19.01.2025

Неполный треугольник в трансформаторе: Разомкнутый треугольник трансформатора напряжения: особенности

Содержание

Разомкнутый треугольник трансформатора напряжения: особенности

Разомкнутый треугольник трансформаторов напряжения представляет собой тип соединения, при помощи которого достигаются оптимальные показатели работы. Также приборы могут подключаться по типу звезды или в открытый треугольник. Следует понимать разницу между этими видами, только в таком случае можно достигнуть оптимальных характеристик.

Схемы соединений трансформаторов напряжения в открытый и разомкнутый треугольник

Схема соединения в открытый треугольник подразумевает, что оборудование подключено между сторонами двух фаз. При этом проводится электрический ток с внешней стороны, с вторичных обмоток числа пропорционально этому показателю. Реле и основная нагрузка пускаются между вторичной сетью, что позволяет получить нужный уровень сопротивления.

Данная схема позволяет подключить разу три источника. Обратить внимание следует на то, что подача организуется линейным способом, и нужно избегать прохождения тока от первого к третьему источнику и наоборот.

Разомкнутый же тип подключения применяются в выпрямительному оборудовании. При помощи соединения типа достигают тока тройной частоты, что при работе со звездой или открытым симметричным невозможно. Применяется вариант, когда три трансформатора с одной фазой подключаются к прибору, который увеличивает пропорционально три частоты работы.

При помощи рассматриваемой фигуры получают нулевую последовательность, то есть в нормальном функционале UP будет равно нулю.

Нейтраль первичной обмотки в обязательном порядке заземляется, а для вторичной выбирают параметры не менее чем в 100 Вольт, если заземление. Для изолированной коэффициент берется 100 к 3 В. Коэффициент троиться, следовательно, вторичные обмотки суммируют коэффициент трансформации также в три раза. Следовательно, для описанного выше примера он состоит 6 тысяч к ста к трем. Пик получается от трансформаторных обмоток внешней поверхности, так как подача ведется через вторичку. Обязательно заземление.

Обратно же возникает риск не для прибора, а для обслуживавшего его персонала. На производстве строго запрещено устанавливать защитную или коммутационную технику между приборами такого типа.

Различие между соединениями

Основное отличие разомкнутого треугольника от открытого состоит в том, что при помощи него возможно получить напряжение нулевой последовательности. В случае же открытого подсоединения значения зажимов вторичек всегда пропорциональны междуфазному.

Но в любом случае для защиты трансформаторов с такой схемой используются автоматы и предохранители. Если происходит обрыв фазы, то происходит короткое замыкание.

Блокировка при помощи автоматов позволит избежать скачка, которое приводит к неисправностям обмотки. Контроль проводится с возможностью измерения.

В каких случаях применяют

Схематичное построение разомкнутого варианта для трансформатора применяется довольно часто на производстве. Дело в том, что благодаря ней можно использовать синхронизацию на силовых тс. Используется для соединения трансформаторов с одной фазой, если нет возможности установить трехфазный. Уберегает механизмы, в том числе и электрические двигатели от подачи на два, если нет напряжения в одной из фаз. Единственно допустимой схемой сборки является в случае, если ротор установлен в расточку статора.

Заключение

Схема угольника двух вариаций применяется самостоятельно или в комплекте. Специалист проводит инструктаж перед установкой. Обязательно проводите индивидуальный расчет актеристик тс перед использованием.

понятие, схемы и таблицы, чем определяется

Любой трансформатор, за исключением автотрансформатора, имеет минимум две обмотки: высокого и низкого напряжений. Также у трехфазных устройств каждая из обмоток состоит из трех частей (по числу фаз). Большое количество частей дает возможность множества вариантов включения. Чтобы избежать путаницы, все группы соединения обмоток трансформатора для трехфазных устройств стандартизированы и приведены к единой системе для безошибочного подключения устройств и возможности параллельной работы.

Понятие группы соединение обмоток трехфазного трансформатора

В трехфазных сетях используется два вида соединений: звезда и треугольник. При изготовлении  конструкций может показаться, что существует всего четыре вида расположения обмоток:

  1. Звезда-звезда.
  2. Звезда-треугольник.
  3. Треугольник-звезда.
  4. Треугольник-треугольник.

На деле все обстоит сложнее, поскольку в каждом виде соединений (звезде или треугольники) части обмоток могут быть соединены по-разному. В качестве примера можно привести обычных двухобмоточный трансформатор. Если у такого устройства совпадают начала и концы обмоток, то сдвиг фаз будет равен 0. Разворот одной из обмоток даст сдвиг фаз 180.

Также встречаются z-образные соединения обмоток (зигзаг). В таких конструкциях каждая из обмоток состоит из двух частей, расположенных на различных стержнях магнитопровода трансформатора.

Трехфазная сеть характеризуется сдвигом фаз одна относительно другой на 120. Поэтому всего насчитывается 12 групп соединения. Каждая группа характеризуется определенным сдвигом одноименных фаз на входе и выходе трансформатора.

Условные обозначения и расшифровка

Группы маркируются числами от 0 до 11. Для удобства и стандартизации принято следующее:

  • однотипные соединения (∆/∆, Y/Y) имеют четные номера;
  • разнотипные соединения (∆/Y, Y/∆) – нечетные.

Трехфазные трансформаторы выполняются на стержневых магнитопроводах. Каждая из фаз располагается на отдельном стержне. Это во многом упрощает дальнейшую работу и согласование устройств между собой.

Если у трансформатора одинаковые фазы намотаны на одних стержнях, то группы соединений при этом называются основными (0, 6, 11, 5). Остальные группы – производные.

Так как минимальный сдвиг фаз может составлять 30, то количество вариантов равно 12, что соответствует положениям стрелок часов. 0-е и 12-е положения совпадают.  На основании этого говорят, что номер группы совпадает с положением часовой и минутной стрелок. Сдвиг фаз вычисляется просто:

Номер группы*30.

