26.11.2024

Онлайн калькулятор расчет обмоток трансформатора: Калькулятор расчёта трансформатора питания онлайн / Калькулятор / Элек.ру

Содержание

Калькулятор радиолюбителя онлайн расчет трансформатора

Ремонт современных электрических приборов и изготовление самодельных конструкций часто связаны с блоками питания, пускозарядными и другими устройствами, использующими трансформаторное преобразование энергии. Их состояние надо уметь анализировать и оценивать.

Считаю, что вам поможет выполнить расчет трансформатора онлайн калькулятор, работающий по подготовленному алгоритму, или старый проверенный дедовский метод с формулами, требующий вдумчивого отношения. Испытайте оба способа, используйте лучший.

Сразу заостряю ваше внимание на том вопросе, что приводимые методики не способны точно учесть магнитные свойства сердечника, который может быть выполнен из разных сортов электротехнических стали.

Поэтому реальные электрические характеристики собранного трансформатора могут отличаться на сколько-то вольт или число ампер от полученного расчетного значения. На практике это обычно не критично, но, всегда может быть откорректировано изменением числа количества в одной из обмоток.

Поперечное сечение магнитопровода передает первичную энергию магнитным потоком во вторичную обмотку. Обладая определенным магнитным сопротивлением, оно ограничивает процесс трансформации.

От формы, материала и сечения сердечника зависит мощность, которую можно преобразовывать и нормально передавать во вторичную цепь.

Как пользоваться онлайн калькулятором для расчета трансформатора пошагово

Подготовка исходных данных за 6 простых шагов

Шаг №1. Указание формы сердечника и его поперечного сечения

Лучшим распределением магнитного потока обладают сердечники, набранные из Ш-образных пластин. Кольцевая форма из П-образных составляющих деталей обладает большим сопротивлением.

Для проведения расчета надо указать форму сердечника по виду пластины (кликом по точке) и его измеренные линейные размеры:

  1. Ширину пластины под катушкой с обмоткой.
  2. Толщину набранного пакета.

Вставьте эти данные в соответствующие ячейки таблицы.

Шаг №2. Выбор напряжений

Трансформатор создается как повышающей, понижающей (что в принципе обратимо) или разделительной конструкцией. В любом случае вам необходимо указать, какие напряжения вам нужны на его первичной и вторичной обмотке в вольтах.

Заполните указанные ячейки.

Шаг №3. Частота сигнала переменного тока

По умолчанию выставлена стандартная величина бытовой сети 50 герц. При необходимости ее нужно изменить на требуемую по другому расчету. Но, для высокочастотных трансформаторов, используемых в импульсных блоках питания, эта методика не предназначена.

Их создают из других материалов сердечника и рассчитывают иными способами.

Шаг №4. Коэффициент полезного действия

У обычных моделей сухих трансформаторов КПД зависит от приложенной электрической мощности и вычисляется усредненным значением.

Но, вы можете откорректировать его значение вручную.

Шаг №5. Магнитная индуктивность

Параметр определяет зависимость магнитного потока от геометрических размеров и формы проводника, по которому протекает ток.

По умолчанию для расчета трансформаторов принят усредненный параметр в 1,3 тесла. Его можно корректировать.

Шаг №6. Плотность тока

Термин используется для выбора провода обмотки по условиям эксплуатации. Среднее значение для меди принято 3,5 ампера на квадратный миллиметр поперечного сечения.

Для работы трансформатора в условиях повышенного нагрева его следует уменьшить. При принудительном охлаждении или пониженных нагрузках допустимо увеличить. Однако 3,5 А/мм кв вполне подходит для бытовых устройств.

Выполнение онлайн расчета трансформатора

После заполнения ячеек с исходными данными нажимаете на кнопку «Рассчитать». Программа автоматически обрабатывает введенные данные и показывает результаты расчета таблицей.

Как рассчитать силовой трансформатор по формулам за 5 этапов

Привожу упрощенную методику, которой пользуюсь уже несколько десятков лет для создания и проверки самодельных трансформаторных устройств из железа неизвестной марки по мощности нагрузки.

По ней мне практически всегда получалось намотать схему с первой попытки. Очень редко приходилось добавлять или уменьшать некоторое количество витков.

Этап №1. Как мощность сухого трансформатора влияет на форму и поперечное сечение магнитопровода

В основу расчета положено среднее соотношение коэффициента полезного действия ŋ, как отношение электрической мощности S2, преобразованной во вторичной обмотке к приложенной полной S1 в первичной.

Потери мощности во вторичной обмотке оценивают по статистической таблице.

Мощность трансформатора, ваттыКоэффициент полезного действия ŋ
15÷500,50÷0,80
50÷1500,80÷0,90
150÷3000,90÷0,93
300÷10000,93÷0,95
>10000.95÷0,98

Электрическая мощность устройства определяется произведением номинального тока, протекающего по первичной обмотке в амперах, на напряжение бытовой проводки в вольтах.

Она преобразуется в магнитную энергию, протекающую по сердечнику, полноценно распределяясь в нем в зависимости от формы распределения потоков:

  1. для кольцевой фигуры из П-образных пластин площадь поперечного сечения под катушкой магнитопровода рассчитывается как Qc=√S1;
  2. у сердечника из Ш-образных пластин Qc=0,7√S1.

Этап №2. Особенности вычисления коэффициента трансформации и токов внутри обмоток

Силовой трансформатор создается для преобразования электрической энергии одной величины напряжения в другое, например, U1=220 вольт на входе и U2=24 V — на выходе.

Коэффициент трансформации в приведенном примере записывается как выражение 220/24 или дробь с первичной величиной напряжения в числителе, а вторичной — знаменателе. Он же позволяет определить соотношение числа витков между обмотками.

На первом этапе мы уже определили электрические мощности каждой обмотки. По ним и величине напряжения необходимо рассчитать силу электрического тока I=S/U внутри любой катушки.

Этап №3. Как вычислить диаметры медного провода для каждой обмотки

При определении поперечного сечения проводника катушки используется эмпирическое выражение, учитывающее, что плотность тока лежит в пределах 1,8÷3 ампера на квадратный миллиметр.

Величину тока в амперах для каждой обмотки мы определили на предыдущем шаге.

Теперь просто извлекаем из нее квадратный корень и умножаем на коэффициент 0,8. Полученное число записываем в миллиметрах. Это расчетный диаметр провода для катушки.

Он подобран с учетом выделения допустимого тепла из-за протекающего по нему тока. Если место в окне сердечника позволяет, то диаметр можно немного увеличить. Тогда эти обмотки будут лучше приспособлены к тепловым нагрузкам.

Когда даже при плотной намотке все витки провода не вмещаются в окне магнитопровода, то его поперечное сечение допустимо чуть уменьшить. Но, такой трансформатор следует использовать для кратковременной работы и последующего охлаждения.

Этап №4. Определение числа витков обмоток по характеристикам электротехнической стали: важные моменты

Вычисление основано на использовании магнитных свойств железа сердечника. Промышленные трансформаторы собираются из разных сортов электротехнической стали, подбираемые под конкретные условия работы. Они рассчитываются по сложным, индивидуальным алгоритмам.

Домашнему мастеру достаются магнитопроводы неизвестной марки, определить электротехнические характеристики которой ему практически не реально. Поэтому формулы учитывают усредненные параметры, которые не сложно откорректировать при наладке.

Для расчета вводится эмпирический коэффициент ω’. Он учитывает величину напряжения в вольтах, которое наводится в одном витке катушки и связан с поперечным сечением магнитопровода Qc (см кв).

В первичной обмотке число витков вычислим, как W1= ω’∙U1, а во вторичной — W2= ω’∙U2.

Этап №5. Учет свободного места внутри окна магнитопровода

На этом шаге требуется прикинуть: войдут ли все обмотки в свободное пространство окна сердечника с учетом габаритов катушки.

Для этого допускаем, что провод имеет сечение не круглое, а квадрата со стороной одного диаметра. Тогда при совершенно идеальной плотной укладке он займет площадь, равную произведению единичного сечения на количество витков.

Увеличиваем эту площадь процентов на 30, ибо так идеально намотать витки не получится. Это будет место внутри полостей катушки, а она еще займет определенное пространство.

Далее сравниваем полученные площади для катушек каждой обмотки с окном магнитопровода и делаем выводы.

Второй способ оценки — мотать витки «на удачу». Им можно пользоваться, если новая конструкция перематывается проводом со старых рабочих катушек на том же сердечнике.

4 практических совета по наладке и сборке трансформатора: личный опыт

Сборка магнитопровода

Степень сжатия пластин влияет на шумы, издаваемые железом сердечника при вибрациях от протекающего по нему магнитного потока.

Одновременно не плотное прилегание железа с воздушными зазорами увеличивает магнитное сопротивление, вызывает дополнительные потери энергии.

Если для стягивания пластин используются металлические шпильки, то их надо изолировать от железа сердечника бумажными вставками и картонными шайбами.

Иначе по этому креплению возникнет искусственно созданный короткозамкнутый виток. В нем станет наводиться дополнительная ЭДС, значительно снижающая коэффициент полезного действия.

Состояние изоляции крепежных болтов относительно железа сердечника проверяют мегаомметром с напряжением от 1000 вольт. Показание должно быть не менее 0,5 Мом.

Расчет провода по плотности тока

Оптимальные размеры трансформатора играют важную роль для устройств, работающих при экстремальных нагрузках.

Для питающей обмотки, подключенной к бытовой проводке лучше выбирать плотность тока из расчета 2 А/мм кв, а для остальных — 2,5.

Способы намотки витков

Быстрая навивка на станке «внавал» занимает повышенный объем и нормально работает при относительно небольших диаметрах провода.

Качественную укладку обеспечивает намотка плотными витками один возле другого с расположением их рядами и прокладкой ровными слоями изоляции из конденсаторной бумаги, лакоткани, других материалов.

Хорошо подходят для создания диэлектрического слоя целлофановые (не из полиэтилена) ленты. Можно резать их от упаковок сигарет. Отлично справляется с задачами слоя изоляции кулинарная пленка для запекания мясных продуктов и выпечек.

Она же придает красивый вид внешнему покрытию катушки, одновременно обеспечивая ее защиту от механических повреждений.

Обмотки сварочных и пускозарядных устройств, работающие в экстремальных условиях с высокими нагрузками, желательно дополнительно пропитывать между рядами слоями силикатного клея (жидкое стекло).

Ему требуется дать время, чтобы засох. После этого наматывают очередной слой, что значительно удлиняет сроки сборки. Зато созданный по такой технологии трансформатор хорошо выдерживает высокие температурные нагрузки без создания межвитковых замыканий.

Как вариант такой защиты работает пропитка рядов провода разогретым воском, но, жидкое стекло обладает лучшей изоляцией.

Когда длины провода не хватает для всей обмотки, то его соединяют. Подключение следует делать не внутри катушки, а снаружи. Это позволит регулировать выходное напряжение и силу тока.

Замер тока на холостом ходу трансформатора

Мощные сварочные аппараты требуют точного подбора объема пластин и количества витков под рабочее напряжение, что взаимосвязано.

Выполнить качественную наладку позволяет замер тока холостого хода при оптимальной величине напряжения на входной обмотке питания.

Его значение должно укладываться в предел 100÷150 миллиампер из расчета на каждые 100 ватт приложенной мощности для трансформаторных изделий длительного включения. Когда используется режим кратковременной работы с частыми остановками, то его можно увеличить до 400÷500 мА.

Выполняя расчет трансформатора онлайн калькулятором или проверку его вычислений дедовскими формулами, вам придется собирать всю конструкцию в железе и проводах. При первых сборках своими руками можно наделать много досадных ошибок.

Чтобы их избежать рекомендую посмотреть видеоролик Виктора Егель. Он очень подробно и понятно объясняет технологию сборки и расчета. Под видео расположено много полезных комментариев, с которыми тоже следует ознакомиться.

Если заметите в ролике некоторые моменты, которые немного отличаются от моих рекомендаций, то можете задавать вопросы в комментариях. Обязательно обсудим.

Трансформаторы часто используются для питания цепей управления, для освещения и в различных электронных устройствах. С такой задачей, как расчет трансформатора тока, сталкиваются не только специалисты в данных областях, но и обычные любители. Поэтому очень часто мы сталкиваемся с проблемой, когда не знаем, как производится простой расчет трансформатора и расчет параметров трансформатора. К счастью существует решение этой проблемы.

Расчет трансформатора онлайн

Существует формула расчета трансформатора, которая помогает совершить расчет трансформатора питания. Чтобы упростить себе жизнь и избежать ошибок в вычислениях, вы можете воспользоваться данной программой. Она позволит вам конструировать трансформаторы на различные напряжения и мощности очень быстро и без проблем. Это очень удобный калькулятор для радиолюбителей и профессионалов. Он поможет не только рассчитать трансформатор, но и поможет изучить его устройство, как всё работает. Это самый простой и быстрый способ всё рассчитать. Для этого нужно заполнить все известные вам данные и нажать кнопку. Получается вам нужно нажать одну кнопку, чтобы произвести расчет трансформатора!

Достоинство и плюсы этого способа

  • Вам не нужно ничего считать
  • Вы можете самостоятельно мотать трансформатор для своих целей
  • По размеру сердечника можно определить необходимые расчёты
  • Упрощенный расчет трансформатора
  • Всё понятно даже для новичков
  • Есть инструкция
  • Для расчёта нужно нажать всего одну кнопку!

Магнит проводы бывают трёх конструкций: броневая, тороидальная и стержневая. Существует и другие более редкие конструкция, но обычно для их расчёта требуются всегда: входное напряжение, частота, выходное напряжение, выходной ток, габаритные размеры магнитопровода.

Мы получаем рабочий онлайн калькулятор трансформатора, способный решить наши задачи по формулам расчёта. Если вы взяли старый, отработавший свой срок трансформатор, теперь вы сможете всё рассчитать для безопасной работы с ним. Полученные расчёты окажутся оптимальными, скорее даже идеальными, поэтому провода подходящего диаметра может просто не быть. Поэтому подбирайте максимально близкое значение к оптимальному.

Одним из часто применяемых устройств в областях энергетики, электроники и радиотехники является трансформатор. Часто от его параметров зависит надёжность работы приборы в целом. Случается так, что при выходе трансформатора из строя или при самостоятельном изготовлении радиоприборов не получается найти устройство с нужными параметрами серийного производства. Поэтому приходится выполнять расчёт трансформатора и его изготовление самостоятельно.

Принцип работы устройства

Трансформатор — это электротехническое устройство, предназначенное для передачи энергии без изменения её формы и частоты. Используя в своей работе явление электромагнитной индукции, устройство применяется для преобразования переменного сигнала или создания гальванической развязки. Каждый трансформатор собирается из следующих конструктивных элементов:

  • сердечника;
  • обмотки;
  • каркаса для расположения обмоток;
  • изолятора;
  • дополнительных элементов, обеспечивающих жёсткость устройства.

В основе принципа действия любого трансформаторного устройства лежит эффект возникновения магнитного поля вокруг проводника с текущим по нему электрическим током. Такое поле также возникает вокруг магнитов. Током называется направленный поток электронов или ионов (зарядов). Взяв проволочный проводник и намотав его на катушку и подключив к его концам прибор для измерения потенциала можно наблюдать всплеск амплитуды напряжения при помещении катушки в магнитное поле. Это говорит о том, что при воздействии магнитного поля на катушку с намотанным проводником получается источник энергии или её преобразователь.

В устройстве трансформатора такая катушка называется первичной или сетевой. Она предназначена для создания магнитного поля. Стоит отметить, что такое поле обязательно должно всё время изменяться по направлению и величине, то есть быть переменным.

Классический трансформатор состоит из двух катушек и магнитопровода, соединяющего их. При подаче переменного сигнала на контакты первичной катушки возникающий магнитный поток через магнитопровод (сердечник) передаётся на вторую катушку. Таким образом, катушки связаны силовыми магнитными линиями. Согласно правилу электромагнитной индукции при изменении магнитного поля в катушке индуктируется переменная электродвижущая сила (ЭДС). Поэтому в первичной катушки возникает ЭДС самоиндукции, а во вторичной ЭДС взаимоиндукции.

Количество витков на обмотках определяет амплитуду сигнала, а диаметр провода наибольшую силу тока. При равенстве витков на катушках уровень входного сигнала будет равен выходному. В случае когда вторичная катушка имеет в три раза больше витков, амплитуда выходного сигнала будет в три раза больше, чем входного — и наоборот.

От сечения провода, используемого в трансформаторе, зависит нагрев всего устройства. Правильно подобрать сечение возможно, воспользовавшись специальными таблицами из справочников, но проще использовать трансформаторный онлайн-калькулятор.

Отношение общего магнитного потока к потоку одной катушки устанавливает силу магнитной связи. Для её увеличения обмотки катушек размещаются на замкнутом магнитопроводе. Изготавливается он из материалов имеющих хорошую электромагнитную проводимость, например, феррит, альсифер, карбонильное железо. Таким образом, в трансформаторе возникают три цепи: электрическая — образуемая протеканием тока в первичной катушке, электромагнитная — образующая магнитный поток, и вторая электрическая — связанная с появлением тока во вторичной катушке при подключении к ней нагрузки.

Правильная работа трансформатора зависит и от частоты сигнала. Чем она больше, тем меньше возникает потерь во время передачи энергии. А это означает, что от её значения зависят размеры магнитопровода: чем частота больше, тем размеры устройства меньше. На этом принципе и построены импульсные преобразователи, изготовление которых связано с трудностями разработки, поэтому часто используется калькулятор для расчёта трансформатора по сечению сердечника, помогающий избавиться от ошибок ручного расчёта.

Виды сердечников

Трансформаторы отличаются между собой не только сферой применения, техническими характеристиками и размерам, но и типом магнитопровода. Очень важным параметром, влияющим на величину магнитного поля, кроме отношения витков, является размер сердечника. От его значения зависит способность насыщения. Эффект насыщения наступает тогда, когда при увеличении тока в катушке величина магнитного потока остаётся неизменной, т. е. мощность не изменяется.

Для предотвращения возникновения эффекта насыщения понадобится правильно рассчитать объём и сечение сердечника, от размеров которого зависит мощность трансформатора. Следовательно, чем больше мощность трансформатора, тем большим должен быть его сердечник.

По конструкции сердечник разделяют на три основных вида:

Стержневой магнитопровод представляет собой П-образный или Ш-образный вид конструкции. Собирается из стержней, стягивающихся ярмом. Для защиты катушек от влияния внешних электромагнитных сил используются броневые магнитопроводы. Их ярмо располагается на внешней стороне и закрывает стержень с катушкой. Тороидальный вид изготавливается из металлических лент. Такие сердечники из-за своей кольцевой конструкции экономически наиболее выгодны.

Зная форму сердечника, несложно рассчитать мощность трансформатора. Находится она по несложной формуле: P=(S/K)*(S/K), где:

  • S — площадь сечения сердечника.
  • K — постоянный коэффициент равный 1,33.

Площадь сердечника находится в зависимости от его вида, её единица измерения — сантиметр в квадрате. Полученный результат измеряется в ваттах. Но на практике часто приходится выполнять расчёт сечения сердечника по необходимой мощности трансформатора: Sс = 1.2√P, см2. Исходя из формул можно подтвердить вывод: что чем больше мощность изделия, тем габаритней используется сердечник.

Типовой расчёт параметров

Довольно часто радиолюбители используют при расчёте трансформатора упрощённую методику. Она позволяет выполнить расчёт в домашних условиях без использования величин, которые трудно узнать. Но проще использовать готовый для расчёта трансформатора онлайн-калькулятор. Для того чтобы воспользоваться таким калькулятором, понадобится знать некоторые данные, а именно:

  • напряжение первичной и вторичной обмотки;
  • габаритны сердечника;
  • толщину пластины.

После их ввода понадобится нажать кнопку «Рассчитать» или похожую по названию и дождаться результата.

Стержневой тип магнитопровода

В случае отсутствия возможности расчёта на калькуляторе выполнить такую операцию самостоятельно несложно и вручную. Для этого потребуется определиться с напряжением на выходе вторичной обмотки U2 и требуемой мощностью Po. Расчёт происходит следующим образом:

После того как первый этап выполнен, приступают к следующей стадии расчёта. Число витков в первичной обмотке находится по формуле: K1 = 50*U1/S. А число витков вторичной обмотке определяется выражением K2= 55* U2/S, где:

  • U1 — напряжение первичной обмотке, В.
  • S — площадь сердечника, см².
  • K1, K2 — число витков в обмотках, шт.

Остаётся вычислить диаметр наматываемой проволоки. Он равен D = 0,632*√ I, где:

  • d — диаметр провода, мм.
  • I — обмоточный ток рассчитываемой катушки, А.

При подборе магнитопровода следует соблюдать соотношение 1 к 2 ширины сердечника к его толщине. По окончании расчёта выполняется проверка заполняемости, т. е. поместится ли обмотка на каркас. Для этого площадь окна вычисляется по формуле: Sо = 50*Pт, мм2.

Особенности автотрансформатора

Автотрансформаторы рассчитываются аналогично простым трансформаторам, только сердечник определяется не на всю мощность, а на мощность разницы напряжений.

Например, мощность магнитопровода 250 Вт, на входе 220 вольт, на выходе требуется получить 240 вольт. Разница напряжений составляет 20 В, при мощности 250 Вт ток будет равен 12,5 А. Такое значение тока соответствует мощности 12,5*240=3000 Вт. Потребление сетевого тока составляет 12,5+250/220=13,64А, что как раз и соответствует 3000Вт=220В*13,64А. Трансформатор имеет одну обмотку на 240 В с отводом на 220 В, который подключён к сети. Участок между отводом и выходом мотается проводом, рассчитанным на 12,5А.

Таким образом, автотрансформатор позволяет получить на выходе мощность значительно больше, чем трансформатор на таком же сердечнике при небольшом коэффициенте передачи.

Трансформатор тороидального типа

Тороидальные трансформаторы имеют ряд преимуществ по сравнению с другими типами: меньший размер, меньший вес и при этом большее КПД. При этом они легко наматываются и перематываются. Использование онлайн-калькулятора для расчёта тороидального трансформатора позволяет не только сократить время изготовления изделия, но и «на лету» поэкспериментировать с разными вводными данными. В качестве таких данных используются:

  • напряжение входной обмотки, В;
  • напряжение выходной обмотки, В;
  • ток выходной обмотки, А;
  • наружный диаметр тора, мм;
  • внутренний диаметр тора, мм;
  • высота тора, мм.

Необходимо отметить, что почти все онлайн-программы не демонстрируют особой точности в случае расчёта импульсных трансформаторов. Для получения высокой точности можно воспользоваться специально разработанными программами, например, Lite-CalcIT, или рассчитать вручную. Для самостоятельного расчёта используются следующие формулы:

  1. Мощность выходной обмотки: P2=I2*U2, Вт.
  2. Габаритная мощность: Pg=P2/Q, Вт. Где Q — коэффициент, берущийся из справочника (0,76−0,96).
  3. Фактическое сечение «железа» в месте размещения катушки: Sch= ((D-d)*h)/2, мм2.
  4. Расчётное сечение «железа» в месте расположения катушки: Sw =√Pq/1.2, мм2
  5. Площадь окна тора: Sfh=d*s* π/4, мм2.
  6. Значение рабочего тока входной обмотки: I1=P2/(U1*Q*cosφ), А, где cosφ справочная величина (от 0,85 до 0,94).
  7. Сечение провода находится отдельно для каждой обмотки из выражения: Sp = I/J, мм2., где J- плотность тока, берущаяся из справочника (от 3 до 5).
  8. Число витков в обмотках рассчитывается отдельно для каждой катушки: Wn=45*Un*(1-Y/100)/Bm* Sch шт., где Y — табличное значение, которое зависит от суммарной мощности выходных обмоток.
  9. Остается найти выходную мощность и расчёт тороидального силового трансформатора считается выполненным. Pout = Bm*J*Kok*Kct* Sch* Sfh /0,901, где: Bm — магнитная индукция, Kok — коэффициент заполнения проводом, Kct —коэффициент заполнения железом.

Все значения коэффициентов берутся из справочника радиоаппаратуры (РЭА). Таким образом, проводить вычисления в ручном режиме несложно, но потребуется аккуратность и доступ к справочным данным, поэтому гораздо проще использовать онлайн-сервисы.

Рекомендации по сборке и намотке

При сборке трансформатора своими руками пластины сердечника собираются «вперекрышку». Магнитопровод стягивается обоймой или шпилечными гайками. Для того чтобы не нарушить изоляцию, шпильки закрываются диэлектриком. Стягивать «железо» нужно с усилием: если его окажется недостаточно при работе устройства возникнет гул.

Проводники наматываются на катушку плотно и равномерно, каждый последующий ряд изолируется от предыдущего тонкой бумагой или лавсановой плёнкой. Последний ряд обматывается киперной лентой или лакотканью. Если в процессе намотки выполняется отвод, то провод разрывается, а на место разрыва впаивается отвод. Это место тщательно изолируется. Закрепляются концы обмоток с помощью ниток, которыми привязываются провода к поверхности сердечника.

При этом существует хитрость: после первичной обмотки не следует наматывать всю вторичную обмотку сразу. Намотав 10—20 витков, нужно измерить величину напряжения на её концах.

По полученному значению можно представить, сколько витков потребуется для получения нужной амплитуды выходного напряжения, тем самым контролируя полученный расчёт при сборке трансформатора.

Расчет обмоток трансформатора онлайн калькулятор

Силовой трансформатор является нестандартным изделием, которое часто применяется радиолюбителями, промышленности и при конструировании многих бытовых приборов. Под этим понятием подразумевается намоточное устройство, изготовленное на металлическом сердечнике, набранном из пластин электротехнической стали. Стандартными являются немногие подобные изделия, поэтому чаще всего радиолюбители изготавливают их самостоятельно. Поэтому весьма актуален вопрос: как выполнить расчет трансформатора по сечению сердечника калькулятор использовав для этого?

Необходимые сведения

Для изготовления намоточного изделия необходимо руководствоваться множеством сведений. От этого напрямую будет зависеть качество, срок службы готового блока питания. Следует грамотно подойти к процессу расчета, учесть такие показатели, как магнитную индуктивность, КПД и плотность тока. Иначе изделие получится ненадежным и скоро выйдет из строя. К основным характеристикам следует отнести:

  • Входное напряжение сети. Оно зависит от источника, к которому будет подключен трансформатор. Стандартными являются: 110 В, 220 В, 380 В, 660 В. На практике оно может быть любым, что зависит от характеристик промежуточных цепей.
  • Выходное напряжение трансформатора — величина, требуемая для обеспечения стабильной работы потребителя. Часто требуется изготовить изделие с несколькими номиналами или с регулируемым напряжением. Тогда необходимо учитывать максимальную его величину.
  • Ток в нагрузке. При фиксированном значении рассчитываются жесткие характеристики устройства, но часто требуется обеспечить регулируемую величину, тогда потребуется учесть максимальную его величину.
  • Частота сети. У нас применяется европейский стандарт, то есть 50 Гц.
  • Мощность нагрузки. Это не основной параметр, потому что ее можно определить по напряжению и току.
  • Количество выходных обмоток. В некоторых электронных приборах используются блоки питания с несколькими выходными напряжениями. Для изготовления силовой электроники используется в основном один номинал, например, для сварочных трансформаторов.

Также потребуется учесть тип сердечника, потому что от его конструкции напрямую зависит принцип расчета показателей изделия. Существует много разновидностей как конструкций, так и материалов. Если учитывать последние нет смысла из-за незначительных погрешностей, то форма и размеры имеют большое значение. Поэтому необходимы разные алгоритмы расчета, что зависит от этого критерия. Начнем с самого простого и распространенного.

Не всегда требуется расчет вести с требуемых данных. Нередко в наличии есть какое-то железо, тогда потребуется определить мощность трансформатора по сечению магнитопровода. Программы онлайн, имеющиеся в интернете, позволяют определять параметры любым порядком.

Расчет броневого трансформатора

Распространен вид трансформаторов, используемый практически во всех устройствах от зарядных аппаратов для шуруповертов, заканчивая боками питания магнитофонов. В процессе эксплуатации всех этих устройств часто возникают поломки в питателе, связанные со сгоревшим намоточным изделием. Тогда для его восстановления потребуется перемотка, но это проблемы не решает.

Часто требуется увеличить мощность источника, тогда как рассчитать трансформатор, чтобы его железо не перегревалось? Потребуется выбрать железо больших размеров и использовать более толстый провод. Такой ход поможет сохранить работоспособность устройства и даже улучшить характеристики, сделав его стабильнее и устойчивее при скачках напряжений в сети.

К сожалению, не все производители учитывают этот фактор, а ведь наша сеть неустойчива и регулярно в ней наблюдаются помехи в виде высоковольтных игольчатых импульсов. Также возникают ситуации, когда наблюдается просадка сети до 170 В, что характерно в зимний период. Тогда необходимо предусмотреть запас по напряжению как минимум на 40−45%, увеличив мощность и компенсационного стабилизатора. Часто такие ситуации наблюдаются в частном секторе.

Вернемся к расчету Ш-образного трансформатора на ШП-сердечнике. Принцип будет одинаков и с сердечником типа ПЛ при условии размещения обмотки на средней части. Для чего потребуется выполнить следующие шаги:

  • Определить площадь поперечного сечения средней части сердечника. Она выражается буквой S сеч. и находится из произведения ее сторон. Взяв линейку, измеряем параметры сечения, перемножаем и получаем значение в квадратных сантиметрах.
  • На следующем этапе решается вопрос, как рассчитать мощность трансформатора. Это расчетная величина, которую можно определить, возведя S сеч. в квадрат. Значение будет измеряться в Вт и обозначаться буквой «P».
  • При расчете мощности сердечника необходимо учитывать тип использованных пластин. Например, если были применены для набора Ш-20, то общая толщина сердечника должна быть 30 мм при мощности в 36 Вт. Если для трансформатора были использованы пластины Ш-30, то толщина набора будет достаточно в 20 мм, а при использовании Ш-24 — 25 мм. Существуют справочные таблицы, в которых можно найти мощность трансформатора по сечению магнитопровода для конкретной ситуации. Для обеспечения наилучшей стабильности работы источников питания следует использовать железо с избытком мощности как минимум на 25%. То есть, если ранее была расчетная мощность равна 6 Вт, то для надежности работы и исключения насыщения сердечника следует брать в расчет как минимум 8 Вт. Это обязательное условие. Если использовать магнитопровод с меньшей площадью сечения сердечника, то трансформатор быстро выйдет из строя, потому что железо окажется в насыщении, что приведет к увеличению токов в обмотках.
  • На следующем этапе необходимо определиться с количеством обмоток. Для современных транзисторных устройств достаточно будет всего одной или сдвоенной со средней точкой. Поэтому рассмотрим пример расчета именно такого трансформатора. Для этого потребуется воспользоваться понятием «вольт на виток». Значение определяется следующим образом: W /В=(50÷70) / S сеч. Формула справедлива только для сердечников типа ШП и П. Л. При расчете первичной и вторичной обмоток потребуется взять произведение полученного отношения и входного напряжения: W1 = W / B∙U1, W2 = 1,2 ∙ W /B∙U2.
  • Выполняется расчет и выбор диаметра провода. Он выбирается исходя из хорошего теплоотвода и изоляции, для чего рекомендуется применять ПЭЛ или ПЭВ, покрытые лаком. Определить его размер можно по формуле: d =0,7∙√ I. Величина выражается в мм. Провод выбирается с небольшим запасом до 4−6%.

Все программы расчета трансформаторов позволяют находить параметры изделий в любом порядке. Они используют стандартные алгоритмы, по которым выводятся значения. При необходимости можно создать собственный калькулятор с помощью таблиц Excel. Подобным образом работает и калькулятор расчета трансформатора на стержневом сердечнике.

Программы для расчета

Известно много программ, которые предлагают онлайн расчет параметров любого трансформатора на броневом или стержневом сердечнике. Одной из таких может стать сервис на сайте «skrutka». Для определения характеристик потребуется указать ряд следующих данных:

  • входное напряжение — U1;
  • выходное напряжение — U2;
  • ширину пластины — а;
  • толщину стопки — b ;
  • частоту сети — Гц;
  • габаритная мощность — В*А;
  • КПД;
  • магнитную индуктивность магнитопровода — Тл;
  • плотность тока в обмотках — А/мм кв.

Последние 4 величины являются табличными, поэтому потребуется воспользоваться справочником.

Необходимо грамотно и ответственно отнестись к расчету параметров трансформатора, потому что от качества выполненной работы будет зависеть и качество функционирования вашего блока питания. Не всегда стоит надеяться на программы, в них могут быть ошибки. Выберите один или несколько параметров и пересчитайте их вручную по ранее приведенным формулам. Если получится примерно равное значение, то результат можно считать правильным.

Данный онлайн расчет трансформатора выполнен по типовым расчетам электрооборудования. В типовых расчётах все начинается с определения необходимой мощности вторичной обмотки, а уж потом с поправкой на КПД – коэффициент полезного действия, находим мощность всего трансформатора, и на основании этого рассчитываем необходимое сечение и тип сердечника и так далее.

Изначально так и было в моём расчете. Пока не появились предложения от посетителей сайта внести изменения в расчет. По имеющимся размерам трансформаторного железа рассчитываем полную мощность трансформатора, а уж потом видим, какой ток и напряжение можно снять с этого железа. Далее все как по типовому расчёту, выбираем тип: броневой или стержневой, указываем напряжение первичной обмотки, вторичной, частоту переменного тока и так далее.

В результате получаем необходимые расчетные данные трансформатора, например сечение обмоточных проводов, которые сравниваются со стандартными обмоточными проводами и представляются для дальнейшего расчёта. Диапазон обмоточных проводов сечением от 0,000314 до 4,906 мм 2 , всего 63 позиции. На основании имеющихся данных рассчитывается площадь занимаемой обмотками трансформатора, для определения возможности их размещения в окнах трансформатора.
Хотелось бы узнать в комментариях ваше мнение, и практические результаты, чтобы если это возможно сделать более качественный расчёт.

Просмотр и ввод комментариев к статье

Чтобы рассчитать параметры трансформатора, введите данные мощности и напряжения подключаемого устройства, а также напряжение сети.

Площадь сердечника выражается произведением ширины железной пластины сердечника (или средней части пластины при Ш-образном железе) на толщину всего набора пластин.

При расчетах мощность сети берется равной 1,2 мощности трансформатора (потери трансформатора ≈ 20%).

*Расчет производится по методике, описанной в руководстве для технических кружков «Техническое Творчество».

Персональный сайт — Расчет трансформатора



Трансформаторами называются электромагнитные устройства, имеющие две или большее число индуктивно-связанных обмоток и предназначенные для изменения величины переменного напряжения (тока). Трансформатор состоит из магнитопровода (сердечника) и расположенных на нем обмоток. Обмотка, подключаемая к источнику преобразуемого напряжения, называется первичной, а обмотки, к которым подключены потребители электрической энергии, — вторичными. В зависимости от назначения трансформаторы подразделяются на трансформаторы питания, согласующие и импульсные.

В радиолюбительских условиях обычно имеются трансформаторы извлеченные из отработавших свой срок устройств. Исходя из этих соображений следует производить расчет. Расчет по распространенному варианту(где исходные данные выходное напряжение и ток) на практике трудно реализовать, не всега можно найти нужное железо и провод для намотки. В результате приходится использовать имеющийся магнитопровод большей мощности, превышающий потребности и следовательно увеличивающий размеры.

Магнитопроводы имеют три основные конструкции: броневая, стержневая, торроидальная.

Торроидальная представляет из себя кольцо на котором намотаны обмотки. Магнитное излучение такой конструкции наименьшее из всех трех. Намотка обмоток представляет некоторые трудности и поэтому применяется в радиолюбительской практике редко.

У стержневой конструкции две катушки и обмотки как правило делятся пополам и соединяются последовательно. Здесь могут возникнуть трудности с направлением намотки катушек и их последующего соединения. Среди достоинств следует отметить что применяя данную конструкцию можно уменьшить высоту устройства если расположить трансформатор горизонтально. Стержневые конструкции применяются в основном для мощных трансформаторов.

Наиболее популярной является броневая конструкция(на рисунке). У броневой конструкции одна катушка и её удобно наматывать. Броневая конструкция применяется для трансформаторов малой и средней мощности, что как правило является достаточным в радиолюбительской практике.


Поскольку чаще всего применяется броневая конструкция, то расчет будет производится для нее.

Основной целью расчета является оптимальное использование имеющегося железа.

Главным выходным параметром при таком расчете является напряжение. Выходной ток будет рассчитываться и по результатам расчета принимается решение о пригодности магнитопровода.

Расчет

Исходные данные:

Входное напряжение, частота, выходное напряжение, выходной ток, габаритные размеры магнитопровода.

Частота 50 Гц.
Измерить a, b, c, h и ввести в программу. Измерения производить в сантиметрах.

Программа призвана сокращать время расчета и исходя из этих соображений входное напряжение уже введено и равняется 220 В. При расчете с другим входным напряжением следует это значение исправить.

В качестве разделителя целой и дробной частей используется точка.

Ввести выходное напряжение. Нажать на кнопку расчет.

Полученные расчетные данные являются оптимальными(идеальными) для используемого магнитопровода. На практике рассчитанного диаметра провода как правило не оказывается. В этом случае выбирается ближайший меньший расчетного или тот что имеется. Если применить провод с диаметром больше расчетного, то обмотки не смогут уместиться в окне магнитопровода.

После выбора провода обмотки можно уточнить выходной ток и принять решение о пригодности магнитопровода


Заказать изготовление программ по индивидуальным условиям можно через форму обратной связи.

расчет мощности трансформатора,расчет трансформатора напряжения,расчет трансформатора тока,обмотки трансформатора,расчет тороидального трансформатора,программа расчета трансформаторов,рассчет трансформаторов,Трансформаторы,Высоковольтные трансформаторы ,Изготовление трансформатора ,Измерительные трансформаторы ,Импульсный трансформатор ,Куплю трансформатор ,Мощность трансформатор ,Обмотки трансформатора ,Продам трансформаторы ,Производство трансформаторов ,Разделительные трансформаторы ,Расчет трансформатора ,Расчет импульсного трансформатора ,Расчет трансформаторов тока,Ремонт трансформатора,Силовые трансформаторы ,Строчные трансформаторы ,Строчный трансформатор ,Сухие трансформаторы ,Схемы трансформаторов ,Тороидальный трансформатор

Онлайн расчет трансформатора за 6 простых шагов

Простейший расчет силового трансформатора позволяет найти сечение сердечника, число витков в обмотках и диаметр провода. Переменное напряжение в сети бывает 220 В, реже 127 В и совсем редко 110 В. Для транзисторных схем нужно постоянное напряжение 10 — 15 В, в некоторых случаях, например для мощных выходных каскадов усилителей НЧ — 25÷50 В. Для питания анодных и экранных цепей электронных ламп чаще всего используют постоянное напряжение 150 — 300 В, для питания накальных цепей ламп переменное напряжение 6,3 В. Все напряжения, необходимые для какого-либо устройства, получают от одного трансформатора, который называют силовым.

Силовой трансформатор выполняется на разборном стальном сердечнике из изолированных друг от друга тонких Ш-образных, реже П-образных пластин, а так же вытыми ленточными сердечниками типа ШЛ и ПЛ (Рис. 1).

Его размеры, а точнее, площадь сечения средней части сердечника выбираются с учетом общей мощности, которую трансформатор должен передать из сети всем своим потребителям.

Упрощенный расчет устанавливает такую зависимость: сечение сердечника S в см², возведенное в квадрат, дает общую мощность трансформатора в Вт.

Например, трансформатор с сердечником, имеющим стороны 3 см и 2 см (пластины типа Ш-20, толщина набора 30 мм), то есть с площадью сечения сердечника 6 см², может потреблять от сети и «перерабатывать» мощность 36 Вт. Это упрощенный расчет дает вполне приемлемые результаты. И наоборот, если для питания электрического устройства нужна мощность 36 Вт, то извлекая квадратный корень из 36, узнаем, что сечение сердечника должно быть 6 см².

Например, должен быть собран из пластин Ш-20 при толщине набора 30 мм, или из пластин Ш-30 при толщине набора 20 мм, или из пластин Ш-24 при толщине набора 25 мм и так далее.

Сечение сердечника нужно согласовать с мощностью для того, чтобы сталь сердечника не попадала в область магнитного насыщения. А отсюда вывод: сечение всегда можно брать с избытком, скажем, вместо 6 см² взять сердечник сечением 8 см² или 10 см². Хуже от этого не будет. А вот взять сердечник с сечением меньше расчетного уже нельзя т. к. сердечник попадет в область насыщения, а индуктивность его обмоток уменьшится, упадет их индуктивное сопротивление, увеличатся токи, трансформатор перегреется и выйдет из строя.

В силовом трансформаторе несколько обмоток. Во-первых, сетевая, включаемая в сеть с напряжением 220 В, она же первичная.

Кроме сетевых обмоток, в сетевом трансформаторе может быть несколько вторичных, каждая на свое напряжение. В трансформаторе для питания ламповых схем обычно две обмотки — накальная на 6,3 В и повышающая для анодного выпрямителя. В трансформаторе для питания транзисторных схем чаще всего одна обмотка, которая питает один выпрямитель. Если на какой-либо каскад или узел схемы нужно подать пониженное напряжение, то его получают от того же выпрямителя с помощью гасящего резистора или делителя напряжения.

Число витков в обмотках определяется по важной характеристике трансформатора, которая называется «число витков на вольт», и зависит от сечения сердечника, его материала, от сорта стали. Для распространенных типов стали можно найти «число витков на вольт», разделив 50—70 на сечение сердечника в см:

Так, если взять сердечник с сечением 6 см², то для него получится «число витков на вольт» примерно 10.

Число витков первичной обмотки трансформатора определяется по формуле:

Это значит, что первичная обмотка на напряжение 220 В будет иметь 2200 витков.

Число витков вторичной обмотки определяется формулой:

Если понадобится вторичная обмотка на 20 В, то в ней будет 240 витков.

Теперь выбираем намоточный провод. Для трансформаторов используют медный провод с тонкой эмалевой изоляцией (ПЭЛ или ПЭВ). Диаметр провода рассчитывается из соображений малых потерь энергии в самом трансформаторе и хорошего отвода тепла по формуле:

Если взять слишком тонкий провод, то он, во-первых, будет обладать большим сопротивлением и выделять значительную тепловую мощность.

Так, если принять ток первичной обмотки 0,15 А, то провод нужно взять 0,29 мм.

Ремонт современных электрических приборов и изготовление самодельных конструкций часто связаны с блоками питания, пускозарядными и другими устройствами, использующими трансформаторное преобразование энергии. Их состояние надо уметь анализировать и оценивать.

Считаю, что вам поможет выполнить расчет трансформатора онлайн калькулятор, работающий по подготовленному алгоритму, или старый проверенный дедовский метод с формулами, требующий вдумчивого отношения. Испытайте оба способа, используйте лучший.

Расчёт трансформатора на калькуляторе в домашних условиях

Возникла необходимость в мощном блоке питания. В моём случае имеются два магнитопровода броневой-ленточный и тороидальный. Броневой тип: ШЛ32х50 72х Расчет трансформатора с магнитопроводом типа ШЛ32х50 72х18 показал, что выдать напряжение 36 вольт с силой тока 4 ампера сам сердечник в состоянии, но намотать вторичную обмотку возможно не получится, из-за недостаточной площади окна. Программный он-лайн расчет, позволит налету экспериментировать с параметрами и сократить время на разработку.

Также можно рассчитать и по формулам, они приведены ниже. Описание вводимых и расчётных полей программы: поле светло-голубого цвета — исходные данные для расчёта, поле жёлтого цвета — данные выбранные автоматически из таблиц, в случае установки флажка для корректировки этих значений, поле меняет цвет на светло-голубой и позволяет вводить собственные значения, поле зелёного цвета — рассчитанное значение.

Фактическое сечение стали магнитопровода в месте расположения катушки трансформатора;. Расчётное сечение стали магнитопровода в месте расположения катушки трансформатора;. Расчёт сечения провода для каждой из обмоток для I1 и I2 ;. В тороидальных трансформаторах относительная величина полного падения напряжения в обмотках значительно меньше по сравнению с броневыми трансформаторами. Формула для расчёта максимальной мощности которую может отдать магнитопровод;.

Величины электромагнитных нагрузок Вмах и J зависят от мощности, снимаемой со вторичной обмотки цепи трансформатора, и берутся для расчетов из таблиц. О нас Обратная связь Карта сайта. YouTube Instagram Instagram. Расчет трансформатора с тороидальным магнитопроводом. Юра Гость. Нужно сделать расчёт для каждой из обмоток. Потом сложить рассчитанные мощности. Далее сравниваем сложенную мощность с габаритной мощностью сердечника. Если габаритная мощность больше, то всё нормально. Если нет, то трансформатор с нагрузкой не справится.

Юрий Гость. Большое спасибо за ваш ответ но не совсем понимаю. Мои данные. В сумме все обмотки 76 Вольт. Если не трудно По моим данным покажите правильность расчёта.

Олег Николаевич Гость. Мы делаем на службе электронный стабилизатор на семисторах на 4кВт и столкнулись с тем что нам нужен тороидальный трансформатор на соответствующюю мощность Как бы нам получить правильные расчётные данные у вас по намотке такого трансформатора?

У нас есть старый тороидальный трансформатор. По паспорту к изделию на котором он работал его мощность составляет 4,5кВт Однообмоточные трансформаторы такого типа это ЛАТРы автотрансформаторы , мы ещё пока на практике такие не делали.

Тема интересная может как нибудь попробуем. Но к сожалению пока ни чем помочь не можем. Sintetik Гость. Pc max — это максимальная мощность магнитопровода, которую сердечник может передать от первичной обмотки к вторичным? Jurij Гость. У меня что-то не получается. Вторички 64 В 6А, 13 В 3А. Тор D d Мне надо сложить P2 обоих вторичек и Pгаб обоих вторичек, и сравнить? У меня получилось общая PВт, Pгаб общая,1Вт. Транс не подойдёт? Как рассчитать какой тор мне нужен? Я пробовал в Вашем калькуляторе в полях D,d,h менять размеры, но цифры в полях P2 и Pг не меняются.

Помогите пожалуйста, что я не так делал? Заранее благодарен. Владимир Гость. Добрый день! К сожалению данная программа не имеет оболочки для обычного запуска на компьютере.

Если найдёте какие недочёты пишите, исправим. В принципе-то норм, но как же частота? Такой важный параметр, а его нет От частоты многое зависит, поэтому считаю калькулятор не удобным. Мы создавали данный калькулятор для намотки сетевого трансформатора вольт 50 герц по этому частота фиксированная.

На будущее учтём, может и доработаем или создадим новую версию. Вячеслав Гость. Мне нужно знать какой провод нужен для намотки первичной намотки диаметр и сколько грамм не витков для намотки первичной обмотки на В? С уважением Вячеслав Вячеслав, где вы нашли такое железо. Может быть размеры у вас все же в милл иметрах? У меня нашлось еще одно тороидальное железо,которое нужно намотать.

Мне нужно знать какого диаметра провод нужен для намотки первичной обмотки и сколько грамм будет весить общее количество витков первичной обмотки? Весовые характеристики в данной версии калькулятора не расчитываются.

Анатоль Гость. А этот метод подойдёт для расчёта сварочного трансформатора? Михаил Гость. А в чем считать? Еденицы не подписаны. Например, диаметр трансформатора, диаметр проволоки? В чем будет выражена расчетная площадь магнитопровода? Иван Гость. Запомнить меня. Подписаться на рассылку о публикациях новых статей.

Рекомендации по сборке и намотке

При сборке трансформатора своими руками пластины сердечника собираются «вперекрышку». Магнитопровод стягивается обоймой или шпилечными гайками. Для того чтобы не нарушить изоляцию, шпильки закрываются диэлектриком. Стягивать «железо» нужно с усилием: если его окажется недостаточно при работе устройства возникнет гул.

Проводники наматываются на катушку плотно и равномерно, каждый последующий ряд изолируется от предыдущего тонкой бумагой или лавсановой плёнкой. Последний ряд обматывается киперной лентой или лакотканью. Если в процессе намотки выполняется отвод, то провод разрывается, а на место разрыва впаивается отвод. Это место тщательно изолируется. Закрепляются концы обмоток с помощью ниток, которыми привязываются провода к поверхности сердечника.

При этом существует хитрость: после первичной обмотки не следует наматывать всю вторичную обмотку сразу. Намотав 10—20 витков, нужно измерить величину напряжения на её концах.

По полученному значению можно представить, сколько витков потребуется для получения нужной амплитуды выходного напряжения, тем самым контролируя полученный расчёт при сборке трансформатора.

Данный онлайн расчет трансформатора выполнен по типовым расчетам электрооборудования. В типовых расчётах все начинается с определения необходимой мощности вторичной обмотки, а уж потом с поправкой на КПД — коэффициент полезного действия, находим мощность всего трансформатора, и на основании этого рассчитываем необходимое сечение и тип сердечника и так далее.

Изначально так и было в моём расчете. Пока не появились предложения от посетителей сайта внести изменения в расчет. По имеющимся размерам трансформаторного железа рассчитываем полную мощность трансформатора, а уж потом видим, какой ток и напряжение можно снять с этого железа. Далее все как по типовому расчёту, выбираем тип: броневой или стержневой, указываем напряжение первичной обмотки, вторичной, частоту переменного тока и так далее.

В результате получаем необходимые расчетные данные трансформатора, например сечение обмоточных проводов, которые сравниваются со стандартными обмоточными проводами и представляются для дальнейшего расчёта. Диапазон обмоточных проводов сечением от 0,000314 до 4,906 мм 2 , всего 63 позиции. На основании имеющихся данных рассчитывается площадь занимаемой обмотками трансформатора, для определения возможности их размещения в окнах трансформатора. Хотелось бы узнать в комментариях ваше мнение, и практические результаты, чтобы если это возможно сделать более качественный расчёт.

Просмотр и ввод комментариев к статье

Как правильно провести расчет трансформаторов разных видов, формулы и примеры

Код для вставки без рекламы с прямой ссылкой на сайт. Код для вставки с рекламой без прямой ссылки на сайт. Скопируйте и вставьте этот код на свою страничку в то место, где хотите, чтобы отобразился калькулятор. Калькулятор справочный портал. Избранные сервисы. Кликните, чтобы добавить в избранные сервисы. Расчет трансформатора, онлайн калькулятор позволит вам рассчитать параметры трансформатора, такие как мощность, ток, количество витков и диаметр провода в обоих обмотках, по его размерам, входному и выходному напряжению. Входное напряжение: В Габаритный размер a: см Габаритный размер b: см Габаритный размер c: см Габаритный размер h: см Выходное напряжение: В Трансформатор — это статическое электромагнитное устройство, состоящее из двух или более индуктивно-связанных обмоток, намотанных на общий ферромагнитный сердечник, предназначенное для преобразования напряжения переменного тока посредством электромагнитной индукции.

Принцип работы устройства

Трансформатор — это электротехническое устройство, предназначенное для передачи энергии без изменения её формы и частоты. Используя в своей работе явление электромагнитной индукции, устройство применяется для преобразования переменного сигнала или создания гальванической развязки. Каждый трансформатор собирается из следующих конструктивных элементов:

  • сердечника;
  • обмотки;
  • каркаса для расположения обмоток;
  • изолятора;
  • дополнительных элементов, обеспечивающих жёсткость устройства.

В основе принципа действия любого трансформаторного устройства лежит эффект возникновения магнитного поля вокруг проводника с текущим по нему электрическим током. Такое поле также возникает вокруг магнитов. Током называется направленный поток электронов или ионов (зарядов). Взяв проволочный проводник и намотав его на катушку и подключив к его концам прибор для измерения потенциала можно наблюдать всплеск амплитуды напряжения при помещении катушки в магнитное поле. Это говорит о том, что при воздействии магнитного поля на катушку с намотанным проводником получается источник энергии или её преобразователь.

В устройстве трансформатора такая катушка называется первичной или сетевой. Она предназначена для создания магнитного поля. Стоит отметить, что такое поле обязательно должно всё время изменяться по направлению и величине, то есть быть переменным.

Читать также: Как собрать простой электрогенератор своими руками

Классический трансформатор состоит из двух катушек и магнитопровода, соединяющего их. При подаче переменного сигнала на контакты первичной катушки возникающий магнитный поток через магнитопровод (сердечник) передаётся на вторую катушку. Таким образом, катушки связаны силовыми магнитными линиями. Согласно правилу электромагнитной индукции при изменении магнитного поля в катушке индуктируется переменная электродвижущая сила (ЭДС). Поэтому в первичной катушки возникает ЭДС самоиндукции, а во вторичной ЭДС взаимоиндукции.

Количество витков на обмотках определяет амплитуду сигнала, а диаметр провода наибольшую силу тока. При равенстве витков на катушках уровень входного сигнала будет равен выходному. В случае когда вторичная катушка имеет в три раза больше витков, амплитуда выходного сигнала будет в три раза больше, чем входного — и наоборот.

От сечения провода, используемого в трансформаторе, зависит нагрев всего устройства. Правильно подобрать сечение возможно, воспользовавшись специальными таблицами из справочников, но проще использовать трансформаторный онлайн-калькулятор.

Отношение общего магнитного потока к потоку одной катушки устанавливает силу магнитной связи. Для её увеличения обмотки катушек размещаются на замкнутом магнитопроводе. Изготавливается он из материалов имеющих хорошую электромагнитную проводимость, например, феррит, альсифер, карбонильное железо. Таким образом, в трансформаторе возникают три цепи: электрическая — образуемая протеканием тока в первичной катушке, электромагнитная — образующая магнитный поток, и вторая электрическая — связанная с появлением тока во вторичной катушке при подключении к ней нагрузки.

Правильная работа трансформатора зависит и от частоты сигнала. Чем она больше, тем меньше возникает потерь во время передачи энергии. А это означает, что от её значения зависят размеры магнитопровода: чем частота больше, тем размеры устройства меньше. На этом принципе и построены импульсные преобразователи, изготовление которых связано с трудностями разработки, поэтому часто используется калькулятор для расчёта трансформатора по сечению сердечника, помогающий избавиться от ошибок ручного расчёта.

Расчет трансформатора, онлайн калькулятор

Сложные многофункциональные устройства, способные преобразовывать электроэнергию из одной величины в другую, на языке электротехники, называют трансформаторами. Для создания такого оборудования, в зависимости от конкретных величин преобразования, применяется специальный расчет. Как правильно проводить расчет трансформаторов, знать в нем основные параметры и формулы, правильно их использовать, уметь пользоваться упрощенной системой проектирования трансформаторов распространенных энерговеличин и становится целью содержания этой статьи. Любая энергосистема, установка, особенно в сети трехфазного 3ф тока и напряжения просто не могла и не может обойтись без такого функционального устройства, как трансформатор.

Одним из часто применяемых устройств в областях энергетики, электроники и радиотехники является трансформатор. Часто от его параметров зависит надёжность работы приборы в целом.

Расчет трансформатора на стержневом сердечнике в онлайн

Энергосистема опознала нового радиотехника и приветливо моргнула всем домом. А тем временем традиционные линейные источники питания на силовых трансформаторах всё чаще стали вытесняться своими импульсными коллегами. При этом, что бы там не говорили авторитетные товарищи про многочисленные технические достоинства импульсных преобразователей, плюс у них только один — массогабаритные показатели. Всё остальное — сплошной минус. Однако этот единственный плюс оказался настолько жирным, что заслонил собой все многочисленные минусы, особенно в тех замесах, когда к электроустройствам не предъявляется каких-либо жёстких требований.

Использование онлайн калькулятора для расчета трансформатора

Ведь не всегда найдётся, например, готовый сетевой трансформатор. Более актуальным этот вопрос становится, когда нужен анодно-накальный или выходной трансформатор для лампового усилителя. Здесь остаётся лишь запастись проволокой и подобрать хорошие сердечники. Достать нужный магнитопровод порой оказывается непросто и приходится выбирать из того, что есть. Для быстрого расчёта габаритной мощности был написан приведённый здесь онлайн калькулятор. По размерам сердечника можно быстро провести все необходимые расчёты, которые выполняются по приведённой ниже формуле, для двух типов: ПЛ и ШЛ.

Онлайн расчёт мощности ленточного сердечника Ведь не всегда найдётся , например, готовый сетевой трансформатор. Более.

Как сделать расчет трансформатора. Расчёт и изготовление силового трансформатора

ВИДЕО ПО ТЕМЕ: Как определить мощность трансформатора, несколько способов
Занимаясь расчетами мощного источника питания, я столкнулся с проблемой — мне понадобился трансформатор тока, который бы точно измерял ток. Литературы по этой теме не много. А в Интернете только просьбы — где найти такой расчет. Прочитал статью ; зная, что ошибки могут присутствовать, я детально разобрался с данной темой. Ошибки, конечно, присутствовали: нет согласующего резистора Rc см.

Такая методика расчета трансформаторов конечно очень приблизительная но для радиолюбительской практики вполне подходит.

Как выбрать ферритовый кольцевой сердечник?

Выбрать примерный размер ферритового кольца можно при помощи калькулятора для расчета импульсных трансформаторов и справочника по ферритовым магнитопроводам. И то и другое Вы можете найти в «Дополнительных материалах».

Вводим в форму калькулятора данные предполагаемого магнитопровода и данные, полученные в предыдущем параграфе, чтобы определить габаритную мощность срдечника.

Не стоит выбирать габариты кольца впритык к максимальной мощности нагрузки. Маленькие кольца мотать не так удобно, да и витков придётся мотать намного больше.

Если свободного места в корпусе будущей конструкции достаточно, то можно выбрать кольцо с заведомо бо’льшей габаритной мощностью.

В моём распоряжении оказалось кольцо М2000НМ типоразмера К28х16х9мм. Я внёс входные данные в форму калькулятора и получил габаритную мощность 87 Ватт. Этого с лихвой хватит для моего 50-ти Ваттного источника питания.

Запустите программу. Выберете «Pacчёт тpaнcфopмaтopa пoлумocтoвoго пpeoбpaзoвaтeля c зaдaющим гeнepaтopoм».

Чтобы калькулятор не «ругался», заполните нолями окошки, неиспользуемые для расчёта вторичных обмоток.

Вернуться наверх к меню.

Онлайн калькулятор расчета трансформатора

Силовой трансформатор является нестандартным изделием, которое часто применяется радиолюбителями, промышленности и при конструировании многих бытовых приборов. Под этим понятием подразумевается намоточное устройство, изготовленное на металлическом сердечнике, набранном из пластин электротехнической стали. Стандартными являются немногие подобные изделия, поэтому чаще всего радиолюбители изготавливают их самостоятельно. Поэтому весьма актуален вопрос: как выполнить расчет трансформатора по сечению сердечника калькулятор использовав для этого? Для изготовления намоточного изделия необходимо руководствоваться множеством сведений. От этого напрямую будет зависеть качество, срок службы готового блока питания.

Выбор типа магнитопровода.

Наиболее универсальными магнитопроводами являются Ш-образные и чашкообразные броневые сердечники. Их можно применить в любом импульсном блоке питания, благодаря возможности установки зазора между частями сердечника. Но, мы собираемся мотать импульсный трансформатор для двухтактного полумостового преобразователя, сердечнику которого зазор не нужен и поэтому вполне сгодится кольцевой магнитопровод. https://oldoctober.com/

Для кольцевого сердечника не нужно изготавливать каркас и мастерить приспособление для намотки. Единственное, что придётся сделать, так это изготовить простенький челнок.

На картинке изображён ферритовый магнитопровод М2000НМ.

Идентифицировать типоразмер кольцевого магнитопровода можно по следующим параметрам.

D – внешний диаметр кольца.

d – внутренний диаметр кольца.

H – высота кольца.

В справочниках по ферритовым магнитопроводам эти размеры обычно указываются в таком формате: КDxdxH.

Пример: К28х16х9

Вернуться наверх к меню.

Расчет трансформатора — audiohobby.ru

Программный (он-лайн) расчет тороидального трансформатора, позволит налету экспериментировать с параметрами и сократить время на разработку. Также можно рассчитать и по формулам, они приведены ниже.


Описание вводимых и расчётных полей программы:

  1. — поле светло-голубого цвета – исходные данные для расчёта,

  2. — поле жёлтого цвета заполнять не требуется – так как данные автоматически выбираются из справочных таблиц, в случае клика ,
    поле меняет цвет на светло-голубой и позволяет ввести собственные значение,

  3. — поле зелёного цвета – рассчитанное значение.


Sст ф — площадь поперечного сечения магнитопровода. Рассчитывается по формуле:
Sст = h * (D – d)/2.


Sок ф – фактическая площадь окна в имеющемся магнитопроводе. Рассчитывается по формуле:
Sок = π * d2 / 4.


Зная эти значения, можно рассчитать ориентировочную мощность трансформатора:

Pc max = Bmax *J * Кок * Кст * Sст * Sок / 0.901

J — Плотность тока, см. табл:




Конструкция магнитопроводаПлотность тока J, [а/мм кв.] при Рвых, [Вт]
2-1515-5050-150150-300300-1000
Кольцевая5-4,54,5-3,53,53,0

Вмах — магнитная индукция, см. табл:




Конструкция магнитопроводаМагнитная индукция Вмах, [Тл] при Рвых, [Вт]
5-1515-5050-150150-300300-1000
Тор1,71,71,71,651,6

Кок — коэффициент заполнения окна, см. табл:




Конструкция магнитопроводаКоэффициент заполнения окна Кок при Рвых, [Вт]
5-1515-5050-150150-300300-1000
Тор0,18-0,200,20-0,260,26-0,270,27-0,28

Кст — коэффициент заполнения магнитопровода сталью, см. табл.




Конструкция магнитопроводаКоэффициент заполнения Кст при толщине стали, мм
0,080,10,150,20,35
Тор0,850,88

elektrosat — Расчёт тороидального трансформатора онлайн

А здесь можно посмотреть как намотать тороидальный трансформатор.

Расчёт тороидального трансформатора онлайн

Программный (он-лайн) расчет тороидального трансформатора, позволит налету экспериментировать с параметрами и сократить время на разработку. Также можно рассчитать и по формулам, они приведены ниже.

Описание вводимых и расчётных полей программы:

  1. — поле светло-голубого цвета – исходные данные для расчёта,
  2. — поле жёлтого цвета заполнять не требуется – так как данные автоматически выбираются из справочных таблиц.
  3. — Нажимая на кнопку , поле табличных значений поменяет цвет на голубой и позволит ввести собственные значения,
  4. — поле зелёного цвета – рассчитанное значение.

 

Sст ф — площадь поперечного сечения магнитопровода. Рассчитывается по формуле:
Sст = h * (D – d)/2.

Sок ф – фактическая площадь окна в имеющемся магнитопроводе. Рассчитывается по формуле:
Sок = π * d2 / 4.

Зная эти значения, можно рассчитать ориентировочную мощность трансформатора:
Pc max = Bmax *J * Кок * Кст * Sст * Sок / 0. 901

J — Плотность тока, см. табл:

Конструкция магнитопроводаПлотность тока J, [а/мм кв.] при Рвых, [Вт]
2-1515-5050-150150-300300-1000
Кольцевая5-4,54,5-3,53,53,0

Вмах — магнитная индукция, см. табл:

Конструкция магнитопроводаМагнитная индукция Вмах, [Тл] при Рвых, [Вт]
5-1515-5050-150150-300300-1000
Тор1,71,71,71,651,6

Кок — коэффициент заполнения окна, см. табл:

Конструкция магнитопроводаКоэффициент заполнения окна Кок при Рвых, [Вт]
5-1515-5050-150150-300300-1000
Тор0,18-0,200,20-0,260,26-0,270,27-0,28

Кст — коэффициент заполнения магнитопровода сталью, см. табл.

Конструкция магнитопроводаКоэффициент заполнения Кст при толщине стали, мм
0,080,10,150,20,35
Тор0,850,88

РАСЧЕТ СЕТЕВОГО ТРАНСФОРМАТОРА | Радиотехника

Если у Вас есть некий трансформаторный сердечник, из которого нужно сделать трансформатор, то необходимо замерить сердечник (как показано на рисунке), а так же замерить толщину пластины или ленты.

Первым делом необходимо рассчитать  площадь сечения сердечника — Sc (см²) и площадь поперечного сечения окна — Sо (см²).

Для тороидального трансформатора:

  • Sc = H * (D – d)/2
  • S0 =  π * d2 / 4

Для Ш и П — образного сердечника:

Определим габаритную мощность нашего сердечника на частоте 50 Гц:

  • η — КПД трансформатора,
  • Sc — площадь поперечного сечения сердечника, см2,
  • So — площадь поперечного сечения окна, см2,
  • f — рабочая частота трансформатора, Гц,
  • B — магнитная индукция, T,
  • j — плотность тока в проводе обмоток, A/мм2,
  • Km — коэффициент заполнения окна сердечника медью,
  • Kc — коэффициент заполнения сечения сердечника сталью.

При расчете трансформатора необходимо учитывать, что габаритная мощность трансформатора должна быть больше расчетной электрической мощности вторичных обмоток.

Исходными начальными данными для упрощенного расчета являются:

  • напряжение первичной обмотки U1
  • напряжение вторичной обмотки U2
  • ток вторичной обмотки l2
  • мощность вторичной обмотки Р2 =I2 * U2 = Рвых
  • площадь поперечного сечения сердечника Sc
  • площадь поперечного сечения окна So
  • рабочая частота трансформатора f = 50 Гц

КПД (η) трансформатора можно взять из таблицы, при условии что Рвых = I2 * U2 (где I2 ток во вторичной обмотке, U2 напряжение вторичной обмотки), если в трансформаторе несколько вторичных обмоток, что считают Pвых каждой и затем их складывают.

B — магнитная индукция выбирается из таблицы, в зависимости от конструкции магнитопровода и Pвых.

j — плотность тока в проводе обмоток , так же выбирается в зависимости от конструкции магнитопровода и Pвых.

Km — коэффициент заполнения окна сердечника медью

Kc — коэффициент заполнения сечения сердечника сталью

Коэффициенты заполнения для пластинчатых сердечников указаны в скобках при изоляции пластин лаком или фосфатной пленкой.

При первоначальном расчете необходимо соблюдать условие — Pгаб ≥ Pвых, если это условие не выполняется то при расчете уменьшите ток или напряжение вторичной обмотки.

После того как Вы определились с габаритной мощностью трансформатора, можно приступить к расчету напряжения одного витка:

где Sc — площадь поперечного сечения сердечника, f — рабочая частота (50 Гц), B — магнитная индукция выбирается из таблицы, в зависимости от конструкции магнитопровода и Pвых.

Теперь определяем число витков первичной обмотки:

w1=U1/u1

где U1 напряжение первичной обмотки, u1 — напряжение одного витка.

Число витков каждой из вторичных обмоток находим из простой пропорции:

где w1 — кол-во витков первичной обмотки, U1 напряжение первичной обмотки, U2 напряжение вторичной обмотки.

Определим мощность потребляемую трансформатором  от сети с учетом потерь:

Р1 = Рвых /  η

где η — КПД трансформатора.

Определяем величину тока в первичной обмотке трансформатора:

I1 = P1/U1

Определяем диаметры проводов обмоток трансформатора:

d = 0,632*√ I

где d — диаметр провода, мм, I — ток обмотки, А (для первичной и вторичной обмотки).

Для упрощения расчета можно воспользоваться онлайн-калькулятором — https://rcl-radio.ru/?p=20670

Пример расчета

РАСЧЕТ СЕТЕВОГО ТРАНСФОРМАТОРА на сайте rcl-radio.ru

Калькулятор катушек и трансформаторов

Калькулятор катушек и трансформаторов

Вернуться к оглавлению.

Калькулятор катушек и трансформаторов.

С помощью этого калькулятора катушек вы можете спроектировать и рассчитать свойства катушки.
или трансформатор.
Введите параметры в поля желтого цвета и
затем нажмите кнопки расчета.

Ниже калькулятора вы найдете более подробное описание расчетов.
Используйте десятичную точку (не запятую), если
вы хотите ввести десятичные дроби.

рекомендую
вы также можете прочитать эту веб-страницу
о катушках и трансформаторах, многие вещи, которые я использую в этом калькуляторе,
Я там учился.
Он объясняет это очень ясно.

Объяснение некоторых терминов, используемых в этом калькуляторе

Индуктивность: L

Индуктивность катушки — это свойство, которое описывает соотношение
между напряжением, индуцированным в катушке, и изменением тока через катушку.

L = V L / (di / dt)

Где:
L = индуктивность катушки в Генри (Гн).
В L = Напряжение, индуцированное в катушке, в вольтах
di / dt = изменение тока через катушку в амперах в секунду.

Магнитный поток: Φ

Магнитный поток, обычно обозначаемый как Φ, равен
измеряется в единицах Вебера (Вб).
Если у вас есть петля из провода, и вы подаете на нее 1 Вольт в течение 1 секунды, магнитный
поток в петле изменится на 1 Вебера.
Неважно, какого размера или формы петля, или из какого материала внутри
петля есть.
Вы можете представить себе единицу Wb как количество силовых линий магнитного поля, проходящих через
петля.

Для одиночного контура применяется:
Φ = Vt

Если катушка имеет более одного витка, мы можем использовать следующую формулу:
Φ = Vt / N

Где:
Φ = изменение магнитного потока в катушке в Weber
V = напряжение на катушке в вольтах
t = время в секундах
N = количество витков катушки

Плотность магнитного потока: B

Плотность магнитного потока B измеряется в единицах
Тесла (Т).
Плотность магнитного потока указывает магнитный поток через определенную область.

Одна Tesla — это один Вебер на квадратный метр
Или в формуле:
B = Φ / A

Где:
B = плотность магнитного потока в теслах
Φ = магнитный поток в Weber
A = площадь в квадратных метрах

Максимальная плотность магнитного потока при низкой
частота: Bmax = Bsat

Магнитные материалы, используемые в сердечниках катушек и трансформаторов, могут использоваться до
определенная максимальная плотность магнитного потока.
Для низкочастотных приложений (включая постоянный ток) максимальная плотность потока ограничена магнитным
насыщения материала сердечника, эта плотность потока называется Bsat.
В насыщенном состоянии все магнитные области в материале направлены одинаково
направление.

Однако теоретически возможно увеличить плотность потока выше насыщения,
из-за проницаемости вакуума.
Но для этого требуется большой ток через катушку и чрезмерные потери мощности в
обмотки.
Выше насыщения катушка потеряет большую часть своей индуктивности и запустится.
действует как катушка без материала катушки.
Итак, держите плотность потока ниже Bsat.
Значение Bsat указано в спецификации материала сердечника.
Например, Bsat составляет около 0,3 Тл для ферритового материала и около 1,3 Тл для
кремнистая сталь.

Значение Bsat зависит от температуры, чем выше температура, тем
в большинстве случаев ниже Bsat.
В этом калькуляторе я использую значение Bsat при 100 ° C,
который автоматически появляется в поле Bmax при выборе материала сердцевины.
Итак, это наиболее безопасное значение, при более низкой температуре, однако Bsat может быть
выше.

Максимальная плотность магнитного потока
на более высокой частоте: Bmax

Для более высокочастотных приложений максимальный поток
плотность в ядре ограничена потерями мощности в ядре, а не ядром
насыщенность.
На более высоких частотах нам нужно уменьшить значение Bmax ниже
Значение Bsat, чтобы избежать перегрева ядра из-за потери собственной мощности.
Чем выше частота, тем ниже значение Bmax.

Для сердечников большего размера необходимо соблюдать плотность потока Bmax.
ниже, чем для сердечников меньшего размера, чтобы избежать перегрева сердечника.
Это потому, что объем сердечника (который производит тепло) увеличивается.
быстрее, чем внешняя часть сердечника (которая должна рассеивать тепло).

Мой калькулятор катушек и трансформаторов не рассчитывает для вас потери в сердечнике.
Вместо этого вы должны ввести определенную максимальную плотность потока в калькулятор,
что будет удерживать потери в сердечнике ниже желаемого уровня.

Потери в сердечнике в сердечниках из кремнистой стали

На следующих рисунках показаны некоторые примеры потерь в сердечнике из кремнистой стали (также
называется: электротехническая сталь или трансформаторная сталь).

Рисунок 1. Потери в сердечнике в кремнистой стали.

На рисунке 1 приведены некоторые примеры потерь в сердечнике при различной толщине ламинирования.
и частоты.
Чем выше частота, тем больше потери.
А более толстая ламинация дает большие потери.
Чтобы преобразовать толщину ламинирования из «мил» в «мм», умножьте на 0,0254.
Однако потери в сердечнике (в ватт / кг) выше на более высоких частотах,
Сердечник трансформатора можно уменьшить на более высоких частотах.
И вы можете получить высокочастотный трансформатор с меньшими потерями в сердечнике (в ваттах),
по сравнению с низкочастотным трансформатором той же мощности.

Для трансформаторов линий электропередачи при 50 или 60 Гц потери в сердечнике обычно очень велики.
ниже потери в обмотках при полной нагрузке.
При 50 или 60 Гц вы можете использовать в конструкции трансформатора, плотность потока в
ядро равно: Bsat.

Для аудиопреобразователя вы разрабатываете самую низкую частоту звука.
сигнал, если он не превышает 100 Гц, вы можете использовать Bsat в качестве
максимальная плотность потока в сердечнике.
Для более высоких звуковых частот ток намагничивания и плотность потока в
ядро автоматически уменьшается.

Рисунок 2, потери в сердечнике в кремнистой стали при различных частотах.
Эти данные относятся к неориентированной кремнистой стали марки М-19 толщиной 14 мил или
Толщина 0,36 мм.
О, а 1 фунт равен 0,45359 кг.

Потери в ферритовых сердечниках

Ферритовые сердечники имеют гораздо меньшие потери мощности на высоких частотах, чем кремниевые
стальные сердечники.
Информация о максимальной плотности потока на определенной частоте может быть
найдено в техническом описании ферритового материала, вот два примера:

Рисунок 3. Потери в сердечнике феррита N27.

На рисунке 3 показано соотношение между частотой, плотностью потока и потерями мощности в
сердечник для ферритового материала N27, который насыщается при 0,41 Тл при 100
C.
Предположим, мы хотим, чтобы максимальная потеря мощности в активной зоне составляла 100 кВт / м.
, что соответствует 100 мВт / см, я обозначил это значение красной линией.
Для сигнала 10 кГц (зеленая линия) мы находим максимальное пиковое значение для
поток 300 мТл (= 0,3 Тл) при 100 C.
А для 200 кГц (синяя линия) мы находим максимум 50 мТл (= 0.05 Тесла).

Рисунок 4. Потери в сердечнике феррита 3C90.

На рисунке 4 показаны потери в сердечнике для ферритового материала 3C90, здесь данные
представлен немного иначе.
Для потерь в сердечнике 100 кВт / м (= 100 мВт / см) мы
найдите на частоте 200 кГц максимальную пиковую плотность потока 70 мТл (= 0,07 Тл).


Эффективная площадь поперечного сечения сердечника: Ae

Эффективная площадь поперечного сечения сердечника может быть найдена в
лист данных ядра, это предпочтительный метод.
Или можете измерить.
Но только магнитный материал является частью эффективной площади поперечного сечения, поэтому
любое изолирующее покрытие, которое может покрывать сердцевину.


Рисунок 5: В сердечнике трансформатора EI эффективная площадь поперечного сечения (Ae),
это площадь центральной ножки.
Обе внешние ноги обычно имеют площадь 1/2 Ae.

Когда вы уложили несколько жил, общая эффективная площадь поперечного сечения
Ae (всего), равно значению Ae одного ядра, умноженному на количество
ядра

Максимальный магнитный поток в сердечнике:

Φmax

Максимальный магнитный поток в сердечнике рассчитывается по формуле:
Φmax = Bmax.Ae (всего)

Где:
Φmax = максимальный магнитный поток в сердечнике в Weber
Bmax = максимальная плотность магнитного потока в сердечнике в Тесла
Ae (total) = Общая эффективная площадь поперечного сечения сердечника в квадратных метрах

Относительная проницаемость керна:
μr.

Относительная проницаемость
мкр жилы
Материал показывает, насколько больше индуктивности будет у вашей катушки по сравнению с
катушка с вакуумом в сердечнике.
Вакуум имеет проницаемость (μ0)
около 1.2566. 10 -6 Гн / м (Генри на метр).
Относительная проницаемость не имеет единиц измерения.
Air имеет значение μr 1.00000037, поэтому
практически равняется вакууму.
Относительная проницаемость материала керна μr часто
зависит от плотности магнитного потока в сердечнике.
В этом калькуляторе я использую значение μr, близкое к нулю.
плотность потока, в таблицах это обозначается как μi
(относительная начальная проницаемость).
Еще один параметр, который вы можете найти в таблицах данных: μa
(относительная амплитудная проницаемость), которая является значением μr
при более высокой плотности потока.

Эффективная проницаемость керна:
мкэ

Если у вас есть катушка, намотанная на кольцевой сердечник, сердечник полностью состоит из сердечника
материал, и полностью закрыт . .
Тогда эффективная проницаемость равна относительной проницаемости
основной материал.

Но многие сердечники состоят из двух частей, которые соединены вокруг катушки.
бывший с обмотками на нем.
Две основные части всегда будут иметь некоторый промежуток или воздушный зазор в
между ними, что, кажется, снижает проницаемость ядра.
У вас есть керн с эффективной проницаемостью, которая меньше, чем
относительная проницаемость материала сердечника.

Иногда в сердечнике намеренно делают воздушный зазор, чтобы уменьшить
эффективная проницаемость.
При этом увеличивается максимальный ток через катушку, но не магнитный поток.
плотность в ядре.
Это дает тот же эффект, что и при использовании другого материала сердцевины с меньшей проницаемостью.

Эффективная проницаемость сердечника с воздушным зазором составляет:

мкэ = мкр.le / (le + (g .μr))

Где:
μe = эффективная проницаемость керна.
мкм = относительная проницаемость материала сердечника.
le = эффективная длина магнитного пути в сердечнике
g = длина воздушного зазора (измеряется в тех же единицах, что и le)

Эффективная длина магнитного пути в сердечнике: le

Эффективная длина магнитного путь в ядре можно найти в
даташит ядра.
Или можно прикинуть по габаритам сердечника.
Это длина линии магнитного поля в центре материала сердечника.
поедет.
Не включайте воздушный зазор в эту длину пути, а только путь в сердечнике
сам материал.

Воздушный зазор: g

Воздушный зазор — это слой воздуха на магнитном пути сердечника.

Рис. 6: воздушный зазор в центральной ножке сердечника трансформатора EI.

На рисунке 6 показан воздушный зазор, вызванный короче центральной опоры трансформатора.
затем две внешние ноги.
Пунктирными линиями обозначены силовые линии магнитного поля длиной: le

Рис. 7: воздушный зазор во всех выводах сердечника трансформатора EI.

На рис. 7 показан еще один сердечник трансформатора ЭУ с воздушным зазором.
Здесь все ножки трансформатора имеют одинаковую длину, а воздушный зазор создается
слегка раздвинув части «E» и «I».
Видите ли, линии поля теперь должны дважды перепрыгивать через слой воздуха, чтобы сформировать
замкнутый цикл.
Это означает, что мы должны рассчитывать с воздушным зазором, который вдвое превышает расстояние
между частями «E» и «I».

Воздушный зазор не обязательно заполняется воздухом или другими немагнитными материалами.
как бумага или пластик, тоже пригодятся.
В трансформаторах воздушный зазор в сердечнике приведет к снижению связи между
обмотки, которые могут быть нежелательными.

Коэффициент индуктивности: AL.

Коэффициент индуктивности AL сердечника — это
индуктивность одной обмотки вокруг этого сердечника.
Если у вас более одной обмотки, индуктивность катушки будет:

L = N.AL

Где:
L = индуктивность катушки
N = количество витков
AL = коэффициент индуктивности сердечника

Если вам неизвестен коэффициент AL сердечника, это может быть
рассчитано из эффективной проницаемости и размеров керна:

AL = μ0. мкэ. Ae (всего) /
le

Где:
AL = коэффициент индуктивности в Гн / Н
μ0 = проницаемость вакуума = 1,2566. 10 -6 H / м
μe = эффективная проницаемость сердечника
Ae (total) = общая эффективная площадь поперечного сечения сердечника в м
le = эффективная длина магнитного пути в сердечнике в м.

Объединение сердечников

Объединение сердечников означает использование более одной жилы и пропускание обмоток через все
эти ядра.
По сравнению с катушкой с одним сердечником, индуктивность умножается на количество
ядра сложены.

Рисунок 8: катушка на стопке из 5 сердечников

Сопротивление провода

Провод, который вы используете для наматывания катушки или трансформатора, будет иметь некоторое сопротивление.
Это сопротивление рассчитывается по формуле:

R = ρ.l / A

Где:
R = сопротивление провода
ρ = удельное сопротивление материала провода в Ом · м, для меди это около
1,75. 10 -8 Ом · м
l = длина провода в метрах
A = площадь поперечного сечения провода в квадратных метрах

Общая площадь котла обмотки.

Расчетное значение площади меди, как говорится, только для меди
обмотки.
На практике также приходится иметь дело с изоляцией проводов, воздух между витками
и, вероятно, формирователь катушки.
Итак, на практике вам нужно больше места для обмотки, скажем в 2,5 или 3 раза
расчетное значение для меди.

Максимальный ток (пиковое значение постоянного или переменного тока) через катушку

Максимальный ток через катушку — это ток, который дает максимум
допустимый магнитный поток в сердечнике.

Imax = Φmax. Н / д

Где:
Imax = максимальный ток через катушку (пик постоянного или переменного тока)
Φmax = максимальный магнитный поток в сердечнике в Weber
N = количество витков
L = индуктивность катушки в Генри

Зарядка время до максимального тока.

Когда вы подключаете катушку к источнику постоянного напряжения V, ток I увеличивается с
время.
Другими словами, вы заряжаете катушку.
Пока катушка не имеет сопротивления, ток увеличивается линейно, и
время достижения определенного тока определяется по формуле:

t = L.I / V

Если катушка имеет сопротивление, увеличение тока больше не является линейным.
Максимальный ток через катушку ограничен значением: I = V / R.
Время зарядки катушки с сопротивлением рассчитывается по формуле:

т = -L / R.LN (1- (I.R / V))

Где:
t = время в секундах для увеличения тока от нуля до значения I.
L = индуктивность катушки в Генри.
R = Сопротивление катушки в Ом.
LN = Натуральный логарифм.
I = ток в амперах, для которого вы рассчитываете время зарядки.
В = напряжение на катушке.

В этом калькуляторе рассчитывается время, чтобы зарядить до максимальной катушки.
ток, так что ток, который дает плотность потока Bmax в сердечнике.

Накопленная энергия в катушке

Когда через катушку протекает ток, определенное количество энергии
хранится в катушке.
Накопленная энергия рассчитывается с помощью:

E = 1/2. (L. I)

Где:
E = накопленная энергия в катушке в джоулях
L = индуктивность катушки в Генри
I = ток через катушку в амперах

Максимальное напряжение переменного тока на катушке

Максимальное напряжение переменного тока (синусоида), которое вы можете приложить к катушке, составляет
рассчитано по формуле:

Vmax = 4,44. Φмакс. N. f

Где:
Vmax = максимальное синусоидальное напряжение переменного тока на катушке, среднеквадратичное значение в вольтах
Φmax = максимальный магнитный поток в сердечнике в Weber
N = количество витков на катушке
f = частота напряжения в герцах

Фактор 4.44 — это произведение двух
коэффициенты, которыми являются:
4, поток изменяется от нуля до + Φmax за 1/4 цикла, следующая 1/4 цикла
он возвращается к нулю, следующие две 1/4 цикла до -Φmax и обратно до
нуль.
Таким образом, за один цикл поток изменяется в 4 раза по Φmax.
Умноженное на:
1,11, это форм-фактор синусоидальной волны, который представляет собой отношение среднеквадратичного значения к
среднее значение.

Вот еще один способ вычисления максимального переменного напряжения на катушке:
Vmax = Imax.2. пи. f .L / √2
Здесь мы умножаем максимальный ток, проходящий через катушку, на полное сопротивление катушки при
частоту f, а затем разделите на √2, чтобы преобразовать пиковое значение в значение RMS.


Число витков первичной обмотки трансформатора.

Из формулы для максимального напряжения на катушке (см. Выше) мы легко можем
найти формулу количества витков первичной обмотки трансформатора.

Np = Vp / (4.44. Φmax. F) Эта формула предназначена для синусоидальной волны.
напряжения.

Где:
Np = количество витков первичной обмотки
Vp = первичное напряжение (= входное напряжение) трансформатора, среднеквадратичное значение,
Φmax = максимальный магнитный поток в сердечнике в Weber
f = частота напряжения в Гц

Если вы используете трансформатор для прямоугольных напряжений, форм-фактор для
Напряжение равно 1 (вместо 1,11 для синусоид),
, а количество витков трансформатора должно быть в 1,11 раза больше.

Количество витков, которое мы теперь вычислили, является минимальным количеством первичных
оказывается.
Если уменьшить количество витков первичной обмотки, сердечник трансформатора
магнитное насыщение, которого необходимо избегать.
Однако разрешено делать количество витков (как первичных, так и вторичных)
выше, но это увеличит сопротивление обмоток, и тем самым
потеря мощности трансформатора.
Для трансформаторов линий электропередач обычно количество витков
минимально возможное значение, достаточное для предотвращения насыщения сердечника при максимальном вводе
Напряжение.

Количество витков вторичного трансформатора

В идеальном трансформаторе без потерь соотношение напряжений между вторичной и первичной обмотками
стороны, такое же, как отношение витков между вторичной и первичной сторонами.
Или в формуле:
Vs / Vp = Ns / Np

Где:
Vs = Напряжение на вторичной стороне
Vp = Напряжение на первичной стороне
Ns = Число витков вторичной обмотки
Np = Число витков первичной обмотки

Отсюда следует:
Ns = Np. Vs / Vp

Мы могли бы также рассчитать его по формуле, очень похожей на формулу
первичные витки:
Ns = Vs / (4.44. Φmax. f) Эта формула предназначена для синусоидальной волны
напряжения.

Индуктивность первичной обмотки трансформатора

Это индуктивность первичной обмотки трансформатора.
Вы можете измерить индуктивность первичной обмотки с помощью измерителя индуктивности.
При этом вторичная обмотка ни к чему не должна подключаться.

Или, если вы знаете количество витков первичной обмотки и коэффициент AL, первичный
индуктивность можно рассчитать с помощью:

Lp = Np. AL

Где:
Lp = первичная индуктивность
Np = количество витков первичной обмотки
AL = коэффициент индуктивности сердечника

Значение индуктивности первичной обмотки необходимо для расчета намагничивания
ток трансформатора.

Ток намагничивания

Ток намагничивания — это небольшой ток, который протекает через первичную обмотку.
обмотка трансформатора, даже если выход трансформатора не нагружен.
Ток намагничивания создает магнитный поток в трансформаторе.
ядро.
Амплитуда тока намагничивания рассчитывается по формуле:

Im = Vp / (2.pi.f.Lp)

Где:
Im = ток намагничивания в Амперах RMS
Vp = Первичное напряжение в Volt RMS
f = частота в Герцах
Lp = Первичная индуктивность трансформатора в Генри

Ток намагничивания фактически такой же, как
максимальный ток, который мы рассчитали для катушки.
Но для максимального тока катушки мы вычислили пиковое значение, в
ток намагничивания трансформатора мы рассчитываем действующее значение, поэтому есть коэффициент
1.414 между.

Если мы собираемся нагружать вторичную обмотку трансформатора, ток через
первичная обмотка поднимется.
Но поток в сердечнике останется прежним.
Это потому, что ток во вторичной обмотке дает противоположный поток,
который нейтрализует весь дополнительный поток первичной обмотки.
Итак, в конце мы сохраняем только магнитный поток, вызванный током намагничивания,
как бы тяжело мы ни нагружали трансформатор.

Ну так должно быть, если обмотки трансформатора имеют нулевое сопротивление.
Однако на практике обмотки трансформатора имеют некоторое сопротивление.
Ток через первичную обмотку дает некоторое падение напряжения на
сопротивление первичной обмотки.
Это вызывает уменьшение напряжения на первичной индуктивности (Lp), и это
уменьшит ток намагничивания (Im) и магнитный поток в сердечнике.

Итак, для практических трансформаторов (с некоторым сопротивлением в обмотках)
ток намагничивания и магнитный поток в сердечнике уменьшатся, когда вы загрузите
трансформатор более тяжелый.
Это вызвано не сердечником трансформатора, а сопротивлением первичной обмотки.
обмотка.

Номинальная мощность

Мощность, которую может выдать трансформатор, ограничена сопротивлением
обмотки, а не сам сердечник.

Сопротивление обмоток приведет к понижению напряжения вторичного трансформатора.
падение при более высоких токах нагрузки.
Это один из ограничивающих факторов, насколько допустимое падение напряжения
применение?

Другой ограничивающий фактор: потери мощности в первичной и вторичной обмотке.
Больший ток нагрузки на вторичной обмотке означает больше потерь мощности в первичной
и вторичные обмотки.
Потеря мощности приведет к нагреву обмоток трансформатора.
Во избежание перегрева трансформатора выходной ток трансформатора должен
быть ограниченным ниже некоторого максимума.

Чтобы сделать трансформатор с высокой номинальной мощностью, мы должны поддерживать сопротивление
как можно ниже обмотки.
В первую очередь это делают:
сохраняя как можно меньшее количество витков, делая магнитный поток
плотность в ядре как можно более высокая, чуть ниже насыщения.
Еще одна полезная вещь: использование большого сердечника трансформатора, а не потому, что сердечник
ограничивает мощность, а потому что:

— Большой сердечник дает больше места для обмоток,
поэтому мы можем использовать более толстую проволоку для уменьшения сопротивления.
— Большая площадь сердечника означает, что вы можете увеличить поток (не поток
плотность) за счет уменьшения количества витков.
— Трансформатор большего размера может лучше рассеивать тепло, вызванное потерей мощности.

Калькулятор трансформаторов рассчитает для вас
падение напряжения на вторичной обмотке и потери мощности в обмотках.
Вам решать, какое падение напряжения и потеря мощности допустимы для
ваш трансформатор.

Ток первичной обмотки трансформатора

Ток, идущий в первичную обмотку трансформатора (Ip), складывается из
следующие токи:
Ток намагничивания (Im), который составляет 90
за первичным напряжением.
Ток, вызванный током вторичной нагрузки (Is), появляется ток нагрузки.
на первичной обмотке величиной: Is. Ns / Np.

Ip = √ (Im + (Is.Ns / Np))

На самом деле существует также некоторый первичный ток, вызванный потерями в сердечнике, но я игнорирую
этот.
Не то чтобы этот ток обязательно незначительно мал, но я тоже его нашел
сложно реализовать потери в сердечнике в калькуляторе.
Так что я просто опускаю его.
Так или иначе, первичный ток трансформатора при полной нагрузке почти только в зависимости
от вторичного тока нагрузки.

Потери в трансформаторе

В этом калькуляторе потери в трансформаторе рассчитываются на основе
ток нагрузки, ток намагничивания и сопротивление обмоток постоянному току.

Однако есть и другие причины потерь в трансформаторе, например:
— Потери в сердечнике (потери на гистерезис и потери на вихревые токи).
— Емкость внутри и между обмотками.
— Скин-эффект и эффект близости, увеличивающие сопротивление провода при более высоких
частоты.
Но я их опускаю, поэтому вам не нужно указывать все правильные параметры для
эти эффекты, и для меня калькулятор не стал слишком сложным в изготовлении.

Ток намагничивания играет незначительную роль в потерях трансформатора, но I
реализовали это в калькуляторе, потому что это было довольно легко сделать.


Рисунок 9

На рисунке 9 показана эквивалентная схема для трансформатора, включая первичную обмотку.
сопротивление (Rp), вторичное сопротивление (Rs) и первичная индуктивность (Lp).
Резистор RL — это нагрузочный резистор, который вы подключаете к трансформатору.
вывод.
«Идеальный трансформатор» в схеме — это воображаемое устройство без потерь, с
бесконечная индуктивность и нулевое сопротивление.

Рисунок 10: упрощение рисунка 9.

На рисунке 10 показаны идеальные трансформаторы Rs и RL из рисунка 9.
заменяется одним резистором номиналом (Rs + RL). (Np / Ns).
Теперь можно рассчитать напряжение на катушке Lp, а затем
ток намагничивания.
Я не буду подробно объяснять, как идет этот расчет, калькулятор
делаем расчет за вас.
Напряжение на Lp можно умножить на Ns / Np, чтобы получить напряжение на Rs + RL.
Таким образом мы можем определить мощность на всех резисторах.


Вернуться к оглавлению.

Калькулятор коэффициента трансформации трансформатора

Основная функция силового трансформатора заключается в повышении или понижении напряжения в соответствии с требованиями. Величина трансформации напряжения в трансформаторе зависит от его коэффициента трансформации.Выходное напряжение любого трансформатора теоретически можно рассчитать исходя из его коэффициента трансформации. Используйте следующий калькулятор коэффициента трансформации трансформатора для расчета коэффициента трансформации.


Онлайн-калькулятор коэффициента поворота

Вычислить с использованием SelectVoltageTurnsCurrent


Что такое передаточное число?

Каждая катушка трансформатора содержит определенное количество витков проводника. Коэффициент витков определяется как отношение числа витков проводника в первичной обмотке к числу витков проводника во вторичной обмотке.Пусть N p будет числом витков проводника в первичной катушке, а N s — числом витков проводника во вторичной обмотке, тогда отношение витков трансформатора может быть задано следующим уравнением:

Передаточное число в идеальном трансформаторе

Предполагается, что идеальный трансформатор имеет нулевое сопротивление обмотки, нулевой поток утечки и нулевые потери. В качестве идеального трансформатора рассмотрите идеальный трансформатор с числом витков Np в первичной обмотке и числом Ns во вторичной обмотке.Пусть Vp будет напряжением, приложенным к первичной обмотке с частотой «f», Vp будет напряжением, измеренным на вторичной обмотке. Пусть φ — поток, соединяющий обе катушки.

Напряжение, индуцируемое за один оборот
первичный от

V p / N p = k. φ м . f

Где k — постоянная величина, а φ м — максимальный поток. Из приведенного выше уравнения

φ м = V p / N p .к.ф

Поскольку тот же поток связывает первичный
и вторичный,

В с / Н с =
k. φ м .f и φ м = V с
/ N с . k.f

Следовательно, V p / N p .
k.f = V с / N с . k.f

Следовательно, V p / N p = V s / N s и V p с = N p / N с

Связь между коэффициентом оборотов и текущим током

Для идеального трансформатора входная мощность всегда равна выходному напряжению.

Следовательно, V p . Я стр .
cosϕ = V с . Я с . cosϕ

Следовательно, V p / V s = I s / I p

Где I p и I s первичный и
вторичный ток соответственно.

Следовательно, для идеального трансформатора выходной ток изменяется обратно пропорционально напряжению.В повышающем трансформаторе первичное напряжение может быть увеличено в зависимости от отношения витков, но ток нагрузки такой же нагрузки при повышенном напряжении будет уменьшаться обратно пропорционально соотношению витков.

Как рассчитать обмотку трансформатора

Обновлено 28 декабря 2020 г.

Автор С. Хуссейн Атер

Если вы когда-нибудь задумывались, как дома и здания используют электроэнергию от электростанций, вы должны узнать о трансформаторах в силовых распределительные сети, преобразующие токи высокого напряжения в те, которые вы используете в бытовых приборах.Эти трансформаторы имеют простую конструкцию для большинства типов трансформаторов, но могут сильно различаться по степени изменения входного напряжения в зависимости от того, как они построены.

Формула обмотки трансформатора

Трансформаторы, которые используются в системах распределения электроэнергии, имеют простую конструкцию, в которой используется катушка, намотанная вокруг магнитного сердечника в различных областях.

Эти катушки с проводом принимают входящий ток и изменяют напряжение в соответствии с коэффициентом витков трансформатора , который равен

\ frac {N_P} {N_S} = \ frac {V_P} {V_S}

для числа обмотки первичной обмотки и вторичной обмотки N p и N s соответственно, а напряжение первичной обмотки и вторичной обмотки V p и V s соответственно.

Эта формула обмотки трансформатора сообщает вам долю, на которую трансформатор изменяет входящее напряжение, и что напряжение обмоток катушки прямо пропорционально количеству обмоток самих катушек.

Имейте в виду, что, хотя эта формула называется «соотношением», на самом деле это дробь, а не соотношение. Например, если у вас есть одна обмотка в первичной обмотке и четыре обмотки во вторичной обмотке трансформатора, это будет соответствовать доле 1/4, что означает, что трансформатор снижает напряжение на значение 1/4. Но соотношение 1: 4 означает, что для одного чего-то есть четыре других, что не всегда означает то же самое, что и дробь.

Трансформаторы могут повышать или понижать напряжение и известны как повышающие трансформаторы или понижающие трансформаторы в зависимости от того, какое действие они выполняют. Это означает, что коэффициент трансформации трансформатора всегда будет положительным, но может варьироваться от более единицы для повышающих трансформаторов до менее единицы для понижающих трансформаторов.

Формула обмотки трансформатора верна только тогда, когда углы первичной и вторичной обмоток совпадают по фазе друг с другом. Это означает, что для данного источника питания переменного тока (AC), который переключается вперед и назад между прямым и обратным током, ток как в первичной, так и во вторичной обмотке синхронизируется друг с другом во время этого динамического процесса.

Могут быть трансформаторы с коэффициентом трансформации 1, которые не изменяют напряжение, а вместо этого используются для разделения различных цепей друг от друга или для небольшого изменения сопротивления цепи.

Калькулятор конструкции трансформатора

Вы можете понять свойства трансформаторов, чтобы определить, что калькулятор конструкции трансформатора будет учитывать как метод определения того, как сконструировать трансформаторы.

Хотя первичная и вторичная обмотки трансформатора отделены друг от друга, первичная обмотка индуцирует ток во вторичных обмотках за счет индуктивности. Когда источник питания переменного тока подается через первичные обмотки, ток течет по виткам и создает магнитное поле с помощью метода, называемого взаимной индуктивностью.

Формула обмотки трансформатора и магнетизм

Магнитное поле описывает, в каком направлении и насколько сильный магнетизм будет действовать на движущуюся заряженную частицу. Максимальное значение этого поля составляет dΦ / dt , скорость изменения магнитного потока Φ за небольшой период времени.

Поток — это измерение того, сколько магнитного поля проходит через определенную площадь поверхности, например прямоугольную. В трансформаторе силовые линии магнитного поля направляются наружу от магнитной катушки, вокруг которой намотаны провода.

Магнитный поток связывает обе обмотки вместе, а сила магнитного поля зависит от силы тока и количества обмоток. Это может дать нам калькулятор расчета трансформатора , который учитывает эти свойства.

Закон индуктивности Фарадея, который описывает, как магнитные поля индуцируются в материалах, диктует, что напряжение любой из обмоток индуцирует

либо для первичной, либо для вторичной обмоток. Обычно это называется наведенной электродвижущей силой ( ЭДС ).

Если бы вы измерили изменение магнитного потока за небольшой период времени, вы могли бы получить значение dΦ / dt и использовать его для вычисления ЭДС . Общая формула для магнитного потока:

\ Phi = BA | cos {\ theta}

для магнитного поля B , площади поверхности плоскости в поле A и угла между магнитным полем линии и направление, перпендикулярное области θ .

Вы можете учесть геометрию обмоток вокруг магнитопровода трансформатора, чтобы измерить поток. Askat

для источника питания переменного тока, где ω — угловая частота ( 2πf для частоты f ) и Φ max — максимальный поток.В этом случае частота f относится к количеству волн, которые проходят через заданное место каждую секунду. Инженеры также называют произведение силы тока на количество витков обмоток как « ампер на », то есть мера силы намагничивания катушки.

Примеры калькулятора обмоток трансформатора

Если вы хотите сравнить экспериментальные результаты того, как обмотки трансформаторов влияют на их использование, вы можете сравнить наблюдаемые экспериментальные свойства с характеристиками калькулятора обмоток трансформатора.

Компания-разработчик программного обеспечения Micro Digital предлагает онлайн-калькулятор обмотки трансформатора для расчета стандартного калибра проводов (SWG) или американского калибра проводов (AWG). Это позволяет инженерам производить провода соответствующей толщины, чтобы они могли нести заряды, необходимые для их целей. Калькулятор оборотов трансформатора подскажет индивидуальное напряжение на каждом витке обмотки.

Другие калькуляторы, например, от компании-производителя Flex-Core, позволяют рассчитать сечение провода для различных практических применений, если вы введете номинальную нагрузку, номинальный вторичный ток, длину провода между трансформатором тока и измерителем и входную нагрузку. метра.

Трансформатор тока создает напряжение переменного тока во вторичной обмотке, пропорциональное току в первичной обмотке. Эти трансформаторы снижают токи высокого напряжения до более низких значений, используя простой метод контроля фактического электрического тока. Нагрузка — это сопротивление самого измерительного прибора пропускаемому через него току.

Hyperphysics предлагает онлайн-интерфейс расчета мощности трансформатора, который позволяет использовать его в качестве калькулятора конструкции трансформатора или в качестве калькулятора сопротивления трансформатора. Чтобы использовать его, вам необходимо ввести частоту напряжения питания, индуктивность первичной обмотки, индуктивность вторичной обмотки, количество катушек первичной обмотки, количество катушек вторичной обмотки, вторичное напряжение, сопротивление первичной обмотки, сопротивление вторичной обмотки, сопротивление нагрузки вторичной обмотки и взаимная индуктивность.

Взаимная индуктивность M учитывает влияние, которое изменение нагрузки на вторичную обмотку может оказывать на ток через первичную обмотку с ЭДС:

ЭДС = -M \ frac {\ Delta I_1} {\ Delta t }

для изменения тока через первичную обмотку ΔI 1 и изменения во времени Δt .

Любой онлайн-калькулятор обмотки трансформатора делает предположения о самом трансформаторе. Убедитесь, что вы знаете, как каждый веб-сайт рассчитывает заявленные ценности, чтобы вы могли понять теорию и принципы, лежащие в основе трансформаторов в целом. Насколько они близки к формуле обмотки трансформатора, вытекающей из физики трансформатора, зависит от этих свойств.

Трансформаторный вычислитель — ток полной нагрузки и коэффициент трансформации

Калькулятор трансформатора рассчитывает первичный и вторичный ток полной нагрузки, а также коэффициент трансформации одно- или трехфазного трансформатора.

Параметры

  • Фаза: Укажите расположение фаз. 1 фаза переменного тока или 3 фазы переменного тока.
  • Мощность трансформатора (S): Мощность трансформатора в ВА, кВА или МВА.
  • Первичное напряжение (В p ): Номинальное напряжение первичной обмотки. В понижающем трансформаторе это будет более высокое напряжение.
  • Напряжение вторичной обмотки (В с ): Номинальное напряжение вторичной обмотки.В понижающем трансформаторе это будет более низкое напряжение.

Как рассчитать ток полной нагрузки первичной обмотки трансформатора?

Ток полной нагрузки первичной обмотки I p рассчитывается как:

\ (I_ {p} = \ dfrac {S} {\ sqrt {3} V_ {p}} \)

Куда,

  • S — номинал трансформатора.
  • В p — напряжение первичной обмотки.

Как рассчитать ток полной нагрузки вторичной обмотки трансформатора?

Ток полной нагрузки вторичной обмотки I с рассчитывается как:

\ (I_ {s} = \ dfrac {S} {\ sqrt {3} V_ {s}} \)

Куда,

  • S — номинал трансформатора.
  • В с — напряжение вторичной обмотки.

Как рассчитать коэффициент трансформации трансформатора?

Коэффициент трансформации трансформатора n рассчитывается как:

\ (n = \ dfrac {V_ {p}} {V_ {s}} \),

Куда,

  • В p — напряжение первичной обмотки.
  • В с — напряжение вторичной обмотки.

Пример 1: Расчет тока полной нагрузки трансформатора

Рассчитайте вторичный ток полной нагрузки понижающего трансформатора на 200 кВА, от 11 кВ до 420 В.

\ (I_ {s} = \ dfrac {200000} {\ sqrt {3} \ cdot 420} \)

\ (I_ {s} = 275 \ textrm {A} \)

Пример 2: Расчет коэффициента трансформации трансформатора

Рассчитайте вторичный ток полной нагрузки понижающего трансформатора на 200 кВА, от 11 кВ до 420 В.

\ (n = \ dfrac {11000} {420} \)

\ (n = 26,2 \)

Спасибо за использование моего калькулятора.

Калькулятор трансформатора: Найдите кВА, ток и обмотки для 3-фазных трансформаторов

Идеальное уравнение трансформатора относится к первичному и вторичному напряжению,

Вс = Вп * Нс / Np

, где

  • Вс [ В] = напряжение на вторичной обмотке
  • Вp [В] = напряжение на первичной обмотке
  • Нс = количество обмоток вторичной обмотки
  • Np = количество обмоток первичная обмотка

Второе уравнение, которое связывает первичный и вторичный токи трансформатора:

Is = Ip * Np / Ns

, где

  • Is [A] = ток на вторичной обмотке катушка
  • Ip [A] = ток в первичной катушке

Обратите внимание, что электрическая мощность в первичной катушке и вторичной катушке одинакова

P = Ip * Vp = Is * Vs

Это знак сохранения энергии. В реальном трансформаторе из-за потерь мощность на вторичной обмотке всегда будет меньше, чем мощность на первичной обмотке.

Калькулятор трансформатора Пример Задача

Однофазный трансформатор мощностью 50 кВА имеет первичную сторону 4000 В и вторичную сторону 400 В. Предполагая идеальный трансформатор, определите:

  1. Первичный и вторичный токи полной нагрузки
  2. Коэффициент трансформации трансформатора.

Часть 1. В 1 = 4000 В, В 2 = 400 В,

Номинальная мощность трансформатора = 50 кВА = В 1 × I 1 = В 2 × I 2

Следовательно, перестановка для I 1 и I 2 :

Первичный ток полной нагрузки, I 1 = (50 × (1000/2000)) = 25 A

Вторичный ток полной нагрузки, I 2 = (50 × (1000/200)) = 250 А

Часть 2. Коэффициент трансформации равен N 1 / N 2 = V 1 / V 2 = (2000/200) = 10

Обратите внимание, что мы также можем рассчитать это с помощью токов полной нагрузки I 1 и I 2 через V 2 / V 1 = 10

Вот как рассчитывается типоразмер трансформатора.

Обратите внимание, что если напряжение на первичной стороне выше, чем напряжение на вторичной стороне, то это понижающий трансформатор.

Если напряжение на первичной стороне ниже, чем напряжение на вторичной стороне, то это повышающий трансформатор.

Калькулятор трансформатора (3 фазы, кВА и расчет обмоток)

Формулы для расчета трансформатора

Этот бесплатный онлайн-калькулятор трансформатора позволяет рассчитать ток полной нагрузки в первичной и вторичной обмотках трансформатора. Входами являются трансформатор кВА (мощность) и напряжение в первичной и вторичной обмотках. Вы можете использовать этот калькулятор для расчетов как однофазных, так и трехфазных трансформаторов, для расчета вашего коэффициента поворотов (коэффициента обмотки), а также того, является ли это понижающим трансформатором или повышающим трансформатором.

Обратите внимание, что все расчеты, приведенные ниже, относятся к идеальному трансформатору, т.е. когда коэффициент мощности равен 1.

Количество фаз

Вы можете выбрать трехфазный трансформатор или однофазный трансформатор. Обратите внимание, что это повлияет на итоговый расчет, поскольку используются разные уравнения. Формула для трехфазных и однофазных трансформаторов приведена ниже.

Ток трехфазного трансформатора равен:

I 3 фазы = P 3 фазы / (√3 × V 3 фазы )

Где:

  • I 3 фазы [кА] = ток, протекающий через обмотки
  • P 3 фазы [кВА] = номинальная трехфазная мощность трансформатора
  • В 3 фазы [кВ] = трехфазное напряжение на обмотках

и одиночное ток фазного трансформатора равен:

I = P / V

Где:

  • I [кА] = ток, протекающий по обмоткам
  • P [кВА] = номинальная однофазная мощность трансформатора
  • В [кВ] = однофазное напряжение на обмотках

Обратите внимание, что обе эти формулы применимы как к первичной, так и к вторичной стороне соответственно, но не вместе. Не смешивайте напряжение / ток на первичной стороне с напряжением / током на вторичной стороне.

Номинал трансформатора

Номинал трансформатора — это номинальная мощность трансформатора. Обычно это значение указывается в кВА, но может быть равно в ВА или МВА.

Напряжение первичного трансформатора

Напряжение первичного трансформатора — это напряжение на первичных обмотках трансформатора . Обычно это значение указывается в кВ, но может быть также выражено в В или МВ.

Напряжение вторичного трансформатора

Напряжение вторичного трансформатора — это напряжение на вторичных обмотках трансформатора . Обычно это значение указывается в кВ, но может быть также выражено в В или МВ.

Первичный ток полной нагрузки

Первичный ток полной нагрузки — это ток, протекающий через первичные обмотки трансформатора . Обычно это значение выражается в амперах (A), но может быть выражено в кА или мА.

Для трехфазных трансформаторов первичный ток полной нагрузки (т.е.е. ток в первичных обмотках) равен:

I p = P / (√3 × V p )

Где

  • I p [кА] = протекающий ток через первичные обмотки
  • P [кВА] = номинальная трехфазная мощность трансформатора
  • В p [кВ] = трехфазное напряжение на первичных обмотках

Для однофазных трансформаторов , ток полной нагрузки первичной обмотки (т.е.е. ток в первичных обмотках) равен:

I p = P / V p

Где

  • I p [кА] = ток, протекающий через первичные обмотки
  • P [кВА] = номинальная однофазная мощность трансформатора
  • В p [кВ] = однофазное напряжение на первичных обмотках

Вторичный ток полной нагрузки

Вторичный ток полной нагрузки — это ток, протекающий через вторичные обмотки трансформатора . Обычно это значение выражается в амперах (A), но может быть выражено в кА или мА.

Для трехфазных трансформаторов вторичный ток полной нагрузки (т.е. ток во вторичных обмотках) равен:

I с = P / (√3 × V с )

Где

  • I с [кА] = ток, протекающий через вторичные обмотки
  • P [кВА] = номинальная трехфазная мощность трансформатора
  • В с [кВ] = Трехфазное напряжение на вторичных обмотках

Для однофазных трансформаторов , вторичный ток полной нагрузки (т.е.е. ток во вторичных обмотках) равен:

I с = P / V с

Где

  • I с [кА] = ток, протекающий по вторичным обмоткам
  • P [кВА] = номинальная однофазная мощность трансформатора
  • В с [кВ] = однофазное напряжение на вторичных обмотках

Коэффициент трансформации трансформатора

Коэффициент трансформации трансформатора ( также известное как соотношение обмоток трансформатора) представляет собой соотношение между первичной и вторичной обмотками трансформатора. Это важно, поскольку оно прямо пропорционально величине напряжения, которое будет понижаться или повышаться между первичной и вторичной обмотками.

Формула для коэффициента трансформации трансформатора:

n = V p / V s = N p / N s

Где

  • n = коэффициент трансформации трансформатора
  • В p = напряжение на первичных обмотках
  • В с = напряжение на вторичных обмотках
  • N p = количество обмоток на первичной стороне трансформатора
  • N s = число обмоток вторичной обмотки трансформатора

Тип трансформатора

Тип трансформатора может быть понижающим или повышающим трансформатором.

Понижающий трансформатор преобразует высокое напряжение и слабый ток первичной обмотки трансформатора в низкое напряжение и большой ток во вторичных обмотках трансформатора. Следовательно, напряжение первичного трансформатора понижающего трансформатора будет на больше, чем напряжение вторичного трансформатора.

Повышающий трансформатор преобразует низкое напряжение и большой ток первичных обмоток трансформатора в высокое напряжение и низкое значение тока во вторичных обмотках трансформатора.Следовательно, напряжение повышающего трансформатора будет иметь напряжение первичного трансформатора, которое на ниже, чем на , чем напряжение вторичного трансформатора.

Калькулятор обмотки трансформатора | Micro Digital

Это приложение может рассчитать количество проводов SWG / AWG для катушки трансформатора и количество оборотов на вольт для расчета общего количества витков катушки.

При проектировании трансформатора / ciol мы должны решить, какая толщина толстого провода сможет провести через него необходимое количество заряда. Провода делятся по толщине / площади поперечного сечения. Каждому проводу присвоен номер в соответствии со стандартом Standard Wire Gauge (SWG) или American Wire Gauge (AWG) . Этот номер называется SWG или номером AWG этого провода. Мы знаем, что толстый провод может нести больше заряда, чем тонкий провод. Здесь я рассмотрел круглых милов (см) как единицу измерения площади поперечного сечения.

Теперь нет необходимости искать в таблице / диаграмме требуемое значение тока для выбора провода.Это умное приложение сделает эту работу за вас.

Как это работает?

Расчет SWG / AWG

В качестве входных данных принимает два значения. Во-первых, это Current , который необходимо пропустить через провод, поэтому провод должен иметь возможность передавать это значение тока. Второе значение — . Скорость круговых милов на ампер.
Он также генерирует два выходных значения. Первый и третий — это SWG и AWG , количество проводов, безопасных для данного значения тока и его фактической скорости. Второе и четвертое значения — это номера следующих проводов SWG и AWG , которые могут быть или не быть рядом с требуемым проводом с его фактической скоростью. Вы можете сами решить, какой провод SWG / AWG лучше подходит для ваших текущих требований.

Сначала введите значение Текущее .

Теперь введите значение Ставка .На открытом воздухе провода остаются холодными и могут пропускать заряд с большей скоростью, что означает, что с меньшей площадью поперечного сечения провод может передавать больше заряда и, следовательно, больший ток. Но когда мы используем один и тот же провод в обмотке трансформатора / катушки, где провода наматываются слоями, один слой поверх другого и между этими слоями нет воздуха, но между ними есть бумага, поэтому провода не могут охлаждаться из-за воздуха, их Способность передачи заряда снижена, и поэтому может проходить заряд по более низким ставкам. Обычно в трансформаторах мы вдвое больше (площадь), чем на открытом воздухе.Для трансформаторов мы используем значение 500/530 см / А или более. На это значение влияет множество других факторов, среди которых температура, время пиковой нагрузки, продолжительность работы машины в день и т. Д. Таким образом, вам нужно выбрать лучшее значение Rate , учитывая все эти факторы.

Теперь вы нажимаете кнопку «РАСЧЕТ», и вам будут показаны результаты, как показано на следующем рисунке.

Расчет оборотов на вольт

Сначала введите площадь сердечника в квадратных дюймах.

Теперь введите плотность потока сердечника, используемую в Веберах на квадратный дюйм. Значение по умолчанию для кремниевого сердечника составляет 0,0006 Вебер на квадратный дюйм. Это приложение оптимизировано для кремниевого ядра. Вы можете использовать другие ядра и экспериментировать.

Введите значение частоты в герцах. Значение по умолчанию — 50 Гц.

Теперь нажмите кнопку расчета под полем частоты, и приложение покажет результат, как показано на следующем рисунке.

Загрузите это приложение из Google Play. Наслаждайтесь! это приложение .

Заявление об ограничении ответственности

Мы разработали это приложение в лучшем виде.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *