06.05.2024

Направление эл тока: Направление электрического тока ⋆ diodov.net

Содержание

Направление электрического тока ⋆ diodov.net

Программирование микроконтроллеров Курсы

Направление электрического тока принято считать от плюса к минусу генератора или источника питания, и принимается, что он протекает в металлических проводниках. Однако I образуется не только в проводниках, но и в газах и жидкостях. Атомы металлов связаны в прочную кристаллическую решетку, поэтому свободно перемещаться могут только свободные электроны; ионы остаться неподвижными. Атомы газов и жидкостей могут свободно перемещаться, поскольку не имеют прочных связей. Следовательно, носителями зарядов служат ионы и эл-ны.

Кристаллическая решетка металла, газ и жидкость

Направление движения электронов и ионов

Поэтому при определении силы тока I в газах и жидкостях, необходимо учитывать сумму положительных и отрицательных зарядов, прошедших через площадь поперечного сечения за единицу времени. Например, в металлическом проводнике I = 1 А, если через проводник за одну секунду проходят 6,2818 эл-нов (1 Кл).

Один ампер в газе или жидкости могут образовать 3,1418 эл-нов (0,5 Кл) и столько же положительных ионов (еще 0,5 Кл). Если заряд иона вдвое превышает заряд эл-на, то  потребуется в два раза меньше ионов для создания одного ампера.

Направление электрического тока в проводниках

Исторически сложилось так, что направление протекание электрического тока принято от «плюса» к «минусу», то есть от положительного к отрицательному электроду источника питания. На самом деле, если рассматривать металлический проводник, то электроны, являющиеся единственными носителями заряда, движутся от отрицательного электрода к положительном. Следовательно действительное направления тока противоположно принятому.

Направление электрического тока

Такое направление предложил Бенджамин Франклин ввиду отсутствия знаний того времени о природе носителей электрического заряда в проводниках. Портрет Бенджамина Франклина изображен на сто долларовой купюре.

Направление электрического тока в газах и жидкостях

В газах и жидкостях электрический ток может протекать от плюса к минусу, согласно традиционному представлению, поскольку в них может преобладать количество положительных ионов. Направление не стали изменять на «правильное», поскольку оно слишком плотно вошло в обиход.Электроника для начинающих

Еще статьи по данной теме

Электрическая цепь. Направление электрического тока

Конспект по физике для 8 класса «Электрическая цепь. Направление электрического тока». Из каких элементов состоит электрическая цепь. Какое направление принимают за направление электрического тока в цепи.

Конспекты по физике    Учебник физики    Тесты по физике


Электрическая цепь.
Направление электрического тока

В отсутствие электрического поля свободные электроны в проводниках движутся беспорядочно. Если концы проводника (или провода) подсоединить к полюсам источника тока, то в проводнике возникнет электрический ток.

ПРОСТЕЙШИЕ ЭЛЕКТРИЧЕСКИЕ ЦЕПИ

Чтобы заставить работать различные электрические приборы — электродвигатели, лампы, плитки и т. д., необходимо создать в них электрический ток. Электрические приборы называют приёмниками или потребителями энергии. Для того чтобы электрическую энергию доставить от источника тока к приёмнику, используют соединительные провода.

Чтобы регулировать процессы протекания электрического тока, включать и выключать потребители электрической энергии, применяются различные приборы управления током: ключи, рубильники, выключатели и другие замыкающие и размыкающие устройства.

Источник тока, потребители электрической энергии и приборы управления током, соединённые между собой проводами, составляют электрическую цепь. Для того чтобы в цепи существовал ток, она должна быть замкнута. Обрыв цепи или замена проводящего участка цепи изолятором приводит к прекращению прохождения тока.

Немецкий профессор Г. К. Лихтенберг из Гёттингена первый предложил ввести символы, обозначающие отдельные элементы электрических цепей. Он обосновал их практическое применение и использовал в своих работах. Благодаря ему математические знаки «+» и «-» стали использовать для обозначения электрических зарядов.

НАПРАВЛЕНИЕ ЭЛЕКТРИЧЕСКОГО ТОКА

До открытия электрона учёные предполагали, что по цепи движутся только положительные заряды. Поэтому общепринятым направлением электрического тока в цепи считается направление, в котором движутся (или могли бы двигаться) в проводнике положительные заряды, т. е. направление от положительного полюса источника тока к отрицательному. Но это не означает, что во всех проводниках движутся положительные заряды. В одних случаях в проводнике движутся только отрицательные заряды, в других случаях происходит движение зарядов обоих знаков в противоположных направлениях. Но определение направления тока было сделано в те времена, когда природа электрического тока не была до конца изучена.

При направленном движении заряженные частицы могут участвовать и в тепловом хаотическом движении. Характер движения частиц при протекании электрического тока можно сравнить с явлением конвекции в жидкостях и газах, при котором в направленных конвекционных потоках происходит беспорядочное движение молекул.

В металлических проводниках ток создаётся отрицательно заряженными частицами — электронами, которые движутся по цепи от отрицательного полюса источника тока к положительному. Направление тока и направление движения носителей заряда в этом случае противоположны.

Понятия «электрический ток» и «направление электрического тока» были введены французским физиком Андре Мари Ампером. Именно он предложил принять за направление электрического тока то, в котором перемещается «положительное электричество».

Благодаря работам Ампера шаг за шагом выросла новая наука — электродинамика, основанная на экспериментах математической теории. В 1826 г. Ампер опубликовал труд, который назывался «Теория электродинамических явлений, выведенная исключительно из опыта».

Ампер также ввёл в науку такие термины, как «электростатика», «электродинамика», «соленоид», «электродвижущая сила», «напряжение», «гальванометр» и даже «кибернетика». Он высказал предположение о том, что, вероятно, возникнет новая наука об общих закономерностях процессов управления, и предложил назвать её кибернетикой.

 


Вы смотрели Конспект по физике для 8 класса «Электрическая цепь. Направление электрического тока».

Вернуться к Списку конспектов по физике (Оглавление).



Просмотров:
1 555

Проектируем электрику вместе: Направление электрического тока

Свободные электроны.. Электрический ток.. Измерение тока.. Амперметр.. Единица силы тока — Ампер.. Направление электрического тока.. Направление движения электронов..

Когда электрическое поле прикладывается к проводнику, свободные электроны (носители отрицательного заряда) начинают дрейфовать в соответствии с направлением электрического поля – возникает электрический ток.

Движение электронов означает движение отрицательных зарядов, следовательно, – электрический ток является мерой количества электрического заряда, переносимого через поперечное сечение проводника за единицу времени.

В международной системе СИ единица измерения заряда – Кулон, а единица времени – секунда. Поэтому единица силы тока – Кулон в секунду (Кл/сек).

Измерение тока

Единица силы тока Кулон в секунду в системе СИ имеет конкретное название Ампер (А) – в честь знаменитого французского ученого Андре-Мари Ампера (на фото в заголовке статьи).                                              
Как мы знаем, величина отрицательного электрического заряда электрона -1,602 • 10-19 Кулона. Поэтому один Кулон электрического заряда состоит из 1 / 1,602 • 10-19 = 6,24 • 1018 электронов.
Следовательно, если 6,24 • 1018 электронов пересекает поперечное сечение проводника за одну секунду, то величина такого тока равна одному амперу.

Для измерения силы тока существует измерительный прибор — амперметр.

                                                        Рис. 1

Амперметр включается в электрическую цепь (рис. 1) последовательно с тем элементом цепи, силу тока в котором необходимо измерить. При подключении амперметра нужно соблюдать полярность: «плюс» амперметра подключается к «плюсу» источника тока, а «минус» амперметра — к «минусу» источника тока.

Направление электрического тока

Если в электрической цепи, показанной на рис. 1 замкнуть контакты выключателя, то по этой цепи потечет электрический ток. Возникает вопрос: «А в каком направлении?»

Мы знаем, что электрическим током в металлических проводниках называется упорядоченное движение отрицательно заряженных частиц – электронов (в других средах это могут быть ионы или ионы и электроны). Отрицательно заряженные электроны во внешней цепи двигаются от минуса источника к плюсу (одноименные заряды отталкиваются, противоположные — притягиваются), что хорошо иллюстрирует рис. 2.

Рис. 2
                                                 
Учебник физики за 8 класс дает нам другой ответ: «За направление электрического тока в цепи принято направление движения положительных зарядов», — то есть от плюса источника энергии к минусу источника.

Выбор направления тока, противоположного истинному, иначе как парадоксальным назвать нельзя, но объяснить причины такого несоответствия можно, если проследить историю развития электротехники.

Дело в том, что электрические заряды стали изучать задолго до того, как были открыты электроны, поэтому природа носителей заряда в металлах была еще неизвестна.
Понятие о положительном и отрицательном заряде ввёл американский ученый и политический деятель Бенджамин Франклин.
 
В своей работе «Опыты и наблюдения над электричеством» (1747 г.) Франклин  предпринял попытку теоретически объяснить электрические явления. Именно он первым высказал важнейшее предположение об атомарной, «зернистой» природе электричества: «Электрическая материя состоит из частичек, которые должны быть чрезвычайно мелкими».

Франклин полагал, что тело, которое накапливает электричество, заряжается положительно, а тело, теряющее  электричество, заряжается отрицательно. При их соединении избыточный положительный заряд  перетекает туда, где его недостает, то есть к отрицательно заряженному телу (по аналогии с сообщающими сосудами).

Эти представления о движении положительных зарядов широко распространились в научных кругах и вошли в учебники физики. Так и получилось, что действительное направление движения электронов в проводнике противоположно принятому направлению электрического тока.

После открытия электрона ученые решили оставить все как есть, поскольку пришлось бы очень многое изменять (и не только в учебниках), если указывать истинное направление тока. Также это связано и с тем, что знак заряда практически ни на что не влияет, пока все используют одно и то же соглашение.
Истинное направление движения электронов используется только, когда это необходимо, чтобы объяснить некоторые физические эффекты в полупроводниковых устройствах (диоды, транзисторы, тиристоры и  др.).

Статьи по теме: 1. Что такое электрический ток?
                            2. Взаимодействие электрических зарядов. Закон Кулона
                            3. Постоянный и переменный ток
                            4. Проводники и изоляторы. Полупроводники
                            5. О скорости распространения электрического тока
                            6. Электрический ток в жидкостях 
                            7. Проводимость в газах
                            8. Электрический ток в вакууме
                            9. О проводимости полупроводников

Внимание! Всех интересующихся практической электротехникой приглашаю на страницы своего нового сайта «Электрика для дома». Он посвящен основам электротехники и электричества с акцентом на домашние электрические установки и происходящие в них процессы.                                                                             

Урок 15. электрическая цепь. направление электрического тока. сила тока — Физика — 8 класс

Тип урока – урок открытия нового знания.

Цели:

— сформировать у учащихся умения реализации новых способов действия;
— ввести понятие направление электрического тока, силы тока;
— описать единицы силы тока;
— рассмотреть простейшие электрические цепи.
— развивать логическое мышление, воспитывать интерес к физике

Формирование УУД (универсальных учебных действий):

Познавательные УУД:

— поиск и выделение новой информации по теме;
— нахождение ответов на вопросы, используя свой жизненный опыт и информацию, полученную на уроке;
— построение логической цепи рассуждений;
— умение переносить и применять знания по данной теме в новых условиях;

Регулятивные УУД:

— умение ориентироваться в своей системе знаний;
— оценивать правильность выполнения действия;
— умение корректировать действие после его завершения;
— высказывать свое предположение;
— развитие контроля и самоконтроля;

Коммуникативные УУД:

— умение оформлять свои мысли в письменной форме;

Личностные УУД:

— способность к самооценке на основе критерия успешности учебной деятельности;
— развитие логического мышления;
— развитие памяти, наблюдательности, внимания;
— расширение кругозора учащихся.

Планируемые результаты:

предметные

— формирование умения наблюдать, описывать и объяснять физические явления, связанные с током;
— формирование навыков по сборке электрической цепи и измерению силы тока в электрической цепи;

личностные

— формирование целостной картины мира;
— развитие самостоятельности и личной ответственности за свои поступки; в том числе в информационной деятельности;

метапредметные

— овладение способностью принимать и сохранять цели и задачи учебной деятельности, поиска средств ее осуществления;
— освоение способов решения проблем творческого и поискового характера;
— овладение логическими действиями сравнения, анализа, синтеза, обобщения, классификации по родовидовым признакам, установления аналогий и причинно-следственных связей, построения рассуждений, отнесения к известным понятиям;
— овладение базовыми предметными и межпредметными понятиями, отражающими существенные связи и отношения между объектами и процессами.

— Организационный этап

Мотивационный модуль

Выполняется упражнение на соответствие картинки и надписей и формулируется тема урока.

— Объяснение нового материала

Объясняющий модуль

— Закрепление нового материала.

Тренировочный модуль

Выполнение упражнений для закрепления нового материала.

— Контроль навыков

Контрольный модуль

Выполнение упражнений для контроля понимания нового материала.

величина, направление, единица измерения — Студопедия

Электрическим током называется упорядоченное движение заряженных частиц, в процессе которого происходит перенос электрического заряда.

