверхпроводящем состоянии сильно отличаются от их же свойств в обычном состоянии, а также от свойств других металлов, которые при понижении температуры не могут переходить в это состояние.
Применение сверхпроводников осуществляется, главным образом, в получении сверхсильного магнитного поля, сила которого достигает 107 А/м. Также разрабатываются системы сверхпроводящих линий электропередач.

Похожие материалы.

Удельное сопротивление
металлов является мерой их свойства противодействовать прохождению электрического тока. Эта величина выражается в Ом-метр (Ом⋅м). Символ, обозначающий удельное сопротивление, является греческая буква ρ (ро). Высокое удельное сопротивление означает, что материал плохо проводит электрический заряд.

Удельное сопротивление

Удельное электрическое сопротивление определяется как отношение между напряженностью электрического поля внутри металла к плотности тока в нем:

где:
ρ — удельное сопротивление металла (Ом⋅м),
Е — напряженность электрического поля (В/м),
J — величина плотности электрического тока в металле (А/м2)

Если напряженность электрического поля (Е) в металле очень большая, а плотность тока (J) очень маленькая, это означает, что металл имеет высокое удельное сопротивление.

Обратной величиной удельного сопротивления является удельная электропроводность, указывающая, насколько хорошо материал проводит электрический ток:

σ — проводимость материала, выраженная в сименс на метр (См/м).

Электрическое сопротивление

Электрическое сопротивление, одно из составляющих , выражается в омах (Ом). Следует заметить, что электрическое сопротивление и удельное сопротивление — это не одно и то же. Удельное сопротивление является свойством материала, в то время как электрическое сопротивление — это свойство объекта.

Электрическое сопротивление резистора определяется сочетанием формы и удельным сопротивлением материала, из которого он сделан.

Например, проволочный , изготовленный из длинной и тонкой проволоки имеет большее сопротивление, нежели резистор, сделанный из короткой и толстой проволоки того же металла.

В тоже время проволочный резистор, изготовленный из материала с высоким удельным сопротивлением, обладает большим электрическим сопротивлением, чем резистор, сделанный из материала с низким удельным сопротивлением. И все это не смотря на то, что оба резистора сделаны из проволоки одинаковой длины и диаметра.

В качестве наглядности можно провести аналогию с гидравлической системой, где вода прокачивается через трубы.

  • Чем длиннее и тоньше труба, тем больше будет оказано сопротивление воде.
  • Труба, заполненная песком, будет больше оказывать сопротивление воде, нежели труба без песка

Сопротивление провода

Величина сопротивления провода зависит от трех параметров: удельного сопротивления металла, длины и диаметра самого провода. Формула для расчета сопротивления провода:

Где:
R — сопротивление провода (Ом)
ρ — удельное сопротивление металла (Ом.m)
L — длина провода (м)
А — площадь поперечного сечения провода (м2)

В качестве примера рассмотрим проволочный резистор из нихрома с удельным сопротивлением 1.10×10-6 Ом.м. Проволока имеет длину 1500 мм и диаметр 0,5 мм. На основе этих трех параметров рассчитаем сопротивление провода из нихрома:

R=1,1*10 -6 *(1,5/0,000000196) = 8,4 Ом

Нихром и константан часто используют в качестве материала для сопротивлений. Ниже в таблице вы можете посмотреть удельное сопротивление некоторых наиболее часто используемых металлов.

Поверхностное сопротивление

Величина поверхностного сопротивления рассчитывается таким же образом, как и сопротивление провода. В данном случае площадь сечения можно представить в виде произведения w и t:

Для некоторых материалов, таких как тонкие пленки, соотношение между удельным сопротивлением и толщиной пленки называется поверхностное сопротивление слоя RS:

где RS измеряется в омах. При данном расчете толщина пленки должна быть постоянной.

Часто производители резисторов для увеличения сопротивления вырезают в пленке дорожки, чтобы увеличить путь для электрического тока.

Свойства резистивных материалов

Удельное сопротивление металла зависит от температуры. Их значения приводится, как правило, для комнатной температуры (20°С). Изменение удельного сопротивления в результате изменения температуры характеризуется температурным коэффициентом.

Например, в термисторах (терморезисторах) это свойство используется для измерения температуры. С другой стороны, в точной электронике, это довольно нежелательный эффект.
Металлопленочные резисторы имеют отличные свойства температурной стабильности. Это достигается не только за счет низкого удельного сопротивления материала, но и за счет механической конструкции самого резистора.

Много различных материалов и сплавов используются в производстве резисторов. Нихром (сплав никеля и хрома), из-за его высокого удельного сопротивления и устойчивости к окислению при высоких температурах, часто используют в качестве материала для изготовления проволочных резисторов. Недостатком его является то, что его невозможно паять. Константан, еще один популярный материал, легко паяется и имеет более низкий температурный коэффициент.

Рекомендуем также

Удельное электрическое сопротивление — это… Что такое Удельное электрическое сопротивление?

Удельное электрическое сопротивление, или просто удельное сопротивление вещества характеризует его способность препятствовать прохождению электрического тока.

Единица измерения удельного сопротивления в Международной системе единиц (СИ) — Ом·м; также измеряется в Ом·см и Ом·мм²/м. Физический смысл удельного сопротивления в СИ: сопротивление однородного куска проводника длиной 1 м и площадью токоведущего сечения 1 м².

В технике часто применяется в миллион раз меньшая производная единица: Ом·мм²/м, равная 10−6 от 1 Ом·м: 1 Ом·м = 1·106 Ом·мм²/м. Физический смысл удельного сопротивления в технике: сопротивление однородного куска проводника длиной 1 м и площадью токоведущего сечения 1 кв.мм.

Величина удельного сопротивления обозначается греческой буквой .

Сопротивление проводника с удельным сопротивлением , длиной и площадью сечения может быть рассчитано по формуле

Обобщение понятия удельного сопротивления

Удельное сопротивление можно определить также для неоднородного материала, свойства которого меняются от точки к точке. В этом случае оно является не константой, а скалярной функцией — коэффициентом, связывающим напряжённость электрического поля и плотность тока в данной точке

Эта формула справедлива для неоднородного, но изотропного вещества. Вещество может быть и анизотропно (большинство кристаллов, намагниченная плазма и т. д.), то есть его свойства зависят от направления (вообще говоря, в нём векторы тока и напряжённости электрического поля в данной точке не сонаправлены). В этом случае удельное сопротивление является зависящим от координат тензором второго ранга:

Удельное электрическое сопротивление металлов и сплавов, применяемых в электротехнике

Металлρ, Ом·мм2
Серебро0,016
Медь0,0175
Золото0,023
Алюминий0,0271
Иридий0,0474
Молибден0,054
Вольфрам0,055
Цинк0,059
Никель0,087
Железо0,098
Платина0,107
Олово0,12
Свинец0,205
Титан0,5562 — 0,7837
Висмут1,2
Сплавρ, Ом·мм2
Сталь0,1400
Никелин0,42
Константан0,5
Манганин0,43…0,51
Нихром1,05…1,4
Фехраль1,15…1,35
Хромаль1,3…1,5
Латунь0,07…0,08

Значения даны при температуре t = 20° C. Сопротивления сплавов зависят от их точного состава и могут варьироваться.

Тонкие плёнки

Удельное сопротивление в тонких плёнках (когда толщина образца много меньше расстояния между контактами) характеризуется «удельным сопротивлением на квадрат», . В этом случае удельное сопротивление не зависит от линейных размеров образца если он имеет форму прямоугольника, а только от отношения (длины к ширине) L/W: , где R — измеренное сопротивление. В случае если форма образца отличается от прямоугольной используют метод ван дер Пау.

См. также

Ссылки

Удельное сопротивление меди. Физика процесса

Часто в электротехнической литературе встречается понятие «удельное электрическое сопротивление меди». И невольно задаешься вопросом, а что же это такое?

Понятие «сопротивление» для любого проводника непрерывно связано с пониманием процесса протекания по нему электрического тока. Так как речь в статье пойдет о сопротивлении меди, то и рассматривать нам следует ее свойства и свойства металлов.

Когда речь идет о металлах, то невольно вспоминаешь, что все они имеют определенное строение – кристаллическую решетку. Атомы находятся в узлах такой решетки и совершают относительно них периодические колебания. Расстояния и местоположение этих узлов зависит от сил взаимодействия атомов друг с другом (отталкивания и притяжения), и различны для разных металлов. А вокруг атомов по своим орбитам вращаются электроны. Их удерживает на орбите тоже равновесие сил. Только это силы притяжения к атому и центробежная. Представили себе картинку? Можно назвать ее, в некотором плане, статической.

А теперь добавим динамики. На кусок меди начинает действовать электрическое поле. Что же происходит внутри проводника? Электроны, сорванные силой электрического поля со своих орбит, устремляются к его положительному полюсу. Вот Вам и направленное движение электронов, а вернее, электрический ток. Но на пути своего движения они натыкаются на атомы в узлах кристаллической решетки и электроны, еще продолжающие вращаться вокруг своих атомов. При этом они теряют свою энергию и изменяют направление движения. Теперь становится немного понятнее смысл фразы «сопротивление проводника»? Это атомы решетки и вращающиеся вокруг них электроны оказывают сопротивление направленному движению электронов, сорванных электрическим полем со своих орбит. Но понятие сопротивление проводника можно назвать общей характеристикой. Более индивидуально характеризует каждый проводник удельное сопротивление. Меди в том числе. Эта характеристика индивидуальна для каждого металла, поскольку напрямую зависит только от формы и размеров кристаллической решетки и, в некоторой мере, от температуры. При повышении температуры проводника атомы совершают более интенсивное колебание в узлах решетки. А электроны вращаются вокруг узлов с большей скоростью и на орбитах большего радиуса. И, естественно, что свободные электроны при движении встречают и большее сопротивление. Такова физика процесса.

Удельное сопротивление меди — это стандартная величина. Значения этого параметра для всех металлов и других веществ, измеренные при 20° C, можно легко найти в справочной таблице. Для меди она составляет 0,0175 Ом*мм2/м. Из наиболее широко встречающихся в природе металлов эта величина близка по значению только у алюминия. У него она составляет 0,0271 Ом*мм2/м. Удельное сопротивление меди по своему значению уступает только серебру, величина которого равна 0,016 Ом*мм2/м. Это обуславливает ее широкое применение в электротехническом оборудовании, при изготовлении силовых кабелей, различных видов проводников, при печатном монтаже электронных устройств. Без медных проводов невозможно создание силовых трансформаторов и двигателей для малых бытовых электроприборов, обладающих свойством энергосбережения. В этом случае существенно возрастают требования к химической чистоте вещества, так как при присутствии в нем даже 0,02% алюминия удельное сопротивление меди увеличивается на 10%. Такая медь, правда, считается технически чистой и допускается изготовление из нее ряда определенных изделий.

Без знания значений удельного сопротивления невозможно осуществлять расчеты общего сопротивления проводников по их размерам и форме при разработке и проектировании электротехнического оборудования. Для расчета общего сопротивления проводника используется формула R = р*l / S, где встречающиеся сокращения обозначают следующее:

R – общее сопротивление проводника;

p – удельное сопротивление металла;

l – длина данного проводника;

S – площадь сечения проводника.

Для нужд электротехнической сферы налажено широкое производство таких металлов, как алюминий и медь, удельное сопротивление которых достаточно мало. Из этих металлов изготавливают кабели и различного типа провода, которые широко используются в строительстве, для производства бытовых приборов, изготовления шин, обмоток трансформаторов и других электротехнических изделий.

Зависимость сопротивления от удельного сопротивления

Электрическое сопротивление электрического проводника зависит от

  • длины проводника
  • материала проводника
  • температуры материала
  • площади поперечного сечения проводника

и может быть выражено как

R = ρ L / A (1)

где

R = сопротивление проводника (Ом, Ом)

ρ = удельное сопротивление материала проводника ( омметр, Ом м)

L = длина проводника (м)

A = площадь поперечного сечения проводника (м 2 )

Удельное сопротивление некоторых общих проводников

  • Алюминий: 2. 65 x 10 -8 Ом м (0,0265 мкОм м)
  • Углерод: 10 x 10 -8 Ом м (0,10 мкОм м)
  • Медь: 1,724 x 10 -8 Ом м (0,0174 мкОм м)
  • Железо: 10 x 10 -8 Ом м (0,1 мкОм м)
  • Серебро: 1,6 x 10 -8 Ом · м (0,0265 мкОм · м)

Обратите внимание, что удельное сопротивление зависит от температуры .Вышеуказанные значения относятся к температурам 20 o C .

Удельное сопротивление некоторых обычных изоляторов

  • бакелит: 1 x 10 12 Ом м
  • стекло: 1 x 10 10 1 x 10 11 Ом м
  • мрамор: 1 x 10 8 Ом м
  • слюда: 0,9 x 10 13 Ом м
  • парафиновое масло: 1 x 10 16 Ом м
  • парафиновый воск (чистый ) : 1 x 10 16 Ом м
  • оргстекло: 1 x 10 13 Ом м
  • полистирол: 1 x 10 14 Ом м
  • фарфор: 1 x 10 12 Ом м
  • прессованный янтарь: 1 x 10 16 Ом м
  • вулканит: 1 x 10 14 Ом м
  • вода, дистиллированная: 1 x 10 10 Ом м

Обратите внимание, что хороший кон проводники электричества имеют низкое удельное сопротивление, а хорошие изоляторы имеют высокое удельное сопротивление.

Пример — сопротивление проводника

Сопротивление 10 метров калибра 17 медного провода с площадью поперечного сечения 1,04 мм 2 можно рассчитать как

R = (1,7 x 10 — 8 Ом м) (10 м) / ((1,04 мм 2 ) (10 -6 м 2 / мм 2 ))

= 0,16 Ом

Пример — Перекрестный- площадь сечения и сопротивление

Медный провод, указанный выше, уменьшен до калибра 24 и площади поперечного сечения 0.205 мм 2 . Увеличение сопротивления можно рассчитать как

R = (1,7 x 10 -8 Ом м) (10 м) / ((0,205 мм 2 ) (10 -6 м 2 / мм 2 ))

= 0,83 Ом

Удельное сопротивление: медь — лучший металлический проводник? | Научный проект

Где R — сопротивление в омах, L — длина провода в метрах, A — площадь поперечного сечения провода в квадратных метрах, а ρ — удельное электрическое сопротивление в ом-метрах.

Электрическое Электропроводность — это величина, обратная удельному сопротивлению: это способность материала пропускать ток. Обозначается греческой буквой сигма, σ, и измеряется в единицах Сименс ( S ).

В этом эксперименте вы сможете найти удельное сопротивление и проводимость материалов, которые вы тестируете, используя закон Ома, который гласит, что напряжение пропорционально произведению тока и сопротивления. Амперметр поможет вам измерить ток, протекающий по цепи, а вольтметр покажет падение напряжения на участке, который вы проверяете.

Где В, — напряжение, измеренное в вольтах, I — ток, измеренный в амперах, а R — сопротивление в омах.

Задача: Определите удельное сопротивление различных материалов и толщину материалов и рассчитайте электропроводность.

Какой материал будет более резистивным? Проводящий?

Материалы

  • Аккумулятор 9 В
  • Неизолированный медный провод 30 см (меньшего сечения)
  • Неизолированный медный провод 30 см (большего сечения)
  • 30 см неизолированной железной проволоки (такого же диаметра, как и более тонкая медная проволока)
  • 30 см неизолированной железной проволоки (такого же диаметра, как и у более толстой медной проволоки)
  • Любые другие провода, которые вы хотите проверить
  • Кусачки
  • Амперметр
  • Вольтметр
  • Линейка

Процедура

  1. Подсоедините положительный вывод амперметра к отрицательной клемме 9-вольтовой батареи.
  2. Присоедините отрицательный вывод амперметра к одному концу одного из проводов.
  3. Подключите другой конец провода к положительной клемме 9-вольтовой батареи.
  4. Используйте вольтметр для измерения падения напряжения на проводе разной длины (начните с 2 см, затем измерьте 3 см, 4 см и т. Д.). Убедитесь, что положительный вывод вольтметра касается начала провода.
  1. Запишите ток (по амперметру) и падение напряжения (по вольтметру) для каждой длины каждого проверенного провода.
  2. Используйте закон Ома, чтобы определить сопротивление и то, как длина, калибр и материал влияют на сопротивление.
  3. Постройте ваши результаты для каждого типа провода. Постройте длину провода (в метрах) по оси x и сопротивление (в омах) по оси y.
  4. Рассчитайте удельное сопротивление по формуле:

Где R — сопротивление в Ом ρ — удельное сопротивление в ом-метрах L — длина провода в метрах, а A — площадь поперечного сечения провода в метрах. * площадь поперечного сечения проводов разного калибра можно посмотреть в Интернете.

  1. Используйте удельное сопротивление ρ для расчета электропроводности σ .

Результаты

Более толстые провода будут иметь меньшее сопротивление, но более длинные провода будут иметь более высокое сопротивление. Медь имеет более низкое удельное сопротивление и лучший проводник электричества, чем железо.

Почему?

Сопротивление провода увеличивается с увеличением длины. Поскольку сопротивление — это свойство материала, который сопротивляется потоку электронов, логично, что чем больше у вас материала (большей длины), тем большее сопротивление у вас будет.Удельное электрическое сопротивление, ρ , является константой, которая является свойством материала и нормализует сопротивление к площади поперечного сечения материала, через который проходит ток. Наклон линии на графике зависимости длины от сопротивления — это удельное электрическое сопротивление.

Итак, медь — лучший металлический проводник? Медь — лучший проводник, чем железо, а это значит, что ток может проходить легче (с меньшим сопротивлением) через медь. Это неотъемлемое свойство материала.

Вы можете использовать закон Ома для расчета сопротивления измеряемого участка, потому что цепь относится к серии , а это означает, что ток будет одинаковым во всех частях цепи.

Заявление об отказе от ответственности и меры предосторожности

Education.com предлагает идеи проекта Science Fair для информационных целей.
только для целей. Education.com не дает никаких гарантий или заверений
относительно идей проектов Science Fair и не несет ответственности за
любые убытки или ущерб, прямо или косвенно вызванные использованием вами таких
Информация.Получая доступ к идеям проектов Science Fair, вы отказываетесь от
отказаться от любых претензий к Education.com, которые возникают в связи с этим. Кроме того, ваш
доступ к веб-сайту Education. com и идеям проектов Science Fair покрывается
Политика конфиденциальности Education.com и Условия использования сайта, которые включают ограничения
об ответственности Education.com.

Настоящим дается предупреждение, что не все идеи проекта подходят для всех
индивидуально или при любых обстоятельствах. Реализация идеи любого научного проекта
должны проводиться только в соответствующих условиях и с соответствующими родительскими
или другой надзор.Прочтите и соблюдайте правила техники безопасности всех
Материалы, используемые в проекте, являются исключительной ответственностью каждого человека. За
Для получения дополнительной информации обратитесь к справочнику по научной безопасности вашего штата.

Теплопроводность и удельное электросопротивление одиночных медных нанопроволок

Медные нано-межсоединения повсеместно используются в полупроводниковых устройствах. Электрические и термические свойства медных нанопроволок (CuNW) сильно влияют на характеристики электроники. В отличие от интенсивно изучаемых электрических свойств CuNW, теплопроводность CuNW редко исследуется. В данной работе исследовались электросопротивление и теплопроводность одиночных CuNW. Формула Блоха – Грюнайзена была введена для определения механизмов, ответственных за полученное электрическое сопротивление CuNW. Было обнаружено высокое остаточное сопротивление, что указывало на сильное структурное рассеяние на переносе электронов, возникающее в результате рассеяния на дефектах и ​​граничных рассеяний на границе раздела медь – оксид меди и границах зерен.Среднее расстояние структурного рассеяния использовалось для оценки степени структурного рассеяния в CuNW. Установлено, что остаточное сопротивление и параметр электрон-фононной связи увеличиваются с увеличением степени структурного рассеяния. Кроме того, унифицированное термическое сопротивление было введено, чтобы проиллюстрировать механизмы, ответственные за теплопроводность CuNW. Аналогичным образом были обнаружены большие значения остаточного единого теплового сопротивления и электрон-фононно-индуцированного единого теплового сопротивления. Полученные единые термические сопротивления CuNW также могут быть качественно объяснены степенью структурного рассеяния в CuNW. Результаты предполагают, что структурное рассеяние является преобладающим в переносе электрического тока и теплопередаче в нанопроволоках. Это исследование выявило механизмы удельного электрического сопротивления и теплопроводности CuNW, и полученные данные могут помочь в улучшении конструкции полупроводниковой архитектуры.

У вас есть доступ к этой статье

Подождите, пока мы загрузим ваш контент…

Что-то пошло не так. Попробуй снова?

Сопротивление, сопротивление и сопротивление листа | by Voltera

Вы часто будете слышать термины сопротивление, удельное сопротивление, проводимость, сопротивление листа, и т. д.брошен. Все они связаны между собой и представляют собой разные способы ответа на этот вопрос:

Насколько легко электричество проходит через материал?

Здесь есть подробное объяснение, но оно довольно скучное. Читайте чуть менее скучную версию.

Что это?

Сопротивление (R), , измеренное в Ом (Ω), говорит вам, сколько усилий требуется, чтобы провести электричество через объект, или, говоря иначе, оно говорит вам, насколько объект сопротивляется потоку тока.

Как мы его используем?

В первую очередь в Законе Ома, рабочей лошадке для расчетов базовой электроники:

Если вы знаете сопротивление объекта, вы можете получить ток при некотором приложенном напряжении или наоборот.

Как мы об этом говорим?

Сопротивление для отдельного объекта.

ХОРОШО:

«Какое сопротивление этой трассы?»

«Какое сопротивление этого отрезка провода?»

BAD:

«Какое сопротивление у меди?»

Почему плохо: Это ничего не значит . Для этого нужно удельное сопротивление!

Что это?

Удельное сопротивление (ρ) — это фундаментальное свойство сыпучего материала , которое сообщает вам, какое сопротивление будет иметь вещь, сделанная из этого материала, если вы знаете ее форму * (длина, ширина, высота).

* (и температура … но давайте не будем об этом беспокоиться.)

Почему это полезно? Допустим, мне нужно сконструировать два провода с одинаковым сопротивлением: один из меди, а другой — Twizzler.Если я попытаюсь провести электричество через оба, я уверен, вы догадаетесь, что медный провод позволит электричеству протекать намного легче. Twizzler не будет: он просто будет готовиться с помощью электричества изнутри, что, на самом деле, является идеей грузовика с едой, над которой я работал. Знание сопротивления позволит мне правильно отрегулировать длину провода, чтобы она соответствовала их сопротивлению . Нам понадобится немного меди.

Как мы его используем?

Вы будете использовать удельное сопротивление, если пытаетесь определить сопротивление объекта, сделанного из какого-либо материала.Для провода стандартное уравнение:

Если вы знаете длину и площадь поперечного сечения, вы получите нашего старого друга , сопротивление .

Как мы об этом говорим?

Удельное сопротивление зависит от типа материала .

ХОРОШО:

«Какое сопротивление проводящих чернил?»

«Какое удельное сопротивление меди?»

BAD:

«Какое сопротивление этой кривой?»

Почему плохо: В худшем случае бессмысленно. В лучшем случае неоднозначно. Если кто-то спросит об этом, предположите, что он спрашивает, из какого материала он сделан, и ответьте как таковой , но с видом превосходства.

«Какое сопротивление цепи?»

Почему плохо: Тебе должно быть плохо. Вы просто составили два слова, которые кажутся связанными. Ваши предки смотрят, плача горячими слезами стыда.

Что это?

Сопротивление и Удельное сопротивление — чистые и красивые наука слова. Sheet Resistance (R s ) — грязное, некультурное слово Engineering — оно существует только для облегчения вычислений, потому что слишком усердное мышление может убить инженера. Инженеры печально известны своими сокращениями, потому что все, о чем они заботятся, — это глупые вещи, такие как «добиться чего-то» или «добиться ощутимого прогресса». Не мы, ученые. В любом случае, сопротивление листа имеет единицы Ом на квадрат .

Я знаю, квадрат — это не единица измерения, квадрат — это форма.Скажите это инженерам.

Вопрос к инженерному экзамену — что из этого является единицей?

В любом случае, Sheet Resistance — это комбинация удельного сопротивления материала и его формы, а также сокращение для расчета сопротивления при проектировании печатных плат.

Как мы его используем?

Если у вас сопротивление листа R s , все, что вам нужно, это соотношение длины (L) к ширине (W) , чтобы найти сопротивление, например:

Почему это проще? Что ж, при проектировании печатных плат вы обычно уже знаете толщину (t) материала (35 мкм или 70 мкм) и тип материала (отожженная медь), поэтому вы знаете сопротивление листа.Все, что вам нужно, это измерить длину и ширину следа, и вот оно — сопротивление!

Примечание — y Вы также можете легко преобразовать сопротивление листа в удельное сопротивление:

Как мы говорим об этом?

Обычно сопротивление листа обозначает материал с толщиной.

ХОРОШО:

«Сопротивление листа 1 унции меди составляет 0,5 мОм / кв.»

«Сопротивление листа проводящих чернил при толщине 70 мкм составляет 12 мОм / кв.»

BAD:

« Квадрат — это допустимая единица ».

Почему плохо: Квадрат не является единицей. Ваши бедные предки.

Если сопротивление говорит вам, насколько твердость проталкивать электричество через материал, то проводимость говорит вам, насколько легко проталкивать электричество через материал.

«Погодите…» — бормочете вы. «Это то же самое!»

Ага.

Проводимость (G), в единицах Сименс [S] — это просто , обратное сопротивления [R].

Аналогично, проводимость (σ) в единицах Сименс на метр [См / м] является обратной величиной удельного сопротивления (ρ).

Итак, если кто-то спрашивает о проводимости, они на самом деле спрашивают вас о замаскированном удельном сопротивлении.

Теперь вы знаете невозможную правду.

Ого, притормози, бронко. Импеданс немного сложнее — сейчас просто думайте об импедансе как о сопротивлении, но когда вы имеете дело с вещами, которые не являются резисторами — вещами, которые требуют другого количества усилий, чтобы протолкнуть сигнал через провод из-за частоты сигнал.

TL; DR: сопротивление (Z) похоже на сопротивление, но в основном направлено на то, чтобы заставить студентов плакать. Когда в схемах есть сигналы, которые работают с определенной частотой (например, тактовый сигнал, который включает светодиоды через заданные интервалы), этот сигнал может проходить легче или труднее в зависимости от частоты. Импеданс — это комплексное число, где сопротивление (R) — действительная часть, а реактивное сопротивление (X) — мнимая часть. Очевидно, для этого потребуется отдельная запись в блоге, потому что, поскольку она касается мнимой части импеданса, это будет воображаемая запись в блоге.

Подводя итог: сопротивление — это свойство данного объекта, удельное сопротивление — это свойство данного материала, а сопротивление листа — грязный, но полезный инженерный ярлык, который рассматривает форму как единое целое. Ваши предки наконец-то смогут наслаждаться заслуженным вечным сном.

[Решено] Каково относительное удельное сопротивление алюминия по сравнению с Cop

Концепция удельного электрического сопротивления:

  • Удельное электрическое сопротивление конкретного материала проводника является мерой того, насколько сильно материал противодействует прохождению через него электрического тока.
  • Единица измерения — Ом · м.

Сопротивление данного проводника определяется по формуле:

\ (R = ρ \ frac {l} {A} \)

ρ = удельное сопротивление проводника

l = длина жилы

A = Площадь поперечного сечения

Пояснение:

  • Площадь поперечного сечения проводника из материала, отличного от меди, не указана по его фактическому значению.
  • Пусть суффиксы a и c используются для алюминия и меди соответственно.
  • Для алюминиевых и медных проводников одинаковой длины и одинакового сопротивления

R a = R R

\ ({ρ _a} \ frac {l} {{{A_a}}} = {ρ _c} \ frac {l} {{{A_c}}} \)

\ ({A_c} = \ frac {{{ρ _c}}} {{{ρ _a}}} {A_a} \)

\ (= \ frac {1} {{\ left ({\ frac {{{ρ _a}}} {{{ρ _c}}}} \ right)}} \ left ({\ begin {array} {* {20} {c}} {Поперечное сечение \; площадь \;} \\ {из \; алюминия \; проводника} \ end {array}} \ right) \)

\ (= \ frac {1} {{1.62}} \ left ({\ begin {array} {* {20} {c}} {Поперечное сечение \; площадь} \\ {\; из \; алюминия \ ; проводник} \ end {array}} \ right) \)

Так как \ (\ frac {{{ρ _a}}} {{{ρ _c}}} = 1.62 \)

Здесь ρ c = 1

Итак, \ (\ frac {{{ρ _a}}} {{{1}}} = 1,62 \)

ρ a = 1,62

Важные моменты

Некоторые стандартные удельное электрическое сопротивление материала:

Материал

Удельное электрическое сопротивление

Ом метры

Алюминий

2. 8 × 10-8

Сурьма

3,9 × 10-7

висмут

1,3 × 10-6

Латунь

0,6 — 0,9 × 10-7

Кадмий

6 × 10-8

Кобальт

5,6 × 10-8

Медь

1.7 × 10-8

Золото

2,4 × 10-8

Углерод (графит)

1 × 10-5

Германий

4,6 × 10-1

Утюг

4,6 × 10-1

Свинец

1,0 × 10-7

Манганин

4.2 × 10-7

Нихром

1,1 × 10-7

Никель

7 × 10-8

Палладий

1,0 × 10-7

Платина

0,98 × 10-7

Кварц

7 × 1017

Кремний

6. 4 × 102

Какое сопротивление у медного провода? — MVOrganizing

Какое сопротивление в медном проводе?

Низкое удельное сопротивление указывает на провод, который легко допускает перемещение электрического заряда. Медь имеет удельное сопротивление 0,0171 Ом · мм² / м и, следовательно, является одним из лучших проводников электрического тока (немного уступая чистому серебру).

Что имеет очень высокое сопротивление?

Примеры: серебро, медь, золото и алюминий.Изоляторы: материалы, обладающие высоким сопротивлением и ограничивающие поток электронов. Примеры: резина, бумага, стекло, дерево и пластик.

Какой провод имеет меньшее сопротивление?

Удельное сопротивление различных материалов. Материал с низким удельным сопротивлением означает, что он имеет низкое сопротивление и, таким образом, электроны проходят через материал плавно. Например, медь и алюминий имеют низкое удельное сопротивление. Хорошие проводники имеют меньшее удельное сопротивление. Изоляторы обладают высоким сопротивлением.

Какой материал имеет наибольшее электрическое сопротивление?

серебро

Какой материал имеет самое низкое электрическое сопротивление?

медь

Какое действие увеличит сопротивление медного провода?

1.Уменьшение удельного сопротивления материала, из которого состоит провод, увеличивает сопротивление провода. 2. Увеличение длины провода увеличивает сопротивление провода.

Как проверить сопротивление провода?

Установите мультиметр на максимально возможный диапазон сопротивления. Функция сопротивления обычно обозначается символом единицы измерения сопротивления: греческой буквой омега (Ом) или иногда словом «ом». Соедините два тестовых щупа вашего глюкометра.Когда вы это сделаете, измеритель должен зарегистрировать сопротивление 0 Ом.

Что вызывает сопротивление в проводе?

Движущиеся электроны могут сталкиваться с ионами металла. Это затрудняет прохождение тока и вызывает сопротивление. Сопротивление длинного провода больше, чем сопротивление короткого провода, потому что электроны сталкиваются с большим количеством ионов при прохождении через них.

Что означает значение 1 Ом?

Сопротивление измеряется в единицах, называемых Ом, и обозначается греческой буквой омега (Ом).Стандартное определение одного ома простое: это величина сопротивления, необходимая для протекания тока в один ампер при приложении к цепи напряжения одного вольт.

Сколько Ом должен быть у хорошего провода?

Обычно хорошие соединения проводов имеют сопротивление менее 10 Ом (часто лишь доли Ом), а изолированные проводники имеют сопротивление 1 МОм или больше (обычно десятки МОм, в зависимости от влажности).

Сколько Ом в проводе?

Калибры общих проводов

Размер провода AWG (сплошной) Диаметр (дюймы) Сопротивление на 1000 футов (Ом)
20 0. 0320 10,15
18 0,0403 6.385
16 0,0508 4,016
14 0,0640 2,525

Что произойдет, если в цепи нет сопротивления?

Если бы в цепи действительно не было сопротивления, электроны обошли бы цепь и вернулись бы в начало цепи с такой же энергией, как разность потенциалов (напряжение).Эта конечная энергия обычно рассеивается схемой в виде тепла или других видов энергии.

Короткое замыкание имеет нулевое сопротивление?

В анализе цепей короткое замыкание определяется как соединение между двумя узлами, которое заставляет их находиться под одинаковым напряжением. В «идеальном» коротком замыкании это означает отсутствие сопротивления и, следовательно, падения напряжения на соединении. В реальных схемах результатом является соединение почти без сопротивления.

Короткое замыкание имеет сопротивление?

Обычно сопротивление, связанное с коротким замыканием, настолько низкое, что считается нулевым.

Какой ток, если сопротивление равно 0?

Когда сопротивление в любой цепи равно нулю, ток, проходящий через эту цепь, будет бесконечным. Мы знаем из закона Ома, что V = IR. Здесь, если вы считаете сопротивление равным нулю, уравнение принимает вид V = I (0). …

Будет ли течь ток, если сопротивление равно нулю?

В случае отсутствия сопротивления ток (однажды протекающий) не требует напряжения для продолжения протекания. Точно так же не требуется никакого напряжения, чтобы поддерживать ток, если нет сопротивления.Вы правы, что если у вас идеальный изолятор (R = ∞), то любое приложенное напряжение все равно будет давать нулевой ток.

Есть ли у сверхпроводников сопротивление?

Сверхпроводники — это материалы, которые проводят электрический ток с нулевым электрическим сопротивлением. Это означает, что вы можете перемещать электроны через него, не теряя энергии на нагрев.

Можно ли иметь отрицательное сопротивление?

Невозможно получить отрицательное сопротивление с помощью чисто пассивных компонентов. Мы можем видеть это из термодинамики. Обычный (положительный) резистор излучает тепло в окружающую среду — напряжение, умноженное на ток, дает нам рассеиваемую мощность. Отрицательный резистор должен поглощать тепло и превращать его в электрическую энергию.

Каково удельное сопротивление меди при 0 градусах Цельсия? — Easierwithpractice.com

Какое удельное сопротивление меди при 0 градусах Цельсия?

Удельное сопротивление и температурный коэффициент при 20 ° C

Материал Удельное сопротивление ρ (Ом · м) Температурный коэффициент α на градус Цельсия
Медь 1.68 .00386
Медь отожженная 1,72 .00393
Алюминий 2,65 .00429
Вольфрам 5,6 .0045

Сопротивление прямо пропорционально температуре?

Удельное сопротивление косвенно пропорционально температуре. Другими словами, чем выше температура материалов, тем меньше их удельное сопротивление.

Какая связь между удельным сопротивлением и температурой?

Удельное сопротивление проводника увеличивается с температурой. В случае меди зависимость между удельным сопротивлением и температурой примерно линейна в широком диапазоне температур. Для других материалов лучше работает соотношение сил. Удельное сопротивление проводника увеличивается с температурой.

Почему удельное сопротивление германия уменьшается с температурой?

Из-за повышения температуры материала электроны валентной зоны получают энергию, вызывая их возбуждение.Следовательно, эффективно уменьшается разность запрещенной зоны между валентной зоной и зоной проводимости из-за увеличения температуры полупроводника, что приводит к снижению сопротивления материала.

Какой провод имеет наибольшее удельное сопротивление?

Требуемые свойства проводящего материала с высоким низким сопротивлением или высокой проводимостью

Sl № Металлы Удельное сопротивление (мкОм-см)
1 Серебро 1. 58
2 Медь 1,68
3 Золото 2,21
4 Алюминий 2,65

Как влияет сопротивление германия на температуру?

Германий — полупроводник. Удельное сопротивление полупроводников, в отличие от резисторов, уменьшается с повышением температуры.

Какое сопротивление германия?

1.b

Сопротивление прямо пропорционально длине?

Сопротивление провода прямо пропорционально его длине и обратно пропорционально его площади поперечного сечения. Сопротивление также зависит от материала проводника. Сопротивление проводника или элемента схемы обычно увеличивается с повышением температуры.

Какому повышению температуры сопротивление чистых металлов?

Пояснение: Сопротивление металла увеличивается с повышением температуры, поэтому он имеет положительный температурный коэффициент.

Какое сопротивление чистых металлов?

Вопросы и ответы Сопротивление чистых металлов ___________ a) Увеличивается с увеличением температуры b) Уменьшается с увеличением температурыc) Остается неизменным с увеличением температуры d) Становится нулевым с увеличением температуры Правильный ответ — вариант «A».

Что происходит с повышением температуры сопротивления чистых металлов?

Положительный коэффициент для материала означает, что его сопротивление увеличивается с повышением температуры.Чистые металлы обычно имеют положительный температурный коэффициент сопротивления. Отрицательный коэффициент для материала означает, что его сопротивление уменьшается с повышением температуры.

Какое влияние оказывает температура на сопротивление чистых металлов?

Металл: Сопротивление всех чистых металлов линейно увеличивается с повышением температуры в ограниченном температурном диапазоне. При низкой температуре ионы почти неподвижны. С повышением температуры ионы внутри металла приобретают энергию и начинают колебаться вокруг своего среднего положения.

Почему сопротивление изменяется с температурой?

Нагрев металлического проводника затрудняет прохождение электричества через него. Эти столкновения вызывают сопротивление и выделяют тепло. Нагрев металлического проводника заставляет атомы сильнее колебаться, что, в свою очередь, затрудняет движение электронов, увеличивая сопротивление.

Как на самом деле влияет температура на сопротивление?

Влияние температуры на сопротивление | Температурный коэффициент сопротивления.Проверка соотношения напряжение / ток (V / I) проводников при различных температурах показывает, что сопротивление большинства проводящих материалов линейно увеличивается с температурой, за исключением очень высоких или очень низких температур.

Что означает температурный коэффициент сопротивления?

Температурный коэффициент сопротивления, или TCR, является одним из основных параметров, используемых для характеристики резистора. TCR определяет изменение сопротивления как функцию температуры окружающей среды. Общий способ выражения TCR — в ppm / ° C, что означает доли на миллион на градус Цельсия.

Какое значение имеет температурный коэффициент сопротивления?

Обычно температура влияет на сопротивление и удельное электрическое сопротивление всех материалов. Кроме того, изменение электрического сопротивления оказывает большое влияние на различные электрические и электронные схемы.

Что такое термостойкость?

Термическое сопротивление — это тепловое свойство и измерение разницы температур, при которой объект или материал сопротивляются тепловому потоку.Тепловое сопротивление обратно пропорционально теплопроводности. (Абсолютное) тепловое сопротивление R в кельвинах на ватт (К / Вт) является свойством конкретного компонента.

Что вы подразумеваете под отрицательным температурным коэффициентом сопротивления?

Отрицательный температурный коэффициент (NTC) относится к материалам, электрическое сопротивление которых уменьшается при повышении температуры. Чем ниже коэффициент, тем сильнее уменьшается электрическое сопротивление при заданном повышении температуры.

Что такое удельное сопротивление?

Определение «удельного сопротивления» 1. Электрическое свойство материала, определяющее сопротивление детали заданных размеров. Он равен RA / l, где R — сопротивление, A — площадь поперечного сечения, а l — длина, и является обратной величиной проводимости. Измеряется в омах.

Какой провод используется в коробке сопротивления?

Нихром, немагнитный сплав никеля и хрома 80/20, является наиболее распространенной проволокой сопротивления для нагревательных целей, поскольку она имеет высокое удельное сопротивление и стойкость к окислению при высоких температурах.При использовании в качестве нагревательного элемента резистивный провод обычно наматывается в катушки.

Имеет ли медь высокое сопротивление?

Медь имеет наивысший показатель электропроводности из всех неблагородных металлов: удельное электрическое сопротивление меди = 16,78 нОм • м при 20 ° C. В атоме меди крайняя 4s энергетическая зона или зона проводимости заполнена только наполовину, поэтому многие электроны способны переносить электрический ток.

Что можно сказать о проводах с высоким сопротивлением?

Провод сопротивления используется для контроля силы тока в цепи.Лучше использовать высокое удельное сопротивление, так как в этом случае можно использовать более короткий провод. Когда стабильность резистора имеет первостепенное значение, температурный коэффициент удельного сопротивления сплава и коррозионная стойкость очень важны при выборе материала.

Какие четыре фактора влияют на сопротивление провода?

На сопротивление влияют четыре фактора: температура, длина провода, площадь поперечного сечения провода и природа материала.

.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *