Нефть — Что такое Нефть?
Нефть – горючая, маслянистая жидкость, преимущественно темного цвета, представляет собой смесь различных углеводородов
Нефть (crude oil) — горючая, маслянистая жидкость, преимущественно темного цвета, представляет собой смесь различных углеводородов.
Сырая нефть — это черная жидкость, обнаруженная в геологических формациях.
Cырая нефть из скважины – это зеленовато-коричневая легко воспламеняющаяся маслянистая жидкость с резким запахом.
Это ископаемое топливо, а это означает, что оно образовано из мертвых организмов, погребенных под сильной жарой и давлением.
Существуют различные сорта нефти.
Цвет нефти изменяется от светло-коричневого до темно-бурого и черного, плотность — 730 — 980¸1050 кг/м3 (плотность менее 800 кг/м3 имеет газовый конденсат).
Основные характеристики нефти: вес, сладость и ОКЧ.
Химический состав нефти
Соединения сырой нефти — это сложные вещества, состоящие из 5 элементов — C, H, S, O и N, содержание этих элементов колеблется в диапазонах 82 — 87% (С), 11 — 15% (H), 0,01 — 6% (S), 0 — 2% (O) и 0,01 — 3% (N).
Углеводороды — основные компоненты нефти и природного газа.
Метан CH4 – простейший углеводород, одновременно является основным компонентом природного газа.
В нефти встречаются следующие группы углеводородов:
- метановые (парафиновые) с общей формулой СnН2n+2
- нафтеновые — СnН2ni
- ароматические — СnH2n-6
Преобладают углеводороды метанового ряда (метан СН4, этан С2Н6, пропан С3Н8 и бутан С4Н10), находящиеся при атмосферном давлении и нормальной температуре в газообразном состоянии.
Пентан С5Н12, гексан С6Н14 и гептан С7Н16 неустойчивы, легко переходят из газообразного состояния в жидкое и обратно. Углеводороды от С8Н18 до С17Н36 — жидкие вещества.
Углеводороды, содержащие больше 17 атомов углерода — твердые вещества (парафины). В нефти содержится 82¸87 % углерода, 11¸14 % водорода (по весу), кислород, азот, углекислый газ, сера, в небольших количествах хлор, йод, фосфор, мышьяк и т.п.
Основные характеристики нефти: вес, сладость ( сернистость), плотность и вязкость.
Сладость
Нефть делает сладкой или кислой количество содержащейся в ней серы.
Сладкая нефть имеет очень низкий уровень серы, ниже 1%.
В высокосернистой нефти — до 1 — 2% серы.
Плотность
Основной показатель товарного качества нефти — ее плотность (r) (отношение массы к объему), по ней судят о ее качестве.
Легкая нефть наиболее ценная.
Плотность (объемная масса) — масса единицы объема тела, т.е. отношение массы тела в состоянии покоя к его объему.
Единица измерения плотности в системе СИ выражается в кг/м3.
Измеряется плотность ареометром.
Ареометр — прибор для определения плотности жидкости по глубине погружения поплавка (трубка с делениями и грузом внизу).
На шкале ареометра нанесены деления, показывающие плотность исследуемой нефти.
По плотности нефти делятся на 3 группы:
- на долю легкой нефти (с плотностью до 870 кг/м3) в общемировой добыче приходится около 60% (в России — 66%),
- на долю средней нефти (871¸970 кг/м3) в России — около 28%, за рубежом — 31%;
- на долю тяжелой (свыше 970 кг/м3) — соответственно около 6% и 10%.
Вязкость
Вязкость — свойство жидкости или газа оказывать сопротивление перемещению одних ее частиц относительно других.
Зависит она от силы взаимодействия между молекулами жидкости (газа). Для характеристики этих сил используется коэффициент динамической вязкости (m).
За единицу динамической вязкости принят паскаль-секунда (Па·с), т.е. вязкость такой жидкости, в которой на 1 м2 поверхности слоя действует сила, равная одному ньютону, если скорость между слоями на расстоянии 1 см изменяется на 1 см/с. Жидкость с вязкостью 1 Па·с относится к числу высоковязких.
В нефтяной отрасли промышленности, так же как и в гидрогеологии и ряде других областей науки и техники, для удобства принято пользоваться единицей вязкости, в 1000 раз меньшей — мПа·с.
Так, пресная вода при температуре 200С° имеет вязкость 1 мПа·с, а большинство нефтей, добываемых в России, — от 1 до 10 мПа·с, но встречаются нефти с вязкостью менее 1 мПа·с и несколько тысяч мПа·с.
С увеличением содержания в нефти растворенного газа ее вязкость заметно уменьшается.
Для большинства сортов нефти, добываемых в России, вязкость при полном выделении из них газа (при постоянной температуре) увеличивается в 2¸4 раза, а с повышением температуры резко уменьшается.
Вязкость жидкости характеризуется также коэффициентом кинематической вязкости , т.е. отношением динамической вязкости к плотности жидкости.
За единицу в этом случае принят м2/сек. На практике иногда пользуются понятием условной вязкости, представляющей собой отношение времени истечения из вискозиметра определенного объема жидкости ко времени истечения такого же объема дистиллированной воды при температуре 20оС.
Вязкость изменяется в широких пределах (при 50оС 1,2 — 55·10-6 м2/сек) и зависит от химического и фракционного состава нефти и смолистости (содержания в ней асфальтеново-смолистых веществ).
Другое основное свойство нефти — испаряемость.
Нефть теряет легкие фракции, поэтому она должна храниться в герметичных сосудах.
Пластовые условия
В пластовых условиях свойства нефти существенно отличаются от атмосферных условий.
Движение нефти в пласте зависит от пластовых условий: высокое давление, повышенная температура, наличие растворенного газа в нефти и др.
Наиболее характерной чертой пластовой нефти является содержание в ней значительного количества растворенного газа, который при снижении пластового давления выделяется из нефти (нефть становится более вязкой и уменьшается ее объем).
В пластовых условиях изменяется плотность нефти, она всегда меньше плотности нефти на поверхности.
При увеличении давления нефть сжимается.
Для пластовой нефти коэффициенты сжимаемости нефти bн колеблются в пределах 0,4¸14,0 ГПа-1, коэффициент bн определяют пересчетом по формулам, более точно получают его путем лабораторного анализа пластовой пробы нефти.
Из-за наличия растворенного газа в пластовой нефти, она увеличивается в объеме (иногда на 50-60%). Отношение объема жидкости в пластовых условиях к объему ее в стандартных условиях называют объемным коэффициентом «в». Величина, обратная объемному коэффициенту, называется пересчетным коэффициентом:
Θ=1/в
Этот коэффициент служит для приведения объема пластовой нефти к объему нефти при стандартных условиях.
Используя объемный коэффициент, можно определить усадку нефти, т.е. на сколько изменяется ее объем на поверхности по сравнению с глубинными условиями:
И = (в-1) ·100% / в.
Важной характеристикой нефти в пластовых условиях является газосодержание — количество газа, содержащееся в одном кубическом метре нефти.
Для нефтяных месторождений России газовый фактор изменяется в интервале 20 — 1000 м3/т.
По закону Генри растворимость газа в жидкости при данной температуре прямо пропорциональна давлению. Давление, при котором газ находится в термодинамическом равновесии с нефтью, называется давлением насыщения . Если давление ниже давления насыщения, из нефти начинает выделяться растворенный в ней газ.
Нефть и пластовые воды с давлением насыщения, равным пластовому, называются насыщенными. Нефть в присутствии газовой шапки, как правило, насыщенная.
природная жидкая смесь разнообразных углеводородов с небольшим количеством других органических соединений; ценное полезное ископаемое, залегающее часто вместе с газообразными углеводородами (попутные газы, природный газ).
Соединения нефти
Все углеводороды могут быть подразделены на алифатические (с открытой молекулярной цепью) и циклические, а по степени ненасыщенности углеродных связей – на парафины и циклопарафины, олефины, ацетилены и ароматические углеводороды.
Парафиновые углеводороды
Парафиновые углеводороды (общей формулы CnH2n + 2) относительно стабильны и неспособны к химическим взаимодействиям.
Соответствующие олефины (CnH2n) и ацетилены (CnH2n – 2) обладают высокой химической активностью: минеральные кислоты, хлор и кислород реагируют с ними и разрывают двойные и тройные связи между атомами углерода и переводят их в простые одинарные; возможно, благодаря их высокой реакционной способности такие углеводороды отсутствуют в природной нефти.
Соединения с двойными и тройными связями образуются в крекинг-процессе при удалении водорода из парафиновых углеводородов во время деструкции последних при высоких температурах.
Циклопарафины
Циклопарафины составляют важную часть нефти.
Они имеют то же относительное количество атомов углерода и водорода, что и олефины.
Циклопарафины (называемые также нафтенами) менее реакционноспособны, чем олефины, но более, чем парафины с открытой углеродной цепью.
Часто они представляют собой главную составную часть низкокипящих дистиллятов (бензин, керосин и лигроин), полученных из сырой нефти.
Ароматические углеводороды
Ароматические углеводороды имеют циклическое строение; циклы состоят из 6 атомов углерода, соединенных попеременно одинарной и двойной связью.
В легких нефтепродуктах из дистиллятов каменноугольного дегтя ароматические углеводороды присутствуют в больших количествах, чем в первичных и крекинг-дистиллятах нефти.
Они входят в состав бензина.
Они могут быть получены дегидрированием циклогексанов нефти с использованием катализаторов и высоких температур.
Ароматические углеводороды нежелательны с точки зрения экологии.
Сернистые соединения.
Наряду с углеводородами нефти содержат органические соединения серы, кислорода и азота.
Сернистые соединения имеют характер либо открытых, либо замкнутых цепей.
Примером первых являются алкил-сульфиды и меркаптаны.
Многие сернистые соединения нефти представляют собой производные тиофена – гетероциклического соединения, молекула которого построена как бензольное кольцо, где две CH-группы заменены на атом серы.
Большая часть сернистых соединений сосредоточена в тяжелых фракциях нефти, соответствующих гидрированным тиофенам и тиофанам.
Сера существенно ухудшает качество нефти и ухудшает экологию.
Сернистые соединения обычно имеют резкий неприятный запах и часто коррозионноактивны как в природном виде, так и в виде продуктов горения.
Существует много технологий сероочистки.
Кислородные соединения.
Некоторые имеющиеся в нефти кислородные соединения относятся к нафтеновым кислотам.
Соединения этого типа встречаются довольно часто, и содержание их в некоторой нефти России достигает более 1%.
Медьсодержащие нафтены используются как консерванты дерева, а кобальт -, марганец — и свинецсодержащие – как отвердители красок и лаков.
Фенолы (производные ароматических углеводородов, в которых присутствует гидроксильная группа ОН), обычно являются продуктом крекинг-процессов, поскольку большей частью обнаруживаются в крекинг-дистиллятах и лишь частично в первичных дистиллятах.
Промышленное производство креозолов (производных ароматических углеводородов, в которых присутствуют как гидроксильная, так и метильная группы), из крекинг-дистиллятов нефти экономически выгодно, даже несмотря на их низкое содержание (менее 0,01%).
Азотсодержащие соединения.
Содержание азота в нефти изменяется от следов до 3%.
Азотсодержащие соединения в нефти представлены соединениями ряда хинолина, частично или полностью насыщенными водородом и другими органическими радикалами; эти соединения, как правило, находятся в высококипящих фракциях сырой нефти, начиная с керосина.
Почти вся нефть содержат небольшое количество неорганических соединений, которые остаются в виде золы после сгорания нефти.
Зола содержит кремнезем, алюминий, известь, оксиды железа и марганца. Используя такие методы, как экстракция растворителем, иногда выгодно получать соединения ванадия из сажи, образующейся при сгорании ванадийсодержащей нефти.
Однако, как правило, использование нефтяной золы ныне весьма ограничено.
Нефтепереработка кратко
Состав нефти и ее классификация
Энциклопедия технологий
Нефть — это горючее жидкое полезное ископаемое, которое представляет собой сложную смесь различных веществ. Различная комбинация этих веществ обусловливает самые разнообразные свойства нефти, которые обнаруживаются даже невооруженным глазом — нефть бывает почти бесцветная, желтая, зеленоватая, коричневая или даже почти черная. При этом ее вязкость также будет варьироваться в весьма широких пределах.
Основную часть нефти составляют углеводороды, то есть соединения углерода и водорода, которые делятся на три класса: парафины, нафтены и ароматические углеводороды. Кроме этого в нефти присутствует сера и более редкие примеси, в том числе негорючие, формирующие так называемую зольную составляющую.
Разнообразие химического состава создает и широкую палитру физических свойств. В отличие от воды у нее нет строго определенной температуры кипения — можно говорить лишь о начале процесса кипения самой легкой фракции. Нет постоянной вязкости — она обычно уменьшается с нагреванием. И при нормальной температуре трудно найти нефть с одинаковой плотностью — она варьируется в достаточно широких пределах и даже может быть тяжелее воды.
Классификация нефтей
Уже в XIX веке возникла необходимость хотя бы какой-то базовой классификации нефти по комплексу ее свойств. Изначально были весьма экзотические классификации, например на «сладкую» или «кислую» нефть. С развитием нефтехимии и аналитических исследований, классификации стали развиваться и теперь их достаточно много.
Химическая классификация базируется на соотношении парафинно-нафтено-ароматических углеводородов. Для нужд нефтеперегонки имеет большое значение классификация по содержанию серы в нефти, а также ее плотность. Бывают нефти с малым (до 0,5–0,6%), средним (до 1,8%) и высоким (более 1,8–3,5%) содержанием серы. Нефти с содержанием серы более 3,5% относятся к особо высокосернистым. В свою очередь они могут быть легкими, средними или тяжелыми, с выделением также «особо легких» и битуминозных (то есть «особо тяжелых»).
Нефти также делят на три типа по объему легких фракций, кипящих при нагреве до 350 градусов Цельсия, из которых получают разнообразные бензины, керосин, дизельное топливо, легкий газойль. Есть классификация по содержанию парафина или так называемых базовых масел. Есть и другие специальные классификации.
Можно сказать, что нефть — это чрезвычайно разнообразный по своим свойствам продукт. Свойства конкретного образца нефти могут указать не только на регион, где она была добыта, но и на месторождение, а в ряде случаев даже на скважину. Однако для практических целей приходится огрублять ее оценку. Для этого существуют так называемые маркерные, или эталонные, сорта нефти, свойства которых приняты за определенную точку отсчета.
Оборудование нефтеперегонных заводов, трубопроводных коллекторов обычно настраивается под определенный сорт нефти, чтобы добиться наибольшей эффективности ее переработки. Наиболее известными сортами являются Brent, WTI (Light Sweet), Urals, Siberian Light, Dubai Crude. (Подробнее см. «Эталонные сорта нефти»).
Происхождение нефти и технологии ее добычи
Источник: geoenergetics.ru
Со времен возникновения потребности в топливе нефтегазодобывающая отрасль окутана невероятным количеством мифов, которые рождаются в силу невовлеченности большого количества в людей в технологии поиска и добычи нефти. Каждый человек в той или иной степени использует в своей жизни продукты, полученные из нефти, не говоря уже о том, что все мы пользуемся транспортными средствами, а потому совершенно логично, что заголовки из серии «Нефти осталось на 15 лет» не останутся без внимания.
А что же мы будем делать без нефти, что может заменить ее, стать новым источником энергии? Ветер? Солнце? Может, вообще настала пора искать источник энергии внутри себя – обратиться к шаманам? Больше всего удивляет не то, насколько общество верит в подобного рода байки, а тот факт, что мало кто задается вопросом – почему она должна кончаться? А вопрос весьма интересный, как и вопросы о том, что такое нефть, во всех ли месторождениях она одинакова, какую нефть можно называть «легкой», какую «трудной», и в чем заключаются «легкость» и «трудность», всегда ли «трудность» остается «трудностью», как и чьими усилиями «трудность» становится «легкостью»? Прежде, чем переходить к разговору о технологиях бурения и добычи нефти, попробуем ответить хотя бы на часть этих вопросов.
С чего все начиналось?
Нефтедобыча базируется, естественно, на геологических поисках залежей и от напрямую зависит от уровня развития технологий и от новых идей, так вся советская геологоразведка развивалась поэтапно – от идеи к идее. Первым масштабным прорывом в истории становления нефтяной геологии и развития методологии поисков месторождений было открытие антиклинальной теории в начале прошлого века, что позволило делать крупные высокодебитные открытия на Кавказе (1900 – 1930 гг).
[Главред Б.М.]: Существуют, как известно, две теории происхождения нефти, два взгляда на то, как она образуется – органическая (она же – биогенная) и неорганическая (она же – минеральная). Уже много лет ученые без устали спорят, какая из теорий истинна, при этом для всех, кто занят поисками и добычей углеводородов в нашей с вами суровой реальности, особого дела до этих споров нет. Как ни удивительно, но обе теории сходятся друг с другом в том, как именно ведет себя нефть после того, как процесс ее образования завершается – предсказания о том, как нефть движется внутри толщи пород, как идет процесс ее концентрации в определенных местах, где ее нужно искать, сторонники что той, что другой теории, делают очень похожие. Биогенная теория образования нефти гласит, что образуется она из останков древних организмов и растений, которые на протяжении миллионов лет осаждались на дне морей или захоронялись в континентальных условиях. Затем в дело вступали всевозможные микроорганизмы, перерабатывавшие эти останки, одновременно, по мере тектонического опускания залежей останков вглубь недр, к процессу преобразования подключались высокие температура и давления. Эти три фактора и формировали богатые органическим веществом нефтематеринские породы.
Необходимые условия для превращения органики в нефть возникают на глубине от полутора до шести километров и при температурах от 70 до 190 градусов Цельсия. При температурах, близких к 70 градусам, нефть получается вязкой, густой, с высоким содержанием смол и асфальтенов. При температурах свыше 190 градусов молекулы органических веществ дробятся до самых простых углеводородных молекул – и вместо нефти образуется уже природный газ. Природный процесс образования нефти, если верить биогенной теории, занимает в среднем от 10 до 60 млн лет. Развитие науки и технологий позволили проверить теорию практикой, то есть, в данном случае, лабораторными экспериментами: если для органического вещества искусственно создать соответствующий температурный режим и давление, то на его переход в растворимое состояние с образованием всех основных классов углеводородов требуется около часа. Имеются и другие факты, свидетельствующие в пользу биогенной теории: живая материя и нефть сходны по элементному (химическому) и изотопному составу и, кроме того, большинство известных месторождений нефти связано с осадочными породами.
Неорганическая теория постулирует образование углеводородов из содержащихся в мантии Земли воды и углекислого газа в присутствии закисных соединений металлов на глубинах 100-200 км. Огромное давление, царящее на таких глубинах, не позволяет распасться сложным молекулам углеводородов, и это же давление выталкивает эти молекулы ближе к поверхности планеты. Имеются и ряд косвенных доказательств. Многие, хотя и не все, открытые месторождения связаны с зонами разломов, а минеральная теория утверждает, что именно по разломам углеводороды и должны подниматься к поверхности. Во-вторых, месторождения встречаются не только в осадочных породах, но и в породах магматических и метаморфических. Третий аргумент – углеводороды встречаются в веществах, извергаемых вулканами. Четвертый аргумент – углеводороды есть не только на Земле, но и в метеоритах, в хвостах комет, в атмосфере других планет Солнечной системы, на Юпитере, Сатурне, Нептуне, Уране, а на Титане, спутнике Сатурна, обнаружены целые озера и реки, состоящие из смеси метана, этана, пропана, этилена и ацетилена. Если нефть имеет органическое происхождение, то откуда она берется на космических телах, на которых никаких следов органической жизни нет и в помине? Казалось бы, аргументов достаточно, но любая теория поверяется практикой. Все проведенные лабораторные эксперименты приводят к одинаковому результату – при описываемых теорией условиях образуются углеводороды, содержащие не более пяти атомов углерода, и никакого объяснения сторонники неорганической теории этому дать не могут. Вот как только ученые придумают удобоваримую гипотезу, которая объяснит этот экспериментальный результат – так и появится смысл вернуться к минеральной теории со свежими силами.
3
Вот теперь, когда мы постарались как можно сильнее «обидеть» сторонников минеральной теории происхождения нефти, начинаем двигаться в сторону упомянутого автором термина «антиклинальной теории». Спор ученых пусть идет сам по себе, а мы коротко перечислим этапы образования нефти в соответствии с органической теорией.1
Этап №1: осадконакопление. Остатки живых организмов медленно и печально выпадают на дно водных бассейнов или захороняются в континентальной обстановке.
Этап №2: осадок постепенно уплотняется, обезвоживается, при этом идут биохимические процессы при ограниченном доступе кислорода – этап вдумчивой работы микрооргнаизмов над остатками живых организмов.
Этап № 3: опускание пласта органических остатков на глубину до 1,5 -2,0 км при медленном увеличении температуры и давления.
Этап №4: основная, главная фаза нефтеобразования, во время которого пласт опускается на глубину до 3-4 км при увеличении температуры до 150 градусов и уже при отсутствии кислорода. Специалисты называют это приятно и понятно звучащим определением: органические вещества подвергаются термокаталитической деструкции. Правда ведь – сразу все стало понятно? Пусть химики рисуют соответствующие формулы, а с нас хватит и знания конечного результата – образуются битумозные вещества, которые и составляют основную массу микронефти. После этого начинает свою работу высокое давление, царящее на таких глубинах – оно и выдавливает нефть по направлению к поверхности, где она собирается в пласты-коллекторы, а потом и в ловушки.
Этап №5: в том случае если пласт опускается глубже 4 км и больше, то органическое вещество попадает в зону температур 180-250 градусов. В этом случае наступает главная фаза газообразования, а далее все то же – миграция газа из-за перепада давления в пласты-коллекторы и опять же в ловушки.
Вроде ничего сложного, ничего выходящего за границы понимания. Но, если Аналитический онлайн-журнал Геоэнергетика.ru старается идти от сложного к простому, то господа геологи действуют с точностью до наоборот. Для тех, кто не верит, приводим научные названия перечисленных этапов. Готовы? Самые отчаянные могут даже попытаться произнести нижеследующий текст вслух, но за возможные травмы языка и челюстей редакция журнала ответственности не несет.
Этап №1 – это седиментогенез, этап №2 – диагенез, этап №3 – протокатагенез, этап №4 – мезокатагенез, этап №5 – апокатагенез керотена. Нравится? А геологи на таком языке общаются друг с другом без малейшего напряжения.
Органическая и неорганическая теории происхождения нефти спорят по поводу ее образования, но описание того, как ведет себя нефть после того, как она образовалась, у них практически одинаковое. В глубинах планеты покоя нет и в помине – тут ходят-бродят сейсмические волны, литосферные плиты движутся-скользят по астеносфере, в результате в земной коре образовались складки, беспорядочно разделенные на блоки. Более-менее устаканилось все совсем недавно – каких-то полмиллиона лет назад, а все миллиарды лет до того тут было шумно и беспокойно, поскольку шло образование гнейсов, кристаллических сланцев, прорывались снизу вверх магматические интрузии, постепенно появлялись геосинлинали. Эти процессы – совершенно отдельный и интересный пласт знаний, но, если уж мы говорим про нефть и газ, то нам важно не это, а то, что образовавшиеся углеводороды в такой беспокойной обстановке оставаться на месте своего образования никак не могли. Если у вас под окном на строительной площадке вколачивают сваи, этажом выше орудует здоровенными перфораторами бригада ремонтников, снизу какие-то олухи безостановочно жужжат дрелями, сбоку отколачивают кастрюлями по стене «Турецкий марш» детишки, у которых «предки» на дачу уехали, на лестничной клетке смертельно пьяный электрик роется в проводке в безуспешных поисках «фазы» и «нуля», на ближайшей ТЭЦ орудует банда практикантов из кулинарного училища – вы ведь из квартиры помчитесь сломя голову?
Как поймать нефть?
Вот и нефть с газом точно так же – мигрируют куда подальше в поисках тишины и покоя. Раз снизу подпирает высокое давление – углеводороды направляются к поверхности, выискивая для этого как можно более проницаемые и пористые коллекторы – о них мы уже рассказывали. Вот только ничто не вечно под Луной – чаще всего коллектор заканчивается непроницаемым для углеводородного флюида экраном, флюидоупором.
Слой такой породы на языке нефтяников – «покрышка», которая вместе с коллектором и образует ловушку, удерживающую нефть и газ в будущем месторождении. Если речь идет про нефть, то дальнейшая ее судьба внутри ловушки очевидна: наверху постепенно начинает накапливаться газ, поскольку он более легкий, снизу залежь подстилается водой – она тяжелее нефти, ее место там. И вот в таком виде будущее нефтяное месторождение, собственно, и ждет – когда геологи найдут, наконец, ловушку, когда сквозь покрышку сверху покажется жало бура.
Классификация ловушек чрезвычайно разнообразна. Наиболее простая и с точки зрения геологоразведки, и с точки зрения разработки месторождения – антиклинальная ловушка, выглядящая схематично вот так:
Верхний изгиб формируется по разным причинам – изгиб слоев породы из-за движения земной коры, это может быть выступом погребенного рельефа, может возникнуть в результате магматической деятельности и так далее. Именно такие ловушки стали первым удачным предсказанием геологии как науки, именно такими были первые месторождения, которые в Российской Империи научились на бакинских и грозненских нефтепромыслах. [X]
Самый громкий прорыв в советской нефтедобыче
Но все хорошее имеет свойство рано или поздно заканчиваться, и с течением времени понадобились новые разработки, дольче вита первых лет нефтяной промышленности закончилась довольно быстро. Мысленно перемещаемся на Волгу, на Урал тридцатых-шестидесятых годов прошлого века, где случился следующий громкий успех советской геологоразведки – структурное бурение скважин. В чем идея? На участке бурят структурные скважины, которые позволяют исследовать продуктивные пласты и уточняют поверхностные методы поисков нефти и газа. Прирост запасов резко снижался, а между пробуренными структурными скважинами пласты не были изучены в той мере, насколько позволяют современные технологии, а наиболее известное ошеломительное открытие Западной Сибири (1960 – 1980 гг. ) перетянуло все внимание на себя. Новый успех опять-таки связан с новой идеей – внедрением сейсморазведки. Бытует мнение, что кардинальная смена подходов произошла из-за поверхностных условий данного региона, так как в болотистой местности проведение известной ранее полевой съемки было обречено на провал, она бы ничего не дала.
[Главред Б.М.]: Во множестве статей, посвященных рассказам о том, как геологи ведут поиск углеводородных месторождений в настоящее время, фразы «использованы методы сейсморазведки», «сейсморазведка показала», «3D сейсмика» и тому подобное стали привычным фоном. Ну, подумаешь, сейсмика в 3D-формате – нам ли, живущим в мире скоростного интернета, который в ближайшее время станет сверхскоростным, а еще через несколько лет ультрасупергиперсверхэкстраскоростным, присматриваться к таким простеньким словечкам! У наших айфонов уже закругленные уголки гибкими стали, мы умеем пользоваться программами, которые нам бороды и морщины рисуют, по случаю короновируса в концертных залах голограммы эстрадных певиц будут открывать рот на радость аплодирующим голограммам зрителей, а тут какая-то там сйсморазведка? Ха! – да мы ее одной левой. Да что левой, что правой – как заставить сейсмические свойства упругих волн «рисовать» картинки того, что находится в нескольких километрах у нас под ногами, как определить, какие породы складывают пласты и складки, как отличить нефть от воды, найти границы газовых оторочек нефтяных месторождений и нефтяных оторочек месторождений газовых?
Сейсмическая разведка – это целая наука, сумасшедшая по сложности и дающая невероятные результаты. Вот давайте попробуем, что называется, «на пальцах». Как создать сейсмическую волну, которая пойдет вглубь матушки-планеты? «Классический» ответ, который вообще не содержит смысла: «В основе сейсмических методов лежит возбуждение упругих волн при помощи технического устройства или комплекса устройств». Что-нибудь понятно? Бригада геологов синхронно или в определенном порядке прыгающая с табуреток – это уже техническое устройство или так себе? Нет? А если двухпудовые гири повыше подкидывать при помощи батута? Впрочем, на заре появления и становления сейсморазведки фантазия не сильно далеко уходила: бурили скважины в 10-20 метров глубины, закладывали тротиловые шашки и взрывали. Вершина развития такого «по-пролетарски» простого подхода – использование мирных подземных ядерных взрывов, которые на рубеже 50-60 годов прошлого века пробовали использовать в СССР и в Индии. Отличный способ, всем волнам волна, но как-то он не прижился. Под землей от взрыва образовывалась полость, наполненная радиоактивным газом, который только что был горной породой. Пока температура от сотен тысяч градусов в норму придет, пока газ сконденсируется на «потолке» полости, пока образовавшаяся жидкость стечет вниз, пока застынет – нет, так пятилетку за две смены закончить не удавалось. Переход от тротила к современным вибраторам, в том числе и импульсным, работающих не на одной, а на разных длинах волны, создающих волны продольные и поперечные – это целая технологическая эпоха, которая ждет своего научно-популярного рассказчика.
Самотлорское месторождение, Нижневартовск
Важнейшим свойством волны является её скорость, зависящая от литологического состава, состояния горных пород (трещиноватости, выветрелости и прочего), возраста, глубины залегания. Распространяясь в объеме горных пород, упругие волны попадают на границы слоев с различными упругими свойствами, изменяют направление, углы лучей и амплитуду, образуются новые волны. Прочитали? Теперь попробуйте представить, сколько времени ушло на то, чтобы составить таблицы свойств горных пород по отношению к приходящим к ним сейсмическим волнам разной длины: гранит отражает волну на частоте ХХХ герц вот на такой угол, длина волны меняется вот с таким коэффициентом, в случае интерференции отраженных волн от гранита и от песчаника амплитуда меняется вот так, на стыке базальта и кристаллического сланца поперечная волна на такой частоте ведет себя вот так, а продольная волна – вот эдак. А в теории да, в теории все просто – требуется «всего лишь» база данных и компьютерная программа, на фоне которой программы для архитекторов и создателей игрушек-стрелялок выглядит как палка-копалка рядом с двухлазерным 3D-принтером.
Схема работы при наличии вышеперечисленного весьма утилитарна: источник сейсмических волн да их приемники. Если источник и приемник совмещены – получим 1D сейсморазведку. Если приемники волны расположены на одной линии с источником – 2D сейсморазведка. Если приемники стоят на параллельных линиях по всей площади исследуемого участка – 3D сейсморазведка. Ну, а если 3D сейсморазведку продолжают применять по мере разработки месторождения – это уже 4D сейсморазведка. Применяют еще и каротажную сейсморазведку – источник сейсмических волн опускают на определенные глубины в уже действующую скважину и проводят все необходимые измерения. В наше время, когда результаты, полученные при сейсморазведке, можно мгновенно отправить в центры компьютерной обработки, точность и скорость обработки получаемых данных многократно возросли, а вот как эта обработка шла в 50-е годы, когда компьютер не то что на ладони не помещался, а не в каждый зал целиком входил – отдельная история. [X]
В стране начали появляться целые города нефтяников на местах, не освоенных человеком ранее – например, город Нижневартовск появился благодаря открытию Самотлорского месторождения.
Течение жизни нефтяного месторождения
Конечно, достижения наших дедов и прадедов вызывают гордость и благодарность у меня, как у их соотечественника, но как инженер я понимаю – нельзя сравнивать технологии тех лет и современные инновации. Очень странным является мнение, что нефть была раньше и много, ее добыли и все… Однако, технологии не стоят на месте. Тот же всеми любимый Бажен – он был открыт одновременно с открытием Западной Сибири как нефтедобывающего региона, но достаточно изучен и готов к разработке только в наши дни, а сколько запасов не осветили средства массовой информации? Геологоразведка, особенно с точки зрения истории, настолько неосязаема, на мой взгляд, что каждый ученый или человек, читающий эту статью имеет свою точку зрения – сколько у нас еще неизведанного и сколько запасов нефти и газа остались без внимания.
Вторым аспектом, который подводит нас к вопросу о том, сколько же запасов еще осталось, является подход к добыче. Каждое месторождение нефти и газа за свою жизнь проходит через определенные стадии разработки, для каждой из которых характерны определенные события – как и в жизни человека. В момент, когда нефть только начинают добывать, у залежи нефти много энергии, дебиты высокие и добыча происходит на естественных режимах, то есть без технологической стимуляции – ровно так же, как в юности человека, когда мы бодры, веселы и нам море по колено. Чаще всего нефтедобывающие компании стараются получить от месторождения максимально много на данном этапе – занимаются выработкой лучших запасов в погоне за коммерческой составляющей проекта. Ученые всего мира восклицают, что на долгосрочную перспективу такой подход губителен – остаточные запасы рискуют так и остаться просто запасами, их добыча под угрозой при таком подходе, но реальность пока что такова.
Затем, когда добыча нефти выравнивается и дебиты стабилизируются, месторождение выходит на вторую стадию, которая характеризуется полкой добычи – тут нельзя не провести аналогию со зрелым возрастом человека, когда ты понимаешь, на что способен и работаешь на этом уровне.
Далее мы переходим к самой интересной стадии разработки – поздней, когда дебиты начинают падать, на естественном режиме месторождение не справляется и требуется применение методов повышения нефтеотдачи пласта, так называемые МУН, методы увеличения нефтеотдачи, к которым относятся и широкоизвестный гидроразрыв пласта, и тепловое воздействие для высоковязких нефтей, и химическое воздействие теми же кислотами для очищения пор от загрязнений. Суть всех этих технологий независимо от природы действия одна – постараться добыть остаточные в пласте запасы. Да, мы наконец начинаем не просто идти вперед, но оглядываться назад – реальность такова.
[Главред Б.М.]: Вот тут уж я «с высоты прожитых лет», поскольку в зимнюю пору наш дворник застенчиво просит меня прогуливаться по обледеневшему тротуару, чтобы самому с песком не возиться. Мы, старичьё, ведь не просто оглядываемся назад, мы ножками топаем в ближайшую аптеку, где и медитируем, глядя на бесконечные полки, битком набитые целебными снадобьями и прочими достижениями науки и техники. Это я к тому, что в настоящее время выделяют несколько крупных методов МУН: гидро-динамические, физико-химические, тепловые, микробиологические и другие. Гидродинамические методы, наиболее часто используемые по причине простоты и относительной дешевизны – это циклическое заводнение, изменение направления фильтрационных потоков, форсированный отбор жидкости и барьерное и очаговое заводнение. Физико-химические группы МУН – это 60 с лишним технологий, гидравлический разрыв пласта всего лишь один из них, а ведущее место у нефтяников занимает вовсе не ГРП, а полимерное заводнение – в скважины закачивается не простая техническая вода, в нее в определенных концентрациях добавляют те или иные композиции полимеров. Кислоты и щелочи, поверхностно активные вещества, вязкоупругие составы, сшитый полиакриламид и даже обычная углекислота – тут только перечисление может страницу занять, так что предлагаем поверить на слово: химик-технолог на нефтепромысле работой будет обеспечен всегда.
На завершающих стадиях разработки месторождений большое значение имеет ограничение притоков пластовой и закачиваемой воды. Цемент? Ну, разве что в прошлом веке, сейчас используют кремний-органические соединения, силикат натрия («жидкое стекло»), волокнисто-дисперсные системы и полимернаполненные дисперсные системы. Подробнее про эти методы не будем только по одной причине: годом периодической системы Менделеева был 2019-й, а он уже закончился. Одно из последних достижений нефтяников – использование в качестве МУН микробиологического воздействия на пласт, когда в пластовые воды запускают специально разработанные штаммы микроорганизмов, которые способны к размножению и усилению биохимической активности в зависимости от физико-химических условий среды. Это уже нечто совсем фантастические – если обычные химические вещества при дополнительном притоке воды теряют свои свойства, то микроорганизмы свою концентрацию способны не терять, а увеличивать. Вот такой получается коротенький обзор ассортимента «аптеки для месторождений нефти, находящихся на поздних стадиях разработки. Мы очень надеемся, что более подробный рассказ о содержимом «аптечных полок» будет продолжен.
[X]
Современная структура запасов, помимо новых открытий, состоит из упомянутых ранее зрелых месторождений, месторождений морских и шельфовых, и запасов, которые у всех на слуху благодаря средствам массовой информации – трудноизвлекаемые запасы (они же ТРИЗ). Если с первыми двумя категориями все более-менее понятно уже из названия – логично, что довырабатывать сложнее, чем вести добычу на новом месторождении, а о сложности бурения скважин на дне морском и говорить не приходится, но что с ТРИЗ все куда как менее однозначно.
Добыча из каких пластов и опасна, и трудна
Нефтеносные пласты – это далеко не всегда нечто «прямое и ровное», существует такое понятие, как неоднородность пласта и ее нагляднее всего можно представить как торт «Наполеон»: по соотношению толщины, количества и площади пластов – очень наглядно. А теперь представьте у данных слоев еще и низкие фильтрационно-емкостные свойства (пористость и проницаемость), и задумайтесь, насколько это усложняет жизнь геологам на фоне дольче виты их коллег столетней давности.
Такого типа коллекторы составляют первую группу запасов так называемой «трудной нефти» – и та же низкая проницаемость это не только Бажен, «ачимовка» и другие популярные отложения, существуют коллектора 0,8 – 1,5 мД. Такие залежи вызывают огромные сложности не только на стадии поиска запасов, но и во время их добычи – на сегодняшний день все еще отсутствуют однозначное понимание эффективного разбуривания таких пластов и системы поддержания пластового давления. Кроме того, еще и процесс движения флюида к скважине не поддается стандартному расчету – проще говоря Бог знает, куда нефть начнет двигаться по пласту. Стандартная схема разработки (плавно и по стадиям) для таких пластов не работает – начинать приходится сразу с методов увеличения нефтеотдачи, с бурения горизонтальных скважин и проведения гидроразрыва пласта, что сопровождается огромным количеством проблем, потому и до сегодняшнего дня так и нет четкого представления, алгоритма, «как надо». Отметим, что выявление такого рода запасов в пластах со сложным строением невозможно представить без применения компьютерных технологий. Сегодня инженеры строят модель пласта с помощью уникальных компьютерных программ, где мы не только видим строение пласта и скопления нефти, но и можем спрогнозировать добычу в разумных пределах.
[Главред Б.М.]: А вот и еще один термин, который для автора статьи привычен и понятен – «ачимовка». Тем, кто в курсе, что это за «зверушка», эту вставку читать нет нужды, а вот для тех, кто не очень понимает, о чем речь – микроскопическое пояснение, для наглядности – в картинках.
Но, если бы дело было только в глубине залегания, такие схемы и рисовать бы не было нужды. Ачимовские залежи имеют в разы более сложное геологическое строение, чем у залежей, расположенных выше. Схема нарисована «слева направо»: слева берег континента, вправо ачимовские залежи уходят на территорию некогда существовавших древних морей. На морском пляже, мы надеемся, бывали все, поэтому представить, что и как, будет несложно. На берегу у нас под ногами песок или, на языке геологов и нефтяников, песчаники и песчаные алевролиты, они же — коллекторы с отличными фильтро-емкостными свойствами (ФЕС). Вот мы подошли к обрывчику и топаем ногами уже по морскому дну. Тут песок лежит куда как более плотно, просто так его уже не разворошишь, усилия потребуются. На языке нефтяников – ФЕС пластов резко ухудшаются, сплошного нефтеносного слоя просто нет, их тут несколько, они отделены друг от друга. Никаких антиклиналей нет и в помине, ловушки имеют форму линз, надежно изолированных друг от друга слоями непроницаемых пород, в ловушках-линзах нефть вполне способна иметь разные свойства – давление, температуру и так далее. Нефтяники медленно, но верно, учатся, осваивают и такие «чудеса природы».
Для большей конкретности – внутрипластовое давление в ачимовских залежах в среднем составляет 600 атмосфер и выше, в силу чего разрабатывать эти залежи приходится с применением чрезвычайно сложных технологий и оборудования. С 2003 года ачимовские залежи Уренгойского газового месторождения осваивает «Газпром добыча Уренгой», совместное предприятие Газпрома, OMV и Wintershall. Месторождение разделено на пять участков, которые один за другим вводят в промышленную разработку с целью выхода на полку добычи в 36,8 млрд кубометров газа в год. Даже без подробностей очевидно, что себестоимость добычи газа ачимовских залежей значительно выше, чем добыча из сеноманских и валанжинских залежей. «Для чего козе баян?» – спросит внимательный и вежливый читатель, и будет прав. Однако широкомасштабный ответ готовится дать Газпром, который сейчас прорабатывает технико-экономическое обоснование для строительства газохимического супер-кластера в Усть-Луге в Ленинградской области. Помимо СПГ-завода, концерн намерен построить газоперерабатывающий завод мощностью в 45 млрд кубометров в год, а его партнер по проекту, компания «РусГазДобыча», будет строить еще и газохимический комплекс, на котором планируется производить свыше 3 млн тонн полимеров в год.
Исходное сырье для полимеров – это этан, и вот тут очень тонкий момент: в составе газа ачимовских залежей этана в разы больше, чем в составе газа сеноманских залежей. И именно «ачимовский газ» будет поступать на ГПЗ – это и есть ответ Газпрома на вопрос про козу и про баян. Да, «ачимовский газ» дороже при добыче, но монетизация при помощи газопереработки и производства полимеров позволит уверенно монетизировать и такие проекты. Да, еще один нюанс – газ для кластера в Усть-Луге пойдет не с Уренгойского месторождения, а из Надым-Пур-Тазовского региона. Немецкие и австрийские партнеры помогли Газпрому наработать опыт на ачимовских залежах, что не может не радовать не только Газпром, но и нас, сторонних наблюдателей. Новые заводы – это и новые рабочие места, это и экспорт продукции более высоких уровней переработки, и новые налоги, и еще один шаг по превращению Ленинградской области в «витрину России», обращенную к Европе, то есть к той же роли, которую некогда исполняли советские республики Прибалтики. Время идет, ничто не стоит на месте. [X]
Вторую группу запасов трудной нефти классифицируют не по свойствам самого пласта, а по свойствам нефти – она очень вязкая, и здесь речь идет не только об сверхвязкой нефти, как в стандартной классификации выше 30 мПа*с, сейчас открывают месторождения нефти с вязкостью в несколько сотен, а то и тысяч мПа*с. (На всякий случай: мПа*с – это мегапаскали в секунду, мера вязкости нефти, ее подвижности в пластовых условиях добычи. Чем выше вязкость – тем сложнее заставить нефть двигаться в сторону скважины и внутри нее).
Самый популярный пример добычи сверхвязкой нефти – Ярегское месторождение высоковязкой нефти, единственное в России, где черное золото добывают шахтным способом. Эксплуатация месторождения началась еще в далеком 1932 году, однако классическая добыча с помощью скважин оказалась неэффективной. Потом благодаря другим грандиозным открытиям, Ярега отошла на второй план, пережила бедные 90-е годы и только в 2003 году расцвела во всей красе, после того как ЛУКОЙЛ получил лицензию на ее разработку.
Помимо Ярегского месторождения, конечно, существует множество запасов высоковязкой нефти, добыча которой также стала возможной только с развитием технологий, о которых поговорим позже.
Третий кит трудноизвлекаемых запасов – это широкоизвестные сланцы, самые нашумевшие из которых Баженовская и тюменская свиты, на которые приходится до 67 % трудной нефти России. Сланцевая революция наделала много шума, но вы только представьте, что герой американской революции, месторождение Баккен, в пять раз меньше по запасам нашего Бажена! Да, данные по запасам Бажена не отличаются особой точностью, и мы до сегодняшнего дня не определились с технологий добычи сланцевой нефти, но впереди нас ждут громкие потрясения – уж слишком серьезен состав компаний, участвующих в работе «Газпромнефть-Хантоса», чтобы было как-то иначе. Мы не устанем повторять, что, если нынешние технологии разведки и добычи нефти для советского геолога показались бы научной фантастикой, то что же нас ждет в будущем? Почему наши представления о такой высокотехнологичной отрасти, как нефтедобывающая, ограничены?
Мы перечислили три самые крупные группы трудноизвлекаемых запасов, однако к ним же причисляются и нефть из переходных зон, нефть с высоким показателем обводненности (это когда на 1 тонну нефти добывается попутно до 7 тонн воды), нефть из подгазовых зон и нефтяных оторочек – и это только известные источники. Когда в очередной раз приходится слышать высказывания «нефть кончается, расходимся», то становится и смешно, и грустно одновременно… Технологии не стоят на месте, и мы постоянно улучшаем качество проведения работ не только по поиску новых месторождений, но и по изучению и выработке остаточных запасов месторождений на поздних стадиях разработки, мы ведем разработку новых и новых технологий для залежей и свит, к которым раньше никто даже не представлял, как подступиться. Серьезные эксперты, как российские, так и западные делают один и тот же вывод: как минимум ближайшие 30-40 лет мировой спрос на нефть, нефтепродукты, продукцию глубокой нефтехимической переработки меньше не станет.
Надеемся, что короткий обзор того, что называют «трудной нефтью» дает представление о том, что геологоразведка и нефтедобыча даже не думают останавливаться, прилагая максимум усилий для того, чтобы этот спрос был надежно обеспечен, а причины для алармистских настроений связаны не с реальной ситуацией, а совсем уж другими замыслами.
Переработка нефти, установка переработки нефти, мини НПЗ
Оборудование для переработки нефти:
Переработка нефти на наших установках (нужно отметить, что из них вы можете построить мини НПЗ) реализована следующим образом: нефть разделяется на стандартные фракции (бензин, керосин, дизель, мазут) или любой другой набор фракций, в том числе выделять фракции растворителей. В обычной комплектации оборудование для переработки нефти, в частности наша ректификационная колонна, эквивалентно 8-ми теоретическим тарелкам, флегмовое число можно устанавливать непосредственно в процессе разделения в диапазоне от 1/14 до 14, при этом четкость ректификации при флегмовом числе 2 соответствует или лучше требований ГОСТ для нефтяных фракций.
При больших флегмовых числах возможно разделение фракций растворителей. Для более глубокого извлечения светлых из мазута с получением в кубе гудрона можно использовать ректификацию под вакуумом, для чего установка дооснащается вакуумным блоком.
Обычно нефть и нефтепродукты разделяют с помощью перегонки на отдельные части (фракции или дистилляты). Это необходимо делать так как нефть состоит из множества компонентов углеводородов и гетероатомных соединений. Во время лабороторный или промышденной перегонки фракции нефти отгоняются от при постоянном повышении температуры кипения. Поэтому, нефть и ее дистилляты нужно характеризовать не температурой кипения, а температурной точкой начала кипения и конца кипения.
С помощью атмосферной перегонки нефти остается мазут (температура от 30 до 350—360 °С). Из частей, которые выкипают до 360 °С обычно получают топливо (бензины, топлива для реактивных и дизельных двигателей), сырье для нефтехимического соединения (бензол, этилбензол, ксилолы, этилен, пропилен, бутадиен), растворители и др.
Основные продукты переработки нефти:
- Газолиновая фракция, собираемая от 40 до 200 °С, содержит углеводороды от С5Н12 до С11Н24.
В дальнейшем при перегонке выделенной фракции получают газолин (tкип = 40–70 °С), бензин (tкип = 70–120 °С) – для авиации, автомобилей и тд.
- Лигроиновая фракция содержит углеводороды от С8Н18 до С14Н30, собираетс от 150 до 250 °С. Лигроин можно применять как горючее для с/х хозяйственной техники (трактора, комбайн и тд). При переработке больших объемов лигроина получают бензин.
- Керосиновая фракция состоит из углеводородов от С12Н26 до С18Н38 с температурой кипения tкип = 180 — 300 °С. Керосин используют в качестве горючего для тракторов, реактивных самолетов и ракет.
- Дизельное топливо (газойлевая фракция) с tкип > 275 °С
Мазут — это остаток после переработки нефти. В его молекуле содержатся углеводороды с большим количеством атомов углерода. Чтобы избежать разложения мазут можно разделить на части с помощью перегонки под меньшим давлением. Так можно получить соляровые масла (дизельное топливо), смазочные масла ( авиационные, автотракторные, индустриальные и др.), технический вазелин (можно использовать для смазки изделий из металла для того, чтобы защитить их от коррозии, а очищенный вазелин используют в качестве основы для косметических средств и в медицине). Иногда из отдельных сортов нефти можно получить парафин (для производства спичек, свечей и др.). Гудрон остается после отгонки летучих компонентов из мазута и его применяют во время строительства дорог. В котельных установках смазочные масла мазута используют в качестве топлива.
С помощью оборудования нашей компании вы можете реализовать завод по переработке нефти или мини НПЗ.
Углеводороды нефти | Образование и кадры
Нефть — это важное полезное ископаемое, которое используется и как топливо, и как промышленное сырье. Возьмите в руки смартфон, посмотрите в окно, посмотрите на стены, на мебель, на одежду — все это производные нефти. Лаки, краски, удобрения, парфюмерия, вся пластмасса, даже асфальт — это все производные нефти. Но мне бы хотелось, чтобы сейчас мы поговорили о нефти не как о топливе и промышленном сырье, а как об источнике фундаментальных знаний о жизни нашей планеты, чтобы мы изучили ее состав на молекулярном уровне.
Рекомендуем по этой теме:
Происхождение нефти
Микробиолог Александра Пошибаева о поиске новых месторождений нефти, неорганической теории ее происхождения и роли прокариот и эукариот в образовании углеводородов
Как известно, нефть и газ залегают на различных глубинах, иногда они выходят на поверхность земли. Нефть и газ находятся не в озерах, не в огромных пустотах под землей, а в породах-коллекторах, которые имеют большую пористость, чтобы туда могло войти много нефти, и проницаемость, чтобы эта нефть могла оттуда выйти. В качестве аналога можно представить обычную губку, наполненную водой. Чтобы нефть сохранилась в породах, необходимо наличие вышезалегающих непроницаемых слоев, которые называются породами-покрышками. Породами-коллекторами могут служить известняки, песчаники, а породами-покрышками — соляные и глинистые толщи.
Считается, что нефть и газ образовались в нефтегазоматеринских толщах, то есть таких породах, где находится огромное количество органического вещества. Откуда взялось это органическое вещество? Многие горные породы, а именно осадочные породы, образовались в результате осадков, например, морского ила или глубоководной глины. В этих осадках происходило захоронение колоссальных количеств биомассы. Трудно представить, какое количество органического вещества накапливается и осаждается в Мировом океане каждый день. Можно только предположить, сколько осадилось его за всю геологическую летопись нашей планеты.
При определенных условиях в нефтегазоматеринских толщах могут образоваться нефть и газ. По мельчайшим трещинами, по пустотам они могут мигрировать в вышележащие слои пород-коллекторов, причем в определенных геологических структурах земной коры могут образоваться колоссальные скопления нефти и газа. Сохранность таких скоплений обеспечивается наличием вышезалегающих непроницаемых пород-покрышек. Нефти залегают в древних породах. Например, возраст самой древней породы, в которой была найдена нефть, более одного миллиарда лет. Есть и молодые нефти, залегающие в породах, которым сотни и десятки миллионов лет.
Нефти бывают разные. У одних нет легкой фракции, например у бензина и керосина. Бывают тяжелые нефти — это остаточные нефти, из которых мигрировали легкие углеводороды или биодеградированные нефти. Исследование углеводородов нефти на молекулярном уровне помогает решать как теоретические вопросы, связанные с происхождением нефти, так и практические вопросы, связанные с поиском и разведкой новых нефтяных месторождений и промышленным освоением уже разрабатываемых месторождений. Всеми этими вопросами занимается органическая геохимия.
Эта дисциплина возникла в 1960-е годы. Ее целью является изучение на молекулярном уровне особенностей состава и строения органических молекул земной коры, морей и океанов. Причем если биогеохимия — это геохимия живого вещества, то органическая геохимия занимается изучением мертвого органического вещества, которое захоранивалось в осадочных породах. Исследуются как современные соединения, так и соединения, которые были накоплены сотни миллионов лет тому назад. В нашей стране существует несколько крупных школ. Это школа академика Алексея Эмильевича Конторовича в Новосибирске и школа профессора Александра Александровича Петрова в Москве, а сейчас его ученика профессора Гурама Николаевича Гордадзе.
Из каких соединений состоит нефть? В основном это углеводороды, а также смолы и асфальтены. Подробно остановимся на наиболее изученном классе углеводородов — это углеводороды нефти. Дело в том, что все нефти мира от самых древних до самых молодых содержат один и тот же набор углеводородов. Это насыщенные углеводороды, то есть алканы, циклоалканы и углеводороды алмазоподобного строения, а также ароматические углеводороды. Причем кроме углеводородов алмазоподобного строения превалируют углеводороды-биомаркеры — соединения, сохранившие черты строения, свойственные исходным биоорганическим молекулам. Например, нормальные алканы образовались из нормальных и насыщенных жирных кислот. А изо- и антеизоалканы образовались из изо- и антеизокислот за счет процесса декарбоксилирования. То есть происходит только декарбоксилирование, то есть отщепление COH-группы, а сам углеводородный фрагмент остается неизменным.
Рекомендуем по этой теме:
Три вопроса про нефть
Эксперты исследовательских институтов Канады, Австралии и Великобритании отвечают на главные вопросы о нефти
Изопренаны — это углеводороды, содержащие изопреновые кирпичики 2-метилбуто-1,3-диен. Считается, что они образовались из фитола — спирта, являющегося боковой цепочкой хлорофилла, который находится у растений. Интересно отметить, что только в самых древних нефтях мира обнаружены 12 и 13 метилалканы. Об их происхождении пока известно лишь то, что алканы такого строения в нефтях более молодого возраста не обнаружены. Помимо этого, в нефтях есть и циклические углеводороды-биомаркеры, моноциклы, циклопентаны, циклогексаны, бициклы, декалины, гидринданы, трициклы хелантаны, тетрациклы стераны и пентациклы терпаны. А также углеводороды алмазоподобного строения: адамантаны, диамантаны, триамантаны, тетрамантаны.
В нефтях континентального генезиса наблюдается превалирование углеводородов ряда циклогексана стерана состава 29C и присутствует терпан или анан. А в нефтях морского генезиса превалируют углеводороды ряда циклопентана стерана состава 27C, а терпан или анан вовсе отсутствуют. Что касается углеводородов алмазоподобного строения, для них характерно то, что они выдерживают очень высокие температуры и не подвергаются биодеградации. В то время как на ранних стадиях биодеградации бактериями сначала съедаются нормальные алканы, потом изоалканы, затем циклоалканы и даже ароматические углеводороды.
Таким образом, изучая углеводородный состав нефтей и органического вещества пород на молекулярном уровне, мы можем сделать следующие важные выводы. Какое исходное органическое вещество было для данной нефти — морское или континентальное. В каких литолого-фациальных условиях эта нефть образовалась. Иными словами, в каких породах нефть образовалась — глинистых или карбонатных. Например, мы можем сказать о том, какова степень солености вод в конкретном бассейне осадконакопления, окислительно-восстановительные условия. Мы можем определить степень преобразованности нефти, то есть зрелости.
В исходном органическом веществе для нефти находятся термодинамически слабоустойчивые углеводороды. В процессе созревания органического вещества эти соединения преобразуются в более термодинамически устойчивые углеводороды. То есть мы можем проследить эволюцию органического вещества в конкретном бассейне осадконакопления. Мы можем сказать о биодеградации нефти. И наконец, изучая углеводородный состав нефтей на молекулярном уровне, мы можем сказать о геологическом возрасте данной нефти. А под геологическим возрастом мы подразумеваем возраст тех нефтематеринских толщ, которые эту нефть генерировали.
Все перечисленные выводы имеют большое значение в нефтегазопоисковой, нефтегазопромысловой геохимии. А какое будущее у исследований углеводородов на молекулярном уровне? Это, безусловно, проведение междисциплинарных комплексных исследований совместно с геологами, химиками, микробиологами, палеонтологами. Важно изучать не только нефти, но и рассеянное органическое вещество пород.
Рекомендуем по этой теме:
Нетрадиционные углеводороды
Директор Центра добычи углеводородов Сколтеха Михаил Спасенных о нетрадиционных источниках нефти и методах их разработки
Мы исследовали нефти и органическое вещество пород в нижнекембрийских отложениях на юге Восточной Сибири. Промышленная значимость этих нефтеносных толщ очень велика. До недавнего времени считалось, что источниками этой нефти являются более древние толщи. Предполагалось, что эта нефть мигрировала в вышележащие слои. Однако в результате комплексных исследований мы показали, что это не так, а именно: порода, которая содержит в себе нефть, то есть порода-коллектор, является одновременно нефтегазоматеринской. То, что раньше геологи считали просто природным резервуаром для нефти, то есть породой-коллектором, может являться той породой, в которой образуется эта нефть. Учитывая, что породы такого типа широко распространены в этом регионе, обнаружение новых месторождений в этих отложениях возрастает в несколько раз.
Таким образом, изучение углеводородного состава нефтей и рассеянного органического вещества имеет огромное значение при поисках, разведке и разработке нефтяных месторождений. Помимо этого, изучение углеводородного состава нефтей помогает нам ответить на вопросы, связанные с эволюцией жизни на нашей планете.
Нефтяные бактерии – Коммерсантъ Санкт-Петербург
Проблема исчерпаемости нефтяных запасов, основного источника энергии в мире, в будущем, возможно, решится с помощью бактерий. К такому открытию пришли российские ученые, которые смогли подтвердить гипотезу об органическом происхождении нефти. Это означает, что ее можно будет синтезировать из остатков живых организмов.
(Science, N 34 от 31.08.2017)
Алканы — это углеводороды общей формулы Cnh3n+2. Они принадлежат к числу важнейших и хорошо изученных углеводородов любой нефти. Алканы с неразветвленной углеродной цепочкой называются нормальными. Общее содержание нормальных алканов в нефтях колеблется в весьма широких пределах — от 1 до 20% и более. В настоящее время имеются достаточно надежные данные о содержании в нефтях различных алканов состава С1-С120. Изопренаны — углеводороды, чье происхождение связано с изопреноидным спиртом, входящим в состав природного пигмента хлорофилла, зеленого пигмента растений. Стераны (тетрациклические изопреноиды) — углеводороды, структура которых аналогична структуре стероидов, из которых они и образовались,— биологически и физиологически активных веществ животного или растительного происхождения, например холестерина. Терпаны (пентациклические изопреноиды) — углеводороды, которые наравне с тетрациклическими занимают одно из важнейших мест в химии углеводородов нефти. Структура их молекул также аналогична структуре природных тритерпеноидов животного и растительного происхождения.
Перспектива исчерпания нефтяных запасов на Земле — одна из важнейших проблем человечества. Именно нефть благодаря высокой энергоемкости и легкости транспортирования с середины XX века служит самым важным источником энергии в мире. На производство топлива сегодня идет до 84% объема мировой нефтедобычи.
Существуют две основные гипотезы образования нефти — органическая (осадочно-миграционная) и неорганическая (абиогенная). Сторонники неорганической теории считают, что нефть возникла в недрах при большом давлении и высоких температурах из углерода и водорода или из карбидов металлов. Действительно, таким образом могут образоваться, например, бензол или некоторые алканы. Однако нефть состоит из тысяч соединений, которые абиогенным путем образоваться не могли. Такими соединениями, например, являются так называемые углеводороды-биомаркеры, которые сохранили черты строения биологических молекул. Многочисленные попытки получить нефть неорганическим путем в лабораториях пока не принесли результата.
Сторонники органической гипотезы считают, что нефть сформировалась из остатков живых организмов: животных, растений, грибов, то есть эукариотических организмов. Из органических остатков в различных биохимических процессах формировался кероген, из которого в дальнейшем выделялись углеводороды, составляющие в настоящее время нефть.
Вопрос происхождения нефти — это не только фундаментальная научная проблема. Он имеет и большое практическое значение, поскольку для того, чтобы вести обоснованные поиски нефти, необходимо знать, где и как она образовалась. Уже сейчас в мире наблюдается спад интенсивности разведки новых месторождений, а разведанные месторождения обладают все более худшими показателями рентабельности из-за их труднодоступности, геологических особенностей). Они могут даже превышать предел энергорентабельности — когда для добычи нефти требуется затратить эквивалентное или большее количество энергии.
Согласно расчетам, при сохранении текущего уровня потребления и добычи нефти она закончится во второй половине этого столетия. Проблема предполагаемого дефицита нефти широко обсуждается и служит благодатной почвой для разного рода спекуляций и предположений.
Однако, как считает Александра Пошибаева, ассистент кафедры органической химии и химии нефти Российского государственного университета нефти и газа (национального исследовательского университета) им. И. М. Губкина, человечеству, возможно, удастся решить проблему дефицита нефти. Уже на биологическом факультете МГУ она заинтересовалась вопросом роли бактерий в происхождении нефти. Руководитель ее дипломной работы микробиолог доцент И. В. Ботвинко привела ее в Губкинский университет на кафедру органической химии и химии нефти, которой руководит профессор В. Н. Кошелев, в лабораторию доктора геолого-минералогических наук и кандидата химических наук профессора Гурама Николаевича Гордадзе, ведущего специалиста в области происхождения нефти и нефтяной геохимии. Александра Пошибаева поступила в аспирантуру РГУ нефти и газа им. И. М. Губкина и окончила ее, подготовив под руководством профессора Гордадзе работу, темой которой стала важная роль бактерий в процессе образования нефти. Впоследствии в лаборатории под руководством профессора Гордадзе, где работает Александра Пошибаева, было выяснено, что бактерии могут генерировать углеводороды, которые входят в состав нефти. Это значит, что в перспективе запасы нефти могут быть возобновимы.
Классификация
Происхождение углеводородов
Алканы — это углеводороды общей формулы Cnh3n+2. Они принадлежат к числу важнейших и хорошо изученных углеводородов любой нефти. Алканы с неразветвленной углеродной цепочкой называются нормальными. Общее содержание нормальных алканов в нефтях колеблется в весьма широких пределах — от 1 до 20% и более. В настоящее время имеются достаточно надежные данные о содержании в нефтях различных алканов состава С1-С120.
Изопренаны — углеводороды, чье происхождение связано с изопреноидным спиртом, входящим в состав природного пигмента хлорофилла, зеленого пигмента растений.
Стераны (тетрациклические изопреноиды) — углеводороды, структура которых аналогична структуре стероидов, из которых они и образовались,— биологически и физиологически активных веществ животного или растительного происхождения, например холестерина.
Терпаны (пентациклические изопреноиды) — углеводороды, которые наравне с тетрациклическими занимают одно из важнейших мест в химии углеводородов нефти. Структура их молекул также аналогична структуре природных тритерпеноидов животного и растительного происхождения.
Страница не найдена — Портал Продуктов Группы РСС
Сообщите нам свой адрес электронной почты, чтобы подписаться на рассылку новостного бюллетеня. Предоставление адреса электронной почты является добровольным, но, если Вы этого не сделаете, мы не сможем отправить Вам информационный бюллетень. Администратором Ваших персональных данных является Акционерное Общество PCC Rokita, находящееся в Бжег-Дольном (ул. Сенкевича 4, 56-120 Бжег-Дольный, Польша ). Вы можете связаться с нашим инспектором по защите личных данных по электронной почте: .
Мы обрабатываем Ваши данные для того, чтобы отправить Вам информационный бюллетень — основанием для обработки является реализация нашей законодательно обоснованной заинтересованности или законодательно обоснованная заинтересованность третьей стороны – непосредственный маркетинг наших продуктов / продуктов группы PCC .
Как правило, Ваши данные мы будем обрабатывать до окончания нашего с Вами общения или же до момента, пока Вы не выразите свои возражения, либо если правовые нормы будут обязывать нас продолжать обработку этих данных, либо мы будем сохранять их дольше в случае потенциальных претензий, до истечения срока их хранения, регулируемого законом, в частности Гражданским кодексом.
В любое время Вы имеете право:
- выразить возражение против обработки Ваших данных;
- иметь доступ к Вашим данным и востребовать их копии;
- запросить исправление, ограничение обработки или удаление Ваших данных;
- передать Ваши персональные данные, например другому администратору, за исключением тех случаев, если их обработка регулируется законом и находится в интересах администратора;
- подать жалобу Президенту Управления по защите личных данных.
Получателями Ваших данных могут быть компании, которые поддерживают нас в общении с Вами и помогают нам в ведении веб-сайта, внешние консалтинговые компании (такие как юридические, маркетинговые и бухгалтерские) или внешние специалисты в области IT, включая компанию Группы PCC .
Больше о том, как мы обрабатываем Ваши данные Вы можете узнать из нашего Полиса конфиденциальности.
Откуда берется сырая нефть? | Блог
и еще 5 вещей, которые вы должны знать о «черном золоте» Земли
Сырая нефть. Часто изображается как коагулированная густая черная жидкость, выбрасывающаяся из-под земли на нефтяных вышках. Глоппи и нерафинированный прямо с земли. Черное золото нефтяника.
Он получил это прозвище «черное золото» из-за монументального количества продуктов, которые можно перерабатывать из нерафинированной сырой нефти.
Бензин и дизельное топливо для питания нашего транспорта.Печное топливо для обогрева наших домов. И другие нефтепродукты, такие как нафта, воски и смазочные масла, которые в конечном итоге становятся частью почти каждого продукта, который мы производим и потребляем.
Но откуда он взялся?
Мы отвечаем на этот вопрос и еще на 5 вещей, которые вам следует знать о сырой нефти.
Но сначала давайте узнаем некоторые факты.
Краткие факты о сырой нефти
- Сырая нефть — это природное ископаемое топливо, т. е. полученное из останков мертвых организмов.
- Сырая нефть состоит из смеси углеводородов — атомов водорода и углерода.
- Он существует в жидкой форме в подземных резервуарах в крошечных пространствах в осадочных породах. Или его можно найти у поверхности в нефтеносных песках.
- Часто встречается вместе с природным газом и соленой водой.
- Сырую нефть часто взаимозаменяемо называют нефтью. Это связано с тем, что нефть включает как неочищенную сырую нефть, так и очищенные нефтепродукты.
- Он не подлежит обновлению — когда он исчезнет, он исчезнет, и его нельзя легко заменить.
Нефтепродукты, которые могут быть переработаны из одного барреля сырой нефти:
Откуда берется сырая нефть?
Мертвые твари, много давления, много тепла и сотни тысяч лет во времени.
Сырая нефть образуется из остатков мертвых организмов (диатомей), таких как водоросли и зоопланктон, которые существовали миллионы лет назад в морской среде.
В то время эти организмы были доминирующей формой жизни на Земле.
К вашему сведению: на этом этапе динозавров не было. Так что любая из тех историй, которые вы слышали о том, что ископаемое топливо происходит от динозавров, просто не соответствует действительности.
В процессе жизни эти организмы поглощали энергию солнца и хранили ее в виде молекул углерода в своих телах. Когда они умирали, их останки опускались на дно океанов или в русла рек и были погребены под слоями песка, грязи и камней.
На протяжении миллионов лет останки погребались все глубже и глубже под большим количеством осадка и органических материалов.
Огромное давление, высокие температуры и недостаток кислорода превратили органическое вещество в воскообразное вещество, называемое кероген .
При еще большем нагреве, давлении и времени кероген подвергается процессу, называемому катагенезом , который превращает кероген в углеводороды .
Различные комбинации давления, тепла и исходного состава органического материала определяют тип образовавшегося углеводорода.В этом случае углеводороды образуют сырой нефти.
Другими примерами являются асфальт, если температура ниже, и природный газ, если температура выше.
После образования нефти она перемещается через крошечные поры в окружающей породе из области высокого давления в область низкого давления, часто вверх.
Некоторое количество нефти может подняться на поверхность, где она скапливается, в других случаях нефть попадет в ловушку под непроницаемыми слоями породы или глины, где она сформирует подземные резервуары.
Насколько глубоко под землей находится сырая нефть?
Нефть, кажется, становится все глубже и глубже.
Но это не вся правда.
На самом деле, нефть всегда двигалась только вверх. Только бурение для добычи нефти необходимо углублять и дальше, поскольку более высокие и легкодоступные нефтяные резервуары израсходованы.
Самый ранний год, когда имеются данные, 1949 год, показывает, что средняя глубина пробуренных нефтяных скважин составляла 3500 футов.
К 2008 году средний показатель вырос до 6000 футов. И самая глубокая скважина, существующая в настоящее время, имеет огромную глубину 40 000 футов. Это на 11 000 футов больше, чем высота горы Эверест.
Не все бурят прямо вниз, когда говорят о глубине, это означает, как далеко они должны были пробурить, иногда это также означает преодоление огромных горизонтальных расстояний.
Откуда ты знаешь, где найти масло?
Геологи — мастера поиска нефти.Геологи, которые часто называют разведкой нефти, будут искать область, которая отвечает всем требованиям обнаружения нефтяной ловушки, также известной как поразительное (черное) золото.
Нефть часто находят в обширных подземных резервуарах, где когда-то располагались древние моря. Это может быть либо под землей, либо в океане под морским дном.
В первые годы добычи нефти геологи изучали почву, поверхностные породы и другие особенности поверхности, чтобы определить, может ли нефть лежать под ними.
Позже появились спутниковые снимки, а также более технологические достижения, такие как гравиметры, средства для проверки магнитного поля Земли и «снифферы», обнаруживающие запах углеводородов.
В настоящее время наиболее распространенным способом является создание ударных волн, которые проходят через слои горных пород и отражаются обратно на поверхность, где их можно интерпретировать как признаки наличия нефтяных ловушек. Это делается с помощью сейсмических источников, таких как пневматические пушки, ударные грузовики или взрывчатые вещества.
Затем они отмечают местоположение, используя координаты GPS на суше или маркерные буи на воде.
В какой стране больше всего нефти?
Согласно последним данным МЭА, в 2018 году в мире производилось в среднем 100 млн баррелей нефти в день.
Включает 32 миллиона баррелей в день только сырой нефти и 68 миллионов баррелей сырой нефти, конденсатов, ШФЛУ и нефти из нетрадиционных источников.
На пять крупнейших нефтедобывающих стран приходится более половины мирового производства сырой нефти.
В пятерку ведущих нефтедобывающих стран с 2019 года по настоящее время входят:
[GRAPHIC]
США — 17 млн баррелей в сутки. Россия 12 миллионов баррелей в сутки. Саудовская Аравия 10 миллионов баррелей в сутки.Канада 6 миллионов баррелей в сутки. Ирак 5 миллионов баррелей в сутки.
Сколько нефти осталось в мире?
Поскольку добыча все еще растет, как это было в течение десятилетий, эксперты пытаются рассчитать, когда нефть закончится, если вообще когда-либо.
Это не простая наука — ведь до сих пор точно неизвестно, сколько нефти заперто в земле в неисследованных местах.
Однако BP сделала оценку.
Оценка исходит из количества нефти, которое, по мнению каждой страны, она может добыть из «доказанных запасов» (запасов, к которым у них в настоящее время есть доступ), используя существующие технологии, при этом получая прибыль при текущем уровне добычи.
И год, который дают за окончание добычи нефти, если все останется точно так же, как сегодня — 2067.
Ага, только еще 48 лет.
Это означает, что без открытия новых резервуаров, сокращения потребления или разработки новых технологий добыча нефти может прекратиться в 2067 году.
Но я бы не стал записывать эту дату постоянным маркером. Каждое предыдущее предсказание роковой даты всегда отодвигалось.
Что произойдет, если у нас закончится масло?
Как сказал Чарльз Дарвин, чтобы выжить, мы должны уметь приспосабливаться к изменениям.
Нельзя сказать, что мы не можем выжить без нефти, но последствия прекращения добычи нефти могут заставить современное общество радикально измениться.
Мы зависим от нефти гораздо больше, чем вы можете себе представить.
Нефть присутствует почти во всех сферах нашей жизни, связанных с транспортировкой и производством продуктов питания, одежды, материалов, фармацевтических препаратов и пластмасс, используемых для производства множества продуктов.
Влияние того, насколько радикальным может быть это изменение, будет в значительной степени зависеть от темпов снижения, а также разработки и внедрения альтернатив нефти.
Что касается темпов снижения, то их всегда будет трудно измерить. Благодаря новым методам, таким как повышенная добыча нефти на месторождениях, и новые месторождения, становящиеся жизнеспособными, нефть, возможно, не будет сокращаться в течение многих лет, и когда это произойдет, я не могу себе представить, что это будет такой неожиданностью, чтобы вызвать ошеломляющий спад, который предсказывают готовящиеся к судному дню.
Тем не менее, существует вероятность того, что цены на нефть вырастут из-за более сложных и дорогостоящих методов добычи и добычи наряду с увеличением спроса и предложения.
Говоря о спросе и предложении, которые постоянно росли в течение последнего десятилетия и даже со всеми заботами об окружающей среде, они еще не замедлились, поскольку прогноз роста составляет 1,3 миллиона баррелей нефти, которые будут добыты в 2020 году.
It тогда более вероятно, что потребители начнут искать более рентабельные альтернативы, если цены вырастут. Или более эффективные способы производства и переработки.
Похоже, будущее нефти никуда не денется.
Это, скорее всего, будет делом нашей руки, а не глобальным выбором изменить наш образ жизни, поскольку нефть так важна для повседневной жизни, какой мы ее знаем.
Но ясно, что либо нам нужно исследовать альтернативные ресурсы. Или использовать наши текущие ресурсы еще более эффективно, чем когда-либо прежде.
Оборудование Howden используется в нефтегазовых процессах, включая нефтепереработку, нефтехимию, производство и транспортировку.
Мы стремимся производить инновационные продукты и системы, чтобы соответствовать экологическим стандартам и превосходить их, обеспечивая при этом результаты, которых вы заслуживаете.
Узнайте, как мы можем помочь вам добиться результатов — свяжитесь с нами
Если вам понравилась эта статья, пожалуйста, поделитесь ею, чтобы другие тоже могли ею насладиться. И не забудьте оставить нам комментарий.
Нефть | Национальное географическое общество
Миллионы лет назад в мелководных морях жили водоросли и растения. Отмерев и опустившись на морское дно, органический материал смешался с другими отложениями и был погребен.За миллионы лет под высоким давлением и высокой температурой остатки этих организмов превратились в то, что мы сегодня знаем как ископаемое топливо. Уголь, природный газ и нефть — это ископаемое топливо, образовавшееся в сходных условиях.
Сегодня нефть добывают в обширных подземных резервуарах, где находились древние моря. Нефтяные резервуары можно найти под землей или на дне океана. Их сырая нефть добывается с помощью гигантских буровых машин.
Сырая нефть обычно имеет черный или темно-коричневый цвет, но также может быть желтоватой, красноватой, желтовато-коричневой или даже зеленоватой.Различия в цвете указывают на различные химические составы различных запасов сырой нефти. Например, нефть с небольшим содержанием металлов или серы имеет тенденцию быть более легкой (иногда почти прозрачной).
Нефть используется для производства бензина, важного продукта в нашей повседневной жизни. Он также обрабатывается и входит в состав тысяч различных предметов, включая шины, холодильники, спасательные жилеты и анестетики.
Когда нефтепродукты, такие как бензин, сжигаются для получения энергии, они выделяют токсичные газы и большое количество углекислого газа, парникового газа. Углерод помогает регулировать температуру атмосферы Земли, а добавление к естественному балансу за счет сжигания ископаемого топлива неблагоприятно влияет на наш климат.
Под поверхностью Земли и в смоляных карьерах, которые пузырятся на поверхности, находятся огромные количества нефти. Нефть существует даже намного ниже самых глубоких скважин, разработанных для ее добычи.
Однако нефть, как и уголь и природный газ, является невозобновляемым источником энергии. На его формирование ушли миллионы лет, и когда он будет извлечен и потреблен, мы не сможем его заменить.
Запасы масла закончатся. В конце концов, мир достигнет «пика нефти» или наивысшего уровня добычи. Некоторые эксперты предсказывают, что пик нефти может наступить уже в 2050 году. Поиск альтернатив нефти имеет решающее значение для глобального использования энергии и находится в центре внимания многих отраслей.
Образование нефти
Геологические условия, которые в конечном итоге привели к образованию нефти, сформировались миллионы лет назад, когда растения, водоросли и планктон дрейфовали в океанах и мелководных морях. Эти организмы опустились на морское дно в конце своего жизненного цикла. Со временем они были погребены и раздавлены миллионами тонн наносов и еще большим слоем растительных остатков.
Со временем древние моря высохли, и остались сухие бассейны, называемые осадочными бассейнами. Глубоко под дном бассейна органический материал был сжат между земной мантией при очень высоких температурах и миллионами тонн горных пород и отложений наверху. Кислород в этих условиях почти полностью отсутствовал, а органическое вещество начало превращаться в воскообразное вещество, называемое керогеном.
При большем нагреве, времени и давлении кероген прошел процесс, называемый катагенезом, и превратился в углеводороды. Углеводороды — это просто химические вещества, состоящие из водорода и углерода. Различные комбинации тепла и давления могут создавать различные формы углеводородов. Некоторые другие примеры: уголь, торф и природный газ.
Осадочные бассейны, где раньше лежало древнее морское дно, являются ключевыми источниками нефти. В Африке осадочный бассейн дельты Нигера охватывает земли Нигерии, Камеруна и Экваториальной Гвинеи.В огромном бассейне дельты Нигера было обнаружено более 500 нефтяных месторождений, и они составляют одно из самых продуктивных нефтяных месторождений в Африке.
Химия и классификация сырой нефти
Бензин, который мы используем для заправки наших автомобилей, синтетические ткани для наших рюкзаков и обуви, а также тысячи различных полезных продуктов, изготовленных из нефти, имеют стабильные и надежные формы. Однако сырая нефть, из которой производятся эти предметы, не является ни последовательной, ни однородной.
Химия
Сырая нефть состоит из углеводородов, в основном водорода (около 13% по весу) и углерода (около 85%). Другие элементы, такие как азот (около 0,5%), сера (0,5%), кислород (1%) и металлы, такие как железо, никель и медь (менее 0,1%), также могут быть смешаны с углеводородами в небольших количествах. .
То, как молекулы углеводородов организованы, является результатом первоначального состава водорослей, растений или планктона, существовавшего миллионы лет назад. Количество тепла и давления, которым подвергались растения, также вносят свой вклад в изменения, которые обнаруживаются в углеводородах и сырой нефти.
Из-за этой вариации сырая нефть, выкачиваемая из-под земли, может состоять из сотен различных нефтяных соединений. Легкие нефти могут содержать до 97% углеводородов, в то время как более тяжелые нефти и битумы могут содержать только 50% углеводородов и большее количество других элементов. Почти всегда необходимо перерабатывать сырую нефть, чтобы производить полезные продукты.
Классификация
Нефть классифицируется по трем основным категориям: географическому местоположению, где она была пробурена, содержанию в ней серы и плотности в градусах API (мера плотности).
Классификация: География
Нефть добывается во всем мире. Тем не менее, есть три основных источника сырой нефти, которые определяют ориентиры для ранжирования и ценообразования других поставок нефти: сырая нефть марки Brent, нефть West Texas Intermediate, а также Дубай и Оман.
Нефть марки Brent представляет собой смесь, добываемую на 15 различных нефтяных месторождениях между Шотландией и Норвегией в Северном море.Эти месторождения снабжают нефтью большую часть Европы.
West Texas Intermediate (WTI) — это более легкая нефть, которая производится в основном в американском штате Техас. Он «сладкий» и «легкий» — считается очень качественным. WTI снабжает нефтью большую часть Северной Америки.
Дубайская нефть, также известная как Фатех или Дубайско-Оманская нефть, представляет собой легкую высокосернистую нефть, добываемую в Дубае, части Объединенных Арабских Эмиратов. Соседняя страна Оман недавно начала добычу нефти. Сырая нефть Дубая и Омана используется в качестве ориентира для ценообразования на нефть Персидского залива, которая в основном экспортируется в Азию.
Эталонная корзина ОПЕК — еще один важный источник нефти. ОПЕК — это Организация стран-экспортеров нефти. Базовая корзина ОПЕК представляет собой среднюю цену на нефть из 12 стран-членов ОПЕК: Алжира, Анголы, Эквадора, Ирана, Ирака, Кувейта, Ливии, Нигерии, Катара, Саудовской Аравии, Объединенных Арабских Эмиратов и Венесуэлы.
Классификация: Содержание серы
Сера считается «примесью» в нефти. Сера в сырой нефти может вызывать коррозию металла в процессе очистки и способствовать загрязнению воздуха.Нефть с содержанием серы более 0,5 % называется «кислой», а нефть с содержанием серы менее 0,5 % — «сладкой».
Сладкое масло обычно намного ценнее кислого, поскольку оно не требует такой глубокой очистки и менее вредно для окружающей среды.
Классификация: API Gravity
Американский институт нефти (API) является торговой ассоциацией предприятий нефтяной и газовой промышленности. API установил общепринятые системы стандартов для различных продуктов, связанных с нефтью и газом, таких как манометры, насосы и буровое оборудование.API также установил несколько единиц измерения. Например, «блок API» измеряет гамма-излучение в скважине (стволе, пробуренном в земле).
Плотность в градусах API — это мера плотности нефтяной жидкости по сравнению с водой. Если плотность нефтяной жидкости в API больше 10, она «легкая» и плавает на поверхности воды. Если плотность в градусах API меньше 10, он «тяжелый» и тонет в воде.
Легкие нефти предпочтительнее, поскольку они имеют более высокий выход углеводородов.Более тяжелые масла имеют более высокие концентрации металлов и серы и требуют большей очистки.
Нефтяные резервуары
Нефть находится в подземных карманах, называемых резервуарами. Глубоко под землей давление чрезвычайно велико. Нефть медленно просачивается к поверхности, где давление ниже. Он продолжает это движение от высокого к низкому давлению, пока не наткнется на непроницаемый слой горной породы. Затем нефть собирается в резервуарах, которые могут находиться на глубине нескольких сотен метров от поверхности Земли.
Нефть может содержаться структурными ловушками, которые образуются, когда массивные слои горных пород изгибаются или отламываются (сломаются) от движущихся массивов суши Земли. Нефть также может содержаться стратиграфическими ловушками. Различные пласты или слои горных пород могут иметь разную степень пористости. Например, сырая нефть легко мигрирует сквозь слой песчаника, но будет задерживаться под слоем сланца.
Геологи, химики и инженеры ищут геологические структуры, которые обычно содержат нефть.Они используют процесс, называемый «сейсмическим отражением», для обнаружения подземных горных пород, которые могли удерживать сырую нефть. В процессе происходит небольшой взрыв. Звуковые волны распространяются под землей, отражаются от различных типов пород и возвращаются на поверхность. Датчики на земле интерпретируют возвращающиеся звуковые волны, чтобы определить подземную геологическую структуру и возможность наличия нефтяного резервуара.
Количество нефти в резервуаре измеряется в баррелях или тоннах.Нефтяной баррель составляет около 42 галлонов. Это измерение обычно используется производителями нефти в Соединенных Штатах. Производители нефти в Европе и Азии, как правило, используют метрические тонны. В метрической тонне содержится от 6 до 8 баррелей нефти. Преобразование неточно, потому что разные сорта масла весят разное количество, в зависимости от количества примесей.
Сырая нефть часто находится в резервуарах вместе с природным газом. В прошлом природный газ либо сжигали, либо выпускали в атмосферу.В настоящее время разработана технология улавливания природного газа и его повторной закачки в скважину или сжатия в сжиженный природный газ (СПГ). СПГ легко транспортируется и имеет универсальное применение.
Добыча нефти
В некоторых местах нефтяные пузыри выходят на поверхность Земли. В некоторых частях Саудовской Аравии и Ирака, например, пористая порода позволяет нефти просачиваться на поверхность в небольших прудах. Однако большая часть нефти находится в подземных нефтяных резервуарах.
Общее количество нефти в резервуаре называется пластовой нефтью.Многие нефтяные жидкости, составляющие пластовую нефть пласта, не поддаются извлечению. Эти нефтяные жидкости могут быть слишком сложными, опасными или дорогими для бурения.
Та часть пластовой нефти, которая может быть извлечена и переработана, представляет собой запасы нефти этого резервуара. Решение об инвестировании в комплексные буровые работы часто принимается на основе доказанных запасов нефти на участке.
Бурение может быть разведочным, разведочным или направленным.
Бурение в районе, где уже обнаружены запасы нефти, называется эксплуатационным бурением.Прудхо-Бей, Аляска, имеет самые большие запасы нефти в Соединенных Штатах. Эксплуатационное бурение в Прадхо-Бей включает новые скважины и расширение технологии добычи.
Бурение в условиях отсутствия известных запасов называется разведочным бурением. Разведочное бурение, также называемое «диким бурением», является рискованным делом с очень высокой частотой неудач. Тем не менее, потенциальные выгоды от добычи нефти соблазняют многих «диких охотников» попытаться провести разведочное бурение. «Алмазный» Гленн Маккарти, например, известен как «Король диких охотников» из-за его успеха в обнаружении огромных запасов нефти недалеко от Хьюстона, штат Техас.Маккарти 38 раз добывал нефть в 1930-х годах, заработав миллионы долларов.
Направленное бурение включает вертикальное бурение до известного источника нефти с последующим поворотом бурового долота под углом для доступа к дополнительным ресурсам. Обвинения в наклонно-направленном бурении привели к первой войне в Персидском заливе в 1991 году. Ирак обвинил Кувейт в использовании методов наклонно-направленного бурения для добычи нефти из иракских нефтяных резервуаров недалеко от границы с Кувейтом. Впоследствии Ирак вторгся в Кувейт, что привлекло международное внимание и вмешательство.После войны граница между Ираком и Кувейтом была изменена, и теперь водохранилища принадлежат Кувейту.
Нефтяные вышки
На суше нефть можно добывать с помощью устройства, называемого нефтяной вышкой или буровой установкой. На море нефть добывают с нефтяной платформы.
Первичная добыча
В большинстве современных скважин используется пневматическая роторная буровая установка, которая может работать 24 часа в сутки. В этом процессе двигатели приводят в действие буровое долото. Сверло – это режущий инструмент, используемый для создания круглого отверстия.Буровые долота, используемые в пневматических вращательных буровых установках, представляют собой полые стальные стержни с вольфрамовыми стержнями, которые используются для резки породы. Нефтяные буровые долота могут иметь диаметр 36 сантиметров (14 дюймов).
По мере того как буровое долото вращается и прорезает землю, откалываются небольшие куски породы. Мощный поток воздуха нагнетается в центр полого сверла и выходит через дно сверла. Затем воздух устремляется обратно к поверхности, унося с собой крошечные куски камня. Геологи на месте могут изучить эти куски измельченной породы, чтобы определить различные пласты горных пород, с которыми сталкивается бур.
Когда бур наталкивается на нефть, часть нефти естественным образом поднимается из-под земли, перемещаясь из области высокого давления в область низкого давления. Этот немедленный выброс нефти может быть «фонтанным фонтаном», выстреливающим в воздух на десятки метров, что является одним из самых драматичных действий по добыче. Он также является одним из самых опасных, и часть оборудования, называемая противовыбросовым превентором, перераспределяет давление, чтобы остановить такой фонтан.
Насосы используются для добычи нефти. Большинство нефтяных вышек имеют два комплекта насосов: буровые насосы и откачивающие насосы.«Грязь» — это буровой раствор, используемый для создания скважин для добычи нефти и природного газа. Буровые насосы обеспечивают циркуляцию бурового раствора.
В нефтяной промышленности используется широкий спектр экстракционных насосов. Какой насос использовать, зависит от географии, качества и положения нефтяного резервуара. Погружные насосы, например, погружаются непосредственно в жидкость. Газовый насос, также называемый пузырьковым насосом, использует сжатый воздух для выталкивания нефти на поверхность или в скважину.
Одним из наиболее известных типов экстракционных насосов является насосный станок, верхняя часть поршневого насоса.Насосных насосов прозвали «жаждущими птицами» или «кивающими ослами» за их контролируемое, регулярное ныряние. Рукоятка перемещает большую насосную установку в форме молота вверх и вниз. Глубоко под поверхностью движение насосной станции перемещает полый поршень вверх и вниз, постоянно вынося нефть обратно на поверхность или в скважину.
Успешные буровые установки могут добывать нефть в течение примерно 30 лет, хотя некоторые добывают ее в течение многих десятилетий.
Вторичная добыча
Даже после откачки подавляющая часть (до 90%) нефти может оставаться в подземном резервуаре.Для извлечения этой нефти необходимы другие методы, процесс, называемый вторичным извлечением. В 1800-х и начале 20-го века метод вакуумирования лишней нефти использовался, но он улавливал только более тонкие компоненты масла и оставлял после себя большие запасы тяжелой нефти.
Затопление водой было обнаружено случайно. В 1870-х годах производители нефти в Пенсильвании заметили, что заброшенные нефтяные скважины накапливают дождевую и грунтовую воду. Вес воды в скважинах вытеснил нефть из резервуаров в близлежащие скважины, увеличив их добычу. Вскоре производители нефти начали намеренно затапливать скважины, чтобы добыть больше нефти.
В настоящее время наиболее распространенным методом вторичной добычи является газовый привод. Во время этого процесса скважина намеренно бурится глубже нефтяного пласта. Более глубокая скважина достигает резервуара с природным газом, и газ под высоким давлением поднимается вверх, вытесняя нефть из резервуара.
Нефтяные платформы
Бурение на море намного дороже, чем на суше. Обычно здесь используются те же методы бурения, что и на суше, но требуется массивная конструкция, способная выдержать огромную силу океанских волн в бурном море.
Морские буровые платформы являются одними из крупнейших искусственных сооружений в мире. Они часто включают в себя жилые помещения для людей, работающих на платформе, а также причалы и вертолетную площадку для перевозки рабочих.
Платформа может быть привязана ко дну океана и плавать или может представлять собой жесткую конструкцию, прикрепленную ко дну океана, моря или озера с помощью бетонных или стальных опор.
Платформа Hibernia, расположенная в 315 километрах (196 миль) от восточного побережья Канады в северной части Атлантического океана, является одной из крупнейших в мире нефтяных платформ.На платформе работают более 70 человек в трехнедельные смены. Платформа имеет высоту 111 метров (364 фута) и закреплена на дне океана. Для придания дополнительной устойчивости было добавлено около 450 000 тонн твердого балласта. Платформа может хранить до 1,3 млн баррелей нефти. Всего Hibernia весит 1,2 миллиона тонн! Однако платформа по-прежнему уязвима для сокрушительного веса и силы айсбергов. Его края зубчатые и острые, чтобы противостоять ударам морского льда или айсбергов.
Нефтяные платформы могут стать причиной огромных экологических катастроф.Проблемы с буровым оборудованием могут привести к выбросу нефти из скважины в океан. Ремонт скважины на глубине сотен метров под океаном — дело чрезвычайно сложное, дорогое и медленное. Миллионы баррелей нефти могут вылиться в океан до того, как скважина будет закупорена.
Когда нефть разливается в океане, она плавает по воде и наносит ущерб популяции животных. Одно из его самых разрушительных последствий для птиц. Нефть разрушает гидроизоляционные свойства перьев, и птицы не защищены от холодной океанской воды.Тысячи могут умереть от переохлаждения. Рыбам и морским млекопитающим также угрожают разливы нефти. Темные тени, отбрасываемые разливами нефти, могут выглядеть как еда. Нефть может повредить внутренние органы животных и быть еще более токсичной для животных, находящихся выше в пищевой цепочке. Этот процесс называется биоаккумуляцией.
Массивная нефтяная платформа в Мексиканском заливе, Deepwater Horizon , взорвалась в 2010 году. Это был крупнейший аварийный разлив нефти в море в истории. Одиннадцать рабочих платформы погибли, а в Мексиканский залив вылилось более 4 миллионов баррелей нефти.Ежедневно в океан утекало более 40 000 баррелей. Восемь национальных парков оказались под угрозой, экономика общин вдоль побережья Мексиканского залива оказалась под угрозой, поскольку туризм и рыболовство пришли в упадок, и более 6000 животных погибли.
Буровые установки для рифов
Морские нефтяные платформы также могут выступать в качестве искусственных рифов. Они обеспечивают поверхность (субстрат) для водорослей, кораллов, устриц и ракушек. Этот искусственный риф может привлечь рыбу и морских млекопитающих и создать процветающую экосистему.
До 1980-х годов нефтяные платформы разбирали и вывозили из океанов, а металл продавали как лом. В 1986 году Национальная ассоциация морского рыболовства разработала программу «Установки к рифам». Сейчас нефтяные платформы либо опрокидываются (путем подводного взрыва), либо вывозятся и буксируются на новое место, либо частично разбираются. Это позволяет морской жизни продолжать процветать на искусственном рифе, который десятилетиями обеспечивал среду обитания.
Воздействие программы Rigs-to-Reefs на окружающую среду все еще изучается.Нефтяные платформы, оставленные под водой, могут представлять опасность для кораблей и водолазов. Рыбацкие лодки запутались в платформах, и есть опасения по поводу правил безопасности заброшенных сооружений.
Экологи утверждают, что нефтяные компании должны нести ответственность за обязательства, о которых они изначально договорились, а именно о восстановлении морского дна до его первоначального состояния. Оставляя платформы в океане, нефтяные компании освобождаются от выполнения этого соглашения, и есть опасения, что это может создать прецедент для других компаний, которые хотят утилизировать свой металл или оборудование в океанах.
Нефть и окружающая среда: битум и бореальные леса
Сырая нефть не всегда должна добываться путем глубокого бурения. Если он не сталкивается с каменистыми препятствиями под землей, он может просачиваться на поверхность и пузыриться над землей. Битум — это форма нефти, которая имеет черный цвет, чрезвычайно липкая и иногда поднимается на поверхность Земли.
В своем естественном состоянии битум обычно смешивается с «нефтяными песками» или «битуминозными песками», что делает его чрезвычайно трудным для добычи и является нетрадиционным источником нефти. Только около 20% мировых запасов битума находятся на поверхности земли и могут быть добыты открытым способом.
К сожалению, из-за того, что битум содержит большое количество серы и тяжелых металлов, его добыча и переработка являются дорогостоящими и вредными для окружающей среды. Производство битума в полезные продукты приводит к выбросам углерода на 12% больше, чем при переработке обычной нефти.
Битум имеет консистенцию холодной патоки, и для его извлечения в скважину необходимо закачивать мощный горячий пар, чтобы расплавить битум.Затем для отделения битума от песка и глины используется большое количество воды. Этот процесс истощает близлежащие запасы воды. Сброс очищенной воды обратно в окружающую среду может привести к дальнейшему загрязнению оставшейся воды.
Переработка битума из битуминозных песков также является сложной и дорогостоящей процедурой. Для производства одного барреля нефти требуется две тонны нефтеносных песков.
Однако мы зависим от битума из-за его уникальных свойств: около 85% добываемого битума используется для производства асфальта для мощения и ремонта наших дорог. Небольшой процент используется для кровли и других продуктов.
Запасы битума
Большая часть мировых битуминозных песков находится в восточной части Альберты, Канада, в нефтеносных песках Атабаски. Другие крупные запасы находятся в Северо-Каспийском бассейне Казахстана и Сибири, Россия.
Нефтяные пески Атабаски являются четвертыми по величине запасами нефти в мире. К сожалению, запасы битума находятся под частью бореального леса, называемого также тайгой. Это делает добычу как сложной, так и экологически опасной.
Тайга окружает Северное полушарие чуть ниже замерзшей тундры, занимая более 5 миллионов квадратных километров (2 миллиона квадратных миль), в основном в Канаде, России и Скандинавии. На его долю приходится почти треть всей покрытой лесом земли на планете.
Тайгу иногда называют «легкими планеты», потому что она каждый день фильтрует тонны воды и кислорода через листья и хвою своих деревьев. Каждую весну бореальные леса выделяют в атмосферу огромное количество кислорода и сохраняют наш воздух чистым. Это дом для мозаики растительной и животной жизни, все из которых зависят от взрослых деревьев, мхов и лишайников бореального биома.
Наземные мины, по оценкам, занимают лишь 0,2% бореальных лесов Канады. Около 80 % нефтеносных песков Канады можно добыть с помощью бурения, а 20 % — с помощью открытых горных работ.
Переработка нефти
Переработка нефти — это процесс преобразования сырой нефти или битума в более полезные продукты, такие как топливо или асфальт.
Нефть выходит из-под земли с примесями, от серы до песка.Эти компоненты должны быть разделены. Это делается путем нагревания сырой нефти в дистилляционной колонне, в которой есть тарелки и температуры, установленные на разных уровнях. Углеводороды и металлы нефти имеют разные температуры кипения, и когда нефть нагревается, пары различных элементов поднимаются на разные уровни колонны, прежде чем снова конденсироваться в жидкость на многоуровневых тарелках.
Пропан, керосин и другие компоненты конденсируются на разных ярусах башни и могут собираться по отдельности. Их транспортируют по трубопроводу, океанскими судами и грузовиками в разные места для непосредственного использования или дальнейшей обработки.
Нефтяная промышленность
Нефть не всегда добывалась, очищалась и использовалась миллионами людей, как сегодня. Тем не менее, он всегда был важной частью многих культур.
Самые ранние известные нефтяные скважины были пробурены в Китае еще в 350 г. н.э. Скважины были пробурены на глубину почти 244 метра (800 футов) с использованием прочных бамбуковых долот.Нефть добывалась и транспортировалась по бамбуковым трубопроводам. Его сжигали как топливо для отопления и промышленный компонент. Китайские инженеры сжигали нефть для выпаривания рассола и получения соли.
На западном побережье Северной Америки коренные народы использовали битум в качестве клея для водонепроницаемости каноэ и корзин, а также в качестве связующего для создания церемониальных украшений и инструментов.
К 7 веку японские инженеры обнаружили, что нефть можно сжигать для получения света. Позже персидский алхимик в 9 веке перегнал нефть в керосин.В течение 1800-х годов нефть постепенно заменила китовый жир в керосиновых лампах, что привело к резкому сокращению охоты на китов.
Современная нефтяная промышленность зародилась в 1850-х годах. Первая скважина была пробурена в Польше в 1853 году, а технология распространилась в другие страны и усовершенствовалась.
Промышленная революция открыла новые широкие возможности для использования нефти. Машины, приводимые в действие паровыми двигателями, быстро стали слишком медленными, мелкосерийными и дорогими. Топливо на нефтяной основе было востребовано.Изобретение серийного автомобиля в начале 20 века еще больше увеличило спрос на нефть.
Добыча нефти быстро растет. В 1859 году в США было добыто 2000 баррелей нефти. К 1906 году это число составляло 126 миллионов баррелей в год. Сегодня США ежегодно добывают около 6,8 млрд баррелей нефти.
По данным ОПЕК, ежедневно в мире производится более 70 миллионов баррелей. Это почти 49 000 баррелей в минуту.
Хотя это кажется невероятно большим количеством, использование нефти расширилось почти во всех сферах жизни.Нефть облегчает нашу жизнь во многих отношениях. Во многих странах, в том числе в США, нефтяная промышленность обеспечивает миллионы рабочих мест, от геодезистов и рабочих платформ до геологов и инженеров.
Соединенные Штаты потребляют больше нефти, чем любая другая страна. В 2011 году США ежедневно потребляли более 19 миллионов баррелей нефти. Это больше, чем вся нефть, потребляемая в Латинской Америке (8,5 млн) и Восточной Европе и Евразии (5,5 млн) вместе взятых.
Нефть входит в состав тысяч предметов повседневного обихода.Бензин, от которого мы ездим в школу, на работу или в отпуск, поступает из сырой нефти. Баррель нефти производит около 72 литров (19 галлонов) бензина и используется людьми во всем мире для питания автомобилей, лодок, реактивных самолетов и скутеров.
Дизельные генераторы используются во многих отдаленных домах, школах и больницах. Во время чрезвычайных ситуаций, когда отключается электросеть, дизель-генераторы спасают жизни, обеспечивая электричеством больницы, многоквартирные дома, школы и другие здания, которые в противном случае были бы холодными и «темными».
Нефть также используется в жидких продуктах, таких как лак для ногтей, медицинский спирт и аммиак. Нефть содержится в таких разнообразных предметах для отдыха, как доски для серфинга, футбольные и баскетбольные мячи, велосипедные шины, сумки для гольфа, палатки, фотоаппараты и рыболовные приманки.
Нефть также содержится в более важных предметах, таких как протезы, водопроводные трубы и капсулы с витаминами. В наших домах мы окружены продуктами, содержащими нефть, и зависим от них. Краска для дома, мешки для мусора, кровля, обувь, телефоны, бигуди и даже мелки содержат очищенную нефть.
Углеродный цикл
Добыча ископаемого топлива имеет серьезные недостатки, а добыча нефти – спорная отрасль.
Углерод, важный элемент на Земле, составляет около 85% углеводородов в нефти. Углерод постоянно циркулирует между водой, землей и атмосферой.
Углерод поглощается растениями и является частью каждого живого организма, движущегося по пищевой цепи. Углерод естественным образом высвобождается из-за вулканов, эрозии почвы и испарения.Когда углерод выбрасывается в атмосферу, он поглощает и сохраняет тепло, регулируя температуру Земли и делая нашу планету пригодной для жизни.
Не весь углерод на Земле вовлечен в круговорот углерода над землей. Огромные количества его изолированы или хранятся под землей в виде ископаемого топлива и в почве. Этот секвестрированный углерод необходим, потому что он поддерживает сбалансированный «углеродный бюджет» Земли.
Однако этот бюджет выходит из равновесия. Со времен промышленной революции ископаемое топливо агрессивно добывалось и сжигалось для получения энергии или топлива.Это высвобождает углерод, который был изолирован под землей, и нарушает углеродный баланс. Это влияет на качество нашего воздуха, воды и климата в целом.
Тайга, например, поглощает огромное количество углерода на деревьях и под лесной подстилкой. Бурение природных ресурсов высвобождает не только углерод, содержащийся в ископаемом топливе, но и углерод, содержащийся в самом лесу.
Сжигание бензина, изготовленного из нефти, особенно вредно для окружающей среды.Каждые 3,8 литра (1 галлон) не содержащего этанол газа, сгорающего в двигателе автомобиля, выделяют в окружающую среду около 9 кг (20 фунтов) углекислого газа. (Бензин, наполненный 10% этанола, выделяет около 8 кг (17 фунтов).) Дизельное топливо выделяет около 10 кг (22 фунта) двуокиси углерода, а биодизель (дизельное топливо с 10% биотоплива) выделяет около 9 кг (20 фунтов).
Бензин и дизельное топливо также напрямую загрязняют атмосферу. Они выделяют токсичные соединения и твердые частицы, в том числе формальдегид и бензол.
Люди и нефть
Нефть является основным компонентом современной цивилизации. В развивающихся странах доступ к доступной энергии может расширить возможности граждан и повысить качество жизни. Нефть обеспечивает транспортное топливо, входит в состав многих химических веществ и лекарств, а также используется для изготовления важных предметов, таких как сердечные клапаны, контактные линзы и бинты. Запасы нефти привлекают внешние инвестиции и важны для улучшения экономики страны в целом.
Однако доступ развивающейся страны к нефти может также повлиять на соотношение сил между правительством и его народом.В некоторых странах доступ к нефти может привести к тому, что правительство станет менее демократичным — ситуация, получившая название «нефтедиктатура». Россию, Нигерию и Иран обвиняют в наличии нефтеавторитарных режимов.
Пиковая нефть
Нефть является невозобновляемым ресурсом, и мировых запасов нефти не всегда будет достаточно, чтобы обеспечить мировой спрос на нефть. Нефтяной пик — это момент, когда нефтяная промышленность добывает максимально возможное количество нефти. После нефтяного пика добыча нефти будет только снижаться.После пика нефти произойдет снижение добычи и рост затрат на оставшиеся запасы.
При измерении пиковой нефти используется отношение запасов к добыче (RPR). Этот коэффициент сравнивает объем доказанных запасов нефти с текущим уровнем добычи. Отношение запасов к добыче выражается в годах. RPR различен для каждой нефтяной вышки и каждого нефтедобывающего района. Нефтедобывающие регионы, которые также являются крупными потребителями нефти, имеют более низкий RPR, чем нефтедобывающие регионы с низким уровнем потребления.
Согласно одному отраслевому отчету, RPR в США составляет около девяти лет. Богатая нефтью развивающаяся страна Иран с гораздо более низким уровнем потребления имеет RPR более 80 лет.
Невозможно узнать точный год пика добычи нефти. Некоторые геологи утверждают, что он уже прошел, в то время как другие утверждают, что технология добычи отсрочит пик нефти на десятилетия. По оценкам многих геологов, пик нефти может быть достигнут в течение 20 лет.
Нефтяные альтернативы
Отдельные лица, отрасли и организации все больше обеспокоены последствиями нефтедобычи и последствиями добычи нефти для окружающей среды. В некоторых областях разрабатываются альтернативы нефти, и правительства и организации призывают граждан изменить свои привычки, чтобы мы не так сильно полагались на нефть.
Биоасфальты, например, представляют собой асфальты, полученные из возобновляемых источников, таких как патока, сахар, кукуруза, картофельный крахмал или даже побочные продукты нефтяных процессов. Хотя они представляют собой нетоксичную альтернативу битуму, биоасфальты требуют огромных урожаев, что создает нагрузку на сельскохозяйственную промышленность.
Водоросли также являются потенциально огромным источником энергии.Масло водорослей (так называемая «зеленая нефть») может быть преобразовано в биотопливо. Водоросли растут очень быстро и занимают часть пространства, используемого другим сырьем для биотоплива. Около 38 849 квадратных километров (15 000 квадратных миль) водорослей — менее половины размера американского штата Мэн — могли бы обеспечить достаточное количество биотоплива, чтобы заменить все потребности США в нефти. Водоросли поглощают загрязнения, выделяют кислород и не нуждаются в пресной воде.
Швеция поставила перед собой задачу резко сократить к 2020 году свою зависимость от нефти и других источников энергии из ископаемого топлива.Эксперты в области сельского хозяйства, науки, промышленности, лесного хозяйства и энергетики объединились для разработки источников устойчивой энергии, включая геотермальные тепловые насосы, ветряные электростанции, энергию волн и солнечную энергию, а также домашнее биотопливо для гибридных автомобилей. Изменения в привычках общества, такие как увеличение количества общественного транспорта и видеоконференций для предприятий, также являются частью плана по сокращению использования нефти.
Нефть и нефтепродукты с объяснением
Что такое сырая нефть и что такое нефтепродукты?
Мы называем сырую нефть и нефть ископаемым топливом , потому что они представляют собой смеси углеводородов, которые образовались из остатков животных и растений (диатомовых водорослей), которые жили миллионы лет назад в морской среде до появления динозавров. На протяжении миллионов лет останки этих животных и растений покрывались слоями песка, ила и камней. Тепло и давление этих слоев превратили остатки в то, что мы сейчас называем сырой нефтью или нефтью. Слово «нефть» означает каменное масло или нефть из земли.
Источник: Управление энергетической информации США (общественное достояние)
Нажмите, чтобы увеличить
Диатомовые водоросли, увеличенные под микроскопом.
Источник: Изображение использовано с разрешения Micrographia
.
Сырая нефть и другие углеводороды существуют в жидкой или газообразной форме в подземных бассейнах или резервуарах, в крошечных пространствах в осадочных породах и вблизи поверхности земли в битуминозных (или нефтеносных) песках . Нефтепродукты – это топливо, изготовленное из сырой нефти и углеводородов, содержащихся в природном газе. Нефтепродукты также могут производиться из угля, природного газа и биомассы.
Продукты из сырой нефти
После извлечения сырой нефти из-под земли ее отправляют на нефтеперерабатывающий завод, где различные части сырой нефти разделяются на пригодные для использования нефтепродукты. Эти нефтепродукты включают бензин, дистилляты, такие как дизельное топливо и печное топливо, топливо для реактивных двигателей, нефтехимическое сырье, воски, смазочные масла и асфальт. Узнайте больше в разделе «Переработка сырой нефти — входы и выходы»
Из 42-галлонного барреля сырой нефти в США на нефтеперерабатывающих заводах США получается около 45 галлонов нефтепродуктов из-за увеличения переработки на нефтеперерабатывающих заводах. Это увеличение объема похоже на то, что происходит с попкорном, когда его взрывают. Зерно кукурузы меньше и плотнее, чем лопнувшее зерно.Количество производимых отдельных продуктов варьируется от месяца к месяцу и от года к году, поскольку нефтеперерабатывающие заводы корректируют производство, чтобы удовлетворить рыночный спрос и максимизировать прибыльность.
Нажмите, чтобы увеличить
Последнее обновление: 26 июля 2021 г.
Oil – Energy Education
Рисунок 1. Домкрат-качалка используется для извлечения нефти из скважины. [1]
В целом масло представляет собой жидкость, состоящую из органических молекул.Однако в контексте мирового энергетического сектора нефть или, более конкретно, сырая нефть представляет собой жидкое ископаемое топливо, добываемое из-под земли. Примерно 1/3 первичной энергии в мире приходится на это первичное топливо. Химически масло состоит в основном из углерода и водорода с другими микроэлементами. Поскольку нефть состоит в основном из атомов углерода и водорода, она известна как углеводород (хотя с химической точки зрения она часто не является настоящим углеводородом). [2] Конкретный химический состав сырой нефти может сильно различаться в зависимости от того, где она была пробурена и при каких условиях образовалась. [3]
Нефть образовалась миллионы лет назад, когда живое органическое вещество умерло и было захоронено до того, как оно могло разложиться в присутствии воздуха. Это заперло углерод под землей, где тепло и давление привели к химическим и физическим изменениям. Эти изменения в течение длительных периодов времени трансформировали некогда фотосинтетическую энергию Солнца в энергию, хранящуюся в самом масле. [4] Поскольку нефть является основным жидким компонентом нефти, ее называют нефтехимической.
История
Рисунок 2. Эдвин Дрейк, бурильщик первой продуктивной нефтяной скважины. [5]
Масло
широко использовалось на протяжении всей истории, даже когда оно не использовалось для заправки транспортных средств или производства электроэнергии. Исторически нефть использовалась в качестве гидроизоляционного агента и в некоторых лекарствах, но была обнаружена только в естественных просачиваниях, когда нефть поднималась над землей. [2] 27 августа 1859 года Эдвин Дрейк впервые выкачал нефть из-под земли в Пенсильвании, и с тех пор были пробурены тысячи скважин. [6] Первоначально большая часть нефти превращалась в керосин и использовалась в качестве топлива для ламп, но со временем она стала использоваться для заправки автомобилей и выработки электроэнергии.
Обычная нефть содержится под землей в ловушках или резервуарах, удерживаемых в крошечных порах пористой и проницаемой породы. Нетрадиционная нефть, в первую очередь сланцевая нефть, плотно удерживается в непроницаемых сланцевых отложениях и, следовательно, ее труднее извлекать, для доступа к которой требуется гидроразрыв пласта. Как правило, для добычи требуется скважина, пробуренная в пласт, содержащий сырую нефть.Скважина может быть вертикальной, направленной или горизонтальной в зависимости от того, насколько необходим доступ к месторождению. Направленное и горизонтальное бурение позволяет большей части скважины находиться в самой залежи, увеличивая приток нефти. [7] После этого масло извлекается и очищается. Его можно перегонять или подвергать крекингу углеводородов для создания полезных продуктов и топлива.
Использовать
Нефть используется для самых разных целей, в том числе для транспорта.Некоторые способы использования нефти до или после очистки: [8]
- Транспортное топливо
- Удобрение
- Отопление
- Пластик
- Растворители
- Производство электроэнергии
Некоторые из этих видов использования требуют дополнительной очистки сырой нефти, чтобы стать полезными, но все они каким-то образом используют нефть. По данным EIA, большая часть нефти в Соединенных Штатах используется при транспортировке (за счет использования бензина и дизельного топлива), что составляет 2/3 всей используемой нефти. [8]
Нефть особенно полезна в качестве топлива из-за ее высокой плотности энергии. Как упоминалось ранее, первоначальным источником энергии нефти является Солнце, поскольку энергия, хранящаяся в мертвом органическом веществе, со временем создает сырую нефть. При сжигании в присутствии кислорода масло вступает в реакцию сгорания углеводородов с образованием углекислого газа и водяного пара. Энергия, выделяемая при сгорании, зависит от плотности энергии конкретного вещества, подвергающегося сгоранию.7 Дж[/математика]. [9]
Воздействие на окружающую среду
Хотя нефть в настоящее время является чрезвычайно важным топливом, производство двуокиси углерода в результате сжигания сырой нефти и продуктов ее переработки способствует изменению климата. В дополнение к углекислому газу и другим выбросам, образующимся при сжигании нефтепродуктов, процессы добычи, транспортировки, переработки и бурения оказывают свое собственное воздействие на окружающую среду. Некоторые производимые химические вещества способствуют образованию смога, в то время как другие являются парниковыми газами, которые способствуют потеплению Земли. [10] Некоторые из наиболее вредных загрязняющих веществ включают NOx и окись углерода. Выбросы в атмосферу — не единственная проблема, так как разрушение земель, используемых при добыче, и возможность разлива нефти могут разрушить потенциально значимые экологические территории.
Интерактивный график
Нефть широко используется во всем мире, и приведенный ниже график можно использовать для определения того, какие регионы используют больше или меньше всего нефтепродуктов.
Для дальнейшего чтения
Ссылки
- ↑ Pixabay.(5 июня 2015 г.). Масляный насос [Онлайн]. Доступно: http://pixabay.com/en/oil-pump-montana-usa-landscape-51658/
- ↑ 2.0 2.1 Стивен Маршак. (5 июня 2015 г.). Земля: портрет планеты , 3-е изд.
Нью-Йорк, штат Нью-Йорк, США: W.W. Нортон и компания, 2008 г.
- ↑ В. Леффлер, М. Раймонд. (25 мая 2015 г.). Добыча нефти и газа нетехническим языком , 1-е изд. Талса, штат Оклахома, США: PennWell Corporation, 2006.
- ↑ Ричард Вольфсон.(5 июня 2015 г.). Энергия, окружающая среда и климат , 2-е изд. Нью-Йорк, штат Нью-Йорк, США: 2012 г.
- ↑ Викисклад. (5 июня 2015 г.). Эдвин Дрейк [Онлайн]. Доступно: http://commons.wikimedia.org/wiki/File:Edwindrake.jpg#/media/File:Edwindrake.jpg
- ↑ Британская энциклопедия. (5 июня 2015 г.). Эдкин Лорентин Дрейк [Онлайн]. Доступно: http://www.britannica.com/EBchecked/topic/170909/Edwin-Laurentine-Drake
- ↑ Geology.com. (5 июня 2015 г.). Горизонтальное и наклонно-направленное бурение\\ [Онлайн]. Доступно: http://geology.com/articles/horizontal-drilling/
- ↑ 8,0 8,1 Eccos. (5 июня 2015 г.). Для чего используется масло? [Онлайн].
Доступно: http://www.eccos.us/what-is-oil-used-for/
- ↑ Вашингтонский университет. (5 июня 2015 г.). Содержание энергии в топливе (в джоулях) [онлайн]. Доступно: http://www.ocean.washington.edu/courses/envir215/energynumbers.pdf
- ↑ Майкл МакЭлрой.(5 июня 2015 г.). Энергетика: перспективы, проблемы и перспективы , 1-е изд. Издательство Оксфордского университета. Нью-Йорк, штат Нью-Йорк, США: 2010.
Как делают пластик? — Британская федерация пластика
Автор: д-р Паял Бахети
Пластик может быть «синтетическим» или «биоосновным». Синтетические пластмассы получают из сырой нефти, природного газа или угля. В то время как пластмассы на биологической основе получают из возобновляемых продуктов, таких как углеводы, крахмал, растительные жиры и масла, бактерии и другие биологические вещества.
Подавляющее большинство пластика, используемого сегодня, является синтетическим из-за простоты методов производства, связанных с переработкой сырой нефти. Однако растущий спрос на ограниченные запасы нефти вызывает потребность в новых пластмассах из возобновляемых ресурсов, таких как отходы биомассы или отходы животноводства в промышленности.
В Европе лишь небольшая часть (около 4-6%) наших запасов нефти и газа идет на производство пластмасс, а остальная часть используется для транспорта, электричества, отопления и других целей (Ref)
Большая часть используемого сегодня пластика производится в результате следующих этапов:
1.Добыча сырья (в основном сырая нефть и природный газ, но также и уголь) — это сложная смесь тысяч соединений, которые затем необходимо перерабатывать.
2. Процесс переработки превращает сырую нефть в различные нефтепродукты – они превращаются в полезные химические вещества, включая «мономеры» (молекулы, являющиеся основными строительными блоками полимеров). В процессе переработки сырая нефть нагревается в печи, которая затем направляется в дистилляционную установку, где тяжелая сырая нефть разделяется на более легкие компоненты, называемые фракциями. Одно из них, называемое нафтой, является ключевым соединением для производства большого количества пластика. Однако есть и другие средства, например, использование газа.
Рисунок 1. Графическое изображение производства пластмасс (рисунок адаптирован из ссылки)
3. Полимеризация — это процесс в нефтяной промышленности, при котором легкие олефиновые газы (бензин), такие как этилен, пропилен, бутилен (т. е. мономеры), превращаются в углеводороды с более высокой молекулярной массой (полимеры).Это происходит, когда мономеры химически связаны в цепочки. Существует два различных механизма полимеризации:
- Аддитивная полимеризация
Реакция аддитивной полимеризации – это когда один мономер соединяется со следующим (димером), а димер со следующим (тримером) и так далее. Это достигается введением катализатора, обычно пероксида. Этот процесс известен как полимеры с ростом цепи, поскольку он добавляет по одному мономерному звену за раз. Типичными примерами аддитивных полимеров являются полиэтилен, полистирол и поливинилхлорид.
- Конденсационная полимеризация
Конденсационная полимеризация включает соединение двух или более различных мономеров путем удаления небольших молекул, таких как вода. Также требуется катализатор для реакции между соседними мономерами. Это называется ступенчатым ростом, поскольку вы можете, например, добавить существующую цепочку к другой цепочке. Типичными примерами конденсационных полимеров являются полиэстер и нейлон.
4. Компаундирование/переработка
При компаундировании различные смеси материалов смешиваются в расплаве (смешиваются путем плавления) для получения составов для пластмасс. Обычно для этой цели используют экструдер того или иного типа, за которым следует гранулирование смеси. Экструзия или другой процесс формования затем превращает эти гранулы в готовый продукт или полуфабрикат. Компаундирование часто происходит на двухшнековом экструдере, где гранулы затем перерабатываются в пластиковые предметы уникального дизайна, различного размера, формы, цвета с точными свойствами в соответствии с заранее заданными условиями, заданными в обрабатывающей машине.
…
Более подробная информация о производстве пластмасс представлена в следующих разделах ниже:
- Полимер и пластик
- Что такое углеводороды?
- Как синтетический пластик создается из сырой нефти?
- Как из лигроина делают пластик?
- Что является основным ингредиентом пластика?
- Какой пластик был первым сделан человеком?
- Что использовали до пластика?
- Можно ли сделать пластик без масла?
Все пластмассы по существу являются полимерами, но не все полимеры являются пластмассами.
Термин «полимер » и «мономер » произошли от греческих слов: где «поли» означает «много», «мер» означает «повторяющееся звено», а слово «моно» означает «один». Это буквально означает, что полимер состоит из множества повторяющихся мономерных звеньев. Полимеры представляют собой более крупные молекулы, образованные путем ковалентного соединения многих мономерных звеньев вместе в виде цепочек, подобных жемчужинам на нитке жемчуга.
Слово пластик происходит от слов «пластик» (лат. «способный к формованию») и «пластикос» (греч. «подходящий для формования»).Когда мы говорим о пластмассах, мы имеем в виду органические полимеры (синтетические или натуральные) с высокой молекулярной массой, смешанные с другими веществами.
Пластмассы представляют собой высокомолекулярные органические полимеры, состоящие из различных элементов, таких как углерод, водород, кислород, азот, сера и хлор. Они также могут быть получены из атома кремния (известного как силикон) вместе с углеродом; типичным примером являются силиконовые имплантаты груди или силикон-гидрогель для оптических линз. Пластмассы состоят из полимерной смолы, часто смешанной с другими веществами, называемыми добавками.
«Пластичность» — это термин, используемый для описания свойства, характеристики и атрибута материала, который может необратимо деформироваться без разрушения. Пластичность описывает, выдержит ли полимер воздействие температуры и давления в процессе формования.
Химия позволяет нам варьировать различные параметры для настройки свойств полимеров. Мы можем использовать различные элементы, изменять тип мономеров и перестраивать их по разным схемам, чтобы изменить форму полимера, его молекулярную массу или другие химические/физические свойства.Это позволяет разрабатывать пластики с правильными свойствами для конкретного применения.
Большая часть используемого сегодня пластика производится из углеводородов, получаемых из сырой нефти, природного газа и угля — ископаемого топлива.
Что такое углеводород?
Углеводороды представляют собой органические соединения (могут быть алифатическими или ароматическими), состоящие из углерода и водорода . Алифатические углеводороды не имеют циклических бензольных колец, тогда как ароматические углеводороды имеют бензольные кольца.
Углерод
( C , атомный номер = 6) имеет валентность четыре, что означает наличие четырех электронов на внешней оболочке. Он способен соединяться с четырьмя другими электронами любого элемента периодической таблицы, образуя химические связи (в случае углеводорода он образует пару с водородом). С другой стороны, водород ( H , с атомным номером = 1) имеет только один электрон на валентной оболочке, поэтому четыре из этих атомов H готовы соединиться с атомом C, образуя одинарную связь, чтобы дать CH 4 молекула.Молекула CH 4 называется метаном, который является простейшим углеводородом и первым членом семейства алканов. Точно так же, если два атома углерода будут связаны друг с другом, они могут соединиться с шестью атомами водорода, по три из которых находятся на каждом атоме углерода, что даст химическую формулу CH 3 -CH 3 (или C 2 H 6 ), известный как этан, и ряд продолжается следующим образом.
Alkane Family : метан (CH 4 ), этан (CH 3 -CH 3 или C 2 H 6 ), пропан (CH 3 -CH 2 -CH 3 ), бутан (СН 3 -СН 2 -СН 2 -СН 3 ), пентан (СН 3 -СН 2 -СН 90 9 0 9 0 9 8 0 4 2 908 3 ), гексан, гептан, октан, нонан, додекан, ундекан и так далее.
Обратите внимание, что этот тип связи с углеродом и водородом представляет собой насыщенную связь (сигма-связь, обозначаемую как σ-связь). Также может быть ненасыщенная связь , где присутствует пи-связь (π-связь) вместе с сигма-связью, дающей углерод-углеродные двойные связи ( алкены ), или иметь две π-связи с сигма, дающей тройную углерод-углеродную связь ( алкины ), что очень сильно зависит от типа гибридизации между элементами.
Семейство алкенов : Этилен (CH 2 = CH 2 или C 2 H 4 ), пропилен (CH 2 = CH-CH 2 ) = CH-CH 2 -CH 3 ), 2-бутилен (CH 3 -CH=CH-CH 3 ) и так далее.(Обратите внимание, что 1-бутилен и 2-бутилен являются изомерами бутилена).
Углеводороды алкиновые : Этин (CH≡CH or C 2 H 2 ), пропин (CH≡C-CH 3 ), 1-бутин (CH≡C-CH 2 -CH -CH ), 2-бутин (CH 3 -CH≡CH-CH 3 ) и так далее.
Что такое ископаемое топливо и откуда оно берется?
Ископаемые виды топлива — это в основном сырая нефть, природный газ и уголь, состоящие из углерода, водорода, азота, серы, кислорода и других минералов (рис. 1, ссылка).Общепринятая теория состоит в том, что эти углеводороды образуются из остатков живых организмов, называемых планктонами (крошечными растениями и животными), которые существовали в юрскую эпоху. Планктоны были погребены глубже под тяжелыми слоями отложений в мантии Земли из-за сжатия из-за огромного количества тепла и давления. Мертвые организмы разлагались без доступа кислорода, что превращало их в крошечные очаги нефти и газа. Затем сырая нефть и газ проникают в породы, которые в конечном итоге накапливаются в резервуарах.Нефтяные и газовые скважины находятся на дне наших океанов и под ними. Уголь в основном происходит из мертвых растений (ссылка).
Рис. 2. Элементный состав ископаемого топлива (ссылка).
Ученые также поставили под сомнение эту теорию. Недавнее исследование Nature Geoscience Института Карнеги в сотрудничестве с российскими и шведскими коллегами показало, что органическое вещество может не быть источником тяжелых углеводородов и что они могут уже существовать глубоко в недрах Земли.Эксперты обнаружили, что этан и другие тяжелые углеводороды могут быть получены, если условия давления и температуры можно сымитировать с теми, которые существуют глубоко внутри ядра Земли. Это означает, что углеводороды могут образовываться в верхней мантии, то есть в слое Земли между корой и ядром. Они демонстрируют это, подвергая метан лазерной термообработке в верхнем слое Земли, который затем превращается в молекулу водорода, этан, пропан, петролейный эфир и графит. Затем ученые подвергли этан тем же условиям, в которых обратимость произвела метан.Приведенные выше результаты показывают, что эти углеводороды могут быть созданы естественным путем без остатков растений и животных (ссылка).
3. Как синтетический пластик создается из сырой нефти?
Синтетический пластик производится нефтехимической промышленностью. Когда источник нефти под поверхностью Земли идентифицирован, в породах в земле бурятся отверстия для извлечения нефти.
Добыча нефти — Нефть перекачивается из-под земли на поверхность, где используются танкеры для транспортировки нефти на берег.Бурение нефтяных скважин также может осуществляться под океаном при поддержке платформ. Насосы разных размеров могут производить от 5 до 40 литров масла за ход (рис. 1).
Переработка нефти — Нефть перекачивается по трубопроводу, длина которого может составлять тысячи миль, и транспортируется на нефтеперерабатывающий завод (рис. 1). Разлив нефти из трубопровода во время перекачки может иметь как немедленные, так и долгосрочные последствия для окружающей среды, но для предотвращения и сведения к минимуму этого риска принимаются меры безопасности.
Рисунок 3: Фракционная перегонка сырой нефти
Перегонка сырой нефти и производство нефтехимических продуктов — Сырая нефть представляет собой смесь сотен углеводородов, которая также содержит некоторое количество растворенных в ней твердых и некоторых газообразных углеводородов из семейства алканов (в основном это CH 4 и C 2 H 6 , но это может быть C 3 H 8 или C 4 H 10 ).Сырая нефть сначала нагревается в печи, затем полученная смесь в виде пара подается в колонну фракционной перегонки. Колонна фракционной перегонки разделяет смесь на разные отсеки, называемые фракциями. В дистилляционной колонне существует температурный градиент, когда верх холоднее основания. Смесь жидкой и паровой фракций разделяется в колонне в зависимости от их веса и температуры кипения (температура кипения – это температура, при которой жидкая фаза переходит в газообразную). Когда пары испаряются и встречаются с жидкой фракцией, температура которой ниже точки кипения пара, она частично конденсируется. Эти пары испаряющейся сырой нефти конденсируются при различной температуре в колонне. Пары (газы) наиболее легких фракций (бензин и нефтяной газ) стекают в верх колонны, жидкие фракции средней массы (керосиновые и дизельные дистилляты) задерживаются в середине, более тяжелые жидкости (называемые газойлями) отделяются ниже вниз , а самые тяжелые фракции (твердые вещества) с наиболее высокими температурами кипения остаются в основании колонны.Каждая фракция в колонке содержит углеводороды с одинаковым числом атомов углерода, молекулы меньшего размера находятся вверху, а молекулы большей длины ближе к низу колонки (ссылка). Таким образом, нефть разлагается на нефтяной газ, бензин, парафин (керосин), нафту, светлую нефть, тяжелую нефть и т. д.
После этапа дистилляции полученные углеводороды с длинной цепью превращаются в углеводороды, которые затем можно превратить во многие важные химические вещества, которые мы используем для приготовления широкого спектра продуктов, от пластика до фармацевтических препаратов.
Крекинг углеводородов является основным процессом, который расщепляет смесь сложных углеводородов на более простые низкомолекулярные алкены/алканы (плюс побочные продукты) с помощью высокой температуры и давления.
Крекинг может осуществляться двумя способами: паровой крекинг и каталитический крекинг.
Паровой крекинг использует высокую температуру и давление для разрыва длинных цепей углеводородов без катализатора, в то время как каталитический крекинг добавляет катализатор, который позволяет процессу происходить при более низких температурах и давлениях.
Сырье, используемое в нефтехимической промышленности, в основном представляет собой нафту и природный газ, образующиеся в результате нефтепереработки в нефтехимическом сырье. Паровой крекинг использует сырье из смеси углеводородов различных фракций, таких как газы-реагенты (этан, пропан или бутан) из природного газа или жидкости ( нафта или газойль ) (рис. 4).
Рисунок 4: Различные химические вещества, полученные из ископаемого топлива после переработки нефти.
(Нафта представляет собой смесь углеводородов C 5 и C 10 , полученную при перегонке сырой нефти).
Например, декановый углеводород расщепляется на такие продукты, как пропилен и гептан, где первый затем используется для производства поли(пропилена) (рис. 5).
Рис. 5. Схема крекинга декана с превращением в пропилен и гептан.
Молекулы сырья превращаются в мономеры, такие как этилен, пропилен, бутен и другие.Все эти мономеры содержат двойные связи, так что атомы углерода могут впоследствии реагировать с образованием полимеров.
Полимеризация — углеводородные мономеры затем соединяются вместе по механизму химической полимеризации для получения полимеров. В процессе полимеризации образуются густые вязкие вещества в виде смол, которые используются для изготовления пластмассовых изделий. Если мы посмотрим здесь на случай мономера этилена; этилен — газообразный углеводород. Когда он подвергается воздействию тепла, давления и определенного катализатора, он объединяется в длинные повторяющиеся углеродные цепи.Эти соединенные молекулы (полимер) представляют собой пластиковую смолу, известную как полиэтилен (ПЭ).
Производство пластика на основе полиэтилена –поли(этилен) перерабатывается на заводе для производства пластиковых гранул. Гранулы засыпают в реактор, расплавляют в густую жидкость и отливают в форму. Жидкость остывает, затвердевает и превращается в твердый пластик, из которого получается готовый продукт. Переработка полимера также включает в себя добавление пластификаторов, красителей и антипиренов.
Типы полимеризации
Синтетический пластик производится в результате реакции, известной как полимеризация, которая может осуществляться двумя различными способами:
Полимеризация присоединением : Синтез включает объединение мономеров в длинную цепь. Один мономер соединяется со следующим и так далее, когда вводится катализатор, в процессе, известном как полимеры с ростом цепи, добавляя по одному мономерному звену за раз. Считается, что некоторые реакции аддитивной полимеризации не создают побочных продуктов, и реакцию можно проводить в паровой фазе (т.е. в газовой фазе), диспергированной в жидкости. Примеры: полиэтилен, полипропилен, поливинилхлорид и полистирол.
Конденсационная полимеризация : В этом случае два мономера объединяются в димер (две единицы) с выделением побочного продукта.Затем димеры могут соединяться, образуя тетрамеры (четыре единицы) и так далее. Эти побочные продукты необходимо удалить для успеха реакции. Наиболее распространенным побочным продуктом является вода, которая легко обрабатывается и утилизируется. Побочные продукты также могут быть ценным сырьем, которое возвращается обратно в поток сырья.
Примеры: Нейлон (полиамид), полиэстер и полиуретан.
Пластик часто создается из лигроина. Этилен и пропилен, например, являются основным сырьем для пластика на нефтяной основе, получаемым из нафты.
Что такое нафта?
Существуют различные виды нафты. Это термин, используемый для описания группы летучих смесей жидких углеводородов, полученных путем перегонки сырой нефти. Это смесь углеводородов от C 5 до C 10 .
Нафта подвергается термическому разложению при высокой температуре (~800 °C) в установке парового крекинга в присутствии водяного пара, где она расщепляется на легкие углеводороды, известные как основные промежуточные продукты.Это олефины и ароматические соединения. Среди олефинов С 2 (этилен), С 3 (пропилен), С 4 (бутан и бутадиен). Ароматические соединения состоят из бензола, толуола и ксилола. Эти маленькие молекулы связаны друг с другом в длинные молекулярные цепи, называемые полимерами. Когда полимер выходит из химической фабрики, он все еще не в виде пластика — он в виде гранул или порошков (или жидкостей). Прежде чем они смогут стать пластиком для повседневного использования, они должны пройти ряд преобразований.Их месят, нагревают, плавят и охлаждают в объекты различной формы, размера, цвета с точными свойствами в соответствии с обрабатывающими трубками.
Например, для полимеризации этилена в полиэтилен (ПЭ) добавляют инициаторы для запуска цепной реакции, и только после образования ПЭ его направляют на переработку путем добавления некоторых химикатов (антиоксидантов и стабилизаторов). После этого экструдер превращает ПЭ в нити, после чего измельчители превращают его в гранулы ПЭ.Затем фабрики переплавляют их в конечные продукты.
Основным ингредиентом большинства пластиковых материалов является производное сырой нефти и природного газа.
Существует множество различных видов пластика: прозрачные, мутные, однотонные, гибкие, жесткие, мягкие и т. д.
Пластмассовые изделия часто представляют собой полимерную смолу, которую затем смешивают со смесью добавок (см. пластик). Добавки важны, поскольку каждая из них используется для придания пластику целевых оптимальных свойств, таких как прочность, гибкость, эластичность, цвет, или для того, чтобы сделать его более безопасным и гигиеничным для использования в конкретном случае (ссылка).
Тип пластика, из которого изготовлен продукт, иногда можно определить по номеру на дне пластиковой тары. Некоторые из основных типов пластика и исходный мономер приведены ниже (таблица 1). В этой таблице показаны типы пластика и мономеры, входящие в его состав.
Таблица 1. Основные типы полимеров, мономеры и их химическая структура
Идентификационный код смолы | Полимеры | Мономеры |
♳ ПИТ | Полиэтилентерефталат (ПЭТФ) | Этиленгликоль и диметилтерефталат |
♴ ПЭВП | Полиэтилен высокой плотности (ПЭВП) | Этилен (СН 2 =СН 2 ) *(меньшее разветвление между полимерными цепями) |
♵ ПВХ | Поливинилхлорид (ПВХ) | Винилхлорид (CH 2 =CH-Cl) |
♶ ПЭНП | Полиэтилен низкой плотности (ПЭНП) | Этилен (СН 2 =СН 2 ) *(чрезмерное разветвление) |
♷ ПП | Полипропилен (ПП) | Пропилен (CH 3 -CH=CH 2 ) |
♸ PS | Полистирол (ПС) | Стирол |
♹ Другие | Другие пластмассы, включая акрил, поликарбонаты, полимолочную кислоту (PLA), волокна, нейлон | Для конкретного полимера используются разные мономеры. Например, PLA из молочной кислоты |
*Мономер, используемый в ПЭНП и ПЭВП, представляет собой этилен, но существует разница в степени разветвления.
Мезоамериканские культуры (ольмеки, майя, ацтеки, 1500 г. до н. э.) использовали натуральный латекс и каучук, чтобы сделать контейнеры и одежду водонепроницаемыми.
Александр Паркес (Великобритания, 1856 г.) запатентовал первый искусственный биопластик, названный паркезин, сделанный из нитрата целлюлозы. Паркезин был твердым, гибким и прозрачным пластиком. Джон Уэсли Хаятт (США, 1860-е гг.) разбогател на изобретении Паркса. Братья Хаятт улучшили пластичность пластика нитрата целлюлозы, добавив камфору, и переименовали пластик в Celluloid. Цель состояла в том, чтобы производить бильярдные шары, которые до этого делались из слоновой кости. Многие считают изобретение самым ранним примером искусственного биопластика (ссылка).
Первым по-настоящему синтетическим пластиком был бакелит, изготовленный из фенола и формальдегидной смолы. Лео Бэкеланд (Бельгия, 1906 г.) изобрел бакелит, который был назван «Национальным историческим химическим памятником», поскольку он полностью произвел революцию во всех отраслях, присутствующих в современной жизни. Он обладает свойством высокой устойчивости к электричеству, теплу и химическим веществам. Обладает непроводящими свойствами, что крайне важно при конструировании электронных устройств, таких как корпуса радиоприемников и телефонов. (ссылка).
До рождения пластика мы использовали дерево, металл, стекло и керамику, а также материалы животного происхождения, такие как рог, кость и кожа.
Для хранения использовались формовочные глины (гончарные изделия), смешанные со стеклом, что означало, что контейнеры часто были тяжелыми и хрупкими.
Появились натуральные материалы из коры каучукового дерева — камедь (латексная смола), смесь была липкой и пластичной, но непригодной для хранения.
В 18 веке Чарльз Гудьир случайно открыл каучук — он добавил
В 18 веке Чарльз Гудьир случайно открыл каучук — он добавил серу в горячую сырую резину, которая вступала в реакцию и делала резину упругой, которая при охлаждении становилась эластичной, т. е. обладала свойством возвращаться в исходную форму (ссылка).
Да, пластик можно создавать из источников, отличных от нефти.
Хотя сырая нефть является основным источником углерода для современного пластика, множество вариантов производятся из возобновляемых материалов. Пластик, изготовленный без масла, продается как пластик на биологической основе или биопластик. Они сделаны из возобновляемой биомассы, такой как:
- Лигнин, целлюлоза и гемицеллюлоза,
- Терпены,
- Растительные жиры и масла,
- Углеводы (сахар из сахарного тростника и т.п.)
- Переработанные пищевые отходы
- Бактерии
Однако следует отметить, что биопластик не всегда автоматически является более устойчивой альтернативой.Биопластики различаются по способу их распада, и биопластики, как и любой другой материал, требуют ресурсов для своего производства.
Биопластики, такие как PLA, например, представляют собой биоразлагаемый материал, который будет разлагаться в определенных условиях окружающей среды, но может не разлагаться в любых климатических условиях. Поэтому требуется поток отходов пластика на основе PLA. В случае PLA это чувствительный полиэстер, который начинает разлагаться во время процедуры переработки и может в конечном итоге загрязнить существующий поток переработки пластика (ссылка).
Но биопластики могут иметь множество применений, если они разработаны с учетом надлежащего потока отходов.
Биопластики являются потенциальными материалами для изготовления одноразового пластика, необходимого для изготовления биоразлагаемых бутылок и упаковочных пленок. Например, в 2019 году исследователь из Университета Сассекса создал прозрачную пластиковую пленку из отходов рыбьей кожи и водорослей; под названием MarinaTex (Ref). Биополимеры также исследовались для медицинских применений, таких как контролируемое высвобождение лекарств, упаковка лекарств и рассасывающиеся хирургические нити (ссылка, ссылка).
Морис Лемуань (Франция, 1926 г.) открыл первый биопластик, полученный из бактерий, полигидроксибутират (ПГБ) из бактерии Bacillus megaterium. Поскольку бактерии потребляют сахар, они будут производить полимеры (ссылка). Важность изобретения Лемуана игнорировалась до тех пор, пока разразившийся в середине 1970-х годов нефтяной кризис не подстегнул интерес к поиску заменителей нефтепродуктов.
Генри Форд (США, 1940 г.) использовал биопластик из соевых бобов для изготовления некоторых деталей автомобилей.Ford прекратил использование соевого пластика после Второй мировой войны из-за избытка дешевой нефти (ссылка).
Разработки в области метаболической и генной инженерии расширили исследования биопластиков, и стало известно о применении многочисленных типов биопластиков, особенно ПГБ и полигидроксиалканоата (ПГА), хотя постоянно происходит много других интересных разработок.
Как образуются месторождения нефти и газа
Когда живой организм умирает, он обычно перерабатывается одним из двух способов:
- Поедается хищниками, падальщиками или бактериями. Крошечные живые организмы, состоящие из одной клетки, не имеющей отдельного ядра, например, прокариотическая клетка…
. - Под воздействием окружающего воздуха или воды, богатой кислородом, он окисляется. Это означает, что водород Самый простой и легкий атом, самый распространенный элемент во Вселенной.
, углерод, азот, сера и фосфор, содержащиеся в веществе, соединяются с атомами кислорода, присутствующими в воздухе. Органическое вещество разлагается на воду (H 2 O), углекислый газ (CO 2 См. Углекислый газ
), нитраты, сульфаты и фосфаты, которыми питаются новые растения.
Медленное формирование исходной породы
Крошечная доля этого органического вещества — около 0.1% — избегает этой участи. Переносимый водой, он иногда опускается на дно морей или крупных материковых озер. Он частично сохранился в этих бедных кислородом средах, вдали от приливных течений. Он смешивается с неорганическими веществами, такими как частицы глины и очень мелкий песок, а также с мертвым морским планктоном (микроскопическими организмами). Эта смесь превращается в темную зловонную грязь под действием анаэробовОписывает организм или микроорганизм, которым требуется среда без воздуха и…
бактерии.
Нефть и газ образуются в материнских породах
Со временем эта грязь накапливается и затвердевает. Грязь, содержащая не менее 1–2% органического вещества, может быть преобразована в материнскую породу, из которой в конечном итоге образуются залежи нефти и газа. Этот процент может показаться низким, но это потому, что для запуска процесса необходимо одно или несколько конкретных требований:
- Жаркий климат, способствующий росту большого количества планктона.
- Место у устья крупной реки с большим количеством растительных остатков.
- Нет близлежащих гор, которые могли бы ограничить объем неорганических отложений в скале.
Проседание исходной породы
Вес накапливающихся отложений очень медленно проталкивает материнскую породу глубже под земную кору, от нескольких метров до нескольких сотен метров каждый миллион лет или около того. Это постепенное опускание называется погружением. Постепенное опускание осадочного бассейна под тяжестью отложений, накопленных за миллионы лет…
и приводит к образованию осадочных бассейнов.
60 миллионов лет: средняя продолжительность времени, за которое нефть и газ образуются
Погружаясь под землю, материнская порода подвергается все более высоким температурам, органическое вещество, из которого состоит порода, измельчается под весом накапливающихся отложений, а давление увеличивается в среднем на 25 бар каждые 100 метров. На глубине одного километра под землей температура составляет 50°C, а давление — 250 бар.
В этих физических условиях атомы азота, серы и фосфора постепенно превращаются в кероген. Промежуточное состояние органического вещества, претерпевающее преобразование в процессе седиментации…
, промежуточный материал, состоящий из воды, двуокиси углерода, углерода и водорода, который затем превращается в нефть или газ.
Как образуются нефть и газ
На глубине 2000 метров, при достижении температуры 100°С, кероген начинает выделять консервацию (углеводороды)Заключительный этап в формировании нефтегазовой системы, после накопления отложений…
:
- На высоте от 2000 до 3800 метров он превращается в масло. Этот интервал глубины известен как нефтяное окно.
- Когда материнская порода погружается дальше, на глубину от 3800 до 5000 метров, добыча жидких углеводородов достигает пика. Образующиеся жидкости становятся все более легкими и постепенно превращаются в метан (ч5) Основной компонент месторождений природного газа и газовых шапок нефтяных месторождений. Метан естественным образом производится на свалках…
газ, легчайший углеводородорганическое соединение, состоящее из углерода и водорода. Углеводороды являются основными составляющими сырой нефти, природного газа и нефтепродуктов.. Этот интервал глубины известен как газовое окно. - Ниже глубины 8-10 км углеводороды отсутствуют, так как они разрушаются под действием высокой температуры.
Соотношение образующихся таким образом жидкостей и газа зависит от типа материнской породы. Если органический мусор состоит в основном из животного происхождения, он будет производить больше нефти, чем газа. Если он состоит в основном из растительных остатков, материнская порода будет производить в основном газ.
При расчетном среднем отложении осадков в 50 метров каждый миллион лет мертвым животным требуется 60 миллионов лет, чтобы превратиться в жидкие углеводороды.Поэтому неудивительно, что нефть классифицируется как невозобновляемая энергия. Невозобновляемая энергия или ископаемое топливо являются формами первичной энергии, которые не могут быть восполнены после использования в масштабах человеческого времени…
источник.
Из чего состоит сырая нефть? Или что такое сырая нефть? Или что такое масло?
Компоненты ископаемого топлива сырой нефти и их отличия
В то время как понятие барреля нефти так же распространено в повседневном просторечии, как и представление о бутылке воды, для большинства людей остается загадкой, из чего состоит сырая нефть.«Из чего состоит сырая нефть?» — вопрос, требующий длинного объяснения, хотя на него также можно дать очень простой — и точный — ответ.
Учебник EPA на вопрос , что такое сырая нефть , звучит так: «сырая нефть — это нерафинированная нефть». Определение EPA сродни утверждению, что мороженое — это замороженный молочный продукт.
Хотя это правда, ответ не объясняет, из чего сделана сырая нефть.
Более точный, хотя и столь же элементарный ответ: сырая нефть представляет собой гетерогенную смесь углеводородов .Тем не менее, это мало что дает для детализации компонентов сырой нефти. Причина, по которой необходимо более подробное объяснение, заключается в том, что ценные компоненты сырой нефти — углеводороды — делятся на разные категории и типы.
Загвоздка в том, что ответ на вопрос «из чего состоит сырая нефть?» очень сложный. Это сложно, потому что существует так много различных типов углеводородов, что фактическое количество неизвестно, и хотя углеводороды состоят только из двух элементов — водорода и углерода, — сырая нефть также содержит в разной степени азот, серу, металлы, кислород, и другие загрязнения.Таким образом, хотя простой ответ на вопрос «из чего состоит сырая нефть» — это углеводороды, ответ на вопрос «какие углеводороды содержатся в сырой нефти?» сложный.
Каким бы сложным ни был ответ, важно иметь общее представление о категориях и типах углеводородов. Знание категорий и типов углеводородов в сырой нефти важно, потому что категории и типы углеводородов являются причиной существования различных видов жидкого ископаемого топлива. Из-за различных категорий и типов углеводородов в сырой нефти нам доступны: дизельное топливо, бензин, керосин (реактивное топливо), печное топливо, бункерное топливо и т. д.
Какую
Прочую ценность имеют углеводороды?
Различные типы углеводородов в нефти являются причиной того, что при переработке одного барреля нефти получается так много различных типов жидкого ископаемого топлива и масел. И категории и типы углеводородов являются причиной того, что существует так много других типов продуктов на основе нефти. Углеводороды в бочке нефти являются причиной того, что у нас есть синтетические материалы, такие как пластик, стекловолокно, углеродное волокно, резина, воск (мелки), полиэстер, ламинаты, косметика и т. д.
Почти все синтетическое является продуктом углеводородов ископаемого топлива. Углеводороды в барреле нефти составляют химическую конструкцию всего, от фармацевтических препаратов, антигистаминных препаратов, губной помады, зубных протезов, воздушных шаров до угольных брикетов.
Мысленный эксперимент о важности углеводородов
Один из способов изучить ту огромную роль, которую углеводороды из сырой нефти играют в нашей жизни, — это подумать о том, чего бы не хватило футболу, если бы ископаемые углеводороды исчезли.Без углеводородов не было бы шлемов, козырьков, трикотажных изделий, наплечников, кап, бандажей, брюк или обуви. Искусственный газон изготавливается из углеводородов, содержащихся в нефти. Как и спортивная лента. Так и глаза черные. Другими словами, без углеводородов в футбол играли бы в носках.
Углеводороды являются самым важным сырьевым товаром в постиндустриальном мире.
Что такое углеводороды?
Простой ответ на вопрос «что такое сырая нефть?» — ответ — углеводороды, — вызывает другой вопрос: «Что такое углеводороды?» Как следует из названия, углеводороды представляют собой молекулы, состоящие из углеродных и водородных связей и цепей.
Каковы первичные углеводороды в сырой нефти?
На вопрос «что такое нефть?» есть простой ответ. Существует столь же простой ответ на вопрос «что такое углеводороды?». Но вопрос «какие углеводороды содержатся в сырой нефти» не так прост. В то время как ценными компонентами сырой нефти являются углеводороды, ученые даже не знают, какие именно углеводороды содержатся в сырой нефти. Таким образом, любой ответ на этот вопрос обязательно будет неполным.
Мало того, что существуют разные типы углеводородов, каждый тип углеводорода имеет разную плотность энергии.Поскольку каждый тип углеводорода имеет разную плотность энергии, каждый тип углеводорода в барреле сырой нефти имеет разную денежную стоимость. Это означает, что разные категории и виды углеводородов имеют разную цену.
Причина того, что в сырой нефти так много различных типов углеводородов — теоретически почти неограниченное количество, — в том, что существует почти неограниченное количество различных способов соединения углерода и водорода для образования углеводородных молекул и молекулярных цепей.
Виды сырой нефти
Поскольку существуют разные типы углеводородов, и эти углеводороды находятся в разных соотношениях в сырой нефти, добытой в разных регионах мира, существуют также разные виды нефти.
«Из-за различий в составе корреляции, разработанные для региональных проб, преимущественно одного химического состава, могут не давать удовлетворительных результатов при применении к сырой нефти из других регионов», — поясняет PetroWiki.ком
Существует три основных вида сырой нефти: легкая, средняя и тяжелая. Три основных вида сырой нефти можно отличить не только по химическому составу, но и по внешнему виду и вязкости. Легкая сырая нефть «течет текуче и обычно имеет светло-золотистый оттенок». Тяжелая сырая нефть а, «темного цвета, очень вязкая и липкая на ощупь».
Типы сырой нефти, как правило, объединены в одну группу в зависимости от региона, из которого они получены. Это означает, что существуют сотни видов сырой нефти, потому что каждый баррель сырой нефти из каждой скважины в каждом регионе Земли отличается.Тем не менее, чтобы упростить классификацию сырой нефти, исторически отслеживалось всего несколько десятков типов.
Существует только пять типов сырой нефти, признанных нефтяной промышленностью повсеместно: Boscan, Maya, Arabian Light, West Texas Intermediate и Bass Straight. Все остальные типы сырой нефти обычно подпадают под характеристики одного из этих пяти типов.
Несмотря на то, что существуют разные виды сырой нефти, большинство типов сырой нефти имеют относительно схожий состав углерода и водорода.«Однако, независимо от изменений, почти вся сырая нефть содержит от 82 до 87 процентов углерода по весу и от 12 до 15 процентов водорода по весу», — говорится в Британской энциклопедии. «Эти элементы образуют большое разнообразие сложных молекулярных структур, некоторые из которых не могут быть легко идентифицированы».
Именно так водород и углерод объединяются, образуя топливные молекулы и молекулярные цепи, которые определяют типы углеводородов в сырой нефти. И различия в типах сырой нефти приводят к одному и тому же вопросу: «Какие разные углеводороды содержатся в сырой нефти?»
Почему существуют различия в типах углеводородов в сырой нефти?
В своем естественном состоянии сырая нефть представляет собой жидкость, топливо, состоящее из трех компонентов: биоматерии, тепла и давления.Oilprice.com объясняет,
«Большая часть нефти, которую мы добываем сегодня, происходит из остатков доисторических водорослей и зоопланктона, останки которых осели на дне океана или озера. Со временем этот органический материал соединился с грязью, а затем нагрелся до высоких температур из-за давления, создаваемого тяжелыми слоями отложений. Этот процесс, известный как диагенез, изменяет химический состав сначала в воскообразное соединение, называемое керогеном, а затем, при повышении температуры, в жидкость в результате процесса, называемого катагенезом.
Различные типы биоматерии — ткани растений или животных — подвергаются различному количеству тепла и давления, что является следствием того, что они погребены под отложениями и горными породами, что приводит к невероятному разнообразию различных типов углеводородов.
Процентное содержание различных категорий углеводородов в сырой нефти
Количество углерода и водорода в сырой нефти не сильно варьируется от одного барреля нефти к другому. С другой стороны, процентное содержание различных типов углеводородов сильно различается.В барреле нефти присутствуют четыре категории углеводородных молекулярных цепей: алканы, нафтены, ароматические и алифатические соединения. Именно этими четырьмя углеводородными молекулярными цепями сырая нефть отличается больше всего.
- Алканы составляют в среднем 30 % барреля нефти, но диапазон значений составляет от 15 % до 60 %.
- Нафтены составляют около 49 % барреля нефти, но их содержание варьируется от 30 % до 60 %.
- Ароматические соединения составляют в среднем 15% барреля нефти, но состав может варьироваться от 3% до 30%
- Асфальты в среднем составляют около 6% состава барреля нефти.
Четыре основных типа углеводородов имеют подтипы, поэтому в одном барреле нефти содержатся тысячи различных углеводородов. Но четыре категории относительно одинаковы — по всем направлениям — во всей сырой нефти.
Значение различий в углеводородных цепях и молекулах
Чем больше число атомов углерода по отношению к атомам водорода, тем тяжелее атом углеводорода. Причина в том, что чем выше отношение углерода к водороду, тем больше плотность энергии топлива.Топливо с низкой плотностью энергии, такое как природный газ (метан) и пропан, обычно является газовым топливом. Ископаемое топливо, обнаруженное в сырой нефти, имеет более высокое отношение углерода к водороду, чем газовое топливо, и, следовательно, имеет более высокую плотность энергии и находится в жидкой форме.
Сколько различных ископаемых видов топлива содержится в сырой нефти?
Поскольку невозможно учесть каждый тип углеводорода, содержащегося в барреле сырой нефти, более простой способ узнать, из чего состоит сырая нефть, — это спросить, какие ископаемые виды топлива содержатся в сырой нефти.Поскольку все углеводороды, обнаруженные в сырой нефти, технически являются ископаемым топливом, вопрос напрашивается, потому что мы действительно не знаем ответа.
Однако, разбив баррель нефти на известные нам виды ископаемого топлива, легче понять, что — по сути — содержится в барреле нефти.
По данным Агентства по охране окружающей среды, в среднем баррель нефти состоит из 22 % бензина, 11 % дистиллята с ультранизким содержанием серы (дизельное топливо), 4 % реактивного топлива (керосин), 1 % мазута (бункерное топливо), 1 процент высокосернистого дистиллята (мазут) и 6 процентов барреля нефти составляют другие продукты.
Из каких углеводородов состоят различные виды ископаемого топлива?
Опять же, комбинации углеводородов определяют тип жидкого ископаемого топлива, газа или твердого вещества (уголь), которым является нефтепродукт.
Бензин, например, состоит примерно из 21 % циклогексана, 17 % изооктана, 16 % изопентана, 16 % этилбензола, 15 % толуола, 12 % н-декана, 3 % нафталина и всех других <1%.
Дизель содержит другие типы углеводородов, чем бензин, «Если также учитывать структурный анализ, можно найти среднюю молекулярную формулу (т.е., с целым числом атомов и типичной длиной углеродной цепи, как C11h31, или C12h33, или C12h36, или C13h36, или C14h40; додекан и тридекан являются наиболее распространенными заменителями)».
Мазут, мазут (бункерное топливо), топливо для реактивных двигателей (керосин), природный газ (метан), пропан и т. д. — все они производятся из различных типов углеводородов.
Какое ископаемое топливо самое ценное?
Существует несколько способов оценки углеводородов ископаемого топлива. Один из способов — просто взять рыночную стоимость определенного вида ископаемого топлива и сравнить ее с остальными.В этом случае керосин, вероятно, является наиболее ценным, за ним следует конгломерат других углеводородов в барреле нефти, который используется для производства таких вещей, как пластмассы и косметика. Дизельное топливо и бензин с низким содержанием серы находятся где-то посередине ценового диапазона. Внизу находятся печное топливо, мазут и жидкие углеводородные газы — например, сжиженный природный газ и пропан.
Но по энергетическому потенциалу наиболее ценны дизельное, отопительное и мазутное топливо, керосин.Хотя на бензин приходится самая большая доля рынка ископаемого топлива, это относительно неэффективное ископаемое топливо в масштабе объема. Бензин не обладает высоким энергетическим потенциалом по сравнению со многими другими ископаемыми видами топлива, содержащимися в барреле сырой нефти.
Какие ископаемые виды топлива в сырой нефти имеют самую высокую плотность топлива?
Ископаемые виды топлива с самой высокой плотностью – это мазут, керосин, антрацитовый уголь и дизельное топливо. В среднем диапазоне находятся бензины с различными октановыми числами, а также низкосортные угли.Ископаемое топливо с наименьшей плотностью — это ископаемое топливо, представляющее собой газы, такие как метан и пропан.
Какие углеводороды ископаемого топлива в сырой нефти являются наиболее загрязняющими?
Существует ошибочное мнение, что топливо с наибольшей плотностью топлива, то есть с высоким соотношением углерода к водороду, больше всего загрязняет окружающую среду. И, в масштабе объема, они делают. Но это не означает, что топливо с высокой плотностью энергии является большим загрязнителем. Причина, по которой низкоэнергетические виды топлива, такие как бензин и газообразное топливо, на самом деле являются более серьезными загрязнителями, заключается в том, что прежде чем будет произведено необходимое количество энергии, должно сгореть большее количество низкоэнергетического топлива.
В качестве примера возьмем дизельное топливо и газ. Хотя дизель выбрасывает несколько более высокие выбросы по объему, транспортное средство с дизельным двигателем проезжает на 25–35% дальше, чем бензиновый двигатель. Другими словами, если галлон дизельного топлива производит на 5 % больше выбросов, чем галлон дизельного топлива, но бензиновому двигателю требуется на 30 % больше топлива, чтобы проехать такое же расстояние, это означает, что в течение поездки бензиновый двигатель будет производить гораздо больше выбросов. выбросы выше, чем у дизельного двигателя.
Короче говоря, ценность сырой нефти заключается в углеводородах.Но не все углеводороды одинаковы. Из чего состоит сырая нефть? Сырая нефть представляет собой смесь высокоценных и низкоценных углеводородов.
.