В металлическом проводнике, например, такими частицами являются свободные электроны. Они находятся в постоянном тепловом движении. Это движение происходит с высокой средней скоростью, но в силу его хаотичности не сопровождается переносом заряда. Выделим мысленно в проводнике элемент поверхности dS: за любой промежуток времени число электронов преодолевших эту поверхность слева направо будет в точности равно числу частиц прошедших через эту поверхность в обратном направлении. Поэтому заряд, перенесённый через эту поверхность, окажется равным нулю.

Ситуация изменится, если в проводнике появится электрическое поле. Теперь носители заряда будут участвовать не только в тепловом, но и в упорядоченном, направленном движении. Положительно заряженные носители будут двигаться по направлению поля, а отрицательные — в противоположном направлении.

В общем случае в переносе заряда могут принимать участие носители обоих знаков (например, положительные и отрицательные ионы в электролите).

Электрический ток может быть постоянным или переменным.

Постоянный ток — электрический ток, направление и величина которого не меняются во времени.

Переменный ток — электрический ток, величина и направление которого меняются с течением времени.

Основные физические величины:



Схема измерения силы тока.

Разность потенциалов (обозначение U). Поскольку генераторы действуют на электроны подобно водяному насосу, существует разность на его клеммах, которая и называется разностью потенциалов. Выражается она в вольтах (обозначение В). Если мы с вами измерим вольтметром разность потенциалов на входном и выходном соединении электроприбора, то увидим на нем показания 230-240 В. Обычно эта величина называется напряжением.

Сила тока (обозначение I). Допустим, когда подключают лампу к генератору, создается электрическая цепь, которая проходит через лампу. Поток электронов течет через провода и через лампу. Сила данного потока выражается в амперах (обозначение А).

Сопротивление (обозначение R). Под сопротивлением обычно понимают материал, который позволяет электрической энергии преобразовываться в тепловую. Сопротивление выражается в омах (обозначение Ом). Сюда можно добавить следующее: если сопротивление возрастает, то сила тока уменьшается, так как напряжение остается постоянным, и наоборот, если уменьшить сопротивление , то сила тока возрастет.


Мощность (обозначение Р). Выражается в ваттах (обозначение Вт) — она определяет количество энергии, потребляемой прибором, который в данный момент подключен к вашей розетке.

Направление

За направление тока принимают направление движения положительно заряженныхчастиц; если ток создаётся отрицательно заряженными частицами (например, электронами), то направлениетока считают противоположным направлению движения частиц.

Единица измерения

Сила тока в Международной системе единиц (СИ) измеряется в амперах. Ампер является одной из семи основных единиц СИ. Один ампер — это сила постоянного тока, при котором заряд, равный одному кулону проходит через поперечное сечение за одну секунду. Ампер можно также определить как силу такого тока, который при прохождении по двум параллельным прямым проводникам бесконечной длины и малого диаметра, расположенным на расстоянии 1 м друг от друга в вакууме, вызывает на участке проводника длиной 1 м силу взаимодействия, равную 0,2 мкH.

Электрический ток ⋆ diodov.net

Программирование микроконтроллеров Курсы

Электрический ток является одним из основных процессов, протекающих в абсолютно любой электронной схеме (в электрической цепи). Изучение данного процесса позволит в дальнейшем гораздо проще понимать остальные процессы, присущие электрическим цепям.

Для более глубокого понимания сущности электрического тока, рекомендую прежде ознакомиться с природой возникновения электричества. Ранее мы узнали, что при натирании о шерсть пластмассовой палочки за счет сил трения некоторое количество электронов покидают поверхностный слой стержня, который становится положительно заряженный. При натирании стеклянной палочки о шелк, она заряжается отрицательно, поскольку электроны покидают атомы из верхних слоев шелка и оседают на стекле.

Образование электрического токаОбразование электричества

Таким образом, мы имеем одну палочку с избытком электронов, поэтому говорят, что она отрицательно заряжена, а вторую палочку – с нехваткой электронов, поэтому в ней преобладает положительный заряд.

Поскольку все явления в природе стремится к равновесию, то соединив проводником обе разноименно заряженных стержня, свободные электроны мгновенно перейдут из стеклянного стержня к пластмассовому, из зоны их избытка в зону нехватки. В результате оба стержня станут нейтрально заряженными и лишены свободных электронов, которые могли бы легко перемещаться. Процесс перемещения электронов по проводнику между палочками и есть электрический ток.

Протекание электрического тока

Электрический ток могеж выполнять полезную работу, например, засветить светодиод, расположенные на его пути.

Электрический ток и светодиод

Полезную работу зарядов можно представить на примере автобуса. Если из города А в город Б проследовал автобус без пассажиров, то автобус не выполнил никакой полезной работы и напрасно израсходовал топливо. Автобус, перевезший пассажиров, — выполнил полезную работу. Аналогично работает и электрический ток, поэтому на его пути располагают нагрузку, на которой происходит выполнение полезной работы.

Соединенный проводами с натертыми палочками светодиод светится очень короткий промежуток времени, поскольку свободные отрицательные заряды мгновенно переместятся из области их избытка в область нехватки и наступит равновесие.

После протекания электрического тока

Генератор

Для того чтобы светодиод мог светиться продолжительное время необходимо поддерживать электрический ток путем пополнения зарядов на палочках, то есть постоянно их натирать о шерсть и шелк соответственно. Но такой способ трудно реализуем на практике и малоэффективен. Поэтому применяется гораздо практичней способ поддержания необходимого количества носителей энергии.

Устройство, которое постоянно создает или генерирует заряды разных знаков, называют генератором или обобщенно – источником питания. Простейшим генератором является батарейка, которую более правильно называть гальванический элемент. В отличие от палочек, в которых заряды образуются за счет сил трения, в гальваническом элементе разноименные заряды образуются в результате протекания химических реакций.

Обозначение генератора тока

Электрический ток  и условия его протекания

Теперь мы можем сделать первые важнейшие предварительные выводы и обозначить условия протекания электрического тока.

  1. Первое. Для образования электрического тока путь движения зарядов должен быть замкнут.
  2. Второе. Для поддержания электрического тока необходимо, чтобы вначале пути пополнялся запас зарядов, а в конце путь они отбирались, освобождая места для вновь пришедших зарядов.
  3. Третье. Чтобы заряды выполняли полезную работу, следует на их пути расположить, например нить лампы накаливания, светодиод или обмотку двигателя, которые в общем случае принято называть нагрузкой или потребителем.

В общем, простейшая электрическая цепь состоит из генератора, нагрузки и проводов, соединяющих генератор с нагрузкой.

Электрическая цепь

Электродвижущая сила ЭДС

Главной задачей любого источника питания является образование и поддерживание на выводах, называемых электродами, постоянное значение разноименных зарядов. Чем большее число зарядов, тем сильнее они стремятся притянуться друг к другу и поэтому интенсивней перемещаются по электрической цепи. А сила, которая заставляет двигать электроны по цепи, называется электродвижущая сила или сокращенно ЭДС. Электродвижущая сила измеряется в вольтах [В]. ЭДС новой (не разряженной) батарейки чуть больше 1,5 В, а кроны – чуть больше 9 В.

Количественно оценить значение электрического тока наглядно на примере водопроводной трубы. Мысленно представим воду в виде набора маленьких капелек, имеющих одинаковые размеры. Теперь возьмем и разрежем в каком-либо месте трубу и установим счетчик капелек воды. Далее откроем кран и засечем время, например одну минуту. После отсчета времени снимем показания счетчика. Допустим, за одну минуту счетчик зафиксировал 1 миллион капель. Отсюда мы делаем вывод, что расход воды составляет миллион капель за минуту. Если мы увеличим напор воды – заставим насос качать ее быстрее, — то возрастет давление воды, при этом капельки начнут перемещаться интенсивней и соответственно возрастет расход воды.

Определение силы тока

Сила электрического тока

Аналогичным образом определяется сила электрического тока. Если мысленно разрезать провод, соединяющий генератор с нагрузкой и установить счетчик, то мы получим расход электронов за единицу времени, — это есть сила тока.

Сила электрического тока

С ростом электродвижущей силы генератора электроны интенсивнее проходят по цепи, а сила тока возрастает.

Поскольку известен заряд электрона и их суммарное количество, прошедшее через поперечное сечение проводника за единицу времени, то можно количественно определить силу тока.

Заряд одного электрона имеет очень малую величину, а в электрическом токе их участвует огромное число. Поэтому за единицу электрического заряда приняли 628∙1016, то есть 6280000000000000000 зарядов электрона. Такая величина электрического заряда получила название кулон, сокращенно [Кл].

Единица измерения силы тока называется ампер [А]. Сила тока равна одному амперу, когда через поперечное сечение проводника за одну секунду проходит суммарный электрический заряд, величиной в один кулон.

1 А = 1 Кл/1 сек

I = Q/t

Если за одну секунду по проводнику проходит в два раза больше электронов, то I  равна 2 ампера.

В проводнике, выполненном из металла, например меди или алюминия, образуются множество свободных эле-нов. Они легко покидают атомы кристаллической решетки металла и свободно перемещаются в межатомном пространстве. Однако гуляют они не долго, поскольку мгновенно притягивается другим положительно заряженным атомом, который потерял аналогичный эле-н. Поэтому по умолчанию ток через проводник не протекает. Кроме того свободные эл-ны не имеют упорядоченного движения, а хаотически перемещаются в межатомном пространстве. Такое, не имеющее четкого направления, перемещение называют Броуновским движением. С ростом температуры интенсивность движения увеличивается.

Броуновское движение электронов в проводнике

Чтобы протекал I нужно на одном конце проводника создать недостачу эл-нов, а на втором их избыток, то есть подключить разноименные полюса источника питания. Тогда электрическое поле источника питания создаст такую электродвижущую силу, которая заставит эл-ны в проводнике перемещаться в строго одном направлении. Поэтому электрическим током называют упорядоченное движение зарядов под действием внешнего электрического поля. Такая возможность эл-нов перемещаться в заданном направлении, преодолев хаотическое движение, появляется за счет сообщения им дополнительной энергии от электрического поля источника ЭДС.Электроника для начинающих

Еще статьи по данной теме

Открытый урок «Действия электрического тока и его направление»

Цели урока:

  • Дидактические: создать условия для усвоения нового учебного материала, используя методику проблемного обучения, научить учащихся, работая в группах, достигать общую цель.
  • Общеобразовательные: В процессе экспериментальной работы выяснить, какие действия способен совершать электрический ток. Познакомить учащихся с техникой безопасности при работе с электрическими приборами. Показать практическую направленность изучаемого материала.
  • Развивающие: Формировать научно-материалистическое мировоззрение, развивать логическое мышление, формировать представление о процессе научного познания. Вырабатывать умение слушать и быть услышанным, прививать культуру умственного труда.

Оборудование: Выпрямители, провода с розетками, ключи, магниты, штативы, подставки, электроды угольные и серебряные, раствор медного купороса, кипячёная вода, резистор, лампочка на подставке, шкала, термометр, гвозди, проволока, проволочный моток, таблица на доске, схемы электрических цепей, карточки, интерактивная доска.

Ход урока

1. Организационный момент.

Сообщение темы и цели урока.

2. Экспресс-опрос по пройденному материалу:

  1. Что такое электрический ток?
  2. Перечислите условия существования электрического тока.
  3. Какие заряженные частицы могут участвовать в возникновении электрического тока?
  4. Что создает и поддерживает длительное время электрическое поле в цепи?
  5. Что такое источник тока?
  6. Каково его назначение?
  7. Какие виды источников тока вам знакомы?
  8. Соотнесите источник тока с энергией, в котором происходит превращение энергии в электрическую энергию.

Класс разбивается на три группы для дальнейшей работы ребят в группах. Каждой группе выдается карточка с заданиями экспериментальной работы (Приложение 1) и рабочий лист для ученика (Приложении 2).

3. Объяснение нового материала (обратить внимание ребят на рабочие листы):

При объяснении вопроса электрический ток в металлах и направление электрического тока учащиеся заполняют пробелы в предложениях рабочего листа.

1. Электрический ток в металлах.

Металлы в твердом состоянии имеют кристаллическое строение.

В узлах кристаллической решётки металлов расположены положительные ионы, а в пространстве между ними движутся электроны. Электроны не связаны с ядрами своих атомов и движутся беспорядочно, поэтому их называют свободными.

Отрицательный заряд всех свободных электронов по абсолютному значению равен положительному заряду всех ионов решётки. Поэтому в обычных условиях металл электрически нейтрален.

Если в металлах создать электрическое поле, то свободные электроны начнут двигаться направленно под действием электрических сил. Возникает электрический ток. Все электроны начинают двигаться в одном направлении по всей длине проводника, но между ними сохраняется беспорядочное движение (стайка мошкары, движущаяся в сторону ветра).

Электрический ток в металлах – это упорядоченное движение свободных электронов.

Скорость движения самих электронов в проводнике под действием электрического поля мала (несколько мм в секунду).

Но почему при замыкании электрической цепи лампочка загорается практически мгновенно?

Оказывается электрическое поле распространяется с огромной скоростью (близкой к С= 300 000 км/с) по всей длине проводника. Под действием электрического поля в упорядоченное движение приходят свободные е, находящиеся не только в подводящих проводниках, но и в спирали сомой лампы.

Поэтому, когда говорят о скорости распространения электрического тока в проводнике, то имеют в виду скорость распространения по проводнику электрического поля (выполнение задания в рабочих листах).

2. Направление электрического тока.

В металлах электрический ток – это упорядоченное движение электронов (отрицательно заряженных частиц). Т.к. в основном мы будем сталкиваться с электрическим током в металлах, разумно было бы предположить, что за направление электрического тока принимают направление движения электронов в электрическом проводнике (т.е. от « – » полюса источника к « + »).

Ток возникает и в электролитах – растворах кислот, солей, щёлочей.

Электрический ток в электролитах – упорядоченное движение ионов обоих знаков.

Но вопрос о направлении электрического тока возник задолго до открытия электронов и ионов. В то время считали, что во всех проводниках могут перемещаться как « + », так и « – » заряды.

За направление электрического тока приняли направление, по которому могли бы двигаться в проводнике «+» заряды, т.е. от «+» к «–», а т.к. это условие было учтено во всех законах и правилах электрического тока, то после открытия электронов и ионов ничего изменять не стали. (Проставить направление тока в схемах рабочего листа).

3. Действия электрического тока.

Рассмотрим 2 проводника. Можно ли по их внешнему виду определить протекает по ним электрический ток или нет? (опыт на демонстрационном столе) Решить эту проблему поможет нам изучение действий электрического тока.

Действиями электрического тока называют те явления, которые наблюдаются при наличии электрического тока в цепи. По этим действиям судят о протекании электрического тока в данной цепи, т.к. нельзя непосредственно наблюдать за движением заряженных частиц в проводнике.

Выясним, какие действия может совершать электрический ток. Для этого разделимся на 4 групп, каждая из которых получит свою карточку с экспериментальным заданием. При работе в группах надо не только провести предлагаемый эксперимент, но и сделать определённые выводы из наблюдений и понять, какое действие тока вы наблюдали во время опытов работы. После выполнения экспериментального задания один человек от группы расскажет о своих наблюдениях, а второй человек, во время рассказа, аккуратно заполнит предоставленную таблицу на доске.

Действия электрического тока.





Названия действия электрического тока                                        
Приборы    
Схема    
Применение    

4. Перед началом работы, вспомним о технике безопасности:

Человеческое тело – проводник. Если случайно человек окажется под напряжением 24В, то в большинстве случаев он не избежит травмы или даже смерти. Поэтому любому человеку, имеющему дело с электричеством, надо помнить следующие правила:

  1. Очень опасно одновременное прикосновение двумя руками к двум оголённым проводам.
  2. Очень опасно прикосновение к оголённому проводу, стоя на земле, на сыром или цементном полу.
  3. Опасно пользоваться неисправными электроприборами.
  4. Нельзя собирать, разбирать, исправлять что-либо в электрическом приборе, не отключив его от источника питания.
  5. Нельзя проводить какие либо операции с электрической арматурой, не выключив её из сети.

Мы пользуемся на уроке напряжением безопасным для жизни 4В. Но правила, оговоренные выше, надо соблюдать.

5. Групповая работа по карточкам, отчёты групп, систематизация выводов в таблице на доске и в рабочих листах.

6. Закрепление изученного материала с помощью тестовых заданий

(где количество правильных ответов будет соответствовать вашей оценке). (Приложение 3)

7. Подведение итогов урока.

8. Выставление оценок учащимся.

9. Домашнее задание:

§ 34-36. Заполнить строку «Применение» в таблице.

Электрический ток

Единица электрического заряда — кулон (сокращенно С). Обычная материя состоит из атомов, которые имеют положительно заряженные ядра и окружающие их отрицательно заряженные электроны. Заряд квантуется как кратное заряду электрона или протона:

Влияние зарядов характеризуется силами между ними (закон Кулона) и создаваемым ими электрическим полем и напряжением. Один кулон заряда — это заряд, который будет проходить через лампочку мощностью 120 ватт (120 вольт переменного тока) за одну секунду.Два заряда одного кулона
каждый, разделенный метром, будет отталкивать друг друга с силой около миллиона тонн!

Скорость прохождения электрического заряда называется электрическим током и измеряется в амперах.

Представляя одно из фундаментальных свойств материи, возможно, уместно отметить, что мы используем упрощенные наброски и конструкции, чтобы представить
концепции, и в этой истории неизбежно гораздо больше. Не имеет значения
следует прикрепить к кружкам, представляющим протон и электрон, в
чувство
подразумевая относительный размер, или даже что они являются твердой сферой
объекты,
хотя это полезная первая конструкция.Самое важное
начальная идея,
электрически, это то, что у них есть свойство, называемое «заряд», который
такой же
размер, но противоположные по полярности для протона и электрона. В
протон имеет
1836 раз больше массы электрона, но точно такого же размера
стоимость только
скорее положительный, чем отрицательный. Даже термины «положительный» и
«отрицательные»
произвольные, но прочно укоренившиеся исторические ярлыки. Самое важное
значение
в том, что протон и электрон будут сильно притягивать каждый
другое — исторический архетип клише «противоположности притягиваются».Два
протоны или два электрона будут сильно отталкивать друг друга. Как только вы
имеют
установил эти основные представления об электричестве, «как заряды
отталкивать и
в отличие от обвинений привлекают «, то у вас есть основа для
электричество и можно строить оттуда.

Из точной электрической нейтральности объемного вещества, а также из детальных микроскопических экспериментов мы знаем, что протон и электрон имеют одинаковую величину заряда. Все заряды, наблюдаемые в природе, кратны этим фундаментальным зарядам.Хотя стандартная модель протона описывает его как состоящий из дробно заряженных частиц, называемых кварками, эти дробные заряды не наблюдаются изолированно — всегда в комбинациях, которые производят +/- заряд электрона.

Изолированный одиночный заряд можно назвать «электрическим монополем». Равные положительный и отрицательный заряды, помещенные близко друг к другу, составляют электрический диполь. Два противоположно направленных диполя, расположенных близко друг к другу, называются электрическим квадруполем.Вы можете продолжить этот процесс для любого количества полюсов, но здесь упоминаются диполи и квадруполи, потому что они находят важное применение в физических явлениях.

Одна из фундаментальных симметрий природы — сохранение электрического заряда. Ни один из известных физических процессов не приводит к чистому изменению электрического заряда.

.

Электрический ток — Простая английская Википедия, бесплатная энциклопедия

Электрический ток — это поток электрического заряда. Уравнение тока: [1]

I = ΔQΔt {\ displaystyle I = {\ frac {\ Delta Q} {\ Delta t}}}

где
I {\ displaystyle I} — текущий текущий
ΔQ {\ displaystyle \ Delta Q} — изменение электрического заряда.
Δt {\ displaystyle \ Delta t} — изменение во времени

Единицей измерения электрического тока в системе СИ является ампер (А).Это равно одному кулону заряда за одну секунду.
Ток можно найти в проводах, батареях и молнии.

В проводящих материалах некоторые электроны очень слабо связаны с атомами материала. Когда большое количество этих атомов объединяется, возникает своего рода электронное облако, которое «парит» около атомов материала. Если вы исследуете поперечное сечение куска проводящего материала, электроны будут проходить через него очень быстро. Это движение вызвано температурой, и электроны, текущие в одном направлении, имеют тенденцию равняться электронам, текущим в другом направлении, поэтому не это вызывает ток.Электроны текут от одного атома к другому, этот процесс можно сравнить с передачей ведер с водой от одного человека к другому в бригаде ведер. [2]

Когда на провод воздействует электрическое поле, электроны реагируют почти мгновенно, слегка дрейфуя в направлении, противоположном полю. Они получают энергию от поля, которая очень быстро теряется, когда они сталкиваются с другими электронами в материале. Однако, пока существует поле, электроны будут возвращать ту энергию, которую они потеряли, и процесс будет продолжаться.Этот «толчок», который электроны получают от электрического поля, является источником тока, а не общим потоком самих электронов. Из этого обсуждения мы можем увидеть две вещи, которые сейчас равны , а не :

  • Это не настоящий «поток» электронов в обычном смысле этого слова: если мы исследуем скорость, которую дает электронам поле, она обычно очень мала, порядка миллиметров в секунду. Электронам потребуется полчаса, чтобы пересечь комнату размером 10 футов (3 м) с такой скоростью.Поскольку лампочка загорается почти сразу после нажатия на выключатель, должно быть что-то еще.
  • Это тоже не «эффект домино», хотя эта аналогия ближе, чем поток. Поскольку электроны такие крошечные, даже когда они движутся очень быстро, они не двигаются большой силой.

Когда по проводной цепи течет ток, он ускоряется, когда в цепи нет сопротивления. Резисторы используются для увеличения сопротивления в цепи и замедления тока.Связь между сопротивлением, током и напряжением (другая часть схемы) показана законом Ома.

.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *