пирометрический датчик пожарной сигнализации. Пирометрический датчик температуры


принцип действия, схема и т.д.

Пирометр — это продвинутый прибор для определения температуры любого объекта на основе инфракрасного датчика, который считывает невидимое инфракрасное излучение, преобразует показания в температурные и выводит полученное число на дисплей. Максимальный диапазон измерения — 1000°C. Он так же известен, как бесконтактный цифровой термометр или инфракрасный пистолет.

Пирометр — бесконтактный цифровой термометрРекомендуем обратить внимание и на другие приборы для измерения температуры.

Хотя пирометры сравнительно недавно начали использоваться в промышленности, тем не менее они находят все более широкое применение для измерения температуры, так как они удобны, дают точные показания и более безопасны, чем другие виды температурных датчиков.

Пирометр может быть чрезвычайно полезным для поиска неисправностей в системах, где избыточный нагрев может быть одной из причин. Например, киповец может использовать пирометр для обнаружения нагретого участка на монтажной плате, не отключая цепь от источника питания либо в непосредственной близи от цепей под напряжением. Также пирометр отлично подойдет для поиска неисправностей в любом оборудовании с вращающимися частями, так как измерение с его помощью не подвергает киповца опасности соприкосновения с вращающимися частями.

Принцип работы пирометра

Основными частями инфракрасного устройства являются: линза, ИК-приемник и дисплей температурных показаний. Инфракрасное излучение, идущее от горячего объекта фокусируется линзой и подается на ИК-приемник.

Упрощенное изображение ИК-датчика и горячего объекта ИК-приемник ИК-температурного датчика может представлять собой полупроводниковый материал, термопару или термобатарею (группа термопар, соединенных вместе последовательно). Схема термобатареи

Когда ИК-приемник температурного датчика нагревается, то генерируется напряжение (имеется ввиду, что это термопара или термобатарея) или меняется сопротивление (если речь идет о полупроводниковом материале). Изменение величины напряжения и сопротивления затем преобразуется в соответствующие температурные показания и отображаются на шкале прибора. Если температура объекта уменьшается, то его инфракрасное излучение уменьшается и в данном случае меняющаяся величина сигнала сопротивления и напряжения, посылаемого в приемник будет отображена на шкале как уменьшение температуры.

Для того, чтобы определить температуру объекта бесконтактный цифровой термометр направляется на объект и нажимается спусковой механизм. Показания температуры отображаются на дисплее прибора. С помощью кнопки на приборе можно отображать оказания либо по шкале Цельсия, либо по шкале Фаренгейта.

Особенности работы пирометров

Расстояние между прибором и объектом, чья температура измеряется, не влияет на точность показаний. Однако прибор должен использоваться для диапазона, указанного изготовителем. Кроме того, чем больше расстояние между прибором и объектом, тем большая площадь зондировалась.

Некоторые пирометры имеют спусковые механизмы с двумя положениями. В первом положении спусковой крючок останавливается на полпути, и такое положение служит для сканирования поверхности или участка, где имеется неоднородность нагрева. В этом положении показания на дисплее меняются в зависимости от количества обнаруженных неоднородных участков. Это положение используется для определения приблизительной температуры объектов. Второе положение спускового механизма — это когда крючок полностью утоплен. Это положение используется для обнаружения объекта с наивысшей температурой, если объектов несколько. Когда крючок находится в этом положении, то показания на дисплее перестанут меняться, как только будет обнаружен объект с наивысшей температурой. Это положение называется «положение удержания наивысшего показания».

Другой особенностью пирометров является наличие переключателя коэффициента излучения. Переключатель коэффициента излучения компенсирует отраженное излучение, которое может повлиять на точность температурных показаний. Объекты отражают инфракрасное излучение, идущее от других объектов помимо собственного инфракрасного излучения. Однако отраженное инфракрасное излучение не является показателем истинной температуры объекта, а бесконтактный термометр не может отличить излучаемые волны от отраженных, пока вы не настроите переключатель коэффициента излучения на объект, чья температура измеряется. Большинство производителей пирометров поставляют в комплекте с прибором таблицы, где указаны коэффициенты излучения для наиболее часто измеряемых поверхностей.

kipiavp.ru

Система многоканального бесконтактного температурного контроля «Зной». Пирометрический датчик температуры.

Система бесконтактного температурного контроля «Зной» предназначена для осуществления непрерывного многоканального дистанционного контроля температур любых труднодоступных зон объектов в промышленности, быту, сфере ЖКХ, на предприятиях, где большое значение приобретает контроль температур на различных технологических этапах производства (пищевая и сталелитейная промышленность, нефтеперерабатывающая отрасль), измерении температуры поверхности любого рода.

Приборы используются в роли средства безопасного бесконтактного измерения температур объектов, что делает их незаменимыми для обеспечения должного контроля в случаях, когда физическое взаимодействие с контролируемым объектом невозможно из-за высоких температур, высокого напряжения или труднодоступных местах. На объектах энергетической отрасли в распределительных устройствах для контроля температуры главных цепей — контактов высоковольтного выключателя или разъединителя, соединений сборных шин, места соединения и оконцевания кабельных муфт находящихся под напряжением. Их можно применять в качестве теплолокаторов, для определения областей критических температур в различных производственных сферах например для включения вентиляторов охлаждения.

Состав системы 

Система состоит из модуля температурного контроля и набора бесконтактных пирометрических датчиков температуры ДТП-300 (Датчик Температуры Пирометрический). Модуль бесконтактного температурного контроля имеет металлический корпус с кронштейном для крепления на DIN-рейку. Датчик температуры выполнен в металлическом корпусе. Все датчики, применяемые в системе, подключаются к модулю температурного контроля параллельно посредством кабельного шлейфа. Каждый датчик опционально может быть снабжен лазерным указателем места измерения температуры.

Работа системы

При подаче напряжения питания на систему «Зной» модуль температурного контроля производит последовательный циклический опрос всех подключенных датчиков. Стандартная функция модуля – это сигнализация с помощью светодиодных индикаторов и сухих контактов реле о превышении установленных порогов температуры хотя бы на одном из подключенных датчиков. Модуль имеет два релейных канала сигнализации СОМ2 и СОМ3, для каждого из которых установлено необходимое значение температуры срабатывания реле, а также значение гистерезиса для сброса реле. Также модуль имеет дополнительный релейный выход СОМ1 для сигнализации наличия питания и нормальной связи со всеми подключенными датчиками. Это реле постоянно включено при нормальной работе модуля и датчиков и отключается при пропадании связи хотя бы с одним из датчиков более чем на одну минуту. При восстановлении связи со всеми датчиками реле снова включается. 

Модуль также снабжен светодиодными индикаторами для визуального контроля работы системы:

  1. Индикатор контроля питания — контроля наличия напряжения питания.
  2. Индикатор связи с датчиками — двуцветный индикатор, зеленый свет которого сигнализирует о нормальной связи со всеми датчиками, вспышки красного цвета сигнализируют о сбоях в получении информации с датчиков.
  3. Индикатор превышения температурного порога 1.
  4. Индикатор превышения температурного порога 2. 

Все настройки (значения температурных порогов, значение гистерезисов отпускания реле, количество датчиков в системе и др.) хранятся в энергонезависимой памяти модуля и могут быть изменены пользователем. Для внесения изменений необходимо подключиться к разъему интерфейса RS-485 модуля с помощью персонального компьютера, адаптера RS-485 и программной утилиты работы с модулем.

Интерфейс RS-485 с поддержкой протокола Modbus RTU на борту модуля также предоставляет пользователя возможность удаленного получения данных о значениях температур всех подключенных датчиков в непрерывном режиме.

Технические характеристики

Параметры Значение
Напряжение питающей сети и сигналов дискретных входов перем/пост, В 85—265/120—375
Номинальная потребляемая от сети мощность, Вт  не более 2
Количество каналов измерения температур 15
Количество выходов типа «сухой контакт» 3
Максимальное рабочее напряжение контактов сигнального реле, перем/пост В 220
Максимальный рабочий ток контактов сигнального реле, А 2
Соотношение диаметра пятна зоны измерения к расстоянию от датчика до поверхности измерения 1:3, 1:8
Диапазон измерения температур, °С -40…+300
Максимальная погрешность измерения температуры в всем диапазоне измеренния, градусов Цельсия ±4
Диапазон рабочих температур модуля,  °С -40…+60
Диапазон рабочих температур датчика,  °С -40…+60
Относительная влажность воздуха, % 30—80
Габаритные размеры модуля температурного контроля, ДхШхВ, мм 117х70х30

Схема электрическая подключения модуля температурного контроля

Х1 — разъем для подключения внешних устройств приема команд сигнализации.

Х2 — разъем интерфейса RS-485 для подключения адаптера связи с устройством.

Х3 — разъем для подключения питания.

Схема электрическая подключения датчиков ДТП-300

Датчики температуры подключаются по параллельной схеме. Данное решение является наиболее оптимальным, так как подключение всех датчиков к модулю производится одним кабелем. К клемме 5 датчика, которая гальванически соединена с его корпусом, подключается экран кабеля. При установке в устройствах имеющих металлическую оболочку, заземление датчика к корпусу производится подключением заземляющего провода либо непосредственно к корпусу датчика с применением царапающей шайбы, либо к клемме 5 датчика.

Рекомендации по установке датчика ДТП-300 

При измерении температуры контролируемого объекта в поле зрения пирометрического визира не должны попадать посторонние предметы. На рисунке показана зависимость размера пятна измерения от расстояния до поверхности для датчика с оптическим соотношением 1:3

Необходимо учитывать, что метка лазерного указателя не совпадает с оптической осью пирометрического визира, поэтому центр зоны смещен относительно метки лазерного указателя в горизонтальной оси на фиксированное расстояние 9 мм. Для включения/отключения лазерного указателя датчика необходимо произести переключение кнопки, расположенной около пирометрического визира. После проведения настройки указателя на центр измерения температуры произвести отключение лазерного указателя.

Поскольку разные материалы имеют разные коэффициенты теплоизлучения, для обеспечения указанной погрешности измерения температур необходимо производить подготовку поверхности, например покрытие области на поверхности измерения слоем эмали черного цвета или произвести установку коэффициента в меню системы в соответствии с типом поверхности.

Габаритные и установочные размеры датчика ДТП-300

Габаритные размеры модуля температурного контроля

testelektro.ru

Бесконтактный датчик температуры MLX90614 - Как подключить - AVR project.ru

 Наконец-то заполучил в свои руки один интересный датчик-пирометр MLX90614. Это инфракрасный датчик, позволяющий определять температуру бесконтактным методом. Такой датчик позволяет практически моментально считывать температуру тела, измеряя инфракрасное излучение объекта. Сейчас познакомимся с ним поближе и разберем работу в Bascom-AVR.

 Для начала разберемся с тем, какие модификации датчика существуют. Во-первых, они различаются по напряжению питания, бывают 3-х и 5-и вольтовые версии.

 Во-вторых, различаются количеством сенсоров внутри датчика: бывают с одним сенсором и двумя:

 

 Также есть версия датчика, в которой два сенсора, но показания с них суммируются и усредняются. Именно такой датчик и попал ко мне.

 Третье различие в угле обзора. Бывают, как на картинке выше, с открытым окном, у которых угол обзора стремится к 180°. А есть версии с уменьшенным до 35°, 10° и 5° углом. Я приобрел датчик с углом обзора 10°, но как оказалось ничего хитрого там нет,  просто на корпус датчика запрессована черная трубка, обрезающая часть обзора. Поэтому можно брать открытые датчики, они дешевле, и уже самим приклеить трубочку.  Но интересней было бы добавить пару линз, только найти такие, чтобы пропускали инфракрасное излучение наверно будет не просто.

 Все датчики подключаются по стандартному интерфейсу I2C.  Распиновка со стороны ножек.

   

 На шине I2C датчик имеет настраиваемый адрес, по умолчанию отзывается на &hB4 (&b10110100) Для считывания температуры измеряемого объекта нужно обратится по адресу &h07 (&b00000111) для первого сенсора, и &h08 (&b00001000) для второго (если датчик имеет два отдельных сенсора).

 Для моего варианта, в котором два сенсора объединены, показания считываются только с первого сенсора.  Также датчик может измерить собственную температуру, ее значение хранится по адресу &h06 (&b00000110)

  К слову об измеряемых температурах. Предел температур для измеряемого объекта составляет -70÷380 °C, а для самого датчика -40÷125°C.

 Данные в датчике хранятся в сыром виде и занимают два байта, поэтому для перевода их в градусы Цельсия необходимо преобразование: поделить значение на 50 и затем вычесть из результата 273,15. Еще нужно учитывать одну особенность - датчик сперва отправляет младший байт, а затем старший. Поэтому полученные данные перед преобразованием приходится "переворачивать".

 Для примера собрал схему на микроконтроллере ATmega8, показания будут выводиться на жк дисплей. Датчик у меня приехал в пятивольтовой версии, поэтому никаких преобразователей между ним и схемой не нужно.  Только подтяжка резисторами к плюсу согласно стандарту протокола I2C

 

Программа в Bascom-AVR:

$regfile = "m8def.dat"$crystal = 8000000

'конфигурация дисплеяConfig Lcd = 16 * 2Config Lcdpin=Pin, Rs=Portb.5, E=Portb.4, Db4=Portb.3, Db5=Portb.2, Db6=Portb.1, Db7=Portb.0

'подключение датчикаConfig Scl = Portc.0Config Sda = Portc.1

I2cinit

Dim Value As Byte                           'принимаемый байтDim Temp As Single                          'температураDim Tempword As Word                        'вспомогательная переменнаяDim Irtemp As String * 8                    'температура объектаDim Senstemp As String * 8                  'температура датчикаDim Cmd As Byte                             'команды для датчика

ClsCursor Off

Do

 Cmd = &B00000111                           'адрес чтения температуры объекта Gosub Read_mlx                             'опрашиваем датчик Irtemp = Fusing(temp , "##.##")

 Cmd = &B00000110                           'адрес чтения температуры датчика Gosub Read_mlx                             'опрашиваем датчик Senstemp = Fusing(temp , "##.##")

 Cls Locate 1 , 1 Lcd "To " ; Irtemp ; "°C"                  'выводим температуру объекта Lowerline Lcd "Ts " ; Senstemp ; "°C"                'выводим температуру датчика

 Waitms 500

Loop

'подпрограмма опроса датчикаRead_mlx:

 I2cstart I2cwbyte &B10110100                        'отправляем адрес датчика I2cwbyte Cmd                               'отправляем команду с адресом

 I2cstart I2cwbyte &B10110101                        'отправляем адрес датчика с битом чтения I2crbyte Value , Ack                       'принимаем первый байт Tempword = Value Shift Tempword , Left , 8

 I2crbyte Value , Ack                       'принимаем второй байт Tempword = Tempword Or Value               'складываем два байта

 I2cstop                                    'окончание опроса датчика

 Rotate Tempword , Left , 8                 'меняем местами два байта в переменной

 Temp = Tempword * 0.02                     'преобразование данных в температуру по Цельсию Temp = Temp - 273.15

Return

 

 Программа выводит на дисплей две температуры. В верхней строке температуру измеряемого объекта, в нижней - температуру самого датчика.

Фото с экспериментов. Температура горячего чайника

чайник только вскипел, но температура пластикового корпуса выше 80 не поднималась.

температура в морозилке

 

 

 А вот интересная картинка из даташита, показывающая погрешность датчика в зависимости от внешних факторов. To - измеряемая температура объекта, Ta - температура окружающей среды

 В ходе тестирования заметил одну особенность,  для более точного измерения температуры, датчик нужно подносить как можно ближе, чтобы объект перекрывал весь угол обзора датчика. В общем датчик интересный, мне понравился. А вот интересный проект с этим датчиком https://geektimes.ru/post/257850/

 

Исходник и прошивка

Документация на датчик MLX90614

Датчик покупал здесь, хотя дешевле можно купить вот тут

 

avrproject.ru

Сравнительные таблицы технических характеристик пирометров

Технические  параметры
  8878 8879 8889 8889H 8867H 8868 8869 8868H 8869H
ИК диапазон температуры -50°C  - 1200°C/ -50°C  - 1600°C/ -50°C  - 1850°C/ -50°C  - 2200°C/ -50°C -1650°C/ -50°C -1200°C/ -50°C - 1600°C/ -50°C - 1850°C/ -50°C -2200°C/
-58°F  - 2192°F -58°F  - 2912°F -58°F  - 3362°F -58°F  - 3992°F -58°F -3002°F -58°F -2192°F -58°F -2912°F -58°F - 3362°F -58°F -3992°F
Время отклика Менее 150 мс Менее 150 мс Менее 150 мс Менее 150 мс Менее 150 мс Менее 150 мс Менее 150 мс Менее 150 мс Менее 150 мс
Разрешение 0,1° до 1000°, 1° свыше1000° 0,1° до 1000°, 1° свыше1000° 0,1° до 1000°, 1° свыше1000° 0,1° до 1000°, 1° свыше 1000° 0,1° до 1000°, 1° свыше1000° 0,1° до 1000°, 1° свыше1000° 0,1° до 1000°, 1° свыше1000° 0,1° до 1000°, 1° свыше1000° 0,1° до 1000°, 1° свыше1000°
Основная погрешность (ИК) ±1,0% от показаний ±1,0% от показаний ±1,0% от показаний ±1,0% от показаний ±1,0% от показаний ±1,0% от показаний ±1,0% от показаний ±1,0% от показаний ±1,0% от показаний
Оптическое разрешение Отношение  расстояния к размеру изображения 50:1 Отношение  расстояния к размеру изображения 50:1 Отношение  расстояния к размеру изображения 75:1 Отношение  расстояния к размеру изображения 75:1 Отношение  расстояния к размеру изображения 30:1 Отношение  расстояния к размеру изображения 50:1 Отношение  расстояния к размеру изображения 50:1 Отношение  расстояния к размеру изображения50:1 Отношение  рас- стояния  к размеру изображения 50:1
Излучаемость Регулируется 0,10~1,0 Регулируется 0,10~1,0 Регулируется 0,10~1,0 Регулируется 0,10~1,0 Регулируется 0,10~1,0 Регулируется 0,10~1,0 Регулируется 0,10~1,0 Регулируется 0,10~1,0 Регулируется 0,10~1,0
Диапазон температуры  типа К. -50°C - 1370°C/ -50°C - 1370°C/ -50°C  - 1370°C/ -50°C  - 1370°C/ -50°C -1370°C/ -50°C -1370°C/ -50°C - 1370°C/ -50°C - 1370°C/ -50°C -1370°C/
-58°F  - 2498°F -58°F  - 2498°F -58°F  - 2498°F -58°F  - 2498°F -58°F -2498°F -58°F -2498°F -58°F -2498°F -58°F - 2498°F -58°F -2498°F
Основная погрешность (TK) ±0,5% от показаний ±0,5% от показаний ±0,5% от показаний ±0,5% от показаний ±1,5% от показаний ±1,5% от показаний ±1,5% от показаний ±1,5% от показаний ±1,5% от показаний
Хранение показаний в памяти 30 30 30 30   99 99 99 99

cem-instruments.ru

пирометрический датчик пожарной сигнализации - патент РФ 2109345

Изобретение предназначено для обнаружения момента образования очага пожара по тепловому излучению в инфракрасной области спектра. Сущность изобретения заключается в использовании метода спектрального отношения для контроля температуры охраняемых объектов. Световой поток теплового излучения фокусируется объективом и с помощью светоделительной пластины разделяется на два потока. Из них светофильтрами с разными спектрами пропускания выделяются необходимые участки спектра. Мощность светового потока в каждом выделенном участке спектра регистрируется фотодетекторами. Сигналы с фотодетекторов усиливаются, определяется их отношение, которое после усреднения подается на пороговый детектор. При превышении им определенного значения на выходе датчика устанавливается электрический сигнал о начале возгорания. 1 ил. Изобретение относится к устройствам пожарной сигнализации и предназначено для обнаружения очага возгорания по инфракрасному излучению источника повышенной температуры. Изобретение может быть использовано в автоматических системах пожарной сигнализации для обеспечения взрывобезопасности газодисперсных систем (сплошная фаза - газ) в производственных условиях и на угольных шахтах. А также в системе пожаротушения, установленной во взрывоопасном помещении. Известны пожарные извещатели, реагирующие на нагрев температурного датчика до определенного предела, при котором происходит срабатывание извещателя, и использующие термодатчики следующих типов: терморезисторные, термомагнитные, термоэлектрические, теплоплавкие, реагирующие на избыточную температуру [1] . Недостатком данных пожарных извещателей является то, что они имеют большую инерционность срабатывания (от нескольких секунд до сотен секунд). Известны пожарные извещатели фотоэлектрического типа, реагирующие на излучение в инфракрасной, видимой или ультрафиолетовой области спектра [2], [3] , [4], и срабатывающие при превышении мощностью излучения определенного предела. Недостатком таких пожарных извещателей является то, что они срабатывают после возгорания и не могут быть использованы для предотвращения возникновения открытого пламени. Также на температуру срабатывания таких датчиков оказывают большое влияние оптические характеристики среды и излучательная способность источника излучения. Известно также устройство обнаружения возгораний в пневмотранспорте, содержащее фотодиод в качестве фотоприемника излучения, блок усиления с обратной связью для усиления фототока фотодиода и схему срабатывания [5]. По сути в нем использован радиационный метод определения температуры. Фототок пропорционален суммарной мощности излучения, приходящейся на спектральную область чувствительности используемого фотодиода и является возрастающей функцией температуры. Недостатком данного устройства является то, что температура очага пожара, при которой срабатывает известное устройство, зависит от оптических свойств воздушной среды, от расстояния до очага возгорания и от излучательной способности сгораемого вещества и продуктов горения. Наиболее близким по технической сущности к предлагаемому техническому решению является пирометрический датчик пожарной сигнализации, содержащий инфракрасные фотодетекторы, светофильтры с разными спектрами пропускания и усилители, выходы которых соединены с входом исполнительной схемы [6]. Недостатком данного датчика является то, что температура очага пожара, при которой срабатывает известное устройство, зависит от оптических свойств воздушной среды, от расстояния до очага возгорания и от излучательной способности сгораемого вещества и продуктов горения. Задача настоящего технического решения - исключение влияния на порог срабатывания пожарного датчика оптической плотности среды и излучательных способностей веществ в очаге возгорания, обнаружение начальной стадии возгорания (до появления пламени) за счет понижения инерционности и температурного порога срабатывания датчика. Поставленная задача решается за счет того, что в пирометрический датчик пожарной сигнализации, содержащий инфракрасные фотодетекторы, светофильтры с разными спектрами пропускания и усилители, выходы которых соединены с входом исполнительной схемы согласно изобретения, введены блок термостабилизации темновых токов фотодетекторов, разделитель светового потока и оптическая система для фокусировки потока на чувствительных окнах фотодетекторов, а исполнительная схема содержит соединенные последовательно блок вычисления отношения двух значений напряжения, блок усреднения и пороговый детектор, при этом последовательно установленные оптическая система для фокусировки потока на чувствительных окнах фотодетекторов и разделитель светового потока оптически связаны с фотодетекторами, которые подключены к неинвертирующим входам усилителей, а выходы блока термостабилизации подключены к инвертирующим входам усилителей, вход блока вычисления отношения двух значений напряжения является входом исполнительной схемы. Сущность данного технического решения поясняется с помощью функциональной схемы, представленной на чертеже. Устройство содержит объектив 1, диафрагму 2, линзу 3, разделитель светового потока 4, светофильтры 5 и 6, инфракрасные фотодетекторы 7, усилители 9 и 10, блок 8 термостабилизации темновых токов фотодетекторов, блок 11 вычислителения отношения двух значений напряжения, блок усреднения 12, пороговый детектор 13, блок питания 14. Пирометрический датчик пожарной сигнализации работает следующим образом. Инфракрасное излучение охраняемого объекта при помощи объектива 1 фокусируется, и пройдя через отверстие диафрагмы 2, разделяется светоделительной пластиной 4 на два потока. Каждый из этих потоков через светофильтр 5 или 6 с разными спектрами пропускания попадает на фотодетекторы 7. Линза 3 совместно с объективом 1 образуют оптическую систему, которая служит для фокусировки потока на чувствительные окна фотодетекторов. Светофильтры 5 и 6 выделяют из светового потока различные участки спектра. Сигналы с фотодетекторов 7 подаются на неинвертирующие входы усилителей 9, 10 и усиливаются усилителями 9, 10. Для исключения влияния температуры корпуса датчика на значение фототоков фотодетекторов с блока термостабилизации темновых токов фотодетекторов 8 на инвертирующие входы усилителей 9 и 10 подается сигнал равный темновым токам фотодетекторов при данной температуре их корпуса. Сигналы с усилителей подаются в исполнительную схему, которая состоит из блока 11 вычисления отношения двух напряжений, блока усреднения 12, порогового детектора 13 и блока питания 14. В блоке 11 вычисляется отношение напряжений с выходов усилителей 9, 10. Это отношение прямо пропорционально температуре источника теплового излучения. Полученный таким образом температурный сигнал в блоке 12 усредняется по нескольким измерениям для исключения влияния шумов в измерительном и оптических трактах. Усредненный сигнал температуры подается на блок 13 порогового детектора и, если он превышает температуру срабатывания, то блок 13 формирует на выходе устройства сигнал, означающий начало возгорания. Блок 14 питания служит для формирования и стабилизации напряжений, необходимых для работы электрической схемы. В результате использования в качестве приемников излучения быстродействующих фотодетекторов достигается малая инерционность датчика возгорания (менее 1 миллисекунды). Благодаря применению спектрального метода определения температуры исключается влияние расстояния до разноудаленных объектов, их излучательных способностей и оптических свойств промежуточой среды на температуру срабатывания датчика. Использование инфракрасных фотодетекторов и светосильной оптической схемы позволяет снизить температуру срабатывания пожарного датчика. При превышении температуры любого объекта в поле зрения объектива 1 заданного значения (от 400 град.С и выше) через время, не превышающее значение инерционности датчика, на его выходе устанавливается сигнал, сообщающий о начале возникновения возгорания. Используемые источники информации. 1. Шаровар Ф. И. Устройства и системы пожарной сигнализации.- 2-е изд., перераб. и доп.-М.: Стройиздат, 1985. с. 375, ил. 2. SU, авторское свидетельство, 637839, кл. G 08 B 17/12, 1978. 3. SU, авторское свидетельство, 1168992, кл. G 08 B 17/12, 1985. 4. SU, авторское свидетельство, 667984, кл. G 08 B 17/06, 1979. 5. SU, патент, 1795894, кл. A 62 C 3/04, 1993. 6. SU, патент, 5339070, кл. G 08 B 17/12, 1994.

ФОРМУЛА ИЗОБРЕТЕНИЯ

Пирометрический датчик пожарной сигнализации, содержащий инфракрасные фотодетекторы, светофильтры с разными спектрами пропускания и усилители, выходы которых соединены с входом исполнительной схемы, отличающийся тем, что в него введены блок термостабилизации темновых токов фотодетекторов, разделитель светового потока и оптическая система для фокусировки потока на чувствительных окнах фотодетекторов, а исполнительная схема содержит соединенные последовательно блок вычисления отношения двух значений напряжения, блок усреднения и пороговый детектор, при этом последовательно установленные оптическая система для фокусировки потока на чувствительных окнах фотодетекторов и разделитель светового потока оптически связаны с фотодетекторами, которые подключены к неинвертирующим входам усилителей, а выходы блока термостабилизации подключены к инвертирующим входам усилителей, вход блока вычисления отношения двух значений напряжения является входом исполнительной схемы.

www.freepatent.ru

виды, устройство, принцип работы термодатчиков

 О чем эта статья

Что такое и какие бывают датчики температуры. Рассмотрена классификация термодатчиков по принципу действия, когда какие типы датчиков лучше применять. На какие характеристики необходимо обратить внимание при выборе датчиков температуры. Обзор производителей и продавцов. Вы также можете посмотреть другие статьи. Например, «Датчики измерения влажности(гигрометры)» или «Виды давления».

Перейти к выбору и покупке датчиков температуры

Большинство технологических процессов идет сейчас по пути автоматизации. Кроме того, управление многочисленными механизмами и агрегатами, а зачастую и машинами просто немыслимо без точных измерений всевозможных физических величин. Не маловажными являются измерение давления, измерение угловой скорости, а также линейной и многие-многие другие. Но самыми распространенными (около 50%) являются температурные измерения. К примеру, средняя по величине атомная станция располагает приблизительно 1500-ю контрольных (измерительных) точек, а крупное химпроизводство, насчитывает таких уже около 20 тыс.

Так как диапазон измерений и их условия могут сильно отличатся друг от друга, разработаны разные по точности, помехоустойчивости и быстродействию типы датчиков (и первичных преобразователей). Какого бы типа не был температурный датчик, общим для всех является принцип преобразования. А именно: измеряемая температура преобразуется в электрическую величину (как раз за это и отвечает первичный преобразователь). Это обусловлено тем, что электрический сигнал просто передавать на большие расстояния (высокая скорость приема-передачи), легко обрабатывать (высокая точность измерений) и, наконец, быстродействие.

Дальше, предлагаем вам ознакомиться с различными видами датчиков температуры, а в конце статьи со список вопросов которые необходимо решить перед покупкой датчика температуры. Если же вы хотите сразу перейти к выбору и покупке термодатчика, можете воспользоваться нашим каталогом.

Виды датчиков температуры, по типу действия

Терморезистивные термодатчики

Терморезистивные термодатчики — основаны на принципе изменения электрического сопротивления (полупроводника или проводника) при изменении температуры. Разработаны они были впервые для океанографических исследований. Основным элементом является терморезистор — элемент изменяющий свое сопротивление в зависимости от температуры окружающей среды.

Несомненные преимущества термодатчиков этого типа это долговременная стабильность, высокая чувствительность, а также простота создания интерфейсных схем.

На изображении приведен датчик 702-101BBB-A00, диапазон измерения которого от -50 до +130 °С. Этот датчик относиться к группе кремневых резистивных датчиках(что это такое читайте двумя абзацами ниже). Обратите внимание, на его размеры. Производит этот датчик фирма Honeywell International

В зависимости от материалов используемых для производства терморезистивных датчиков различают:

  1. Резистивные детекторы температуры(РДТ). Эти датчики состоят из металла, чаще всего платины. В принципе, любой мета изменяет свое сопротивление при воздействии температуры, но используют платину так как она обладает долговременной стабильностью, прочностью и воспроизводимостью характеристик. Для измерений температур более 600 °С может использоваться также вольфрам. Минусом этих датчиков является высокая стоимость и нелинейность характеристик.
  2. Кремневые резистивные датчики. Преимущества этих датчиков —хорошая линейность и высокая долговременная стабильностью. Также эти датчики могут встраиваться прямо в микроструктуры.
  3. Термисторы. Эти датчики изготавливаются из металл-оксидных соединений. Датчики измеряет только абсолютную температуру. Существенным недостатком термисторов является необходимость их калибровки и большой нелинейностью, а также старение, однако при проведении всех необходимых настроек могут использоваться для прецизионных измерений.

Полупроводниковые

В качестве примера изображен полупроводниковый датчик температуры LM75A, выпускаемый фирмой NXP Semiconductors. Диапазон измерений этого датчика от -55 до +150.

Полупроводниковые датчики регистрируют изменение характеристик p-n перехода под влиянием температуры. В качестве термодатчиков могут быть использованы любые диоды или биполярные транзисторы. Пропорциональная зависимость напряжения на транзисторах от абсолютной температуры (в Кельвинах) дает возможность реализовать довольно точный датчик.

Достоинства таких датчиков — простота и низкая стоимость, линейность характеристик, маленькая погрешность. Кроме того, эти датчики можно формировать прямо на кремневой подложке. Все это делает полупроводниковые датчики очень востребованными.

Термоэлектрические(термопары)

Термоэлектрические преобразователи — иначе, термопары. Они действуют по принципу термоэлектрического эффекта, то есть благодаря тому, что в любом замкнутом контуре (из двух разнородных полупроводников или проводников) возникнет электрический ток, в случае если места спаев отличаются по температуре. Так, один конец термопары (рабочий) погружен в среду, а другой (свободный) – нет. Таким образом, получается, что термопары это относительные датчики и выходное напряжение будет зависеть от разности температур двух частей. И почти не будет зависеть от абсолютных их значений.

Выглядеть термопара может так, как показано на рисунке. Это термопара ДТПКХХ4, она измеряет температуры в пределах от -40 до +400. Производит его российская компания Овен.

Диапазон измеряемых с их помощью температур, от -200 до 2200 градусов, и напрямую зависит от используемых в них материалов. Например, термопары из неблагородных металлов – до 1100 °С. Термопары из благородных металлов (платиновая группа) – от 1100 до 1600 градусов. Если необходимо произвести замеры температур свыше этого, используются жаростойкие сплавы (основой служит вольфрам). Как правило используется в комплекте с милливольтметром, а свободный конец (конструктивно выведенный на головку) удален от измеряемой среды с помощью удлиняющего провода. Одним из недостатков термопары является достаточно большая погрешность. Наиболее распространенным способом применения термопар являются электронные термометры.

Пирометры

Пирометры – бесконтактные датчики, регистрирующие излучение исходящее от нагретых тел. Основным достоинством пирометров (в отличие от предыдущих температурных датчиков) является отсутствие необходимости помещать датчик непосредственно в контролируемую среду. В результате такого погружения часто происходит искажение исследуемого температурного поля, не говоря уже о снижении стабильности характеристик самого датчика.

Различают три вида пирометров:

  1. Флуоресцентные. При измерении температуры посредством флуоресцентных датчиков на поверхность объекта, температуру которого необходимо измерить, наносят фосфорные компоненты. Затем объект подвергают воздействию ультрафиолетового импульсного излучения, в результате которого возникает послеизлучение флуоресцентного слоя, свойства которого зависят от температуры. Это излучение детектируется и анализируется.
  2. Интерферометрические. Интерферометрические датчики температуры основаны на сравнении свойств двух лучей – контрольного и пропущенного через среду, параметры которой меняются в зависимости от температуры. Чувствительным элементом этого типа датчиков чаще всего выступает тонкий кремниевый слой, на коэффициент преломления которого, а, соответственно, и на длину пути луча, влияет температура.
  3. Датчики на основе растворов, меняющих цвет при температурном воздействии. В этом типе датчиков-пирометров применяется хлорид кобальта, раствор которого имеет тепловую связь с объектом, температуру которого необходимо измерить. Коэффициент поглощения видимого спектра у раствора хлорида кобальта зависит от температуры. При изменении температуры меняется величина прошедшего через раствор света.

Акустические

Акустические термодатчики – используются преимущественно для измерения средних и высоких температур. Акустический датчик построен на принципе того, что в зависимости от изменения температуры, меняется скорость распространения звука в газах. Состоит из излучателя и приемника акустических волн (пространственно разнесенных). Излучатель испускает сигнал, который проходит через исследуемую среду, в зависимости от температуры скорость сигнала меняется и приемник после получения сигнала считает эту скорость.

Используются для определения температур, которые нельзя измерить контактными методами. Также применяются в медицине для неинвазивных (без операционного проникновения внутрь тела больного) измерения глубинной температуры, например, в онкологии. Недостатками таких измерений является то, что при прикосновении они могут вызывать ответные физиологические реакции, что в свою очередь влечет искажение измерения глубинной температуры. Кроме того, могут возникать отражения на границе «датчик-тело», что также способно вызывать погрешности.

Пьезоэлектрические

В датчиках этого типа главным элементов является кварцевый пьезорезонатор.

Как известно пьезоматериал изменяет свои размеры при воздействии тока(прямой пьезоэффект). На этот пьезоматериал попеременно передается напряжение разного знака, от чего он начинает колебаться. Это и есть пьезорезонатор. Выяснено, что частота колебаний этого резонатора зависит от температуры, это явление и положено в основу пьезоэлектрического датчика температуры.

На что необходимо обратить внимание при выборе датчиков температуры

  1. Температурный диапазон.
  2. Можно ли погружать датчик в измеряемую среду или объект? Если расположение внутри среды недопустимо, то стоит выбирать акустические термометры и пирометры.
  3. Каковы условия измерений!? Если используется агрессивная среда, то необходимо использовать либо датчики в корозийнозащитных корпусах, либо использовать бесконтактные датчики. Кроме того, необходимо предусмотреть другие условия: влажность, давление и тд.
  4. Как долго датчик должен будет работать без замены и калибровки. Некоторые типы датчиков обладают относительно низкой долговременной стабильностью, например термисторы.
  5. Какой выходной сигнал необходим. Некоторые датчики выдают выходной сигнал в величине тока, а некоторые автоматически пересчитывают его в градусы.
  6. Другие технические параметры, такие как: время срабатывания, напряжение питания, разрешение датчиков и погрешность. Для полупроводниковых датчиков, важным также являет тип корпуса.

Производители и продавцы датчиков температуры

В нашем каталоге,  есть достаточно много различных датчиков температур, которые вы можете купить. Эти датчики продают следующие фирмы: NXP Semiconductors, ОВЕН, Texas Instruments, National Semiconductor, Analog Devices, ST Microelectronics, Компэл, Honeywell International.

Опубликована 06-11-11.

Если вам понравилась статья нажмите на одну из кнопок ниже

www.devicesearch.ru.com

Презентация на тему: Датчики температуры

контактные

бесконтактные

Бесконтактные датчики температуры (пирометры)

применяются там, где затруднен доступ к измеряемым деталям, а также необходима мобильность и малая инерционность измерений. Кроме того, бесконтактные датчики температуры незаменимы там, где необходимо измерять высокие температуры – от 1500 до 3000 С.

Инфракрасное излучение с длиной волны 3 – 14 мкм от измеряемого объекта попадает на чувствительный элемент бесконтактного датчика температуры и преобразуется в электрический сигнал, который затем усиливается, нормируется, а в новых моделях датчиков и оцифровывается для передачи по сети.

Основные области применения высокотемпепературных пирометров С-700.1СТАНДАРТ:

Металлургия: Измерение температуры расплавов черных металлов, деталей при термической и механической обработке.

Стекольная промышленность: Наладка стеклоформовочных машин, контроль температурных режимов стекловарочных печей.

Cтроительная индустрия: Контроль температуры техпроцесса изготовления строительных материалов (цемент, кирпич, строительные смеси и т.д.).

ТЕПЛОВИЗОРЫ

термопары

Термопары представляют собой две проволоки из различных металлов, сваренных между собой на одном из концов.

Термоэлектрический эффект открыл немецкий физик Зеебек в первой половине 19-говека. Если соединить два проводника из разнородных металлов таким образом, что бы они образовывали замкнутую цепь и поддерживать места контактов проводников при разной температуре, то в цепи потечет постоянный ток. Экспериментальным путем были подобраны пары металлов, которые в наибольшей степени подходят для измерения температуры, обладая высокой чувствительностью, временной стабильностью, устойчивостью к воздействию внешней среды. Это например пары металловхромель-аллюмель,медь-константан,железо-константан,платина-платина/родий,рений-вольфрам.Каждый тип подходит для решения своих задач. Термопарыхромель-алюмель(тип К) имеют высокую чувствительность и стабильность и работают до температур вплоть до 1300 С в окислительной или нейтральной атмосфере. Это один из самых распространенных типов термопар. Термопаражелезо-константан(тип J) работает в вакууме, восстановительной или инертной атмосфере при температурах до 500 С. При высоких температурах до 1500 С используют термопары платинаплатина/родий (тип S или R) в керамических защитных кожухах. Они прекрасно измеряют температуру в окислительной, нейтральной среде и вакууме.

Термометры сопротивления

это резисторы, изготовленные из платины, меди или никеля. Это могут быть проволочные резисторы, либо металлический слой может быть напыленным на изолирующую подложку, обычно керамическую или стеклянную. Платина чаще всего применяется в термометрах сопротивления из-заее высокой стабильности и линейности изменения сопротивления с температурой. Медь используется в основном для измерения низких температур, а никель в недорогих датчиках для измерения в диапазоне комнатных температур. Для защиты от внешней среды платиновые термометры сопротивления помещают в защитные металлические чехлы и изолируют керамическими материалами, такими как оксид алюминия или оксид магния. Такая изоляция снижает так же воздействие вибрации и ударов на датчик. Однако вместе с дополнительной изоляцией растет и время отклика датчика на резкие температурные изменения. Платиновые термометры сопротивления одни из самых точных датчиков температуры. Кроме того, они стандартизированы, что значительно упрощает их использование. Стандартно производятся датчики сопротивлением 100 и 1000 Ом. Изменение сопротивления таких датчиков с температурой дается в любых тематических справочниках в виде таблиц или формул. Диапазон измерений платиновых термометров сопротивления составляет-180С +600 С. Несмотря на изоляцию, стоит оберегать термометры сопротивления от сильных ударов и вибрации.

Термисторы.

В этом классе датчиков используется эффект изменения электрического сопротивления материала под воздействием температуры. Обычно в качестве термисторов используют полупроводниковые материалы, как правило, оксиды различных металлов. В результате получаются датчики с высокой чувствительностью. Однако большая нелинейность позволяет использовать термисторы лишь в узком диапазоне температур. Термисторы имеют невысокую стоимость и могут изготавливаться в миниатюрных корпусах, позволяя увеличить тем самым быстродействие. Существует два типа термисторов, использующих положительный температурный коэффициент – когда электрическое сопротивление растет с повышением температуры и использующих отрицательный температурный коэффициент – здесь электрическое сопротивление падает при повышении температуры. Термисторы не имеют определенной температурной характеристики. Она зависит от конкретной модели прибора и области его применения. Основными достоинствами термисторов является их высокая чувствительность, малые размеры и вес, позволяющие создавать датчики с малым временем отклика, что важно, например, для измерения температуры воздуха. Безусловно, невысокая стоимость так же является их достоинством, позволяя встраивать датчики температуры в различные приборы. К недостаткам можно отнести высокую нелинейность термисторов, позволяющую их использовать в узком температурном диапазоне. Использование термисторов так же ограничено в диапазоне низких температур. Большое количество моделей с различными характеристиками и отсутствие единого стандарта, заставляет производителей оборудования использовать термисторы только одной конкретной модели без возможности замены.

Полупроводниковые датчики температуры используют зависимость сопротивления полупроводникового кремния от температуры. Диапазон измеряемых температур для таких датчиков составляет от -50 С до +150 С. Внутри этого диапазона кремниевые датчики температуры показывают хорошую линейность и точность. Возможность производства в одном корпусе такого датчика не только самого чувствительного элемента, но так же и схем усиления и обработки сигнала, обеспечивает датчику хорошую точность и линейность внутри температурного диапазона. Встроенная в такой датчик энергонезависимая память позволит индивидуально откалибровать каждый прибор. Большим плюсом можно назвать большое разнообразие типов выходного интерфейса: это может быть напряжение, ток, сопротивление, либо цифровой выход, позволяющий подключить такой датчик к сети передачи данных. Из слабых мест кремниевых датчиков температуры можно отметить узкий температурный диапазон и относительно большие размерами по сравнению с аналогичными датчиками других типов, особенно термопарами. Кремниевые датчики температуры применяются в основном для измерения температуры поверхности, температуры воздуха, особенно внутри различных электронных приборов.

studfiles.net


Видеоматериалы

24.10.2018

Опыт пилотных регионов, где соцнормы на электроэнергию уже введены, показывает: граждане платить стали меньше

Подробнее...
23.10.2018

Соответствует ли вода и воздух установленным нормативам?

Подробнее...
22.10.2018

С начала года из ветхого и аварийного жилья в республике были переселены десятки семей

Подробнее...
22.10.2018

Столичный Водоканал готовится к зиме

Подробнее...
17.10.2018

Более 10-ти миллионов рублей направлено на капитальный ремонт многоквартирных домов в Лескенском районе

Подробнее...

Актуальные темы

13.05.2018

Формирование энергосберегающего поведения граждан

 

Подробнее...
29.03.2018

ОТЧЕТ о деятельности министерства энергетики, ЖКХ и тарифной политики Кабардино-Балкарской Республики в сфере государственного регулирования и контроля цен и тарифов в 2012 году и об основных задачах на 2013 год

Подробнее...
13.03.2018

Предложения организаций, осуществляющих регулируемую деятельность о размере подлежащих государственному регулированию цен (тарифов) на 2013 год

Подробнее...
11.03.2018

НАУЧИМСЯ ЭКОНОМИТЬ В БЫТУ

 
Подробнее...

inetpriem


<< < Ноябрь 2013 > >>
Пн Вт Ср Чт Пт Сб Вс
        1 2 3
4 5 6 7 8 9 10
11 12 13 14 15 16 17
18 19 20 21 22 23 24
25 26 27 28 29 30  

calc

banner-calc

.