Характеристики и параметры полевого транзистора: схемы, вольт-амперные кривые
Кратко охарактеризуем различные схемы включения полевого транзистора и рассмотрим его характеристики и параметры.
Схемы включения транзистора.
Для полевого транзистора, как и для биполярного, выделяют три схемы включения. Для полевого транзистора это схемы с общим затвором (ОЗ), общим истоком (ОИ) и общим стоком (ОС). Наиболее часто используются схемы с общим истоком.
Для понимания особенностей работы некоторого электронного устройства очень полезно уметь относить конкретное решение к той или иной схеме включения (если схема такова, что это в принципе возможно).
Моделирующие программы при замене транзистора математической моделью никак не учитывают способ включения транзистора. Важно понять, что если даже на стадии разработки математической модели имеет место ориентация на конкретную схему включения, то на стадии использования эта модель должна правильно моделировать транзистор во всех самых различных ситуациях.
При объяснении влияния напряжения uис на ширину p-n-перехода фактически использовалась схема с общим истоком (см. рис. 1.87) (Статья 1 Устройство и основные физические процессы). Рассмотрим характеристики, соответствующие этой схеме (что общепринято).
Так как в рабочем режиме iз = 0, iu ~ iс, входными характеристиками обычно не пользуются. Например, для транзистора КП10ЗЛ, подробно рассматриваемого ниже, для тока утечки затвора iз ут при t < 85°С выполняется условие iз ут< 2 мкА.
Изобразим схему с общим истоком (рис. 1.89).
Выходные (стоковые) характеристики.
Выходной характеристикой называют зависимость вида iс=f(uис)|uзи =const где f — некоторая функция.
Изобразим выходные характеристики для кремниевого транзистора типа КП10ЗЛ с p-n-переходом и каналом p-типа (рис. 1.90).
Обратимся к характеристике, соответствующей условию uзи = 0. В так называемой линейной области (uис< 4 В) характеристика почти линейна (все характеристики этой области представляют собой почти прямые линии, веерообразно выходящие из начала координат). Она определяется сопротивлением канала. Транзистор, работающий в линейной области, можно использовать в качестве линейного управляемого сопротивления.
При uис = 3 В канал в области стока перекрывается. Дальнейшее увеличение напряжения приводит к очень незначительному росту тока ic, так как с увеличением напряжения область, в которой канал перекрыт (характеризующаяся очень большим удельным сопротивлением), расширяется. При этом сопротивление на постоянном токе промежутка исток-сток увеличивается, а ток ic практически не изменяется.
Ток стока в области насыщения при uзи= 0 и при заданном напряжении uис называют начальным током стока и обозначают через iс нач. Для рассматриваемых характеристик iс нач = 5 мА при uис= 10 В. Для транзистора типа КП10ЗЛ минимальное значение тока iс начравно 1,8 мА, а максимальное — 6,6 мА. При uис > 22 В возникает пробой p-n-перехода и начинается быстрый рост тока.
Теперь кратко опишем работу транзистора при различных напряжениях uзи. Чем больше заданное напряжение uзи , тем тоньше канал до подачи напряжения uис и тем ниже располагается характеристика.
Как легко заметить, в области стока напряжение на p-n-переходе равно сумме uзи+uис. Поэтому чем больше напряжение uзи , тем меньше напряжение uис, соответствующее началу пробоя.
Когда uзи= 3 В, канал оказывается перекрыт областью p-n-перехода уже до подачи напряжения uис . При этом до пробоя выполняется условие ic = 0. Таким образом,uзи отс = 3 В.Для рассматриваемого типа транзистора минимальное напряжение отсечки +2 В, а максимальное +5 В. Эти величины соответствуют условию ic = 10 мкА. Это так называемый остаточный ток стока, который обозначают через ic отс. Полевой транзистор характеризуется следующими предельными параметрами (смысл которых понятен из обозначений):uис макс,uзсмакс, Pмакc.
Для транзистора КП10ЗЛ uисмакс = 10 В,uзсмакс = 15 В, Pмакc = 120 мВт (все при t = 85°С).
Графический анализ схем с полевыми транзисторами.
Для лучшего уяснения принципа работы схем с полевыми транзисторами полезно провести графический анализ одной из них (рис. 1.91).
Пусть Ес = 4 В; определим, в каких пределах будет изменяться напряжение uиспри изменении напряжения uзи от 0 до 2 В.
При графическом анализе используется тот же подход, который был использован при анализе схем с диодами и биполярными транзисторами. Для рассматриваемой схемы, в которой напряжение между затвором и истоком равно напряжению источника напряжения uзи, нет необходимости строить линию нагрузки для входной цепи. Линия нагрузки для выходной цепи задается выражением Ес =iс·Rс+uис Построим линию нагрузки на выходных характеристиках транзистора, представленных на рис. 1.92.
Из рисунка следует, что при указанном выше изменении напряжения uзинапряжение uис будет изменяться в пределах от 1 до 2,6 В, что соответствует перемещению начальной рабочей точки от точки А до точки В. При этом ток стока будет изменяться от 1,5 до 0,7 мА.
Стокозатворные характеристики (характеристики передачи, передаточные, переходные, проходные характеристики). Стокозатворной характеристикой называют зависимость вида iс=f(uзи) |uис =const где f — некоторая функция.
Такие характеристики не дают принципиально новой информации по сравнению с выходными, но иногда более удобны для использования. Изобразим стокозатворные характеристики для транзистора КП10ЗЛ (рис. 1.93).
Для некоторых транзисторов задается максимальное (по модулю) допустимое отрицательное напряжение uзи, например, для транзистора 2П103Д это напряжение не должно быть по одулю больше чем 0,5 В.
Параметры, характеризующие свойства транзистора усиливать напряжение.
● Крутизна стокозатворной характеристики S (крутизна характеристики полевого транзистора):
S= |diс/duзи|uзи – заданное, uис =const Обычно задается u зи= 0. При этом для транзисторов рассматриваемого типа крутизна максимальная. Для КП10ЗЛS = 1,8…3,8 мА/В при u ис= 0 В, uзи= 0, t = 20°С.
● Внутреннее дифференциальное сопротивление Rис диф (внутреннее сопротивление)
Rисдиф= (duис/ diс) |uис–заданное,uзи= const
Для КП10ЗЛ Rис диф = 25 кОм при u ис= 10 В,uзи=0.
● Коэффициент усиления
M = (duис/ duзи) |uзи–заданное,iс= const
Можно заметить, что M =S· Rис диф
Для КП10ЗЛ при S = 2 мA/B и Rис диф = 25 кОм М = 2 (мА/В) · 25 кОм = 50.
● Инверсное включение транзистора.
Полевой транзистор, как и биполярный, может работать в инверсном режиме. При этом роль истока играет сток, а роль стока — исток.
Прямые (нормальные) характеристики могут отличаться от инверсных, так как области стока и истока различаются конструктивно и технологически.
● Частотные (динамические) свойства транзистора.
В полевом транзисторе в отличие от биполярного отсутствуют инжекция неосновных носителей и их перемещение по каналу, и поэтому не эти явления определяют динамические свойства. Инерционность полевого транзистора определяется в основном процессами перезаряда барьерной емкости p-n-перехода. Свое влияние оказывают также паразитные емкости между выводами и паразитные индуктивности выводов.
В справочных данных часто указывают значения следующих дифференциальных емкостей, которые перечислим ниже:
- входная емкость Сзи — это емкость между затвором и истоком при коротком замыкании по переменному току выходной цепи;
- проходная емкость Сзс — это емкость между затвором и стоком при разомкнутой по переменному току входной цепи;
- выходная емкость Сис — это емкость между истоком и стоком при коротком замыкании по переменному току входной цепи.
Для транзистора КП10ЗЛ Сзи < 20 пФ, Сзс << 8 пФ при uис= 10 В и uзи= 0.
Крутизну S, как и коэффициент B биполярного транзистора, в ряде случаев представляют в форме комплексного числа S. При этом, как и для коэффициента B, определяют предельную частоту fпpед. Это та частота, на которой выполняется условие:
| Ś | = 1 / √2 ·Sпт где Sпт — значение S на постоянном токе.
Для транзистора КП103Л данные по fпpед в использованных справочниках отсутствуют, но известно, что его относят к транзисторам низкой частоты (предназначенным для работы на частотах до 3 МГц).
Виды полевых транзисторов: МДП, схемы, характеристики ВАХ
Полевые транзисторы с изолированным затвором.
В транзисторах этого типа затвор отделен от полупроводника слоем диэлектрика, в качестве которого в кремниевых приборах обычно используется двуокись кремния. Эти транзисторы обозначают аббревиатурой МОП (металл-окисел-полупроводник) и МДП (металл-диэлектрик-полупроводник). В англоязычной литературе их обычно обозначают аббревиатурой MOSFET или MISFET (Metal-Oxide (Insulator) —Semiconductor FET).
В свою очередь МДП-транзисторы делят на два типа.
В так называемых транзисторах со встроенным (собственным) каналом (транзистор обедненного типа) и до подачи напряжения на затвор имеется канал, соединяющий исток и сток.
В так называемых транзисторах с индуцированным каналом (транзистор обогащенного типа) указанный выше канал отсутствует.
МДП-транзисторы характеризуются очень большим входным сопротивлением. При работе с такими транзисторами надо предпринимать особые меры защиты от статического электричества. Например, при пайке все выводы необходимо закоротить.
МДП-транзистор со встроенным каналом.
Канал может иметь проводимость как p-типа, так и n-типа. Для определенности обратимся к транзистору с каналом p -типа. Дадим схематическое изображение структуры транзистора (рис. 1.97), условное графическое обозначение транзистора с каналом p-типа (рис. 1.98, а) и с каналом n-типа (рис. 1.98, б). Стрелка, как обычно, указывает направление от слоя p к слою n.
Рассматриваемый транзистор (см. рис. 1.97) может работать в двух режимах: обеднения и обогащения.
Режиму обеднения соответствует положительное напряжение uзи. При увеличении этого напряжения концентрация дырок в канале уменьшается (так как потенциал затвора больше потенциала истока), что приводит к уменьшению тока стока.
Если напряжение uзи больше напряжения отсечки, т. е. если u зи>uзиотс, то канал не существует и ток между истоком и стоком равен нулю.
Режиму обогащения соответствует отрицательное напряжение uзи. При этом, чем больше модуль указанного напряжения, тем больше проводимость канала и тем больше ток стока.
Приведем схему включения транзистора (рис. 1.99).
На ток стока влияет не только напряжение uзи, но и напряжение между подложкой и истоком uпи. Однако управление по затвору всегда предпочтительнее, так как при этом входные токи намного меньше. Кроме того, наличие напряжения на подложке уменьшает крутизну.
Подложка образует с истоком, стоком и каналом p-n-переход. При использовании транзистора необходимо следить за тем, чтобы напряжение на этом переходе не смещало его в прямом направлении. На практике подложку подключают к истоку (как показано на схеме) или к точке схемы, имеющей потенциал, больший потенциала истока (потенциал стока в приведенной выше схеме меньше потенциала истока).
Изобразим выходные характеристики МДП-транзистора (встроенный p-канал) типа КП201Л (рис. 1.100) и его стокозатворную характеристику (рис. 1.101).
МДП-транзистор с индуцированным (наведенным) каналом.
Канал может иметь проводимость как p-типа, так и n-типа. Для определенности обратимся к транзистору с каналом p-типа. Дадим схематическое изображение структуры транзистора (рис. 1.102), условное графическое обозначение транзистора с индуцированным каналом p -типа (рис. 1.103, а) и каналом n-типа (рис. 1.103, б).
При нулевом напряжении uзи канал отсутствует (рис. 1.102) и ток стока равен нулю. Транзистор может работать только в режиме обогащения, которому соответствует отрицательное напряжение uзи. При этом uиз > 0.Если выполняется неравенство uиз>u из порог, где u из порог — так называемое пороговое напряжение, то между истоком и стоком возникает канал p-типа, по которому может протекать ток.
Канал p-типа возникает из-за того, что концентрация дырок под затвором увеличивается, а концентрация электронов уменьшается, в результате чего концентрация дырок оказывается больше концентрации электронов.
Описанное явление изменения типа проводимости называют инверсией типа проводимости, а слой полупроводника, в котором оно имеет место (и который является каналом), — инверсным (инверсионным). Непосредственно под инверсным слоем образуется слой, обедненный подвижными носителями заряда. Инверсный слой значительно тоньше обедненного (толщина инверсного слоя 1 · 10 – 9…5 · 10– 9 м, а толщина обедненного слоя больше в 10 и более раз).
Изобразим схему включения транзистора (рис. 1.104), выходные характеристики (рис. 1.105) и стокозатворную характеристику (рис. 1.106) для МДП-транзистора с индуцированным p-каналом КП301Б.
Полезно отметить, что в пакете программ Micro-Cap II для моделирования полевых транзисторов всех типов используется одна и та же математическая модель (но, естественно, с различными параметрами).
Полевые транзисторы
Полевые транзисторы — это полупроводниковые приборы, которые становятся все более популярными в современной электронике. Их работа основана на использовании полупроводникового токонесущего канала, сопротивление которого управляется электрическим полем.Тем самым обеспечивается управление величиной тока, протекающего по каналу.
Полевые транзисторы называют также униполярными транзисторами, поскольку перенос заряда в них осуществляется только основными носителями. Ток этих носителей протекает в полупроводнике только одного типа — или n-типа, или p-типа. В отличие от полевого работа обычного транзистора основана на переносе как неосновных, так и основных носителей заряда. Это связано с тем, что ток в них протекает через прямосмещенный переход база-эмиттер (основные носители) и обратносмещенный переход база-коллектор (неосновные носители). Поэтому обычные транзисторы называют биполярными транзисторами.
У полевого транзистора три электрода: исток s (source), затвор g (gate) и сток d (drain). Эти электроды соответствуют эмиттеру, базе и коллектору биполярного транзистора.
Полевые транзисторы малы по размерам и имеют очень высокое входное сопротивление.Они менее чувствительны к изменениям температуры по сравнению с биполярными транзисторами и поэтому менее склонны к тепловому пробою. Следует также отметить простоту разработки схем на основе полевых транзисторов, в которых используется меньше компонентов, чем в аналогичных схемах на биполярных транзисторах.
Полевые транзисторы просты в изготовлении и лучше подходят для использования в интегральных схемах, чем их собратья — биполярные транзисторы.
Существуют два типа полевых транзисторов: транзисторы с управляющим pn-переходом и транзисторы со структурой металл-оксид-полупроводник (МОП-транзистор).
Транзистор с управляющим pn-переходом
Рассмотрим канал из полупроводника n-типа (канал n-типа), к которому приложено постоянное напряжение VDD(рис. 26.1(а)). По каналу от тока к истоку будет протекать ток, называемый током стока Id. Если теперь внутри п-канала путем диффузии создать область р-типа, называемую затвором (рис. 26.1(б)), то образуется рп-переход. Точно так же, как в случае обычного рп-перехода, в области перехода формируется слой, обедненный основными носителями заряда. Видно, что обедненный слой ограничивает протекание тока по каналу, уменьшая эффективную ширину последнего. Другими словами, он увеличивает сопротивление канала. Ширину обедненного слоя можно увеличить, т. е. еще больше ограничить протекание тока, если подать на переход напряжение VGS, которое сместит переход в обратном направлении (рис. 26.1(б)). Изменяя величину напряжения обратного смещения на затворе, можно управлять величиной тока стока ID. На рис. 26.2 показано поперечное сечение структуры полевого транзистора рассматриваемого типа.
Рис. 26.1. Принцип работы полевого транзистора с управляющим рп-переходом.
Рис. 26.2. Поперечное сечение структуры
полевого транзистора с управляющим рп-переходом.
Рис. 26.3. Условные обозначения транзисторов
с управляющим рп-переходом.
Применяются также полевые транзисторы с каналом p-типа, питаемые от источника отрицательного напряжения – VDD. Условные обозначения обоих типов транзисторов с управляющим pn-переходом приведены на рис. 26.3.
Выходные характеристики
Семейство выходных характеристик транзистора с управляющим рп-переходом в схеме с общим истоком показано на рис. 26.4. Они аналогичны выходным характеристикам биполярного транзистора. Эти характеристики показывают зависимость выходного тока ID от выходного напряжения VDS(напряжения между стоком и истоком) для заданных Значений напряжения на затворе VGS(напряжения между затвором и истоком).
Диапазон изменения смещающего напряжения затвор-исток довольно велик (несколько вольт) в отличие от биполярного транзистора, где напряжение база-эмиттер практически постоянно.
Видно, что при увеличении (по абсолютной величине) напряжения на затворе ток стока уменьшается. Это уменьшение происходит до тех пор, пока расширяющийся обедненный слой перехода затвор-канал не перекроет весь канал, останавливая протекание тока. В этом случае говорят, что полевой транзистор находится в состоянии отсечки.
Напряжение отсечки
рассмотрим выходную характеристику для VGS= 0 (рис. 26.4). При увеличении напряжения VDS(от нулевого значения) ток стока постепенно увеличивается, пока не достигает точки Р, после которой величина тока практически не изменяется. Напряжение в точке Р называется напряжением отсечки. При этом напряжении обедненный слой, связанный с обратносмещенным переходом затвор-канал, почти полностью перекрывает канал. Однако протекание тока IDв этой точке не прекращается, поскольку благодаря этому току как раз и создается обедненный слой. Все кривые семейства выходных характеристик имеют свои точки отсечки: P1, P2 и т. д. Если соединить эти точки друг с другом линией, то правее ее лежит область отсечки, являющаяся рабочей областью полевого транзистора.
Усилитель на полевом транзисторе с общим истоком
Схема типичного усилителя ЗЧ на полевом транзисторе показана на рис. 26.5. В этой схеме через резистор утечки R1 отводится на шасси очень малый ток утечки затвора. Резистор R3 обеспечивает необходимое обратное смещение, поднимая потенциал истока выше потенциала затвора.
Рис. 26.4. Семейство выходных характеристик транзистора с управляющим рп-переходом.
Рис. 26.5. УЗЧ на п-канальном полевом транзисторе с управляющим рп-переходом.
Кроме того, этот резистор обеспечивает также стабильность режима усилителя по постоянному току. R2 – нагрузочный резистор, который может иметь очень большое сопротивление (до 1,5 МОм). Развязывающий конденсатор С2 в цепи истока устраняет отрицательную обратную связь по переменному току через резистор R3. Следует отметить, что разделительный конденсатор С1 может иметь небольшую емкость (0,1 мкФ) благодаря высокому входному сопротивлению полевого транзистора.
При подаче сигнала на вход усилителя изменяется ток стока, вызывая, в свою очередь, изменение выходного напряжения на стоке транзистора. Во время положительного полупериода входного сигнала напряжение на затворе увеличивается в положительном направлении, обратное напряжение смещения перехода затвор-исток уменьшается и, следовательно, увеличивается ток IDполевого транзистора. Увеличение ID приводит к уменьшению выходного (стокового) напряжения, и на выходе воспроизводится отрицательный полупериод усиленного сигнала. И наоборот, отрицательному полупериоду входного сигнала соответствует положительный полупериод выходного сигнала. Таким образом, входной и выходной сигналы усилителя с общим истоком находятся в противофазе.
Одно из преимуществ полевого транзистора – очень малый ток утечки затвора, величина которого не превышает нескольких пикоампер (10-12 A). Поэтому в схеме усилителя па рис. 26.5 затвор находится практически при нулевом потенциале. Ток полевого транзистора протекает от стока к истоку и обычно отождествляется с током стока ID (который, очевидно, равен току истока IS).
Рассмотрим схему на рис. 26.5. Полагая ID = 0,2 мА, вычисляем потенциал истока: VS = 0,2 мА · 5 кОм = 1 В. Это величина напряжения обратного смещения управляющего pn-перехода.
Падение напряжения на резисторе R2 = 0,2 мА · 30 кОм = 6 В.
Потенциал стока VD = 15 – 6 = 9 В.
Линия нагрузки
Линию нагрузки можно начертить точно так же, как для биполярного транзистора. На рис. 26.6 показана линия нагрузки для схемы па же. 26.5.
Если ID = 0, то VDS= VDD = 15 В. Это точка Х на линии нагрузки.
Если VDS= 0, то почти все напряжение VDDисточника питания падает на резисторе R2. Следовательно, ID = VDD / R2= 15 В / 30 кОм = 0,5 мА. Это точка Y на линии нагрузки. Рабочая точка Q выбирается таким образом, чтобы транзистор работал в области отсечки.
Выбранная рабочая точка Q (точка покоя) на рис. 26.6 определяется величинами: ID = 0,2 мА, VGS= — 1 В, VDS= 9 В.
МОП-транзистор
В полевом транзисторе этого типа роль затвора играет металлический электрод, электрически изолированный от полупроводника тонкой пленкой диэлектрика, в данном случае оксида. Отсюда и название транзистора «МОП» — сокращение от «металл-оксид-полупроводник».
Канал п-типа в МОП-транзисторе формируется за счет притяжения электронов из подложки р-типа диэлектрическим слоем затвора (рис. 26.7). Ширину канала можно изменять, подавая на затвор электрический потенциал. Подача положительного (относительно подложки)
Рис. 26.6. Линия нагрузки усилителя на полевом транзисторе (рис. 26.5).
Рис. 26.7. Поперечное сечение МОП-транзистора.
потенциала приводит к расширению канала п-типа и увеличению тока через этот канал, подача отрицательного потенциала вызывает сужение канала и уменьшение тока. Для МОП-транзистора с каналом р-типа ситуация изменяется на обратную.
Существует два типа МОП-транзисторов: транзисторы, работающие в режиме обогащения, и транзисторы, работающие в режиме обеднения. Транзистор, работающий в режиме обогащения, находится в состоянии отсечки тока (нормально выключен), когда напряжение смещения VGS= 0.
Рис. 26.8. Выходные характеристики МОП-транзистора с каналом п-типа, работающего в режиме обогащения, и условное обозначение этого транзистора.
Рис. 26.9. Выходные характеристики МОП-транзистора с каналом n-типа, работающего в режиме обеднения, и условное обозначение этого транзистора.
Протекание тока начинается только при подаче напряжения смещения на затвор. Выходные характеристики п-канального МОП-транзистора с каналом п-типа, работающего в режиме обогащения, и его условное обозначение показаны на рис. 26.8.
МОП-транзистор, работающий в режиме обеднения, проводит ток, когда напряжение смещения на затворе отсутствует (нормально включен). Для МОП-транзистора с каналом n-типа ток стока увеличивается при подаче на затвор положительного напряжения и уменьшается при подаче отрицательного напряжения (рис. 26.9).
Условное обозначение МОП-транзистора с каналом р-типа показано на рис. 26.10. Заметим, что прерывающаяся жирная линия указывает на МОП-транзистор, работающий в режиме обогащения (нормально выключен).
Рис. 26.10. Условное обозначение МОП-транзистора с каналом р-типа.
Рис. 26.11. Усилитель на МОП-транзисторе с каналом р-типа, работающий в режиме обеднения.
Сплошная линия используется для обозначения МОП-транзистора, работающего в режиме обеднения (нормально включен). Вывод подложки обозначается буквой «Ь», обычно он соединяется с выводом истока. На рис. 26.11 схема типичного усилителя с общим истоком на МОП-транзисторе с каналом р-типа, работающего в режиме обеднения. Используется источник питания с отрицательным напряжением. Положительное напряжение смещения между затвором и истоком VGSсоздается обычным образом с помощью резистора R3 в цепи истока.
В этом видео рассказывается о типах полевых транзисторов:
Добавить комментарий
Полевые транзисторы. Их характеристики, виды и принцип работы
Одним из главных недостатков биполярных транзисторов является их небольшое входное сопротивление h11, благодаря чему требует значительного тока, что в последствии требует большой мощности для его управления. Во избежание этого были придуманы так называемые униполярные транзисторы. ток в Них создают только носители одного знака, обычные электроны, поэтому приборы и называют униполярными. Эти транзисторы имеют большое входное сопротивление. Кроме этого они оказались более технологичными при изготовлении и несколько дешевле чем биполярные. Благодаря большому входному сопротивлению униполярные транзисторы почти не потребляют ток управления, смена выходного тока осуществляется приложением ко входу напряжения, которое создает электрическое поле.
Поэтому такой тип транзисторов называют еще полевыми. Полевые транзисторы бывают:
- С p-n переходом;
- С МДП со встроенным каналом;
- С МДП с наведенным каналом;
Рассмотрим их каждый по очереди.
Полевые транзисторы с p-n переходом
Ниже показана схема полупроводника с n-проводимостью:
К торцам кристалла В и С прикладывают напряжение UС, под действием этого поля протекает ток. С боку кристалла созданы зоны с р-проводимостью, благодаря чему вдоль кристалла возникает p-n переход.
Электроны под действием UС движутся от отрицательного электрода В к положительному С, поэтому отрицательный электрод называют истоком, а положительный – стоком. Боковая поверхность с р-проводимостью и вывод от нее зовут затвором З. между истоком и затвором приложено напряжение UЗ с отрицательным знаком к затвору и положительным к истоку.
Ниже показано условное обозначение транзистора с n-проводимостью:
И р-проводимостью:
Поскольку электроны более подвижны, то обычно строят транзисторы с электронной проводимостью.
Пускай UЗ=0, то есть отрицательный потенциал приложен к р-проводнику, а положительный через электрод С к самому кристаллу с n-проводимостью. В p-n переходе возрастет потенциальный барьер. Напряжение UС пропорционально распределяется вдоль кристалла пропорционально его длине, благодаря чему потенциальный барьер будет больший со стороны стока, и свободная зона для носителей полупроводников будет сужаться в направлении от истока к стоку в виде конуса. Уменьшение сечения полупроводника, свободного от носителей, приведет к увеличении сопротивления, которое будет расти при увеличении UC. Сток-затворная характеристика данного устройства показана ниже:
Если по мимо того приложить к затвору отрицательный потенциал относительно истока, потенциальный барьер еще больше и ток уменьшится. Характеристики, отвечающие разным значениям UЗ создают семейство характеристик:
Полевые транзисторы с МДП со встроенным каналом
Для увеличения входного сопротивления металлический затвор изолируют от полупроводника с помощью диэлектрика, зачастую используют SiO2. Поэтому их называют транзисторами типа «металл-диэлектрик-полупроводник» или МДП. Ниже показана их конструкция:
В кристалле с р-проводимостью создано две зоны И (исток) и С (сток), заполненные полупроводниками n-типа. Обе зоны соединены каналом К, над которым через диэлектрик расположен металлический вывод затвору З. Ток переносят электроны под действием напряжения, приложенного к точкам И и С. Если подать между З и основой р-типа отрицательное напряжение, канал сузится и стоковый ток уменьшится. При положительном потенциале затвора канал расширится и ток возрастет. Выходные характеристики этого устройства:
Сток-затворная характеристика:
Она размещена уже в двух квадрантах. Условное обозначение на схеме:
Противоположная сторона полупроводника р-типа тоже имеет вывод, имеющий название подложки (П), которую обычно соединяют с истоком.
Полевой транзистор с МДП с наведенным каналом
Транзисторы такого типа с наведенным каналом не имеют специально созданного канала:
Он возникал при подаче на затвор относительно основы р положительного напряжения. Благодаря этому сток-затворная характеристика будет иметь вид:
Выходные характеристики:
Обозначение на схеме:
Статические характеристики полевого транзистора с управляющим p-n-переходом
Полевой транзистор, как и биполярный, является активным четырехполюсником и также имеет три электрода. Следовательно, возможны три схемы включения полевого транзистора: 1) с общим истоком – ОИ; 2) с общим затвором – ОЗ; 3) с общим стоком – ОС. Рассмотрим характеристики чаще применяемой схемы с общим истоком.
Рис. 3. Выходная (стоковая) характеристика полевого транзистора с каналом n-типа |
Выходные (стоковые) характеристики.
Выходной (стоковой) характеристикой полевого транзистора называется графически выраженная зависимость Iс=f(Ucи) при Uзи=const (рис.3).
Они показывают, что с увеличением uси ток ic сначала растет довольно быстро, а затем это нарастание замедляется и почти совсем прекращается, т.е. наступает явление, напоминающее насыщение. Это объясняется тем, что при повышении uси ток должен увеличиваться, но т.к. одновременно повышается обратное напряжение на p-n-переходе, то запирающий слой расширяется, канал сужается, т.е. его сопротивление растет, и за счет этого ток ic должен уменьшиться. Таким образом, два взаимно противоположных воздействия имеют место на ток, который в результате остается почти постоянным.
При подаче большого по абсолютному значению отрицательного напряжения на затвор ток ic уменьшается, и характеристика проходит ниже. Повышение напряжения стока в конце концов приводит к электрическому пробою p-n-перехода, и ток стока начинает лавинообразно нарастать, что показано на рис.3 штриховыми линиями. Напряжение пробоя является одним из предельных параметров полевого транзистора.
Работа транзистора обычно происходит на пологих участках характеристик, т.е. в области, которую часто не совсем удачно называют областью насыщения. Напряжение, при котором начинается эта область, иногда называют напряжением насыщения, а запирающее напряжение затвора иначе еще называется напряжением отсечки.
Передаточная (стоко-затворная) характеристика.
Рис. 4. Передаточные характеристики полевого транзистора с управляющим p-n-переходом |
Передаточной характеристикой полевого транзистора называется графически выраженная зависимость Ic=f(Uзи) при Uси=const (рис.4). При Uзи=0 ток Ic достигает максимального значения, т.к. в данном случае ширина канала максимальна, а сопротивление минимально. С ростом Uобр при неизменном Uси уменьшается ток Ic.
При Uзи=Uзи отс канал перекрывается, ток Ic становится близким к нулю. Однако при этом в цепи течет незначительный ток неосновных носителей заряда. При тех же значения напряжения Uзи, но разных напряжениях Uси ток Ic меняется мало, что объясняется тем, что напряжения Uси берутся при насыщении тока Ic.
Таким образом, передаточная характеристика определяет эффективность управления током Ic с помощью изменения входного напряжения Uзи. В то время как в режиме насыщения большие изменения напряжения Uси почти не влияют на изменение тока Ic, даже незначительные изменения напряжения Uзи вызывают большое изменение этого же тока Iс. В отличие от биполярных транзисторов входные характеристики Iвх=f(Uвх) при Uвых=const не представляют особого интереса, т.к. входной ток, который является током неосновных носителей заряда, очень мал и при изменении Uзи практически не меняется.
Влияние температуры на работу полевого транзистора.
Рассмотрим влияние температуры на сопротивление канала.
При увеличении температуры уменьшается потенциальный барьер и ширина p-n-перехода, в результате ширина канала увеличивается, сопротивление канала уменьшается. В то же время при возрастании температуры уменьшается подвижность основных носителей в канале, что приводит к увеличению сопротивления канала. Таким образом, оба фактора оказывают противоположное влияние на изменение сопротивления канала и, следовательно, на изменение тока Ic при изменении температуры. На рис.5 показано влияние температуры на передаточные характеристики. Здесь видно, что при Uзи опт ток стока Iс не меняется при изменении температуры.
Рис. 5. Влияние температуры на работу полевого транзистора с управляющим p-n-переходом |
При |Uзи|>|Uзи опт| Ic растет с увеличением температуры, что говорит о том, что влияние уменьшения потенциального барьера и расширения канала при этом является преобладающим.
При |Uзи|<|Uзи опт| преобладающим фактором становится уменьшения подвижности носителей зарядов при росте температуры. Таким образом, при больших токах в полевых транзисторах получается уменьшение тока с ростом температуры.
Следует помнить, что в биполярных транзисторах наблюдается другая картина. При увеличении температуры Iк увеличивается и при больших мощностях, вызывающих неизбежное увеличение температуры, очень трудно обеспечить его термоустойчивую работу. В этом отношении полевой транзистор выгодно отличается от биполярного, что является еще одним его достоинством.
Параметры полевых транзисторов с управляющим p-n-переходом.
Полевой транзистор характеризуется следующими параметрами.
1) Основной параметр – крутизна S, аналогичная параметру y21 биполярных транзисторов. Крутизна определяется по формуле:
Она может достигать нескольких миллиампер на вольт (мА/В).
Крутизна характеризует управляющее действие затвора. Например, S=3мА/В означает, что изменение напряжения затвора на 1 В создает изменение тока стока на 3мА.
2) Внутренне (выходное) сопротивление Ri, аналогичное величине 1/y22 для биполярных транзисторов. Этот параметр представляет собой сопротивление транзистора между стоком и истоком (сопротивление канала) для переменного тока и выражается формулой:
На пологих участках выходных характеристик значение Ri достигает сотен кОм и оказывается во много раз больше сопротивления транзистора постоянному току Ro.
3) Коэффициент усиления m — показывает, во сколько раз сильнее действует на Ic изменение Uзи, нежели изменение Uси. Коэффициент усиления определяется формулой:
,
Т.е. выражается отношением таких изменений DUси и DUзи, которые компенсируют друг друга по действию на ток Iс, в результате чего этот ток остается постоянным. Т.к. для подобной компенсации DUси и DUзи должны иметь разные знаки (например, увеличение Uси должно компенсироваться уменьшением Uзи), то в правой части формулы стоит знак «-».
Коэффициент усиления связан с параметрами S и Ri зависимостью:
Для пологих участков выходных характеристик m достигает сотен и даже тысяч. В начальной области этих характеристик, когда они идут круто (при малых Uси), значения всех трех параметров уменьшаются. Параметры S и Ri для заданного режима можно определять из выходных характеристик по методу двух точек, подобно тому, как это делалось для биполярных транзисторов, а m вычисляется по вышеприведенной формуле.
4) Входное сопротивление полевого транзистора определяется по формуле:
Т.к. ток Iз – обратный ток p-n-перехода, а значит, очень мал, то Rвх достигает единиц и десятков МОм.
Полевой транзистор имеет также входную емкость между З и И Cзи, Которая является барьерной емкостью p-n-перехода и составляет единицы рФ у диффузионных транзисторов и десятки рФ у сплавных. Меньшие значения имеет проходная емкость между З и С Cзс, а самой малой является выходная емкость между И и С Сси.
На рис.6 показана эквивалентная схема (схема замещения) полевого транзистора для включения его с ОИ. Поскольку Rвх очень велико, то его можно не учитывать. Для НЧ во многих случаях можно исключить из схемы емкости. Генератор тока SUmвх отражает усиление, даваемое транзистором, а сопротивление Ri представляет собой сопротивление канала переменному току, т.е. выходное сопротивление. К входным зажимам подключается источник колебаний, а к выходным – нагрузка.
В практических усилительных каскадах обычно применяется питание от одного источника E2 (рис.7). Для получения постоянного обратного напряжения на управляемом n-p-переходе в провод истока включается резистор Rн, зашунтированный конденсатором Cн. Постоянный ток стока Iсo создает на резисторе Rн напряжение Uзиo=Ico·Rн, которое через ИК подается на n-p-переход. Сопротивление Rн=Uзио/Iсo.
Величины Uзио и Iсо могут быть определены для выбранного режима работы из выходных характеристик. Через конденсатор Си проходит переменная составляющая тока стока. Xc=1/wC<Rн (на низшей частоте).
Схема на рис.7, называемая часто схемой с автоматическим напряжением смещения Uзио n-p-перехода, непригодна для запирания транзистора. Действительно, напряжение смещения Uзи получается за счет тока стока Ico, но у запертого транзистора этот ток равен нулю. Если нужно запереть транзистор при отсутствии входного напряжения uвх, то применяют схему, представленную на рис.8.
В ней напряжение источника E2 подано на делитель R1R2 и постоянное напряжение на резисторе R1 является запирающим напряжением смещения Uзио.
где Iд – ток делителя, который выбирается сравнительно небольшим, чтобы на делителе не было значительной потери мощности источника E2. Но вместе с тем ток Iд должен быть в несколько раз больше тока Iсо, получающегося при подаче входного напряжения Uвх. Конденсатор С выполняет ту же роль, что и предыдущей схеме.
Иногда ИК помимо переменного дает постоянное напряжение, которое не должно попадать на вход транзистора. В этом случае переменное входное напряжение подают через разделительный конденсатор Ср (рис.9), а напряжение смещения Uзио – через резистор Rз, который должен иметь большое сопротивление, чтобы не снижалось входное сопротивление каскада.
На рис.10 показано включение полевого транзистора с каналом n-типа по схеме с ОЗ и ОС.
Схема с ОЗ аналогична схеме включения биполярного транзистора с ОБ. Она не дает усиления по току и поэтому усиление мощности в ней во много раз меньше, чем в схеме ОИ. Входное сопротивление данной схемы мало, т.к. входным током является ток стока. Фаза напряжения при усилении не переворачивается.
Каскад с ОС подобен эмиттерному повторителю и может быть назван истоковым повторителем. КU»1. Выходное напряжение по значению и фазе повторяет входное. Для такого каскада характерно сравнительно небольшое выходное сопротивление и повышенное входное. Кроме того, значительно уменьшается входная емкость, что способствует увеличению входного сопротивления на высоких частотах.
Как правило, выпускаются кремниевые полевые транзисторы. Кремний применяется потому, что ток затвора, т.е. обратный ток p-n-перехода, получается во много раз меньше, чем у германия. При температуре 20°С постоянный ток затвора может составлять всего лишь 1нА, т.е. 10-9А.
Лекция 12. Полевые транзисторы. Классификация, принцип действия, основные параметры, схемы включения и режимы работы
12.1. Классификация полевых транзисторов
Полевым транзистором называется
полупроводниковый прибор, ток в котором
создаётся основными носителями зарядов
(только электронами или только дырками).
Заряды перемещаются в области, которая
называется канал. Электрод,
через который ток втекает в транзистор,
называетсяисток(И). Прошедшие
через канал заряды выходят из него через
электрод, который называетсясток(С). Движением зарядов управляет электрод,
который называетсязатвор(З).
Классификация. В зависимости от
типа проводимости канала различают
полевые транзисторы с каналом типаpи типаn, а в
зависимости от способа выполнения
затвора – с управляющимp—nпереходом и с изолированным затвором.
Условное графическое обозначение
полевых транзисторов представлено на
рис. 12.1. Стрелка показывает направление
от слояpк слоюn.
Тип затвора | Канал n-типа | Канал p-типа |
С управляющим | ||
С изолированным | ||
С изолированным |
Рис. 12.1. Условное
графическое обозначение полевых
транзисторов
В 1926 году был открыт полевой эффект и
указан его недостаток — поверхностные
волны в металле не позволяли проникать
полю затвора в канал. Однако в 1952 году
Уильям Шокли исследовал влияние
управляющего p—nперехода на ток в канале, а в 1959 году
Джон Аталла и Дэвон Канг из Bell Labs
изготовили полевой транзистор с
изолированным затвором по технологии
МОП металлический (Al) затвор, изолятор
оксид кремния (SiO2) и канал-полупроводник
(Si).
Система обозначений транзисторов была
рассмотрена в лекции 6, и для полевых
транзисторов, как и для биполярных,
установлена отраслевым стандартом
ОСТ 11336.919 – 81 и его последующими
редакциями.
12.2. Устройство и принцип действия полевых транзисторов с управляющимp-n переходом
Рассмотрим физические процессы,
происходящие в полевом транзисторе с
управляющим p—nпереходом и каналомn-типа, схематичное
изображение которого представлено на
рис. 12.2.
Рис.
12.2. Полевой транзистор с управляющим
p—n
переходом и каналом n-типа
Такая конструкция, в которой электроды
расположены в одной плоскости, называется
планарной. В исходном полупроводниковом
материале методом диффузии создаётся
легированная область n– канал. Затем на поверхности образуют
сток, исток и затвор таким образом, что
канал получается под затвором. Нижняя
область исходного полупроводника –
подложка – обычно соединяется с затвором.
Исток подключают к общей точке источников
питания, и напряжения на стоке и затворе
измеряют относительно истока.
Изменение проводимости канала
осуществляется изменением напряжения,
прикладываемого к p—n
переходам затвора и подложки. На рис.
12.3. представлены графики статических
характеристик. Поскольку ток затвора
не зависит от напряжения UЗИ,
входная характеристика отсутствует.
Вместо неё применяется сток — затворная
характеристика передачи.
Выходная характеристика – это зависимость
тока стока от напряжения на стоке при
фиксированном напряжении на затворе.
Рис. 12.3. Статические
характеристики полевого транзистора
с управляющим p—nпереходом
При UЗИ= 0 толщинаp—n
– переходов затвора и подложки минимальна,
канал «широкий» и проводимость его
наибольшая. Под действием напряжения
UСИпо каналу
будет проходить ток, создаваемый
основными носителями зарядов –
электронами. На участке напряжений от
0 доUСИ.НАСток
будет нарастать и достигнет величиныIС.нач– начального
тока стока. Дальнейшее увеличение
напряжения на стоке повышает напряжённость
поля в запорном слоеp—n
переходов затвора и подложки, но не
увеличивает ток стока. Когда напряжение
на стоке достигнет UСИ.макс,
может наступить электрический пробой
по цепи сток – затвор, что показывает
вертикальная линия роста тока на выходной
характеристике.
Если отрицательное напряжение на затворе
увеличивать, то, в соответствии с эффектом
Эрли, толщина p—n
– переходов затвора и подложки начнёт
увеличиваться за счёт канала, сечение
канала будет уменьшаться. Ток стока
будет ограничен на меньшем уровне. Если
и дальше увеличивать отрицательное
напряжение на затворе, то, при некоторой
его величине, называемой напряжением
отсечки UЗИотс,p—n
переходы затвора и подложки сомкнутся
и перекроют канал. Движение электронов
в канале прекратится, ток стока будет
равен нулю, и не будет зависеть от
напряжения на стоке.
Следовательно, полевой транзистор с
управляющим p—n–переходом
до напряжения на стоке UСИ.НАС
работает как регулируемое сопротивление,
а на горизонтальных участках выходных
характеристик может использоваться
для усиления сигналов в режиме нагрузки.
Отличие полевого транзистора от биполярного. Сфера их применения
Здравствуйте, дорогие читатели. В данной статье рассмотрим отличие полевого транзистора от биполярного, узнаем в каких сферах применяются и те, и другие транзисторы.
И так, начнём…
Среди полупроводниковых приборов существуют две большие группы, в состав которых входят полевые и биполярные транзисторы. Они широко используются в электронике и радиотехнике в качестве генераторов, усилителей и преобразователей электрических сигналов. Чтобы понять, в чем основное различие этих устройств, необходимо рассмотреть их более подробно.
Отличие полевого транзистора от биполярного
Биполярные транзисторы
Проводящая область конструкции состоит из трёх «спаянных» полупроводниковых частей, с чередованием по типу проводимости. Полупроводник с донорной (электронной) проводимостью обозначается как n-тип, с акцепторной (дырочной) – p-тип. Таким образом, мы можем наблюдать только два варианта чередования – p-n-p, либо n-p-n. По этому признаку различают биполярные транзисторы с n-p-n и p-n-p структурой.
Общая часть транзисторного кристалла, контактирующая с двумя другими, называется «база». Две другие – «коллектор» и «эмиттер». Степень насыщенности базы носителями заряда (электронами или электронными вакансиями «дырками») определяет степень проводимости всего кристалла транзистора. Таким образом, осуществляется управление проводимостью переходов транзистора, что позволяет использовать его в качестве элемента усиления мощности сигнала, или ключа.
Полевые транзисторы
Проводящая часть конструкции представляет собой полупроводниковый канал p- или n-типа в металле. Ток нагрузки протекает по каналу через электроды, называемые «стоком» и «истоком». Величина сечения проводящего канала и его сопротивление зависит от обратного напряжения на p-n переходе границы металла и полупроводника канала. Управляющий электрод, соединённый с металлической областью называется «затвор».
Канал полевого транзистора может иметь электрическую связь с металлом затвора — неизолированный затвор, а может быть и отделён от него тонким слоем диэлектрика — изолированный затвор.
Какие транзисторы лучше полевые или биполярные?
И так, мы узнали, что главное отличие этих двух видов транзисторов в управление. Давайте рассмотрим прочие преимущества полевых транзисторов по сравнению с биполярными:
- высокое входное сопротивление по постоянному току и на высокой частоте, отсюда и малые потери на управление
- высокое быстродействие (благодаря отсутствию накопления и рассасывания неосновных носителей)
- почти полная электрическая развязка входных и выходных цепей, малая проходная ёмкость поскольку усилительные свойства полевых транзисторов обусловлены переносом основных носителей заряда, их верхняя граница эффективного усиления выше, чем у биполярных
- квадратичность вольт — амперной характеристики (аналогична триоду)
- высокая температурная стабильность
- малый уровень шумов, так как в полевых транзисторах не используется явление инжекции неосновных носителей заряда, которое и делает биполярные транзисторы «шумными»
- малое потребление мощности
Накопление и рассасывание неосновных носителей заряда отсутствует в полевых транзисторах, от того и быстродействие у них очень высокое (что отмечается разработчиками силовой техники). И поскольку за усиление в полевых транзисторах отвечают переносимые основные носители заряда, то верхняя граница эффективного усиления у полевых транзисторов выше чем у биполярных.
Отличие полевого транзистора от биполярного
Здесь же отметим высокую температурную стабильность, малый уровень помех (в силу отсутствия инжекции неосновных носителей заряда, как то происходит в биполярных), экономичность в плане потребления энергии.
Ток или поле, управление транзисторами
Большинству людей, так или иначе имеющими дело с электроникой, принципиальное устройство полевых и биполярных транзисторов должно быть известно. По крайней мере, из названия «полевой транзистор», очевидно, что управляется он полем, электрическим полем затвора, в то время как биполярный транзистор управляется током базы.
Ток и поле, различие здесь кардинальное. У биполярных транзисторов управление током коллектора осуществляется путем изменения управляющего тока базы, в то время как для управления током стока полевого транзистора, достаточно изменить приложенное между затвором и истоком напряжение, и не нужен уже никакой управляющий ток как таковой.
Разная реакция на нагрев
У биполярных транзисторов температурный коэффициент сопротивления коллектор-эмиттер отрицательный (т. е. с ростом температуры сопротивление уменьшается и ток коллектор — эмиттер растет). У полевых транзисторов все наоборот — температурный коэффициент сток-исток положительный (с ростом температуры сопротивление растет, и ток сток-исток уменьшается).
Важное следствие из этого факта — если биполярные транзисторы нельзя просто так включать параллельно (с целью умощнения), без токовыравнивающих резисторов в цепи эмиттера, то с полевыми все намного проще — благодаря автобалансировке тока сток-исток при изменении нагрузки/нагрева — их можно свободно включать параллельно без выравнивающих резисторов. Это связано с температурными свойствами p-n перехода и простого полупроводника p- или n-типа. По этой причине у полевых транзисторов гораздо реже случается необратимый выходной тепловой пробой, чем у биполярных.
Так для достижения высоких показателей коммутационных токов, можно легко набрать составной ключ из нескольких параллельных полевых транзисторов, что и используется много где на практике, например в инверторах.
А вот биполярные транзисторы нельзя просто так параллелить, им нужны обязательно токовыравнивающие резисторы в цепях эмиттеров. Иначе, из-за разбаланса в мощном составном ключе, у одного из биполярных транзисторов рано или поздно случится необратимый тепловой пробой. Полевым составным ключам названная проблема почти не грозит. Эти характерные тепловые особенности связаны со свойствами простого n- и p-канала и p-n перехода, которые кардинально отличаются.
Сферы применения тех и других транзисторов
Различия между полевыми и биполярными транзисторами четко разделяют области их применений. Например в цифровых микросхемах, где необходим минимальный ток потребления в ждущем состоянии, полевые транзисторы применяются сегодня гораздо шире. В аналоговых же микросхемах полевые транзисторы помогают достичь высокой линейности усилительной характеристики в широком диапазоне питающих напряжений и выходных параметров.
Схемы типа reel-to-reel удобно реализуются сегодня с полевыми транзисторами, ведь легко достигается размах напряжений выходов как сигналов для входов, совпадая почти с уровнем напряжения питания схемы. Такие схемы можно просто соединять выход одной с входом другой, и не нужно никаких ограничителей напряжения или делителей на резисторах.
Что касается биполярных транзисторов, то их типичными сферами применения остаются: усилители, их каскады, модуляторы, детекторы, логические инверторы и микросхемы на транзисторной логике.
Полевые побеждают, почему?
Выдающиеся примеры устройств, построенных на полевых транзисторах, — наручные электронные часы и пульт дистанционного управления для телевизора. За счёт применения КМОП-структур эти устройства могут работать до нескольких лет от одного миниатюрного источника питания — батарейки или аккумулятора, потому что практически не потребляют энергии.
В настоящее время полевые транзисторы находят все более широкое применение в различных радиоустройствах, где уже с успехом заменяют биполярные. Их применение в радиопередающих устройствах позволяет увеличить частоту несущего сигнала, обеспечивая такие устройства высокой помехоустойчивостью.
Обладая низким сопротивлением в открытом состоянии, находят применение в оконечных каскадах усилителей мощности звуковых частот высокой мощности (Hi-Fi), где опять же с успехом заменяют биполярные транзисторы и даже электронные лампы.
В устройствах большой мощности, например в устройствах плавного пуска двигателей, биполярные транзисторы с изолированным затвором (IGBT) — приборы, сочетающие в себе как биполярные, так и полевые транзисторы, уже успешно вытесняют тиристоры.
Видео, отличие полевого транзистора от биполярного
Будем рады, если подпишетесь на наш Блог!
[wysija_form id=»1″]
Работа полевого транзистора
и его характеристики
Полевой транзистор
Полевые транзисторы используются во многих различных областях электронных схем. Они способны обеспечить характеристики, недоступные при использовании более традиционных биполярных транзисторов. При проектировании схем в целом часто используются методы проектирования схем на полевых транзисторах. Они доступны в нескольких различных типах. Существует несколько различных типов схем на полевых транзисторах, которые можно использовать как в качестве дискретных схем, так и в интегральных схемах.
Что такое полевой транзистор?
Прежде чем рассматривать использование схем на полевых транзисторах, давайте рассмотрим технологию полевых транзисторов и тип полевого транзистора. Что будет наиболее подходящим. Для разработки различных схем доступны разные типы полевых транзисторов. Это полевые транзисторы Junction (JFET), металлооксидно-кремниевые полевые транзисторы (MOSFET), VFET и другие. Все они основаны на одной базовой технологии. Во всех этих полевых транзисторах электрическое поле изменяет ток через полупроводниковый канал.Базовый символ полевого транзистора показан ниже.
Полевой транзистор
Полевой транзистор состоит из трех выводов, таких как исток, сток и затвор.
Источник
Источник (S) — это электрод транзистора, через который носители заряда входят в канал, затем он действует как источник носителей для устройства, ток, протекающий через источник в канал, выбирается IS.
Слив
Сток (D) — это электрод транзистора, через который большинство носителей заряда покидают канал, т.е.е. они истощены из канала. Обычный ток, поступающий в канал на стоке, выбирается по идентификатору. Также VDS
часто выбирает напряжение от стока к источнику.
Ворота
Терминал Gate (G) контролирует проводимость канала. Подав напряжение на клемму затвора, можно управлять ID
.
Различные типы полевых транзисторов для проектирования схем
Существуют различные типы полевых транзисторов, которые используются в схемотехнике. Ниже обсуждаются различные типы полевых транзисторов с характеристиками.
Соединительный полевой транзистор
J-FET — это транзистор одного типа, в котором вывод затвора формируется с помощью переходного диода в канал. Переходные полевые транзисторы используются в усилителях, переключателях или резисторах, управляемых напряжением. Эти транзисторы состоят из канала p-типа или канала n-типа. В канале p-типа, когда на вывод затвора подается напряжение, меньшее, чем напряжение, приложенное к выводу истока. Аналогично, в р-типе, когда напряжение, приложенное к выводу затвора, больше, чем напряжение, приложенное к выводу истока.
МОП-транзистор
МОП-транзистор — это один из типов полевого транзистора, который зависит от оксида металла между затвором и каналом, и он обеспечивает высокое входное сопротивление.
МОП-транзистор с двойным затвором
Как следует из названия, этот тип полевого МОП-транзистора состоит из двух затворов, эти типы полевых МОП-транзисторов используются в схемах полевых транзисторов для предоставления дополнительных возможностей.
Режим улучшения
Эти типы полевых транзисторов отключены при нулевом напряжении затвор-исток.Они включаются, подтягивая напряжение затвора к шине питания, которое является положительным для N-канала и отрицательным для P-канала.
Режим истощения
В режиме истощения полевого МОП-транзистора полевой транзистор обычно включен при нулевом напряжении истока затвора. Напряжение любого затвора в направлении стока будет иметь тенденцию уменьшать активную площадь канала носителей и уменьшать ток.
N-канал
N-канальный полевой транзистор имеет канал, сделанный из полупроводника N-типа.В этом канале электроны являются основными носителями заряда.
P-канал
Полевой транзистор с P-каналом имеет канал, сделанный из полупроводника P-типа. Большинство носителей заряда — дырки в этом канале.
При проектировании схемы с использованием полевого транзистора одним из первых шагов является выбор полевого транзистора (базового типа, типа канала или типа режима) в зависимости от требуемого приложения. Цепи на полевых транзисторах работают немного по-другому, обеспечивая разные уровни усиления и импеданса.
Основы конфигурации полевого транзистора
Терминология, используемая для обозначения трех основных конфигураций полевого транзистора, определяет электрод полевого транзистора, который является общим для обеих схем i / p и o / p. Три конфигурации транзисторов: общий затвор, общий сток и общий исток.
Общий затвор: Эта конфигурация обеспечивает низкое входное сопротивление при высоком выходном сопротивлении. Хотя, когда напряжение высокое, коэффициент усиления по току низкий, и коэффициент усиления общей мощности также низкий по сравнению с другими схемами на полевых транзисторах.Другой особенностью этой общей конфигурации затвора является то, что сигналы i / p и o / p синфазны.
Конфигурация схемы полевого транзистора с общим затвором
Общий сток: Эта конфигурация также известна как ведомый источник. Поскольку напряжение источника следует за затвором. Предлагая высокий импеданс i / p и низкий импеданс o / p, широко используются в качестве буфера. Коэффициент усиления по напряжению равен единице, а коэффициент усиления по току высокий. Другой особенностью этой конфигурации является то, что входные и выходные сигналы совпадают по фазе.
Цепь полевого транзистора общего стока или истока
Common Source: Пожалуй, это наиболее распространенная конфигурация. Он обеспечивает средний уровень импеданса i / p и o / p. Коэффициент усиления как по напряжению, так и по току можно описать как средний, но выход противоположен входу, то есть изменение фазы на 180 °, и это обеспечивает хорошие общие характеристики.
Конфигурация цепи полевого транзистора с общим истоком
Сводная таблица конфигурации схемы полевого транзистора
В таблице ниже приведены основные характеристики различных конфигураций схемы полевых транзисторов.
Сводная таблица конфигурации схемы полевого транзистора
Характеристики полевого транзистора с общим истоком
В таблице ниже приведены основные характеристики полевого транзистора с общим истоком.
Характеристики полевого транзистора с общим истоком
Характеристики полевого транзистора с общим стоком
В таблице ниже приведены основные характеристики дренажного полевого транзистора.
Характеристики полевого транзистора с общим стоком
Характеристики усилителя с общим затвором
В таблице ниже приведены основные характеристики полевого транзистора с общим затвором.
Характеристики усилителя с общим затвором
Речь идет о схеме на полевом транзисторе с характеристиками. Кроме того, если у вас возникнут какие-либо вопросы относительно этой концепции или если вы хотите узнать практически, как создать свой собственный проект с использованием Et, вы можете загрузить нашу бесплатную книгу для разработки своих проектов. Вот вам вопрос, сколько диодов содержит JFET?
.
ХАРАКТЕРИСТИКА ТРАНЗИСТОРА ПОЛЕВОГО ЭФФЕКТА — Большая химическая энциклопедия
Ян С.Ю., Шин К. и Парк С.Е. Влияние поверхностной энергии затворного диэлектрика на морфологию пентацена и характеристики органических полевых транзисторов, Adv Func. Mat, 15, 1806, 2005. [Pg.369]
Однако главная проблема с методом прекурсора пентацена заключается в том, что остаточное количество аддукта Дильса-Альдера остается в пленке и ограничивает подвижность носителя в конечной пленке пентацена [ 54].Чтобы ограничить эту проблему, недавно появились предшественники пентацена с меньшими или более легко удаляемыми аддуктами Дильса-Альдера, но характеристики полевых транзисторов этих новых производных еще не опубликованы (рис. 5.3.9c) [55,56]. [Pg.410]
И. Маккалох, К. Бейли, М. Джайлз, М. Хини, И. Лав, М. Шкунов, Д. Спарроу и С. Тирни. Влияние молекулярного дизайна на характеристики полевых транзисторов тертиофеновых полимеров. Chem. Mater. 17 (6), 1381-1385 (2005).[Стр. 214]
Летиция Дж. А., Салата М. Р., Трибоут С. М., Факкетти А., Ратнер М. А., Маркс Т. Дж. (2 (X) 8) N-канальные полимеры благодаря конструкции, оптимизирующей взаимодействие солюбилизирующих заместителей, кристаллической упаковки и полевых условий. влияют на характеристики транзисторов в полимерных битиофен-имидных полупроводниках. J Am Chem Soc 130 9679-9694 … [Pg.67]
Lee JY, Lin CJ, Lo CT, Tsai JC, Chen WC (2013) Синтез, морфология и характеристики полевого транзистора кристаллических диблок-сополимеров включают поли (3-гексилтиофена) и синдиотактического полипропилена.Макромолекулы 46 3005-3014 … [Pg.136]
Lin JC, Lee WY, Kuo CC, Li C, Mezzenga R, Chen WC (2012) Синтез, морфология и характеристики полевого транзистора нового кристалло-кристаллического диблок-сополимеры поли (3-гексилтиофен-блок-стерилакрилата). J Polym Sci A Polym Chem 50 686-695 … [Pg.136]
Horie M, Majewski LA, Feam MJ, Yu CY, Luo Y, Song A, Saunders BR, Turner ML (2010) Полимеры на основе циклопентадитиофена — сравнение оптических, электрохимических и органических характеристик полевого транзистора.J Mater Chem 20 4347-4355 … [Pg.138]
Дополнительную косвенную информацию о механизме переноса можно получить с помощью спектроскопических исследований. Venuti et al., Используя спектроскопию комбинационного рассеяния света в сочетании с расчетом динамики решетки, нашли доказательства эффективной связи между колебаниями решетки и низкоэнергетическими внутримолекулярными модами [237]. Информация еще более косвенного характера дается путем анализа характеристик полевого транзистора, позволяющего оценить хвост плотности состояний полупроводника [238].Интересно, что можно количественно сравнить хвост плотности состояний, оцененный экспериментально, с теоретическим значением, полученным с помощью процедуры MD / QC [239]. [Стр.293]
Идзава, Т., Миядзаки, Э., Такимия, К. Молекулярное упорядочение высокоэффективных растворимых молекулярных полупроводников и переоценка их характеристик полевых транзисторов. Adv. Mater. 20 (18), 3388-3392 (2008) … [Pg.267]
Джон А. Коупленд и Стивен Найт, Приложения, использующие объемное отрицательное сопротивление F.А. Падовани, Вольт-амперные характеристики контактов металл-полупроводник П.Л. Хауэр, W.W. Хупер, Б. Кэрнс, Р.Д. Фэйрман и Д.А. Тремер, GaAs полевой транзистор Марвин Х. Уайт, МОП-транзисторы … [Pg.647]
Йошино, К. Такахаши, Х. Муро, К. Омори, Ю. Сугимото, Р. 1991. Оптически управляемые характеристики полевого транзистора из поли (3-алкилтиофен) с затвором Шоттки. J. Appl. Phys. 70 5035-5039. [Стр.401]
Полевые транзисторы (FET), 19 155 22 144, 162-166.См. Также Характеристики транзисторов, 22 164–166 в логических схемах КМОП, 22 251–253 составных полупроводников в, 22 160, 161–162 … [Pg.356]
Рисунок 4.22 Принципиальная схема полевого транзистора . Система кремний-диоксид кремния демонстрирует хорошие полупроводниковые характеристики для использования в полевых транзисторах. Концентрация свободных носителей заряда и, следовательно, проводимость кремния может быть увеличена путем легирования такими примесями, как бор. Это приводит к кремнию p-типа, p описывает наличие избыточных положительных мобильных зарядов.Кремний также можно легировать другими примесями с образованием кремния n-типа с избытком отрицательных подвижных зарядов. |
Рыжий В., Рыжий М., Сато А. и др. (2008) Вольт-амперные характеристики полевого транзистора графен-нанолента. J Appl Phys 103 094510 … [Pg.174]
S.-S. Ян, Ж.-Л. Чан, Ю.-К. Чен, Ж.-К. Чжоу, Ч.-К. Ченг, Характеристики чувствительных к ионам водорода полевых транзисторов с затвором из титаната свинца, полученным из золь-гелевого сплава, Anal.Чим. Acta 2002, 469, 205. [Pg.673]
.
Транзистор полевой
Мощный N-канальный полевой транзистор
Полевой транзистор (FET) — это транзистор, который использует электрическое поле для управления формой и, следовательно, проводимостью канала одного типа носителя заряда в полупроводниковом материале. Полевые транзисторы иногда называют униполярными транзисторами , чтобы противопоставить их работу с одной несущей и работу с двумя несущими биполярных (переходных) транзисторов (BJT).Концепция полевого транзистора предшествовала BJT, хотя физически он не был реализован до после BJT из-за ограничений полупроводниковых материалов и относительной простоты изготовления BJT по сравнению с полевыми транзисторами в то время.
История
Основная статья: История транзистора
Принцип полевых транзисторов был впервые запатентован Джулиусом Эдгаром Лилиенфельдом в 1925 году и Оскаром Хейлом в 1934 году, но практические полупроводниковые устройства (JFET, полевой транзистор с переходным затвором) были разработаны гораздо позже, после появления транзисторного эффекта. наблюдалась и объяснялась командой Уильяма Шокли в Bell Labs в 1947 году.MOSFET (полевой транзистор металл-оксид-полупроводник), который в значительной степени вытеснил JFET и оказал более сильное влияние на развитие электроники, был впервые предложен Давоном Кангом в 1960 году. [1]
Основная информация
полевые транзисторы являются устройствами с основным носителем заряда. Устройство состоит из активного канала, по которому основные носители заряда, электроны или дырки, проходят от истока к стоку. Проводники истока и стока подключены к полупроводнику через омические контакты.Проводимость канала является функцией потенциала, приложенного к затвору. [2] [3]
Три терминала FET: [4]
- Источник (S), через который большинство носителей входят в канал. Обычный ток, поступающий в канал в точке S, обозначается I S .
- Дренаж (D), через который большинство носителей покидают канал. Обычный ток, поступающий в канал в точке D, обозначается I D .Напряжение от стока к источнику составляет В DS .
- Gate (G), терминал, который модулирует проводимость канала. Подавая напряжение на G, можно управлять I D .
Подробнее о терминалах
Поперечное сечение полевого МОП-транзистора n-типа
Все полевые транзисторы имеют затвор , сток и исток клемм, которые примерно соответствуют базовому , коллектору и эмиттеру BJT.Большинство полевых транзисторов также имеют четвертый вывод, называемый корпусом , основанием , основанием или подложкой . Этот четвертый вывод служит для смещения транзистора в работу; редко используется нетривиальный вывод на корпусе в схемотехнике, но его наличие важно при настройке физической схемы интегральной схемы. Размер затвора, длина L на схеме — это расстояние между истоком и стоком. Ширина — это расширение транзистора, на схеме перпендикулярно поперечному сечению.Обычно ширина намного больше, чем длина ворот. Длина затвора 1 мкм ограничивает верхнюю частоту примерно до 5 ГГц, от 0,2 мкм до примерно 30 ГГц. Кроме того, полевые транзисторы используются реже, чем биполярные транзисторы.
Имена терминалов относятся к их функциям. Терминал ворот можно рассматривать как управляющий открытием и закрытием физических ворот. Этот затвор позволяет электронам проходить через или блокирует их прохождение, создавая или устраняя канал между истоком и стоком.Электроны текут от вывода истока к выводу стока, если на них влияет приложенное напряжение. Тело просто относится к основной части полупроводника, в котором находятся затвор, исток и сток. Обычно клемма корпуса подключается к самому высокому или самому низкому напряжению в цепи, в зависимости от типа. Вывод на корпусе и вывод источника иногда соединяются вместе, поскольку источник также иногда подключается к наивысшему или наименьшему напряжению в цепи, однако есть несколько вариантов использования полевых транзисторов, которые не имеют такой конфигурации, например, затворы передачи и каскодные схемы. .
Работа на полевом транзисторе
ВАХ и выходной график n-канального JFET транзистора.
Полевой транзистор управляет потоком электронов (или электронных дыр) от истока к стоку, влияя на размер и форму «проводящего канала», создаваемого и находящегося под влиянием напряжения (или отсутствия напряжения), приложенного к клеммам затвора и истока (для простота обсуждения, это предполагает, что тело и источник связаны). Этот проводящий канал представляет собой «поток», по которому электроны текут от истока к стоку.
В устройстве с n-канальным режимом обеднения отрицательное напряжение затвор-исток заставляет область обеднения расширяться по ширине и вторгаться в канал с боков, сужая канал. Если область истощения расширяется, чтобы полностью закрыть канал, сопротивление канала от истока до стока становится большим, и полевой транзистор эффективно выключается, как выключатель. Точно так же положительное напряжение затвор-исток увеличивает размер канала и позволяет электронам легко течь.
И наоборот, в устройстве с n-канальным режимом расширения положительное напряжение затвор-исток необходимо для создания проводящего канала, поскольку внутри транзистора его не существует. Положительное напряжение привлекает свободно плавающие электроны внутри тела к затвору, образуя проводящий канал. Но сначала необходимо привлечь достаточное количество электронов возле затвора, чтобы противодействовать ионам легирующей примеси, добавленным в тело полевого транзистора; это формирует область, свободную от мобильных несущих, называемую областью истощения, и это явление упоминается как пороговое напряжение полевого транзистора.Дальнейшее увеличение напряжения затвор-исток привлечет к затвору еще больше электронов, которые смогут создать проводящий канал от истока к стоку; этот процесс называется инверсия .
Для устройств с расширенным или обедненным режимами при напряжениях сток-исток, намного меньших, чем напряжения затвор-исток, изменение напряжения затвора изменит сопротивление канала, а ток стока будет пропорционален напряжению стока (относительно напряжение источника). В этом режиме полевой транзистор работает как переменный резистор, и говорят, что полевой транзистор работает в линейном режиме или в омическом режиме . [5] [6]
Если напряжение сток-исток увеличивается, это создает значительное асимметричное изменение формы канала из-за градиента потенциала напряжения от истока к стоку. Форма области инверсии становится «защемленной» около дренажного конца канала. При дальнейшем увеличении напряжения сток-исток точка отсечки канала начинает перемещаться от стока к истоку. Сообщается, что полевой транзистор находится в режиме насыщения ; [7] некоторые авторы называют его активным режимом , для лучшей аналогии с рабочими областями биполярного транзистора. [8] [9] Режим насыщения или область между омическим состоянием и насыщением используется, когда необходимо усиление. Промежуточная область иногда считается частью омической или линейной области, даже если ток стока не является приблизительно линейным с напряжением стока.
Даже несмотря на то, что проводящий канал, образованный напряжением затвор-исток, больше не соединяет исток со стоком во время режима насыщения, поток носителей не блокируется. Рассматривая снова n-канальное устройство, в корпусе p-типа существует обедненная область, окружающая проводящий канал и области стока и истока.Электроны, составляющие канал, могут свободно выходить из канала через область обеднения, если они притягиваются к стоку напряжением сток-исток. Область обеднения свободна от носителей и имеет сопротивление, подобное кремнию. Любое увеличение напряжения сток-исток увеличит расстояние от стока до точки отсечки, увеличивая сопротивление из-за области истощения пропорционально приложенному напряжению сток-исток. Это пропорциональное изменение приводит к тому, что ток сток-исток остается относительно постоянным независимо от изменений напряжения сток-исток и в отличие от работы в линейном режиме.Таким образом, в режиме насыщения полевой транзистор ведет себя как источник постоянного тока, а не как резистор, и может наиболее эффективно использоваться в качестве усилителя напряжения. В этом случае напряжение затвор-исток определяет уровень постоянного тока через канал.
Композиция
Полевой транзистор может быть изготовлен из ряда полупроводников, из которых кремний является наиболее распространенным. Большинство полевых транзисторов изготавливаются с использованием обычных методов обработки объемных полупроводников с использованием монокристаллической полупроводниковой пластины в качестве активной области или канала.
Среди наиболее необычных материалов корпуса — аморфный кремний, поликристаллический кремний или другие аморфные полупроводники в тонкопленочных транзисторах или полевые транзисторы с органическими эффектами, которые основаны на органических полупроводниках и часто используют органические изоляторы затвора и электроды. Полевые транзисторы изготавливаются с использованием различных материалов, таких как карбид кремния (Sic), арсенид галлия (GaAs), нитрид галлия (GaN), арсенид индия-галлия (InGaAs). В июне 2011 года IBM объявила об успешном использовании полевых транзисторов на основе графена в интегральной схеме. [10] [11] Эти транзисторы могут иметь частоту отсечки 100 ГГц, что намного выше, чем у стандартных кремниевых полевых транзисторов [12] .
Типы полевых транзисторов
Полевые транзисторы истощенного типа при типичных напряжениях. JFET, поликремниевый MOSFET, MOSFET с двойным затвором, MOSFET с металлическим затвором, MESFET. обеднение, электроны, дырки, металл, изолятор. Вверху = источник, внизу = сток, слева = затвор, справа = масса. Напряжения, приводящие к образованию каналов, не показаны.
Канал полевого транзистора легирован для получения полупроводника N-типа или полупроводника P-типа.Сток и исток могут быть легированы легированием противоположного типа по отношению к каналу, в случае полевых транзисторов в режиме обеднения, или легированы легированием аналогичного типа по отношению к каналу, как в полевых транзисторах в режиме улучшения. Полевые транзисторы отличаются также методом изоляции между каналом и затвором. Типы полевых транзисторов:
- CNTFET (полевой транзистор из углеродных нанотрубок)
- DEPFET — это полевой транзистор, сформированный на полностью обедненной подложке, который одновременно действует как датчик, усилитель и узел памяти.Его можно использовать как датчик изображения (фотона).
- DGMOSFET — это полевой МОП-транзистор с двойным затвором.
- DNAFET — это специализированный полевой транзистор, который действует как биосенсор, используя ворота, сделанные из одноцепочечных молекул ДНК, для обнаружения совпадающих цепей ДНК.
- FREDFET (эпитаксиальный диодный транзистор с быстрым обратным или быстрым восстановлением) — это специализированный полевой транзистор, предназначенный для обеспечения очень быстрого восстановления (выключения) основного диода.
- HEMT (транзистор с высокой подвижностью электронов), также называемый HFET (гетероструктурный полевой транзистор), может быть изготовлен с использованием технологии запрещенной зоны в тройном полупроводнике, таком как AlGaAs.Полностью обедненный материал с широкой запрещенной зоной образует изоляцию между затвором и корпусом.
- IGBT (биполярный транзистор с изолированным затвором) — это устройство для управления мощностью. Он имеет структуру, схожую с MOSFET, соединенную с биполярным основным каналом проводимости. Они обычно используются в диапазоне рабочего напряжения сток-исток 200–3000 В. Силовые полевые МОП-транзисторы по-прежнему являются предпочтительным устройством для напряжений сток-исток от 1 до 200 В.
- ISFET (ионно-чувствительный полевой транзистор), используемый для измерения концентрации ионов в растворе; когда концентрация ионов (например, H + , см. pH-электрод) изменяется, ток через транзистор соответственно изменяется.
- JFET (полевой транзистор) использует обратносмещенный p-n переход для отделения затвора от корпуса.
- MESFET (полевой транзистор металл-полупроводник) заменяет p-n переход полевого транзистора с барьером Шоттки; используется в GaAs и других полупроводниковых материалах AIIIBV.
- В MODFET (полевой транзистор с модуляционным легированием) используется структура с квантовыми ямами, образованная постепенным легированием активной области.
- В полевом транзисторе MOSFET (полевой транзистор металл-оксид-полупроводник) используется изолятор (обычно SiO 2 ) между затвором и корпусом.
На подложке p-типа расположены два островка n-типа. Между этими двумя n регионами есть n-канал. Две n-области образуют терминалы Истока и Слива. Вывод затвора находится в изолированном слое SiO2. Есть проводимость без напряжения затвора.
D МОП-транзистор
< [13] >
Аналогично типу истощения, но без n-канала.Следовательно, для проводимости требуется некоторое положительное напряжение затвора, которое привлекает электроны из p-области, которая проводит от источника к стоку.
E МОП-транзистор
< [14] > [15]
- NOMFET — полевой транзистор с органической памятью в виде наночастиц. [1]
- OFET — это полевой транзистор с органическим эффектом, в канале которого используется органический полупроводник.
- GNRFET — это полевой транзистор, в канале которого используется графеновая нанолента.
- VeSFET (вертикально-щелевой полевой транзистор) представляет собой полевой транзистор квадратной формы без перехода с узкой щелью, соединяющей исток и сток в противоположных углах. Два затвора занимают другие углы и контролируют ток через щель. [2] [3]
Преимущества полевого транзистора
Основным преимуществом полевого транзистора является высокое входное сопротивление порядка 100 МОм или более. Таким образом, это устройство, управляемое напряжением, которое демонстрирует высокую степень изоляции между входом и выходом.Это униполярное устройство, зависящее только от тока большинства. Он менее шумный, поэтому его можно найти в FM-тюнерах для тихого приема. Он относительно невосприимчив к радиации. Он не показывает напряжения смещения при нулевом токе стока и, следовательно, представляет собой отличный прерыватель сигнала. Обычно он имеет лучшую термическую стабильность, чем BJT. [4]
Недостатки полевого транзистора
Он имеет относительно низкое произведение коэффициента усиления и полосы пропускания по сравнению с BJT. Недостатком полевого МОП-транзистора является то, что он очень чувствителен к перегрузкам, что требует особого обращения во время установки. [16]
Использует
БТИЗ
находят применение в переключении катушек зажигания двигателей внутреннего сгорания, где важны возможности быстрого переключения и блокировки напряжения.
Наиболее часто используемый полевой транзистор — это МОП-транзистор. Технология CMOS (дополнительный металлооксидный полупроводник) является основой современных цифровых интегральных схем. В этом технологическом процессе используется схема, в которой (обычно «режим улучшения») p-канальный полевой МОП-транзистор и n-канальный полевой МОП-транзистор соединены последовательно, так что, когда один из них включен, другой выключен.
Хрупкий изолирующий слой полевого МОП-транзистора между затвором и каналом делает его уязвимым для электростатических повреждений во время работы. Обычно это не проблема после того, как устройство было установлено в правильно спроектированной цепи.
В полевых транзисторах электроны могут течь в любом направлении через канал при работе в линейном режиме, и соглашение об именах клемм стока и истока несколько произвольно, поскольку устройства обычно (но не всегда) построены симметрично от истока до стока.Это делает полевые транзисторы подходящими для переключения аналоговых сигналов между трактами (мультиплексирование). Используя эту концепцию, можно, например, сконструировать твердотельную микшерную панель.
Обычно полевой транзистор используется в качестве усилителя. Например, из-за большого входного сопротивления и низкого выходного сопротивления он эффективен в качестве буфера в конфигурации с общим стоком (истоковый повторитель).
См. Также
Ссылки
Внешние ссылки
.