Приняты следующие обозначения на электросхемах и устройствах:

  • Y, У – звезда;
  • Yн, Ун – звезда на стороне низкого напряжения;
  • Yо, Уо – звезда с нулевой точкой;
  • ∆, Д, D – треугольник;
  • ∆н, Дн, Dн – треугольник на стороне низкого напряжения.

Пример маркировки двухобмоточного трансформатора:

  • ∆/Yн – 11. Первичная обмотка треугольник, вторичная (понижающая) звезда. Сдвиг фаз 330;
  • Y/Yо -0. Обе обмотки соединены звездой, вторичная с выведенной нулевой точкой. Сдвиг фаз отсутствует.

Также на электрических схемах обмотки высокого напряжения (ВН) обозначают символами:

  • A,B, C – начало обмотки;
  • X, Y, Z – конец обмотки.

Аналогично для стороны низкого напряжения:

Подобным образом маркируются многообмоточные устройства, например:

Yо/Y/∆ – 0 – 11.

Вместо нулевой группы может указываться двенадцатая, что совершенно равнозначно.

Как строятся векторные диаграммы

При построении векторных диаграмм надо запомнить правило, что сдвиг фаз меду фазами равняется 120, то есть, при равенстве напряжений, концы векторов всегда будут образовывать равносторонний треугольник.

Наиболее просто составляется диаграмм для соединения звезда. В центре диаграммы ставится точка, которая соответствует объединенным концам обмоток. Из центра под углами 1200 проводятся векторы фаз. Вертикально проводят вектор средней фазы.

Для треугольника начерно проводят линию, параллельную соответствующей фазы звезды, а от ее концов, соответственно, подсоединенные к ней оставшиеся две фазы. Должно соблюдаться условие – все стороны треугольника должны быть параллельны соответствующим фазам звезды. Искомыми векторами будут проведенные линии из центра треугольника к его вершинам.

Векторные диаграммы рисуются для высокой и низкой сторон, а затем совмещаются с единым центром. Угол между одинаковыми фазами будет показывать номер группы соединения, выраженный в часах.

Отсчет нужно брать от вектора высокого напряжения к низкому.

Таблица групп соединений

В таблице ниже представлены обозначения групп соединения и чередование фаз низкой и высокой сторон.

Группа соединенияОбозначениеЧередование фаз

 

Y/Y-0C, B, A
c, b, a
∆/∆-0C, B, A
c, b, a
1Y/∆-1C, B, A
c, b, a
∆/Y-1C, B, A
c, b, a
2Y/Y-2C, B, A
c, b, a
∆/∆-2C, B, A
а, c, b
3Y/∆-3C, B, A
 b, a, с
∆/Y-3C, B, A
 b, a, с
4Y/Y-4C, B, A
 b, a, с
∆/∆-4C, B, A
b, a, с
5Y/∆-5C, B, A
c, b, a
∆/Y-5C, B, A
c, b, a
6Y/Y-6C, B, A
c, b, a
∆/∆-6C, B, A
c, b, a
7Y/∆-7C, B, A
c, b, a
∆/Y-7C, B, A
c, b, a
8Y/Y-8C, B, A
а, c, b
∆/∆-8C, B, A
c, b, a
9Y/∆-9C, B, A
b, a, с
∆/Y-9C, B, A
b, a, с
10Y/Y-10C, B, A
c, b, a
∆/∆-10C, B, A
b, a, с
11Y/∆-11C, B, A
c, b, a
∆/Y-11C, B, A
c, b, a

Определение методом гальванометра

Существует несколько способов определить правильность подсоединения обмоток. Самый простой способ – использование вольтметра магнитоэлектрической системы. Его еще называют методом постоянного тока.

Для этого к концам проверяемой обмотки подключают измерительный прибор, а на другую обмотку подают постоянное напряжение. Отклонение стрелки в момент  замыкания ключа покажет полярность подключения обмотки. Такие действия производятся для каждой обмотки.

Также можно воспользоваться простым вольтметром при подключении переменного напряжения. Для этого на одну из обмоток подают пониженное переменное напряжение, а остальные две обмотки соединяют последовательно и  подключают к вольтметру. Отсутствие или слишком малые показания говорят о том, что обмотки включены встречно.

Проверка

Если известен коэффициент трансформации, то при помощи вольтметра можно определить номер основной группы соединения. Для этой цели подают напряжение на концы А и а или x и y и измеряют напряжения на выводах В-в и С-с при соединении звездой или B-y и C-z при соединении треугольником. Для проверки используют следующие соотношения:

UBb = UCc = UAa(k-1)                                              Группа  Y/Y-0

UBy = UCz = Uxy(k+1)                                                       Y/Y-6

UBb = UCc = UAa(√(1-√3k+k2))                                     Y/∆-11

UBy = UCz = Uxy(√(1+√3k+k2))                                     Y/∆-5

Для исключения повреждения оборудования,  возникновения аварийных ситуаций и травмирования, все измерения следует производить при низком напряжении, не включая оборудование в основную сеть предприятия.

Примеры групповых соединений обмоток

Государственным стандартом предусмотрены только две группы соединения обмоток:

  1. Y/Y-0 или ∆/∆-0
  2. Y/∆-11 и ∆/Y-11

Жесткая стандартизация позволяет исключить аварии и повреждения в результате неправильных подключений. К тому же, для трансформаторов одинаковой мощности и коэффициента трансформации становится возможным параллельное включение устройств.

Остальное количество соединений используется крайне редко в отдельных случаях при невозможности использования стандартного варианта.

Тип подключения должен быть оговорен в сопроводительной документации и продублирован на шильдике устройства.

Ошибочные обозначения

Ошибочные включения возникают при несоблюдении правил подключения концов. Это происходит в результате неправильной намотки или неправильном обозначении. В результате при включении устройства в трехфазную сеть, обмотки, включенные встречно, компенсируют магнитные потоки друг у друга, поэтому через них начинает протекать ток, ограниченный лишь активным сопротивлением обмоточного провода, что равносильно короткому замыканию.

Чтобы исключить случаи неправильного включения, рекомендуется после ремонта оборудования или перед включением неизвестных устройств тщательно проверить фазировку каждой обмотки несколькими методами для исключения возможных ошибок.

Уменьшить вероятность ошибки поможет предварительный расчет напряжений для измерений по методу вольтметра. Полученные данные служат ориентировочными значениями, на которые нужно обращать внимание при проведении последующих измерений.

понятие, виды, от чего зависит, чем достигается уменьшение

Вычисление погрешности используемых трансформаторов тока – необходимая мера в производстве. Без нее точно рассчитать коэффициент полезного действия и эффективность конструктивных узлов и прибора в целом невозможно. Ошибки бывают различного типа: токовые, угловые и полные. При этом в зависимости от вида меняется и способ вычисления показателя. Главная задача инженера — сделать так, что процент был уменьшен, но не потерять вместе с тем от производительности оборудования.

Что такое погрешность трансформатора

Представляет собой величину, равную отношению заявленной эффективности по плану от той, что проявляется в действительности. Данные не должны превышать номиналы, предусмотренные для их класса точности. При этом бывают нескольких типов измерительных трансформаторов и для каждого из них придуманы свои вычисления.

Проверка данных проводится при помощи приборов. Это необходимо для расчета производительности прибора и составления конструктивных мер для предотвращения этого.

 

От чего зависит погрешность трансформатора тока

В любом случае величина трансформации, то есть изменения состояния тока, будет отличаться от заявленного в инструкции номинального значения. На сколько точным будет приравниваться зависит от класса точности.

Характеристика зависит от ряда особенностей. В их число входят и используемые материалы изготовления, и принцип работы устройства. Основные причины:

  • сечение магнитопровода;
  • изменение магнитной проницаемости провода;
  • размеры вторичной нагрузки;
  • сопротивление контактов и оборудования;
  • кратность первичной подачи импульса к номинальному значению.

Обратите внимание на то, что причины, по которым появляется явление, зависят от вида устройства и принципа его функционирования.

Например, для силового трансформатора с масляными наполнением будут характерными изменения, а для тс напряжения совершенно другие.

Различается класс точности оборудования, которое используется на производстве. Известны с классом 0,2; 0,5, 1; 3 или 10. Рассчитывается номинальное значение указанной величины довольно просто: это процент от среднего показателя при подсоединении нагрузки на первичку в 100-120 процентах для 1-3 класса и 50-100 процентов для последующих.

Зависимость токовой погрешности от абсолютной магнитной проницаемости

Магнитная проницаемость — величина, которая характеризуется магнитной индукцией и напряженностью поля. Проницаемость определяется конкретной средой.

Понятно, что в зависимости от состояния, состава и температуры этой среды будет меняться показатель. Посмотреть зависимость можно в специальных схемах для различных видов материалов.

Что представляет собой треугольник погрешностей ТТ

Треугольник представляет собой особый вид соединения, основанный на нагрузке на несколько фаз. Вторичные обмотки подключаются в полный или неполный треугольник.

Тип подсоединения зависит от необходимых показателей распределения тока в аварийных условиях и вторичных цепях оборудования. Первичные импульсы ТТ определяются изначально, уже после вычисляют при замыкания вторичных. Сумма определяется как сумма величин в проводах и обмотках каждого типа. В зависимости от векторных фаз происходит рассмотрение — слагаются или вычитаются компоненты.

Виды и правила вычисления погрешности устройств

Современные правила требуют использования устройств с максимальной константой не больше 10 процентов. Иногда бывают исключения — возможно изменение на несколько пунктов свыше, если не происходит смещения релейной защиты.

Токовая

Это вид, определяющийся в коэффициенте трансформации. Представляет собой арифметическую разность между первичным токовым импульсом, который разделен на установленный коэффициент, минус полученный опытным путем вторичный.

Угловая

Угловая является углом, который образует вторичный ток при сдвиге. Положительное значение приобретает только в случае, если первичный опережает вторичный.

Полная

Полная трансформация является суммой вышеизложенных двух показателей. По опытным исследованиям понятно, что основной причиной погрешности является возникновение намагничивания. Если меньше, то и меньше будет величина.

Как построить график погрешности

Графики строятся в зависимости от типа устройства. С схемах указывается не только компоненты, в том числе и инженерные, электрические связи, но и зажимы. Стрелками отмечаются направления работы вторички и первички.

Чем достигается уменьшение погрешности трансформаторов тока

Уменьшение величины возможно в первую очередь с уменьшением показателя намагничивания. Для этой цели трансформатор должен обладать минимальным параметром тока и работать в прямолинейной части намагничивания. Эти критерии достигаются только в случае верного выбора нагрузки, уменьшения кратности первичного тока.

Разомкнутый треугольник. Открытый треугольник

Дата публикации: .
Категория: Электротехника.

Следует отличать соединение в разомкнутый треугольник (рисунок 1, а) от соединения в открытый треугольник (рисунок 1, б), называемого иногда V-образным. Рассмотрим на нескольких типичных примерах области их применения.

Рисунок 1. Различие между соединениями в разомкнутый (а) и открытый (б) треугольники. Примеры применения соединений в разомкнутый треугольник: утроитель частоты (в) и фильтр напряжения нулевой последовательности (г).

Разомкнутый треугольник

Разомкнутый треугольник используется, например, в выпрямительных установках для получения тока тройной частоты, подмагничивающего уравнительный реактор (смотрите статью «Шестифазная звезда и двойной зигзаг», рисунок 3, а) С этой целью применяют утроитель частоты, который состоит из трех однофазных трансформаторов с сильно насыщенными магнитопроводами. Первичные обмотки утроителя частоты соединены в звезду с изолированной нейтралью, вторичные – в разомкнутый треугольник (рисунок 1, в). Сильное насыщение магнитопроводов, их малое магнитное сопротивление, непроходимость нейтрали первичной обмотки для токов третьей гармоники – все это обеспечивает возникновение во вторичных обмотках электродвижущей силы (э. д. с.) тройной частоты, совпадающих во времени у всех фаз (смотрите статью «Понятие о магнитном равновесии трансформатора»). Поэтому через УР, замыкающий контур вторичных обмоток утроителя частоты, проходит ток тройной частоты, что и требуется в данном случае (смотрите статью «Шестифазная звезда и двойной зигзаг»).

Следующий пример дан из другой области. На рисунке 1, г показан фильтр напряжения нулевой последовательности 1, который служит для обнаружения замыканий на землю в сети с изолированной нейтралью. Первичные обмотки соединены в звезду, ее нейтраль обязательно заземлена, благодаря чему первичная обмотка каждой фазы включена на ее напряжение относительно земли. Вторичные обмотки, соединенные в разомкнутый треугольник, питают реле Р.

В нормальных условиях, а также при коротких замыканиях, но без заземления геометрическая сумма фазных напряжений равна нулю. Следовательно, напряжение на обмотке реле равно нулю и оно не срабатывает. Однако при замыкании на землю в напряжениях появляется составляющая нулевой последовательности U0. Реле срабатывает и производит заданные действия (включает сигнал, отключает заземленный участок, включает резерв и тому подобное).

Обращается внимание на следующее. Заземление нейтрали первичной обмотки (рисунок 1, г) – необходимое условие для действия схемы. Заземление вторичной обмотки – средство обеспечения безопасности (смотрите статью «Схема соединения «Звезда»). Токи третьих гармоник в контуре вторичных обмоток не возникают, так как трансформаторы напряжения работают при малых индукциях, благодаря чему их магнитопроводы далеки от насыщения.

Открытый треугольник

Открытый треугольник в силовых электроустановках редко используется, но в цепях измерения, учета и сложных релейных защит находит самое широкое применение.

На рисунке 2, а в открытый треугольник соединены два однофазных силовых трансформатора. Это равносильно тому, что из трехфазной группы один трансформатор попросту отсоединен, но все внешние выводы как с первичной, так и со вторичной стороны оставлены. Особенности такого соединения состоят в следующем:
1. В фазах ab и ac проходят линейные токи, сдвинутые по фазе при активной нагрузке относительно соответствующих фазных напряжений на 30°. Значит, каждый трансформатор при активной нагрузке работает с cos φ = 0,866 (а не cos φ = 1). Поэтому отдаваемая мощность двух трансформаторов, соединенных в открытый треугольник, составляет не 2/3, а только 58% (2/3 от 86,6%) мощности, которая была бы при закрытом треугольнике.

Рисунок 2. Примеры соединений в открытый треугольник.

2. Различные сопротивления для линейных токов нарушают симметрию под нагрузкой.

Другой пример, (рисунок 2, б) показывает соединение в открытый треугольник обмоток напряжения 2 трехфазного счетчика для трехпроводных сетей трехфазного тока (схема Арона). Токовые обмотки 1 включены в фазы a и c. К обмоткам напряжения подведены напряжения между фазами ab и bc. Буквы Г и Н соответственно обозначают «генератор» и «нагрузка». Звездочками отмечены начала обмоток (смотрите статью «Примеры соединений измерительных трансформаторов»).

Третий пример (рисунок 2, в) показывает соединение в открытый треугольник двух однофазных трансформаторов напряжения. Такое включение применяется в электроустановках высокого напряжения, если достаточно контролировать линейные напряжения UAB, UBC, UCA2. Вторичные обмотки трансформаторов напряжения заземлены для обеспечения безопасности.


1 Прямая, обратная и нулевая последовательности – термины метода симметричных составляющих, с помощью которого рассчитываются схемы с несимметричной нагрузкой.
2UAB = k × Uab, UBC = k × Ubc, UCA = k × Uca, где k – коэффициент трансформации трансформатора напряжения, в нашем примере 10000 : 100 = 100. Вольтметры градуируют в киловольтах.

Источник: Каминский Е. А., «Звезда, треугольник, зигзаг» – 4-е издание, переработанное – Москва: Энергия, 1977 – 104с.

Примеры соединений измерительных трансформаторов

Дата публикации: .
Категория: Электротехника.

В электроустановках широко применяют измерительные трансформаторы тока и напряжения. Первичные обмотки трансформаторов тока включают в соответствующие участки первичной сети. Первичные обмотки трансформаторов напряжения присоединяют, например, к шинам. От вторичных обмоток питаются реле защиты, счетчики и измерительные приборы.

В установках высокого напряжения измерительные трансформаторы играют двоякую роль. Во-первых, они изолируют цепи реле, счетчиков и приборов от высокого напряжения. Для обеспечения безопасности один из выводов вторичной обмотки заземляют. Во-вторых, трансформаторы тока уменьшают ток, а трансформаторы напряжения снижают напряжение до величин, при которых удобно строить и присоединять приборы. Номинальный ток вторичной обмотки трансформатора тока 5, 2 или 1 А. Номинальное вторичное напряжение трансформатора напряжения 100 В.

Система обозначения выводов трансформаторов тока

поясняется рисунком 1, а. Слева на нем показано непосредственное включение реле Р и для какого-то момента времени стрелкой изображено направление тока. Справа реле включено через трансформатор тока. Выводы его первичной обмотки (линия) названы Л1 (начало) и Л2 (конец). Выводы вторичной обмотки (измерение) И1 (начало) и И2 (конец). Сравнивая левый и правый рисунки, легко заметить, что направление тока в реле в обоих случаях одинаково.

Система обозначения выводов трансформаторов напряжения

Начала обмоток называются A, B, C и a, b, c; концы X, Y, Z и x, y, z, то есть так же, как у силовых трансформаторов (смотрите статью «Группы соединения трансформаторов»).

Измерительные трансформаторы, смотря по обстоятельствам, могут соединяться в звезду, неполную звезду, треугольник, разомкнутый и открытый треугольник. Реле, счетчики и измерительные приборы, питающиеся от измерительных трансформаторов, тоже могут различно соединяться как между собой, так и с измерительными трансформаторами. На схемах, если требуется, звездочками обозначают начала обмоток (смотрите например рисунок 1, г). Ниже даны типичные примеры.

Рисунок 1. Система маркировки выводов и примеры соединений трансформаторов тока. Звездочками обозначены начала обмоток.

Примеры соединений трансформаторов тока

На рисунке 1, б три трансформатора тока и реле Р1, Р2 и Р3 соединены в звезду. В нейтральный провод включено реле Р4.

В нормальном режиме, а также при трехфазном коротком замыкании токи проходят в реле Р1, Р2, Р3, но в реле Р4 тока нет, так как геометрическая сумма токов, проходящих через реле Р1, Р2 и Р3, равна нулю.

При двухфазных коротких замыканиях ток проходит в двух поврежденных фазах (например, в фазах A и C), срабатывают реле Р1 и Р3. В реле Р4 проходит сумма токов двух фаз. Но они в данном случае равны, а по направлению противоположны. Поэтому реле Р4 не срабатывает.

При однофазном коротком замыкании (например, замыкание на землю фазы B) срабатывают реле поврежденной фазы Р2 и Р4. Таким образом, нулевой провод звезды является фильтром токов нулевой последовательности. Токи прямой и обратной последовательности через него не проходят, так как каждая из этих систем в сумме дает нуль.

Принцип действия дифференциальной защиты трансформатора Т поясняет рисунок 1, в. Слева изображены направления токов при нормальной нагрузке, а также при внешнем коротком замыкании (I1 и I2 – токи в силовой цепи). Нетрудно видеть, что ток в реле Р близок к нулю, так как вторичные токи трансформаторов тока (смотрите стрелки) проходят через реле навстречу. Конечно, коэффициенты трансформации трансформаторов тока должны быть надлежащим образом подобраны.

При коротком замыкании внутри трансформатора (рисунок 1, в справа) или на его выводах направление тока меняется, токи в реле суммируются и оно срабатывает. На рисунке 1, г дан пример дифференциальной защиты трансформатора с соединением звезда – треугольник, то есть со сдвигом первичных и вторичных токов на 30°.

В таких случаях необходимо кроме компенсации неравенства первичных и вторичных токов (путем подбора коэффициентов трансформации трансформаторов тока) компенсировать сдвиг по фазе. Компенсация сдвига по фазе достигается соединением в треугольник трансформаторов тока, установленных со стороны звезды силового трансформатора, и соединением в звезду трансформаторов тока, установленных со стороны треугольника.

Важно при этом соблюсти следующие правила:
1. Соединения трансформаторов тока должны в точности соответствовать группе соединения силового трансформатора (смотрите статью «Группы соединения трансформаторов»).
2. Трансформаторы тока и реле Р5, Р6 и Р7 должны быть соединены между собой таким образом, чтобы при внешнем коротком замыкании вторичные токи в соединительных проводах совпадали по направлению, а в реле были противоположны.

Трансформаторы напряжения

соединяют в звезду с выведенной нулевой точкой, что дает возможность измерять как линейные, так и фазные напряжения.

Для измерения линейных напряжений вольтметры включают между выводами A и B, B и C, C и A.

Для измерения фазных напряжений вольтметры включают между линейным и нулевым выводами (A0, B0, C0).

Если достаточно измерения одних линейных напряжений, то применяют соединение в открытый треугольник (смотрите рисунок 2, в, в статье «Разомкнутый треугольник. Открытый треугольник»). Для обнаружения замыканий на землю в сетях с изолированной нейтралью вторичные обмотки трансформаторов  напряжения  соединяют  в  разомкнутый  треугольник (смотрите рисунок 1, г, в статье «Разомкнутый треугольник. Открытый треугольник»).

Пятистержневой трансформатор напряжения

Трехфазные трансформаторы напряжения (рисунок 2) выполняют обычно с пятью стержнями. Крайние стержни (без обмотки) служат для замыкания через них магнитных потоков нулевой последовательности. Эти потоки Ф0 в средних стержнях направлены в одну сторону и в сумме дают 3 Ф0.

Рисунок 2. Пятистержневой трансформатор напряжения.

Трансформатор имеет три группы обмоток. Первичные обмотки имеют выводы A, B, C и 0. Вторичные обмотки a, b, c, 0 служат для измерения фазных и линейных напряжений. Дополнительные обмотки соединены в разомкнутый треугольник. На их выводах a1 и x1 напряжение возникает только при замыкании на землю (смотрите пояснения к рисунку 1, г, в статье «Разомкнутый треугольник. Открытый треугольник»).

Другие, примеры даны в статье «Искусственная нулевая точка».

Источник: Каминский Е. А., «Звезда, треугольник, зигзаг» – 4-е издание, переработанное – Москва: Энергия, 1977 – 104с.

Схема соединения «Треугольник»

Дата публикации: .
Категория: Электротехника.

Соединение в треугольник трехфазного генератора или вторичной обмотки трансформатора.

Соединим конец x обмотки ax с началом b обмотки by, конец y обмотки by с началом c обмотки cz, конец z обмотки cz с началом a обмотки ax так, как показано на рисунке 1. Такое соединение по виду напоминает треугольник, откуда и происходит его название. Линейные провода присоединены в вершинах треугольника.

Рисунок 1. Соединение в треугольник генератора.

Основные соотношения:
1. При соединении в треугольник линейные и фазные напряжения равны потому, что каждые два линейных провода (как видно из рисунка 1) присоединены к началу и концу одной из фазных обмоток, а все фазные обмотки одинаковы.
2. Линейные токи Iл больше фазных Iф в √3 = 1,73 раза.

Как доказать, что Iл = 1,73 × Iф? Воспользуемся для этого векторной диаграммой рисунка 2.

Рисунок 2. Определение линейных токов при соединении в треугольник.

Фазные токи Iab, Ibc, Ica в трех электроприемниках ЭП (рисунок 2, а) изображаются векторной диаграммой (рисунок 2, б), которая получена путем перенесения параллельно самим себе векторов с рисунка 2, а. Вершины треугольника нагрузок a, b и c являются узловыми точками. Поэтому согласно первому закону Кирхгофа справедливы равенства

Ia + Ica = Iab, откуда Ia = IabIca;
Ib + Iab = Ibc, откуда Ib = IbcIab;
Ic + Ibc = Ica, откуда Ic = IcaIbc.

Понятно, что эти равенства геометрические, поэтому вычитание нужно выполнять по правилам вычитания векторов, что и сделано на рисунке 2, б. Непосредственное измерение длин векторов или вычисления по правилам геометрии показывают, что линейные токи Ia, Ib и Ic больше фазных токов Iab, Ibc и Ica в √3 = 1,73 раза.

На рисунке 2, б также видно, что векторная диаграмма симметричных линейных токов Ia, Ib и Ic сдвинута на 30° в сторону, обратную вращению векторов, относительно диаграммы фазных токов Iab, Ibc и Ica. Иными словами, ток Ia отстает на 30° от тока Iab. Ток Ib отстает на 30° от тока Ibc, ток Ic отстает на 30° от тока Ica.
Порядок индексов в обозначении фазных токов указывает на порядок вращения фаз. В нашем примере порядок следования (вращения) фаз: a, b, c.

На рисунке 2, в показано соединение в треугольник обмоток генератора или вторичных обмоток трансформатора. Векторы токов Iba, Iac, Icb, проходящих в обмотках генератора (вторичных обмотках трансформатора), и векторы токов в нагрузке (Iab, Ica, Ibc) соответственно параллельны, но повернуты на 180°. Причина такого расположения векторов станет ясна, если совместить рисунок 2, в с правой частью рисунка 2, а, что и выполнено на рисунке 2, г.

Обращается внимание на то, что все три обмотки внутри генератора (трансформатора) соединены последовательно и образуют замкнутую цепь. Подобное соединение в установках постоянного тока привело бы к короткому замыканию. В установках трехфазного тока в силу того, что электродвижущие силы (э. д. с.) сдвинуты по фазе на 120°, ток в этом замкнутом контуре отсутствует, так как в каждый момент сумма э. д. с. трех обмоток равна нулю 1.

Необходимо здесь же заметить, что для отсутствия тока в контуре обмоток генератора (трансформатора) необходимо, чтобы обмотки имели одинаковые числа витков, были сдвинуты на 120 электрических градусов и имели э. д. с. строго синусоидальные или во всяком случае не содержащие гармоник, кратных трем (смотрите статью «Понятие о магнитном равновесии трансформатора»).

Генераторы практически никогда не соединяют в треугольник. В трансформаторах такие соединения не только распространены, но иногда выполняются с целью получения внутри трансформатора токов третьих гармоник. Зачем? Понятно не затем, чтобы создавать в трансформаторе дополнительные потери. Причины здесь гораздо сложнее, смотрите статью «Понятие о магнитном равновесии трансформатора».

Соединение в треугольник обмоток трансформаторов в двух вариантах показано на рисунке 3. Подробно вопрос о соединениях обмоток трансформаторов рассмотрен в статье «Группы соединения трансформаторов».

Рисунок 3. Соединение в треугольник трансформаторов.

Соединение в треугольник электроприемников и конденсаторных батарей.

Соединение в треугольник обмоток электродвигателей показано на рисунках 4, ав. При этом на рисунке 4, а обмотки и соединены и расположены треугольником; на рисунке 4, б обмотки соединены треугольником, но расположены произвольно; на рисунке 4, в обмотки расположены звездой, но соединены в треугольник. На рисунке 4, г обмотки расположены треугольником, но соединены в звезду.

Рисунок 4. Соединение в треугольник электроприемников.

Все эти рисунки подчеркивают, что дело отнюдь не в том, как расположены изображения электроприемников на чертежах (хотя их часто удобно располагать в соответствии с видом соединения), а в том, что с чем соединено: концы (начала) всех обмоток между собой или конец одной обмотки с началом другой. В первом случае получается соединение в звезду, во втором – в треугольник.

Соединение в треугольник конденсаторных батарей показано на рисунке 4, д.

На рисунке 4, е показано соединение в треугольник ламп. Хотя лампы территориально разбросаны по разным квартирам, но они объединены сначала в группы в пределах каждой квартиры, затем в группы по стоякам 2 и, наконец, эти группы соединены в треугольник на вводном щите 1. Заметьте: до вводного щита нагрузка трехфазная, после вводного щита (в стояках и квартирах) однофазная, хотя она и включена между двумя фазами.

На каком основании нагрузка, питающаяся от двух фаз названа однофазной? На том основании, что изменения тока в обоих проводах, к которым присоединена нагрузка, происходят одинаково, то есть в каждый момент ток проходит через одни и те же фазы.

Видео 1. Соединение треугольником


1 Отсутствие тока в замкнутом контуре еще не означает, что в фазных обмотках нет тока. Токи в фазных обмотках соответствуют их нагрузкам.

Источник: Каминский Е. А., «Звезда, треугольник, зигзаг» – 4-е издание, переработанное – Москва: Энергия, 1977 – 104с.

Нахождение угла в прямоугольном треугольнике

Угол с любых двух сторон

Мы можем найти неизвестный угол в прямоугольном треугольнике, если нам известны длины двух его сторон .

Пример

Лестница прислонена к стене, как показано.

Что такое угол между лестницей и стеной?

Ответ — использовать синус, косинус или тангенс!

Но какой использовать? У нас есть специальная фраза «SOHCAHTOA», чтобы помочь нам, и мы используем ее так:

Шаг 1 : найдите имен двух известных нам сторон

  • Соседний примыкает к углу,
  • Напротив напротив угла,
  • , а самая длинная сторона — Гипотенуза .

Пример: в нашем примере лестницы нам известна длина:

  • сторона Напротив угол «х», который равен 2,5
  • самая длинная сторона, называемая Гипотенуза , что составляет 5

Шаг 2 : теперь используйте первые буквы этих двух сторон ( O pposite и H ypotenuse) и фразу «SOHCAHTOA», чтобы найти, какой из синуса, косинуса или тангенса использовать:

SOH…

S ine: sin (θ) = O pposite / H ypotenuse

… CAH …

C осин: cos (θ) = A djacent / H ypotenuse

… TOA

T Угол: tan (θ) = O pposite / A djacent

В нашем примере это O pposite и H ypotenuse, что дает нам « SOH cahtoa», что говорит нам, что нам нужно использовать Sine .

Шаг 3 : Поместите наши значения в уравнение синуса:

S дюйм (x) = O pposite / H ypotenuse = 2,5 / 5 = 0,5

Шаг 4 : Теперь решите это уравнение!

грех (х) = 0,5

Далее (поверьте мне на данный момент) мы можем преобразовать это в это:

х = грех -1 (0,5)

Затем возьмите наш калькулятор, введите 0,5 и используйте кнопку sin -1 , чтобы получить ответ:

х = 30 °

И у нас есть ответ!

Но что означает sin -1 …?

Итак, функция синуса «sin» принимает угол и дает нам соотношение «противоположность / гипотенуза»,

Но sin -1 (так называемый «обратный синус») идет другим путем…
… это
принимает соотношение «противоположность / гипотенуза» и дает нам угол.

Пример:

  • Синус Функция: sin ( 30 ° ) = 0,5
  • Функция обратной синусоиды: sin -1 ( 0,5 ) = 30 °
На калькуляторе нажмите одну из следующих клавиш (в зависимости от
от вашей марки калькулятора):
либо «2ndF sin», либо «shift sin».

На своем калькуляторе попробуйте использовать sin и sin -1 , чтобы увидеть, какие результаты вы получите!

Также попробуйте cos и cos -1 . И tan и tan -1 .
Давай, попробуй.

Шаг за шагом

Вот четыре шага, которые нам нужно выполнить:

  • Шаг 1 Найдите две известные нам стороны — противоположную, смежную и гипотенузу.
  • Шаг 2 Используйте SOHCAHTOA, чтобы решить, какой из Sine, Cosine или Tangent использовать в этом вопросе.
  • Шаг 3 Для синуса вычислить противоположное / гипотенузу, для косинуса вычислить смежное / гипотенузу или для касательного вычислить противоположное / смежное.
  • Шаг 4 Найдите угол на вашем калькуляторе, используя один из следующих значений: sin -1 , cos -1 или tan -1

Примеры

Давайте посмотрим на еще пару примеров:

Пример

Найдите угол подъема
плоскости из точки А на земле.

  • Step 1 Две известные нам стороны — это O pposite (300) и A djacent (400).
  • Шаг 2 SOHCAH TOA сообщает нам, что мы должны использовать T angent.
  • Шаг 3 Вычислить Противоположный / Соседний = 300/400 = 0,75
  • Шаг 4 Найдите угол с помощью калькулятора, используя tan -1

Tan x ° = напротив / рядом = 300/400 = 0. 75

tan -1 из 0,75 = 36,9 ° (с точностью до 1 знака после запятой)

Если не указано иное, углы обычно округляются до одного десятичного знака.

Пример

Найдите величину угла a °

  • Step 1 Две известные нам стороны — это A djacent (6750) и H ypotenuse (8100).
  • Step 2 SOH CAH TOA сообщает нам, что мы должны использовать осин C .
  • Шаг 3 Вычислить прилегающее / гипотенузу = 6,750 / 8,100 = 0,8333
  • Шаг 4 Найдите угол с помощью калькулятора, используя cos -1 из 0,8333:

cos a ° = 6,750 / 8,100 = 0,8333

cos -1 из 0,8333 = 33,6 ° (с точностью до 1 знака после запятой)

Треугольные символы

Символ треугольника Имя треугольника Десятичное число Hex
Черный треугольник, направленный вверх & # 9650; & # x25B2;
Белый треугольник, направленный вверх & # 9651; & # x25B3;
Черный маленький треугольник, направленный вверх & # 9652; & # x25B4;
Белый маленький треугольник, направленный вверх & # 9653; & # x25B5;
Черный треугольник, указывающий вправо & # 9654; & # x25B6;
Белый треугольник, указывающий вправо & # 9655; & # x25B7;
Черный направленный маленький треугольник & # 9656; & # x25B8;
Белый направленный Маленький треугольник & # 9657; & # x25B9;
Черный треугольник, направленный вниз & # 9660; & # x25BC;
Белый треугольник, направленный вниз & # 9661; & # x25BD;
Черный маленький треугольник, направленный вниз & # 9662; & # x25BE;
Белый, направленный вниз Маленький треугольник & # 9663; & # x25BF;
Черный треугольник, указывающий влево & # 9664; & # x25C0;
Белый треугольник, указывающий влево & # 9665; & # x25C1;
Черный, направленный влево, малый треугольник & # 9666; & # x25C2;
Белый, направленный влево Маленький треугольник & # 9667; & # x25C3;
Черный нижний правый треугольник & # 9698; & # x25E2;
Черный нижний левый треугольник & # 9699; & # x25E3;
Черный левый верхний треугольник & # 9700; & # x25E4;
Черный верхний правый треугольник & # 9701; & # x25E5;
Символ треугольника Название треугольника Десятичное число Hex
Белый треугольник, направленный вверх, с точкой & # 9708; & # x25EC;
Треугольник, направленный вверх, с левой половиной черного цвета & # 9709; & # x25ED;
Треугольник, направленный вверх, с правой половиной черного цвета & # 9710; & # x25EE;
Верхний левый треугольник & # 9720; & # x25F8;
Верхний правый треугольник & # 9721; & # x25F9;
Нижний левый треугольник & # 9722; & # x25FA;
Нижний правый треугольник & # 9727; & # x25FF;
Тяжелый белый треугольник, направленный вниз & # 9947; & # x26DB;
Белый треугольник, содержащий маленький белый треугольник & # 10177; & # x27C1;
Треугольник с точкой выше & # 10698; & # x29CA;
Треугольник с нижней планкой & # 10699; & # x29CB;
S Треугольник & # 10700; & # x29CC;
Треугольник с засечками внизу & # 10701; & # x29CD;
Правый треугольник над левым треугольником & # 10702; & # x29CE;
Левый треугольник рядом с вертикальной чертой & # 10703; & # x29CF;
Вертикальная черта рядом с правым треугольником & # 10704; & # x29D0;
Треугольник, направленный вниз, с левой половиной черного цвета & # 10728; & # x29E8;
Треугольник, направленный вниз, с правой половиной черного цвета & # 10729; & # x29E9;
Оператор большого левого треугольника & # 10782; & # x2A1E;
Знак «плюс» с черным треугольником & # 10792; & # x2A28;
Символ треугольника Имя треугольника Десятичное число Hex
Плюс Войти Треугольник & # 10809; & # x2A39;
Минус Войти Треугольник & # 10810; & # x2A3A;
Умножение Войти Треугольник & # 10811; & # x2A3B;

Скопируйте и вставьте символ треугольника или используйте десятичное, шестнадцатеричное число или HTML-код в формате Unicode на социальных сайтах, в своем блоге или в документе.

Символ треугольника Варианты предварительного просмотра

Символ треугольника Цвет Курсив
Черный треугольник, указывающий вверх, красный
Черный треугольник, указывающий вверх, оранжевый
Черный восходящий треугольник розовый
Черный восходящий треугольник зеленый
Черный восходящий треугольник королевский синий
Черный треугольник, указывающий вверх, фиолетовый
Белый, направленный вверх треугольник, красный
Белый треугольник, указывающий вверх, оранжевый
Белый Треугольник, направленный вверх, розовый
Белый Up-pointin g Зеленый треугольник
Белый треугольник, указывающий вверх, королевский синий
Белый треугольник, направленный вверх, фиолетовый

Что это за кнопки и треугольники в мои клетки?

Кнопки, которые вы можете увидеть на своем листе

Семь кнопок, которые могут появиться рядом с ячейкой, следующие: Параметры автозамены , Параметры вставки , Параметры автозаполнения , Ошибка трассировки , Параметры вставки и Применить правило форматирования к .

Параметры автозамены

Параметры автозамены

Кнопка может появиться, когда вы поместите указатель мыши на маленькое синее поле под текстом, который был автоматически исправлен. Например, если вы введете в ячейку гиперссылку или адрес электронной почты, может появиться кнопка Параметры автозамены . Если вы обнаружите текст, который не хотите исправлять, вы можете либо отменить исправление, либо включить или отключить параметры автозамены.Чтобы включить или отключить параметры автозамены, нажмите кнопку Параметры автозамены , а затем сделайте выбор из списка.

Дополнительные сведения см. В разделе Выбор параметров автозамены для заглавных букв, правописания и символов.

Параметры вставки

Параметры вставки

Кнопка появляется сразу под вставленным выделенным фрагментом после вставки текста или данных. Когда вы нажимаете кнопку, появляется список, который позволяет вам определить, как вставить информацию в ваш рабочий лист.

Доступные параметры зависят от типа вставляемого содержимого, программы, из которой выполняется вставка, и формата текста, в который вставляется вставка.

Для получения дополнительной информации см. Перемещение или копирование ячеек и содержимого ячеек.

Опции автозаполнения

Опции автозаполнения

Кнопка может появиться чуть ниже вашего заполненного выделения после того, как вы заполните текст или данные на листе. Например, если вы вводите дату в ячейку, а затем перетаскиваете ячейку вниз, чтобы заполнить ячейки под ней, может появиться кнопка Параметры автозаполнения . Когда вы нажимаете кнопку, появляется список вариантов заполнения текста или данных.

Доступные параметры в списке зависят от содержимого, которое вы заполняете, от программы, из которой вы заполняете, и от формата текста или данных, которые вы заполняете.

Для получения дополнительной информации см. Автоматическое заполнение данных в ячейках листа.

Ошибка трассировки

Ошибка трассировки

Рядом с ячейкой, в которой возникает ошибка формулы, появится кнопка, а в верхнем левом углу ячейки появится зеленый треугольник.

Если щелкнуть стрелку рядом с кнопкой, отобразится список параметров для проверки ошибок.

Для получения дополнительной информации см. Обнаружение ошибок в формулах.

Варианты вставок

Опции вставки

кнопка может появиться рядом со вставленными ячейками, строками или столбцами.

Если щелкнуть стрелку рядом с кнопкой, отобразится список параметров форматирования.

Примечание: Если вы не хотите, чтобы эта кнопка отображалась каждый раз, когда вы вставляете форматированные ячейки, строки или столбцы, вы можете отключить эту опцию в Файл > Параметры > Расширенный > Под вырезом, скопируйте и вставьте > снимите флажок рядом с Показать кнопки параметров вставки .

Применить правило форматирования к

Применить правило форматирования к

Кнопка используется для изменения метода определения области для данных условного форматирования в отчете сводной таблицы.

Если щелкнуть стрелку рядом с кнопкой, отобразится список параметров области действия.

.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *