Транзистор простыми словами, принцип работы и устройство
Транзистор – это прибор, работающий по принципу полупроводника и предназначен для усиления сигнала. Из-за особенностей строения кристаллической решетки и своих полупроводниковых свойств, транзистор увеличивает протекающий через нее ток. Сами же вещества, имеющие такие свойства, препятствуют его протеканию. Самими основными элементами считаются германий (Gr) или кремний (Si). Полупроводники бывают двух видов – электронные и дырочные.
В статье будет приведена подробная информация об устройстве, производстве, сфере применения транзисторов. По этой теме добавлено два интересных видеоролика, а также научно-популярная статья по предмету вопроса.
Различные типы транзисторов.
Типы транзисторов
В настоящее время находят применение транзисторы двух видов — биполярные и полевые. Биполярные транзисторы появились первыми и получили наибольшее распространение. Поэтому обычно их называют просто транзисторами. Полевые транзисторы появились позже и пока используются реже биполярных.
В таблице ниже представлена цветовая маркировка транзисторов:
Цветовая маркировка транзисторов
Биполярные транзисторы
Биполярными транзисторы называют потому, что электрический ток в них образуют электрические заряды положительной и отрицательной полярности. Носители положительных зарядов принято называть дырками, отрицательные заряды переносятся электронами.
В биполярном транзисторе используют кристалл из германия или кремния — основных полупроводниковых материалов, применяемых для изготовления транзисторов и диодов. Поэтому и транзисторы называют одни кремниевыми, другие — германиевыми. Для обоих разновидностей биполярных транзисторов характерны свои особенности, которые обычно учитывают при проектировании устройств.
Слово “транзистор” составлено из слов TRANSfer и resISTOR – преобразователь сопротивления. Он пришел на смену лампам в начале 1950-х. Это прибор с тремя выводами, используется для усиления и переключения в электронных схемах.
Для изготовления кристалла используют сверхчистый материал, в который добавляют специальные строго дозированные; примеси. Они и определяют появление в кристалле проводимости, обусловленной дырками (р-проводимость) или электронами (n-проводимость).
Таким образом формируют один из электродов транзистора, называемый базой. Если теперь в поверхность кристалла базы ввести тем или иным технологическим способом специальные примеси, изменяющие тип проводимости базы на обратную так, чтобы образовались близколежащие зоны n-р-n или р-n-р, и к каждой зоне подключить выводы, образуется транзистор.
Классификация биполярных транзисторов.
Одну из крайних зон называют эмиттером, т. е. источником носителей заряда, а вторую — коллектором, собирателем этих носителей. Зона между эмиттером и коллектором называется базой. Выводам транзистора обычно присваивают названия, аналогичные его электродам. Усилительные свойства транзистора проявляются в том, что если теперь к эмиттеру и базе приложить малое электрическое напряжение — входной сигнал, то в цепи коллектор — эмиттер потечет ток, по форме повторяющий входной ток входного сигнала между базой и эмиттером, но во много раз больший по значению.
Для нормальной работы транзистора в первую очередь необходимо подать на его электроды напряжение питания. При этом напряжение на базе относительно эмиттера (это напряжение часто называют напряжением смещения) должно быть равно нескольким десятым долям вольта, а на коллекторе относительно эмиттера — несколько вольт.
Включение в цепь n-р-n и р-n-р транзисторов отличается только полярностью напряжения на коллекторе и смещения. Кремниевые и германиевые транзисторы одной и той же структуры отличаются между собой лишь значением напряжения смещения. У кремниевых оно примерно на 0,45 В больше, чем у герма ниевых.
Полевые
Суть этого прибора заключается в управлении параметрами электрического сигнала с помощью электрического поля. Оно появляется при подаче напряжения к какому-либо из выводов:
- Затвор нужен для регулирования параметров сигнала, благодаря подаче напряжения на него.
- Сток — вывод, через который из канала уходят носители заряда (дырки и электроны).
- Исток — вывод, через который в канал приходят электроны и дырки.
Такой транзистор состоит из полупроводника с определённой проводимостью и двух областей, помещённых в него с противоположной проводимостью. При подаче напряжения на затвор между этими двумя областями появляется пространство, через которое протекает ток. Это пространство называется каналом. Ширина этого канала регулируется напряжением, которое мы подаём на затвор. Соответственно, можно увеличивать и уменьшать ширину канала и управлять протекающим током.
Транзистор.
Теперь поговорим о приборе с изолированным затвором. Разница в том, что в первом случае этот переход есть всегда, даже когда на затвор не подавалось напряжение. А при его подаче, переход и токопроводящий канал менялись в зависимости от полярности и амплитуды напряжения. Металлический затвор в таких транзисторах изолирован диэлектриком от полупроводниковой области. Их входное сопротивление гораздо больше.
Существует два вида приборов с изолированным затвором:
- со встроенным каналом.
- с индуцированным каналом.
Встроенный канал позволяет протекать электрическому току с определённой амплитудой. При подаче напряжения с определённой амплитудой и полярностью мы можем менять ширину канала и его проводимость. Этот канал встраивается в транзисторы на производственных предприятиях.
Индуцированный канал появляется между двумя областями, о которых мы говорили выше, только при подаче напряжения определённой полярности на затвор. То есть, когда на затвор напряжение не подаётся, ток в нем не протекает.
Все виды полевых транзисторов отличаются друг от друга по следующим параметрам:
- Входное сопротивление.
- Амплитуда напряжения.
- Полярность.
Каждый из этих видов полевых транзисторов необходим для сборки определённых электрических и логических схем. Так как для реализации двух разных устройств необходимо разные электрические параметры.
Что такое полевой транзистор
Полевой транзистор представляет собой полупроводниковый прибор, в котором управление током между двумя электродами, образованным направленным движением носителей заряда дырок или электронов, осуществляется электрическим полем, создаваемым напряжением на третьем электроде. Электроды, между которыми протекает управляемый ток, носят название истока и стока, причем истоком считают тот электрод, из которого выходят (истекают) носители заряда.
Третий, управляющий, электрод называют затвором. Токопроводящий участок полупроводникового материала между истоком и стоком принято называть каналом, отсюда еще одно название этих транзисторов — канальные. Под действием напряжения на затворе» относительно истока меняется сопротивление канала» а значит, и ток через него.
В зависимости от типа носителей заряда различают транзисторы с n-каналом или р-каналом. В n-канальных ток канала обусловлен направленным движением электронов, а р-канальных — дырок. В связи с этой особенностью полевых транзисторов их иногда называют также униполярными.
Это название подчеркивает, что ток в них образуют носители только одного знака, что и отличает полевые транзисторы от биполярных. Для изготовления полевых транзисторов используют главным образом кремний, что связано с особенностями технологии их производства.
Основные параметры полевых транзисторов
Крутизна входной характеристики S или проводимость прямой передачи тока Y21 указывает, на сколько миллиампер изменяется ток канала при изменении входного напряжения между затвором и истоком на 1 В. Поэтому значение крутизны входной характеристики определяется в мА/В, так же как и крутизна характеристики радиоламп. Современные полевые транзисторы имеют крутизну от десятых долей до десятков и даже сотен миллиампер на вольт. Очевидно, что чем больше крутизна, тем большее усиление может дать полевой транзистор. Но большим значениям крутизны соответствует большой ток канала.
Поэтому-на практике обычно выбирают такой ток канала, при котором, о одной стороны, достигается требуемое усиление, а с другой — обеспечивается необходимая экономичность в расходе тока. Частотные свойства полевого транзистора, так же как и биполярного, характеризуются значением предельной частоты.
Полевые транзисторы тоже делят на низкочастотные, среднечастотные и высокочастотные, и также для получения большого усиления максимальная частота сигнала должна быть по крайней мере в 10…20 раз меньше предельной частоты транзистора. Максимальная допустимая постоянная рассеиваемая мощность полевого транзистора определяется точно так же, как и для биполярного. Промышленность выпускает полевые транзисторы малой, средней и большой мощности.
Транзисторы в заводской упаковке.
Применение транзисторов в жизни
Транзисторы применяются в очень многих технических устройствах. Самые яркие примеры:
- Усилительные схемы.
- Генераторы сигналов.
- Электронные ключи.
Во всех устройствах связи усиление сигнала необходимо. Во-первых, электрические сигналы имеют естественное затухание. Во-вторых, довольно часто бывает, что амплитуды одного из параметров сигнала недостаточно для корректной работы устройства.
Информация передаётся с помощью электрических сигналов. Чтобы доставка была гарантированной и качество информации высоким, нам необходимо усиливать сигналы. Транзисторы способны влиять не только на амплитуду, но и на форму электрического сигнала. В зависимости от требуемой формы генерируемого сигнала в генераторе будет установлен соответствующий тип полупроводникового прибора. Электронные ключи нужны для управления силой тока в цепи. В состав этих ключей входит множество транзисторов. Электронные ключи являются одним из важнейших элементов схем.
На их основе работают компьютеры, телевизоры и другие электрические приборы, без которых в современной жизни не обойтись.
Эволюция транзистора
PNP-транзистор
Впервые биполярный транзистор изготовили, вплавляя в кристалл германия (материал n-типа) капли индия. Индий (In) – трехвалентный металл, материал p-типа. Поэтому такой транзистор назвали диффузным (сплавным), имеющим структуру p-n-p (или pnp). Биполярный транзистор на рисунке ниже изготовлен в 1965 году.
Его корпус обрезан для наглядности. Кристалл германия в центре называется базой, а вплавленные в него капли индия – эмиттером и коллектором. Можно рассматривать переходы ЭБ (эмиттерный) и КБ (коллекторный) как обычные диоды, но переход КЭ (коллектор-эмиттерный) имеет особое свойство. Поэтому невозможно изготовить биполярный транзистор из двух отдельных диодов.
Интересно почитать: инструкция как прозвонить транзистор.
Если в транзисторе типа pnp приложить между коллектором (-) и эмиттером (+) напряжение в несколько вольт, в цепи пойдет очень слабый ток, несколько мкА. Если затем приложить небольшое (открывающее) напряжение между базой (-) и эмиттером (+) – для германия оно составляет около 0,3 В (а для кремния 0,6 В) – то ток некоторой величины потечет из эмиттера в базу.
Но так как база сделана очень тонкой, то она быстро насытится дырками (“растеряет” свой избыток электронов, которые уйдут в эмиттер). Поскольку эмиттер сильно легирован дырочной проводимостью, а в слабо легированной базе рекомбинация электронов немного запаздывает, то существенно большая часть тока пойдет из эмиттера в коллектор.
Коллектор сделан больше эмиттера и слабо легирован, что позволяет иметь на нем большее пробивное напряжение (Uпроб.КЭ > Uпроб.ЭБ). Также, поскольку основная часть дырок рекомбинирует в коллекторе, то он и греется сильнее остальных электродов прибора. Обычно α лежит в пределах 0,85-0,999 и обратно зависит от толщины базы.
Эта величина называется коэффициент передачи тока эмиттера. Это коэффициент передачи тока базы, один из самых важных параметров биполярного транзистора. Он чаще определяет усилительные свойства на практике. Транзистор pnp называют транзистором прямой проводимости. Но бывает и другой тип транзистора, структура которого отлично дополняет pnp в схемотехнике.
Двухполярные транзисторы
NPN-транзистор
Биполярный транзистор может иметь коллектор с эмиттером из материала N-типа. Тогда база делается из материала P-типа. И в этом случае, транзистор npn работает точно, как pnp, за исключением полярности – это транзистор обратной проводимости. Транзисторы на основе кремния подавляют своим числом все остальные типы биполярных транзисторов.
Донорным материалом для коллектора и эмиттера может служить As, имеющий “лишний” электрон. Также изменилась технология изготовления транзисторов. Сейчас они планарные, что дает возможность использовать литографию и делать интегральные схемы. По планарной технологии изготавливаются как pnp, так и npn-транзисторы, в том числе и мощные. Сплавные уже сняты с производства.
Схемы включения транзисторов
Обычно биполярный транзистор всегда используется в прямом включении – обратная полярность на КЭ переходе ничего интересного не дает. Для прямой схемы подключения есть три схемы включения: общий эмиттер (ОЭ), общий коллектор (ОК), и общая база (ОБ). Все три включения показаны ниже.
Они поясняют только сам принцип работы – если предположить, что рабочая точка каким-то образом, с помощью дополнительного источника питания или вспомогательной цепи установлена. Для открывания кремниевого транзистора (Si) необходимо иметь потенциал ~0,6 В между эмиттером и базой, а для германиевого хватит ~0,3 В.
Общий эмиттер
Напряжение U1 вызывает ток Iб, ток коллектора Iк равен базовому току, умноженному на β. При этом напряжение +E должно быть достаточно большим: 5 В-15 В. Эта схема хорошо усиливает ток и напряжение, следовательно, и мощность. Выходной сигнал противоположен по фазе входному (инвертируется). Это используется в цифровой технике как функция НЕ.
Если транзистор работает не в ключевом режиме, а как усилитель малых сигналов (активный или линейный режим), то при помощи подбора базового тока устанавливают напряжение U2 равным E/2, чтобы выходной сигнал не искажался. Такое применение используется, например, при усилении аудиосигналов в усилителях высокого класса, с низкими искажениям и, как следствие, низким КПД.
Общий коллектор
По напряжению схема ОК не усиливает, здесь коэффициент усиления равен α ~ 1. Поэтому эта схема называется эмиттерный повторитель. Ток в цепи эмиттера получается в β+1 раз больше, чем в цепи базы. Эта схема хорошо усиливает ток и имеет низкое выходное и очень высокое входное сопротивление.
Тут самое время вспомнить о том, что транзистор называется трансформатором сопротивления. Эмиттерный повторитель имеет свойства и рабочие параметры, очень подходящие для пробников осциллографов. Здесь используют его огромное входное сопротивление и низкое выходное, что хорошо для согласования с низкоомным кабелем.
Полезный материал: что такое полупроводниковый диод.
Общая база
Эта схема отличается наиболее низким входным сопротивлением, но усиление по току у нее равно α. Схема с общей базой хорошо усиливает по напряжению, но не по мощности. Ее особенностью является устранение влияния обратной связи по емкости (эфф. Миллера). Каскады с ОБ идеально подходят в качестве входных каскадов усилителей в радиочастотных трактах, согласованных на низких сопротивлениях 50 и 75 Ом. Каскады с общей базой очень широко используются в технике СВЧ и их применение в радиоэлектронике с каскадом эмиттерного повторителя очень распространено.
Заключение
Рейтинг автора
Автор статьи
Инженер по специальности «Программное обеспечение вычислительной техники и автоматизированных систем», МИФИ, 2005–2010 гг.
Написано статей
Более подробно о транзисторах можно узнать из статьи Что такое биполярные транзисторы. Если у вас остались вопросы, можно задать их в комментариях на сайте. Также в нашей группе ВК можно задавать вопросы и получать на них подробные ответы от профессионалов.
Чтобы подписаться на группу, вам необходимо будет перейти по следующей ссылке: https://vк.coм/еlеctroinfonеt. В завершение статьи хочу выразить благодарность источникам, откуда мы черпали информацию во время подготовки статьи:
www.tokar.guru
www.remosnov.ru
www.electroengineer.ru
www.samelectrik.ru
Предыдущая
ПолупроводникиКак расшифровать цветовую маркировку транзисторов?
Следующая
ПолупроводникиЧто такое биполярный транзистор
Лекция 5 Полевые транзисторы и принцип их работы
1.5. Полевые
транзисторы, принцип их работы
Наряду с биполярными
транзисторами нашли применение полевые
транзисторы, в которых рабочие носители
заряда переносятся по каналу, формируемому
в полупроводнике n
или p
типа таким образом, что они не
проходят через границы p
и n слоев.
По способу формирования канала эти
приборы подразделяются на транзисторы
с p-n
переходом, со встроенным каналом и
индуцируемым каналом. Два последних
типа относятся к МДП-транзисторам.
В отличие от
биполярного транзистора, где происходит
токовое управление потоком рабочих
носителей заряда, в полевом транзисторе
управление потоком осуществляется
электрическим полем, что и дало
наименование прибору. Преимуществом
полевых транзисторов является весьма
малый уровень мощности, который
потребляется для управления потоком,
поскольку ток входной цепи практически
равен нулю. Однако эти транзисторы
уступают биполярным по уровню выходной
мощности.
Рис.1.11. Структура
полевого транзистора
с p—n
переходом
Структура транзистора
с p-n
переходом схематически представлена
на рис.1.11. Прибор имеет три электрода:
исток (аналог эмиттера в биполярном
транзисторе), сток (аналог коллектора)
и затвор (аналог базе). На рис.1.11 показано
включение этого транзистора по схеме
с общим истоком, аналогичной схеме ОЭ
включения биполярного транзистора.
Канал протекания рабочих носителей
заряда (в рассматриваемом случае
электронов), формируемый в полупроводнике
n-типа,
заключен между двумя p-n
переходами. Канал с двух сторон снабжен
двумя электродами: истоком, с которого
носители заряда начинают движение, и
стоком, где это движение заканчивается.
Третий электрод, затвор, соединен с
p-слоями.
Между истоком и стоком приложено
напряжение U,
обеспечивающее перенос носителей
заряда между этими электродами.
Управляющим (входным) напряжением
является U.
На затвор подается “минус”
относительно истока. Таким образом, p-n
переход находится в закрытом состоянии,
что обусловливает малую величину тока
в цепи затвора. При увеличении
отрицательного значения напряжения U
происходит увеличение ширины p-n
перехода за счет n-
слоя канала, а тем самым уменьшение
ширины канала (см. рис.1.12,а). В результате
происходит увеличение сопротивления
канала, что и обеспечивает управление
потоком электронов.
Рис.1.12. Сужение
канала полевого транзистора с p—n
переходом при
приложении напряжений: а — U,
б — U
Напряжение U
также изменяет ширину канала за
счет изменения
ширины p-n
перехода. Однако, поскольку оно
равномерно приложено по длине канала,
то его ширина уменьшается по мере
приближения к стоку, к которому подведен
“плюс” (см. рис.1.12,б). Очевидно, степень
уменьшения ширины канала, а, следовательно,
его сопротивление будет увеличиваться
при увеличении напряжения U.
Этим объясняется
вид выходной, стоковой характеристики,
приведенной на рис.1.13. При малых значениях
напряжения U
обусловленное этим напряжением уменьшение
ширины канала не существенно. В данных
условиях на движения носителей заряда
в канале оказывает влияние только
напряжение между стоком и истоком, в
результате чего ток стока I
резко увеличивается с ростом
U.
При больших значениях напряжения
U
ток носителей заряда находится под
влиянием двух противодействующих
факторов. С увеличением напряжения, с
одной стороны, увеличивается скорость
переноса носителей заряда от истока к
стоку, а с другой стороны, — увеличивается
сопротивление канала. В результате
величина тока стока лишь немного растет
при увеличении напряжения U,
в приборе устанавливается режим
насыщения, ограничивающийся сверху
пробивным напряжением Uси
проб.
Режимы пробоя
на рис.1.13 (а также на рис.1.15) не указаны.
Увеличение отрицательного напряжения
U
увеличивает сопротивление канала,
что обусловливает смещение вольт-амперной
характеристики в область малых значений
тока I.
При этом также уменьшается величина
напряжения пробоя.
Рис.1.13. Стоковая
характеристика полевого
транзистора
с p—n
переходом
Наименование
МДП-транзисторы (“металл – диэлектрик
– проводник”) связано с конструктивными
особенностями этих приборов. Они отражены
на рис.1.14, на котором приведена схема
конструкции транзистора с встроенным
каналом. На поверхности подложки, которая
выполнена из полупроводника типа p,
создается канал n
-типа с областями истока и стока.
Полупроводник покрыт окисной пленкой,
на которую наносится металлическая
пленка, выполняющая функцию затвора.
Таким образом, канал оказывается
изолированным от затвора диэлектрической,
окисной пленкой. В общем случае
МДП-транзистор имеет четыре электрода.
Четвертый электрод соединен с подложкой.
Схема включения такого транзистора
показана на рис.1.14.
Рис.1.14. Структура
МДП-транзистора
Технология изготовления
МДП-транзисторов с индуцированным
каналом обусловила их широкое применение
в составе микросхем. В таких транзисторах
специально канал не создается. Он
формируется (индуцируется) на поверхности
подложки при положительном напряжении
затвор- исток, когда электрическое поле
затвора вытягивает из подложки электроны,
за счет которых создается канал протекания
тока стока. Очевидно, в МДП-транзисторе
с индуцированным каналом при нулевом
напряжении U
ток стока отсутствует, а с увеличением
напряжения затвор-исток увеличивается
ток стока, что иллюстрируется рис.1.15,
на котором приведена стоковая
характеристика такого прибора.
Рис.1.15. Стоковые
характеристики МДП-транзистора
с индуцированным
каналом
Следует отметить,
что в биполярном транзисторе ток
коллектора также увеличивается с
увеличением входного напряжения (см.
рис.1.8 и 1.9). Однако, начальные участки
вольт-амперных характеристик выходных
цепей биполярных и полевых транзисторов
отличаются. Если в биполярном транзисторе
в области малых напряжений UКЭ
наклон вольт-амперных характеристик
не зависит от тока базы, т.е. от входного
напряжения, то в полевом транзисторе,
как видно из рис.1.15, эта зависимость
существенна. Принципы работы
МДП-транзисторов были рассмотрены на
примере приборов с n-каналом.
Аналогичным образом функционируют и
транзисторы с p-каналом,
в которых рабочими носителями заряда
являются дырки, а подложка выполнена
из полупроводникового материала n-типа.
В таких приборах направление токов и
полярность напряжений будут противоположны
тем, которые имеются у приборов с
n-каналом. На рис.1.16
приведены схемные обозначения полевых
транзисторов.
Рис.1.16. Схемные
обозначения полевых транзисторов:
1 — транзистор с
p—n
переходом: с n-каналом,
2 —
транзистор с p—n
переходом и с p-каналом,
3 —
МДП-транзистор с встроенным n-каналом,
4 —
МДП-транзистор с встроенным p—
каналом,
5 —
МДП-транзистор с индуцированным
n-каналом,
6 —
МДП-транзистор с индуцированным p—
каналом
Входное и выходное
сопротивления полевых транзисторов, в
отличие от биполярных, имеют существенную
емкостную компоненту. Это учитывается
схемой замещения для переменных токов
и напряжений. Наиболее распространенная
схема замещения полевого транзистора
приведена на рис.1.17, в которой отражено
наличие трех межэлектронных емкостей:
Сзи
– затвор – исток, Сси
– сток – исток, Сзс
– затвор – сток. Первые две обусловлены,
в основном, барьерной емкостью закрытого
p-n- перехода,
примыкающего как к истоку, так и к стоку.
Поэтому их величины, составляющие 10 –
40 пФ, в три – пять раз превышают величину
емкости сток – исток.
Рис.1.17. Схема
замещения полевого транзистора
Наличие в схеме
источника тока Suвх
отражает зависимость выходного тока
от входного напряжения, где S
– крутизна передаточной характеристики,
определяемая соотношением
S
=.
Зависимость выходного
тока от напряжения сток – исток
учитывается сопротивлением ri,
величина которого определяется как
ri
=
.
Величины параметров
S и
ri
рассчитываются с использованием стоковой
характеристики транзистора.
Что такое транзистор? (принцип действия, назначение и применение, как выглядит)
Радиоэлектронный элемент из полупроводникового материала с помощью входного сигнала создает, усиливает, изменяет импульсы в интегральных микросхемах и системах для хранения, обработки и передачи информации. Транзистор — это сопротивление, функции которого регулируются напряжением между эмиттером и базой или истоком и затвором в зависимости от типа модуля.
Виды транзисторов
Преобразователи широко применяются в производстве цифровых и аналоговых микросхем для обнуления статического потребительского тока и получения улучшенной линейности. Типы транзисторов различаются тем, что одни управляются изменением напряжения, вторые регулируются отклонением тока.
Полевые модули работают при повышенном сопротивлении постоянного тока, трансформация на высокой частоте не увеличивает энергетические затраты. Если говорить, что такое транзистор простыми словами, то это модуль с высокой границей усиления. Эта характеристика у полевых видов больше, чем у биполярных типов. У первых нет рассасывания носителей заряда , что ускоряет работу.
Полевые полупроводники применяются чаще из-за преимуществ перед биполярными видами:
- мощного сопротивления на входе при постоянном токе и высокой частоте, это уменьшает потери энергии на управление;
- отсутствия накопления неосновных электронов, из-за чего ускоряется работа транзистора;
- переноса подвижных частиц;
- стабильности при отклонениях температуры;
- небольших шумов из-за отсутствия инжекции;
- потребления малой мощности при работе.
Виды транзисторов и их свойства определяют назначение. Нагревание преобразователя биполярного типа увеличивает ток по пути от коллектора к эмиттеру. У них коэффициент сопротивления отрицательный, а подвижные носители текут к собирающему устройству от эмиттера. Тонкая база отделена p-n-переходами, а ток возникает только при накоплении подвижных частиц и их инжекции в базу. Некоторые носители заряда захватываются соседним p-n-переходом и ускоряются, так рассчитаны параметры транзисторов.
Полевые транзисторы имеют еще один вид преимущества, о котором нужно упомянуть для чайников. Их соединяют параллельно без выравнивания сопротивления. Резисторы для этой цели не применяются, так как показатель растет автоматически при изменении нагрузки. Для получения высокого значения коммутационного тока набирается комплекс модулей, что используется в инверторах или других устройствах.
Нельзя соединять параллельно биполярный транзистор, определение функциональных параметров ведет к тому, что выявляется тепловой пробой необратимого характера. Эти свойства связаны с техническими качествами простых p-n каналов. Модули соединяются параллельно с применением резисторов для выравнивания тока в эмиттерных цепях. В зависимости от функциональных черт и индивидуальной специфики в классификации транзисторов выделяют биполярные и полевые виды.
Биполярные транзисторы
Биполярные конструкции производятся в виде полупроводниковых приборов с тремя проводниками. В каждом из электродов предусмотрены слои с дырочной p-проводимостью или примесной n-проводимостью. Выбор комплектации слоев определяет выпуск p-n-p или n-p-n типов приборов. В момент включения устройства разнотипные заряды одновременно переносятся дырками и электронами, задействуется 2 вида частиц.
Носители движутся за счет механизма диффузии. Атомы и молекулы вещества проникают в межмолекулярную решетку соседнего материала, после чего их концентрация выравнивается по всему объему. Перенос совершается из областей с высоким уплотнением в места с низким содержанием.
Электроны распространяются и под действием силового поля вокруг частиц при неравномерном включении легирующих добавок в массе базы. Чтобы ускорить действие прибора, электрод, соединенный со средним слоем, делают тонким. Крайние проводники называют эмиттером и коллектором. Обратное напряжение, характерное для перехода, неважно.
Полевые транзисторы
Полевой транзистор управляет сопротивлением с помощью электрического поперечного поля, возникающего от приложенного напряжения. Место, из которого электроны движутся в канал, называется истоком, а сток выглядит как конечная точка вхождения зарядов. Управляющее напряжение проходит по проводнику, именуемому затвором. Устройства делят на 2 вида:
- с управляющим p-n-переходом;
- транзисторы МДП с изолированным затвором.
Приборы первого типа содержат в конструкции полупроводниковую пластину, подключаемую в управляемую схему с помощью электродов на противоположных сторонах (сток и исток). Место с другим видом проводимости возникает после подсоединения пластины к затвору. Вставленный во входной контур источник постоянного смещения продуцирует на переходе запирающее напряжение.
Источник усиливаемого импульса также находится во входной цепи. После перемены напряжения на входе трансформируется соответствующий показатель на p-n-переходе. Модифицируется толщина слоя и площадь поперечного сечения канального перехода в кристалле, пропускающем поток заряженных электронов. Ширина канала зависит от пространства между обедненной областью (под затвором) и подложкой. Управляющий ток в начальной и конечной точках регулируется изменением ширины обедненной области.
Транзистор МДП характеризуется тем, что его затвор отделен изоляцией от канального слоя. В полупроводниковом кристалле, называемом подложкой, создаются легированные места с противоположным знаком. На них установлены проводники — сток и исток, между которыми на расстоянии меньше микрона расположен диэлектрик. На изоляторе нанесен электрод из металла — затвор. Из-за полученной структуры, содержащей металл, диэлектрический слой и полупроводник транзисторам присвоена аббревиатура МДП.
Устройство и принцип работы для начинающих
Технологии оперируют не только зарядом электричества, но и магнитным полем, световыми квантами и фотонами. Принцип действия транзистора заключается в состояниях, между которыми переключается устройство. Противоположный малый и большой сигнал, открытое и закрытое состояние — в этом заключается двойная работа приборов.
Вместе с полупроводниковым материалом в составе, используемого в виде монокристалла, легированного в некоторых местах, транзистор имеет в конструкции:
- выводы из металла;
- диэлектрические изоляторы;
- корпус транзисторов из стекла, металла, пластика, металлокерамики.
До изобретения биполярных или полярных устройств использовались электронные вакуумные лампы в виде активных элементов. Схемы, разработанные для них, после модификац
Полевой транзистор: строение, принцип действия, применение | Физика. Закон, формула, лекция, шпаргалка, шпора, доклад, ГДЗ, решебник, конспект, кратко
Среди значительного количества полупроводниковых приборов, которые используются для усиления и генерирования электромагнитных сигналов, видное место занимают полевые транзисторы.
Полевой транзистор имеет основу — стержень или небольшую пластинку из полупроводникового вещества, к которой приварены два электрода — исток (И) и сток (С). На боковой поверхности стержня, который имеет проводимость, например n-типа, создается зона проводимости p-типа (рис. 8.26). К полупроводнику p-типа приварен электрод З, имеющий название затвор.
Между полупроводниками с разными типами проводимости получается кольцевой p-n-переход, с помощью которого осуществляется регулирование силы тока на участке исток—сток. Участок внутри кольцевого p-n-перехода называется каналом.
Основа полевого транзистора может иметь проводимость и p-типа. На рис. 8.27 показаны схематические изображения полевых транзисторов с основой n-типа (а) и p-типа (б).
Если к транзистору (исток—сток) подать постоянное напряжение, то сила тока в цепи будет постоянной, поскольку она зависит лишь от сопротивления канала транзистора. Ширину этого канала (поперечное сечение), а значит, и сопротивление можно регулировать напряжением, приложенным между истоком и затвором.
Рис. 8.26. Структура полевого транзистора |
Рис. 8.27. Схематические изображения полевых транзисторов |
Если p-n-переход (исток—затвор) подключен в прямом направлении, то ширина канала возрастает и сила тока в цепи исток—сток увеличивается. А если p-n-переход подключен в обратном направлении, то ширина канала уменьшается, что ведет к уменьшению силы тока в транзисторе. Материал с сайта http://worldofschool.ru
Рис. 8.28. Схема усилителя на полевом транзисторе |
Если к p-n-переходу приложить переменное напряжение, то ширина канала будет изменяться в соответствии с колебаниями этого напряжения и можно получить колебание силы тока в цепи исток—сток. Таким способом можно усиливать колебания, руководящие шириной канала транзистора.
Принципиальная схема усилителя электрических колебаний на полевом транзисторе изображена на рис. 8.28. Напряжение сигнала, подающееся на p-n-переход затвор—исток, может быть усилено во много раз и снимется из резистора нагрузки R. В отличие от биполярных транзисторов, в основном использующихся для усиления силы тока, полевые транзисторы успешно используются для усиления напряжения.
Объединение свойств биполярных и полевых транзисторов позволяет создавать разнообразнейшие устройства современной электроники, являющейся одной из основ научно-технического прогресса.
На этой странице материал по темам:
Строение и применение транзисторов краткое содержание
Строение полевого транзистора
Стадии производства полевые транзисторы
Транзисторы принцип действия и область применения
Исток сток затвор тр кп540
Вопросы по этому материалу:
Какова структура полевого транзистора?
Объясните в общих чертах принцип действия полевого транзистора.
Как условно обозначают полевые транзисторы на схемах?
Для чего в основном используются полевые транзисторы?
Что такое транзистор: его виды, назначение и принципы работы
Приветствую вас дорогие друзья! Сегодня речь пойдет о биполярных транзисторах и информация будет полезна прежде всего новичкам. Так что, если вам интересно что такое транзистор, его принцип работы и вообще с чем его едят, то берем стул по удобнее и подходим поближе.
Продолжим, и у нас тут есть содержание, будет удобнее ориентироваться в статье ????
[contents]
Виды транзисторов
Транзисторы бывают в основном двух видов: биполярные транзисторы и полевые транзисторы. Конечно можно было рассмотреть все виды транзисторов в одной статье, но мне не хочется варить кашу у вас в голове.
Поэтому в этой статье мы рассмотрим исключительно биполярные транзисторы а о полевых транзисторах я расскажу в одной из следующих статей. Не будем все мешать в одну кучу а уделим внимание каждому, индивидуально.
Биполярный транзистор это потомок ламповых триодов, тех что стояли в телевизорах 20 -го века. Триоды ушли в небытие и уступили дорогу более функциональным собратьям — транзисторам, а точнее биполярным транзисторам.
Триоды за редким исключением применяют в аппаратуре для меломанов.
Биполярные транзисторы выглядеть могут так.
Как вы можете видеть биполярные транзисторы имеют три вывода и конструктивно они могут выглядеть совершенно по разному. Но на электрических схемах они выглядят простенько и всегда одинаково. И все это графическое великолепие, выглядит как-то так.
Причем биполярные транзисторы могут иметь различный тип проводимости. Есть транзисторы NPN типа и PNP типа.
Отличие n-p-n транзистора от p-n-p транзистора состоит лишь в том что является «переносчиком» электрического заряда (электроны или «дырки» ). Т.е. для p-n-p транзистора электроны перемещаются от эмиттера к коллектору и управляются базой.
Для n-p-n транзистора электроны идут уже от коллектора к эмиттеру и управляются базой. В итоге приходим к тому, что для того чтобы в схеме заменить транзистор одного типа проводимости на другой достаточно изменить полярность приложенного напряжения.
Или тупо поменять полярность источника питания.
У биполярных транзисторов есть три вывода: коллектор, эмиттер и база. Думаю, что по УГО будет сложно запутаться, а вот в реальном транзисторе запутаться проще простого.
Обычно где какой вывод определяют по справочнику, но можно просто прозвонить транзистор мультиметром. Выводы транзистора звонятся как два диода, соединенные в общей точке (в области базы транзистора).
Слева изображена картинка для транзистора p-n-p типа, при прозвонке создается ощущение (посредством показаний мультиметра ), что перед вами два диода которые соединены в одной точке своими катодами. Для транзистора n-p-n типа диоды в точке базы соединены своими анодами. Думаю после экспериментов с мультиметром будет более понятно.
Принцип работы биполярного транзистора
Это изображение лучше всего объясняет принцип работы транзистора. На этом изображении человек посредством реостата управляет током коллектора. Он смотрит на ток базы, если ток базы растет то человек так же увеличивает ток коллектора с учетом коэффициента усиления транзистора h31Э. Если ток базы падает, то ток коллектора также будет снижаться — человек подкорректирует его посредством реостата.
Эта аналогия не имеет ничего общего с реальной работой транзистора, но она облегчает понимание принципов его работы.
Для транзисторов можно отметить правила, которые призваны помочь облегчить понимание. (Эти правила взяты из книги П. Хоровица У.Хилла «Искусство схемотехники»).
- Коллектор имеет более положительный потенциал , чем эмиттер
- Как я уже говорил цепи база — коллектор и база -эмиттер работают как диоды
- Каждый транзистор характеризуется предельными значениями, такими как ток коллектора, ток базы и напряжение коллектор-эмиттер.
- В том случае если правила 1-3 соблюдены то ток коллектора Iк прямо пропорционален току базы Iб. Такое соотношение можно записать в виде формулы.
- Из этой формулы можно выразить основное свойство транзистора — небольшой ток базы управляет большим током коллектора.
- -коэффициент усиления по току.
- Его также обозначают как
- Исходы из выше сказанного транзистор может работать в четырех режимах:
- Режим отсечки транзистора — в этом режиме переход база-эмиттер закрыт, такое может произойти когда напряжение база-эмиттер недостаточное. В результате ток базы отсутствует и следовательно ток коллектора тоже будет отсутствовать.
- Активный режим транзистора — это нормальный режим работы транзистора. В этом режиме напряжение база-эмиттер достаточное для того, чтобы переход база-эмиттер открылся. Ток базы достаточен и ток коллектора тоже имеется. Ток коллектора равняется току базы умноженному на коэффициент усиления.
- Режим насыщения транзистора — в этот режим транзистор переходит тогда, когда ток базы становится настолько большим, что мощности источника питания просто не хватает для дальнейшего увеличения тока коллектора. В этом режиме ток коллектора не может увеличиваться вслед за увеличением тока базы.
- Инверсный режим транзистора — этот режим используется крайне редко. В этом режиме коллектор и эмиттер транзистора меняют местами. В результате таких манипуляций коэффициент усиления транзистора очень сильно страдает. Транзистор изначально проектировался не для того, чтобы он работал в таком особенном режиме.
Для понимания того как работает транзистор нужно рассматривать конкретные схемные примеры, поэтому давайте рассмотрим некоторые из них.
Транзистор в ключевом режиме
Транзистор в ключевом режиме это один из случаев транзисторных схем с общим эмиттером. Схема транзистора в ключевом режиме применяется очень часто.
К этой транзисторной схеме прибегают к примеру когда нужно управлять мощной нагрузкой посредством микроконтроллера. Ножка контроллера не способна тянуть мощную нагрузку, а транзистор может.
Получается контроллер управляет транзистором, а транзистор мощной нагрузкой. Ну а обо всем по порядку.
Основная суть этого режима заключается в том, что ток базы управляет током коллектора. Причем ток коллектора гораздо больше тока базы. Здесь невооруженным взглядом видно, что происходит усиление сигнала по току. Это усиление осуществляется за счет энергии источника питания.
На рисунке изображена схема работы транзистора в ключевом режиме.
Для транзисторных схем напряжения не играют большой роли, важны лишь токи. Поэтому, если отношение тока коллектора к току базы меньше коэффициента усиления транзистора то все окей.
- В этом случае даже если к базе у нас приложено напряжение в 5 вольт а в цепи коллектора 500 вольт, то ничего страшного не произойдет, транзистор будет покорно переключать высоковольтную нагрузку.
- Главное чтобы эти напряжения не превышали предельные значения для конкретного транзистора (задается в характеристиках транзистора).
- Чтож, теперь давайте попробуем рассчитать значение базового резистора.
- На сколько мы знаем, что значение тока это характеристика нагрузки.
Т.е. I=U/R
Мы не знаем сопротивления лампочки, но мы знаем рабочий ток лампочки 100 мА. Чтобы транзистор открылся и обеспечил протекание такого тока, нужно подобрать соответствующий ток базы. Ток базы мы можем корректировать меняя номинал базового резистора.
Так как минимальное значение коэффициента усиления транзистора равно 10, то для открытия транзистора ток базы должен стать 10 мА.
Ток который нам нужен известен. Напряжение на базовом резисторе будет Такое значение напряжения на резисторе получилось из-зи того, что на переходе база-эмиттер высаживается 0,6В-0,7В и это надо не забывать учитывать.
В результате мы вполне можем найти сопротивление резистора
Теперь вы наверное думаете, что транзисторный ключ будет работать так как нужно? Что когда базовый резистор подключается к +5 В лампочка загорается, когда отключается -лампочка гаснет? Ответ может быть да а может и нет.
Все дело в том, что здесь есть небольшой нюанс.
Лампочка в том случае погаснет, когда потенциал резистора будет равен потенциалу земли. Если же резистор просто отключен от источника напряжения, то здесь не все так однозначно. Напряжение на базовом резисторе может возникнуть чудесным образом в результате наводок или еще какой потусторонней нечисти ????
Чтобы такого эффекта не происходило делают следующее. Между базой и эмиттером подключают еще один резистор Rбэ. Этот резистор выбирают номиналом как минимум в 10 раз больше базового резистора Rб (В нашем случае мы взяли резистор 4,3кОм).
Когда база подключена к какому-либо напряжению, то транзистор работает как надо, резистор Rбэ ему не мешает. На этот резистор расходуется лишь малая часть базового тока.
В случае, когда напряжение к базе не приложено, происходит подтяжка базы к потенциалу земли, что избавляет нас от всяческих наводок.
Вот в принципе мы разобрались с работой транзистора в ключевом режиме, причем как вы могли убедиться ключевой режим работы это своего рода усиление сигнала по напряжению. Ведь мы с помощью малого напряжения в 5В управляли напряжением в 12 В.
Эмиттерный повторитель
Эмиттерный повторитель является частным случаем транзисторных схем с общим коллектором.
Отличительной чертой схемы с общим коллектором от схемы с общим эмиттером (вариант с транзисторным ключем) является то, что эта схема не усиливает сигнал по напряжению. Что вошло через базу, то и вышло через эмиттер, с тем же самым напряжением.
Действительно допустим приложили к базе мы 10 вольт, при этом мы знаем что на переходе база-эмиттер высаживается где-то 0,6-0,7В. Выходит что на выходе (на эмиттере, на нагрузке Rн) будет напряжение базы минус 0,6В.
Получилось 9,4В, одним словом почти сколько вошло столько и вышло. Убедились, что по напряжению эта схема нам сигнал не увеличит.
«В чем же смысл тогда таком включении транзистора?»- спросите вы. А вот оказывается эта схема обладает другим очень важным свойством. Схема включения транзистора с общим коллектором усиливает сигнал по мощности.
Мощность это произведение тока на напряжение, но так как напряжение не меняется то мощность увеличивается только за счет тока! Ток в нагрузке складывается из тока базы плюс ток коллектора. Но если сравнивать ток базы и ток коллектора то ток базы очень мал по сравнению с током коллектора.
Получается ток нагрузки равен току коллектора. И в результате получилась вот такая формула.
Теперь я думаю понятно в чем суть схемы эмиттерного повторителя, только это еще не все.
Эмиттерный повторитель обладает еще одним очень ценным качеством — высоким входным сопротивлением. Это означает, что эта транзисторная схема почти не потребляет ток входного сигнала и не создает нагрузки для схемы -источника сигнала.
Для понимания принципа работы транзистора этих двух транзисторных схем будет вполне достаточно. А если вы еще поэкспериментируете с паяльником в руках то прозрение просто не заставит себя ждать, ведь теория теорией а практика и личный опыт ценнее в сотни раз!
Где транзисторы купить?
Как и все другие радиокомпоненты транзисторы можно купить в любом ближайшем магазине радиодеталей.
Если вы живете где-нибудь на окраине и о подобных магазинах не слышали (как я раньше) то остается последний вариант — заказать транзисторы в интернет- магазине.
Я сам частенько заказываю радиодетали через интернет-магазины ведь в обычном оффлайн магазине может чего-нибудь просто не оказаться.
Впрочем если вы собираете устройство чисто для себя то можно не париться а добыть из старой, отслужившей свое техники и так сказать вдохнуть в старый радиокомпонет новую жизнь.
Чтож друзья, а на этом у меня все. Все, что планировал я сегодня вам рассказал. Если остались какие-либо вопросы, то задавайте их в х, если вопросов нет то все равно пишите комментарии, мне всегда важно ваше мнение. Кстати не забывайте, что каждый кто впервые оставит комментарий получит подарок.
- Также обязательно подпишитесь на новые статьи, потому что дальше вас ждет много интересного и полезного.
- Желаю вам удачи, успехов и солнечного настроения!
- С н/п Владимир Васильев
P.S. Друзья, обязательно подписывайтесь на обновления! Подписавшись вы будете получать новые материалы себе прямо на почту! И кстати каждый подписавшийся получит полезный подарок!
Источник: http://popayaem.ru/bipolyarnyj-tranzistor-princip-raboty-dlya-chajnikov.html
Транзистор. Как работает ? транзистор и для чего он нужен? Виды транзисторов и принцип работы для чайников
В свое время за открытие транзистора его создатели удостоились Нобелевской премии. Этот маленький прибор изменил человечество навсегда: начиная с простых радиоприемников и заканчивая процессорами, в которых их число достигает нескольких миллиардов. Между тем, чтобы узнать, как он работает, не нужно быть золотым медалистом или лауреатом «нобелевки».
Что такое транзистор
Транзистор – это прибор, изготовленный из полупроводниковых материалов. Выглядит как маленькая металлическая пластинка с тремя контактами. Назначений у него два: усиливать поступающий сигнал и участвовать в управлении компонентами электроприборов.
Принцип действия
Полупроводники занимают промежуточное состояние между проводниками и диэлектриками. В обычном состоянии они не проводят электрический ток, но их сопротивление падает с ростом температуры. Чем она выше, тем больше энергии, которую получает вещество.
В атомах полупроводника электроны отрываются от «родительского» атома и улетают к другому, чтобы заполнить там «дырку», которую оставил такой же электрон.
Получается, что внутри такого материала одновременно происходят два процесса: полет электронов (n-проводимость, от слова negative – отрицательный), и образование «дырок» (p-проводимость от слова positive – положительный).
В обычном куске кремния эти процессы уравновешены: количество дырок равно количеству свободных электронов.
Однако с помощью специальных веществ можно нарушить это равновесие, добавив «лишние» электроны (вещества – доноры) или «лишние» «дырки» (вещества акцепторы). Таким образом можно получить кристалл полупроводника с преобладающей n-проводимостью, либо p-проводимостью.
Если два таких материала приложить друг к другу, то в месте их соприкосновения образуется так называемый p-n переход. Дырки и электроны проходят через него, насыщая соседа. То есть там, где был избыток дырок, идет их заполнение электронами и наоборот.
В какой-то момент в месте соприкосновения не останется свободных носителей заряда и наступит равновесие. Это своего рода барьер, который невозможно преодолеть, этакая пустыня. Этот слой принято называть обедненным слоем.
Теперь, если приложить к такому материалу напряжение, то оно поведет себя интересным образом: при прямой его направленности обедненный слой истончится и через него пойдет электроток, а при обратном – наоборот, расширится.
Как говорится, если для чайников, то p-n переход обладает способностью пропускать ток только в одном направлении. Это своего рода «обратный клапан» для электрической сети. На этом их свойстве основана работа всех полупроводниковых приборов.
Существует две основные разновидности транзисторов: полевые (иногда их называют униполярными) и биполярными. Различаются они по устройству и принципу действия.
Биполярный транзистор
Биполярный транзистор обладает двумя переходами: p-n-p или n-p-n. Принципиальное различие между ними – направление течения тока.
Коллектор и эмиттер, обладающие одинаковой проводимостью (в n-p-n транзисторе n-проводимостью), разделены базой, которая обладает p-проводимостью. Если даже эмиттер подключен к источнику питания, ему не пробиться напрямую в коллектор. Для этого необходимо подать ток на базу.
В таком случае электроны из эмиттера заполняют «дырки» последней. Но так как база слабо легирована, то и дырок в ней мало. Поэтому большая часть электронов переходит в коллектор и они начинают свое движение по цепи. Ток коллектора практически равен току эмиттера, ведь на базу приходится очень маленькое его значение.
Чтобы нагляднее себе это представить, можно воспользоваться аналогией с водопроводной трубой. Для управления количеством воды нужен вентиль (транзистор). Если приложить к нему небольшое усилие, он увеличит свое проходное сечение трубы и через него начнет проходить больше воды.
Полевой транзистор
Если в биполярном транзисторе управление происходило с помощью тока, то в полевом – с помощью напряжения. Состоит он из пластинки полупроводника, которую называют каналом. С одной стороны к ней подключен исток – через него в канал входят носители электрического тока, а с другой сток – через него они покидают канал.
Сам канал как бы «зажат» между затвором, который обладает обратной проводимостью, то есть если канал имеет n-проводимость, то затвор – p-проводимость. Затвор электрически отделен от канала.
Изменяя напряжение на затворе, можно регулировать зону p-n перехода. Чем она больше, тем меньше электрической энергии проходит через канал.
Существует значение напряжения, при котором затвор полностью перекроет канал и ток между истоком и стоком прекратится.
Наиболее наглядная иллюстрация в этом случае – садовый шланг, который проходит через камеру небольшого колеса.
В таком случае, даже когда в него подается небольшое давление воздуха (напряжение затвор-исток), оно значительно увеличивается в размерах и начинает пережимать шланг, перекрывается просвет шланга и прекращается подача воды (увеличивается зона p-n перехода и через канал перестает идти электроток).
Описанный выше тип полупроводникового прибора является классическим и называется транзистором с управляющим p-n переходом. Часто можно встретить аббревиатуру JFET – Junction FET, что просто перевод русского названия на английский.
Другой тип полевого триода имеет небольшое различие в конструкции затвора. На слое кремния с помощью окисления образуется слой диэлектрика оксида кремния. Уже на него методом напыления металла наносят затвор. Получаются чередующиеся слои Металл -Диэлектрик – Полупроводник или МДП-затвор.
Такой полевой транзистор с изолированным затвором обозначается латинскими буквами MOSFET.
Существует два вида МДП-затвора:
- МДП-затвор с индуцированным (или инверсным) каналом в обычном состоянии закрыт, то есть при отсутствии напряжения на затворе электроток через канал не проходит. Для того, чтобы открыть его, к затвору необходимо приложить напряжение.
- МДП-затвор со встроенным (или собственным) каналом в обычном состоянии открыт, то есть при отсутствии напряжения на затворе электроток через канал проходит. Для того, чтобы закрыть его, к затвору необходимо приложить напряжение.
Основные характеристики
Основная особенностью всех видов транзисторов является способность управлять мощным током с помощью небольшого по силе. Их отношение показывает насколько эффективен полупроводниковый прибор.
В биполярных транзисторах этот показатель называется статическим коэффициентом передачи тока базы. Он характеризует, во сколько раз основной коллекторный ток больше вызвавшего его тока базы. Этот параметр имеет очень широкое значение и может достигать 800.
Хотя на первый взгляд кажется, что здесь важен принцип «чем больше, тем лучше», но в действительности это не так. Скорее, тут применимо изречение «лучше меньше, да лучше». В среднем биполярные транзисторы имеют коэффициент передачи тока базы в пределах 10 – 50.
Для полевых транзисторов схожий по типу параметр называется крутизной входной характеристики или проводимостью прямой передачи тока. Если вкратце, он показывает, на сколько изменится напряжение, проходящее через канал, если изменить напряжение затвора на 1 В.
Если на транзистор подать сигнал с определенной частотой, то он многократно усилит его. Это свойство полупроводниковых приборов применяется в радиоэлектронике. Однако существует предел усиления частоты, за которым триод уже не в состоянии усилить сигнал.
Поэтому оптимальным считается максимальная рабочая частота сигнала, в 10-20 раз ниже предельного усиления частоты транзистора.
Еще одной показательной характеристикой транзистора является максимальная допустимая рассеиваемая мощность. Дело в том, что при работе любого электрического прибора вырабатывается тепло. Оно тем больше, чем выше значения силы тока и напряжения в цепи.
Отводится оно несколькими способами: с помощью специальных радиаторов, принудительного обдува воздухом и другими. Таким образом, существует некий предел количества теплоты для любого триода (для каждого он разный), который он может рассеять в пространство. Поэтому при выборе прибора исходят из характеристик электрической цепи, на который предстоит установить транзистор.
Типы подключений
Основная задача транзистора – усиливать поступающий сигнал. Проблема в том, что у любого триода имеются только три контакта, в то время как сам усилитель имеет четыре полюса – два для входящего сигнала и два для выходящего, то есть усиленного. Выход из положения – использовать один из контактов транзистора дважды: и как вход, и как выход.
По этому принципу различают три вида подключения. Стоит отметить, что не имеет принципиальной разницы, какой тип прибора используется – полевой или биполярный.
- Подключение с общим эмиттером (ОЭ) или общим истоком (ОИ). Эта схема подключения имеет наибольшие значения усиления мощности по току и напряжению. Однако из-за эффекта Миллера его частотные характеристики значительно хуже. Борются с этим негативным явлением несколькими способами: используют подключение с общей базой, применяют каскодное подключение двух транзисторов (подключённому по общему эмиттеру добавляется второй, подключенный по общей базе).
- Подключение с общей базой (ОБ) или общим затвором (ОЗ). Здесь полностью исключено влияние эффекта Миллера. Однако за это приходиться платить: в этой схеме усиления тока практически не происходит, зато имеется широкий диапазон для изменения частоты сигнала.
- Подключение с общим коллектором (ОК) или общим стоком (ОС). Такой тип подключения часто называют эмиттерным или истоковым повторителем. Это «золотая середина» между двумя предыдущими видами схем: частотные характеристики и мощность усиления по току и напряжению находятся где-то посередине между двумя первыми.
Все три описанных выше типа подключения применяются в зависимости от того, какие цели преследуют конструкторы.
Виды транзисторов
В первых транзисторах применялся германий, который работал не совсем стабильно. Со временем от него отказалось в пользу других материалов: кремния (самый распространённый) и арсенида галлия. Но все это традиционные полупроводники.
В настоящее время начинают набирать популярность триоды на основе органических материалов и даже веществ биологического происхождения: протеинов, пептидов, молекул хлорофилла и целых вирусов. Биотранзисторы используются в медицине и биотехнике.
Другие классификации транзисторов:
- По мощности подразделяются на маломощные (до 0,1 Вт), средней мощности (от 0,1 до 1 Вт) и просто мощные (свыше 1 Вт).
- Также разделяются по материалу корпуса (металл или пластмасса), типу исполнения (в корпусе, бескорпусные, в составе интегральных схем).
- Нередко их объединяют друг с другом для улучшения характеристик. Такие транзисторы называются составными или комбинированными и могут состоять из двух и более полупроводниковых приборов. Строение и у них простое: эмиттер первого является базой для второго и так далее до необходимого количества триодов. Бывает нескольких типов: Дарлинга (все составляющие с одинаковым типом проводимости), Шиклаи (тип проводимости разный), каскодный усилитель (два прибора, работающие как один с подключением по схеме с общим эмиттером).
- К составным относится также и IGBT-транзистор, представляющий собой биполярный, который управляется при помощи полярного триода с изолированным затвором. Такой тип полупроводниковых приборов применяется в основном там, где нужно управлять большим током (сварочные аппараты, городские электросети) или электромеханическими приводами (электротранспорт).
- В качестве управления может применяться не ток, а другое электромагнитное воздействие. К примеру, в фототранзисторах в качестве базы используется чувствительный фотоэлемент, а в магнитотранзисторах – материал, индуцирующий ток при воздействии на него магнитного поля.
Технологический предел для транзисторов еще не достигнут. Их размеры уменьшаются с каждым голом, а различные научно-исследовательские институты ведут поиск новых материалов для использования в качестве полупроводника. Можно сказать, что эти полупроводниковые приборы еще не сказали миру своего последнего слова.
Источник: https://remont220.ru/osnovy-elektrotehniki/1098-tranzistor/
Виды транзисторов и область их применения. Общие сведения
Здравствуйте, дорогие читатели. В данной статье рассмотрим виды транзисторов и область их применения. И так…
Транзистор, это радиоэлектронный компонент из полупроводникового материала, обычно с тремя выводами, способный от небольшого входного сигнала управлять значительным током в выходной цепи.
Это позволяет использовать его для усиления, генерирования, коммутации и преобразования электрических сигналов.
В настоящее время транзистор является основой схемотехники подавляющего большинства электронных устройств и интегральных микросхем.
Виды транзисторов
О том что такое транзистор, читайте в статье «Что означает слово транзистор? Назначение и устройство.
» Здесь лишь отметим, в большинстве применений транзисторы заменили собой вакуумные лампы, свершилась настоящая кремниевая революция в создании интегральных микросхем.
Так, сегодня в аналоговой технике чаще используют биполярные транзисторы, а в цифровой технике — преимущественно полевые.
Устройство и принцип действия полевых и биполярных транзисторов — это так же темы отдельных статей, поэтому останавливаться на данных тонкостях не будем, а рассмотрим предмет с чисто практической точки зрения на конкретных примерах.
Полевые и биполярные транзисторы
По технологии изготовления транзисторы подразделяются на два типа: полевые и биполярные. Биполярные в свою очередь делятся по проводимости на n-p-n – транзисторы обратной проводимости, и p-n-p – транзисторы прямой проводимости.
Полевые транзисторы бывают, соответственно, с каналом n-типа и p-типа. Затвор полевого транзистора может быть изолированным (IGBT-транзисторы) или в виде p-n-перехода.
IGBT-транзисторы бывают со встроенным каналом или с индуцированным каналом.
Виды транзисторов, p–n–p и n–p–n проводимость
Области применения транзисторов определяются их характеристиками, а работать транзисторы могут в двух режимах: в ключевом или в усилительном.
В первом случае транзистор в процессе работы или полностью открыт или полностью закрыт, что позволяет управлять питанием значительных нагрузок, используя малый ток для управления.
А в усилительном, или по-другому — в динамическом режиме, используется свойство транзистора изменять выходной сигнал при малом изменении входного, управляющего сигнала. Далее рассмотрим примеры различных транзисторов.
2N3055 – биполярный n-p-n-транзистор в корпусе ТО-3
Популярен в качестве элемента выходных каскадов высококачественных звуковых усилителей, где он работает в динамическом режиме. Как правило, используется совместно с комплементарным p-n-p собратом MJ2955. Данный транзистор может работать и в ключевом режиме, например в трансформаторных НЧ инверторах 12 на 220 вольт 50 Гц, пара 2n3055 управляет двухтактным преобразователем.
Примечательно, что напряжение коллектор-эмиттер для данного транзистора в процессе работы может достигать 70 вольт, а ток 15 ампер. Корпус ТО-3 позволяет удобно закрепить его на радиатор в случае необходимости.
Статический коэффициент передачи тока — от 15 до 70, этого достаточно для эффективного управления даже мощными нагрузками, при том, что база транзистора выдерживает ток до 7 ампер.
Данный транзистор может работать на частотах до 3 МГц.
КТ315 — легенда среди отечественных биполярных транзисторов малой мощности
Данный транзистор n-p-n – типа впервые увидел свет 1967 году, и по сей день пользуется популярностью в радиолюбительской среде. Комплементарной парой к нему является КТ361. Идеален для динамических и ключевых режимов в схемах малой мощности.
При максимально допустимом напряжении коллектор-эмиттер 60 вольт, этот высокочастотный транзистор способен пропускать через себя ток до 100 мА, а граничная частота у него не менее 250 МГц. Коэффициент передачи тока достигает 350, при том, что ток базы ограни
Как работают транзисторы MOSFET | hardware
Мощные транзисторы MOSFET хорошо известны своей исключительной скоростью переключения при весьма малой мощности управления, которую нужно прикладывать к затвору. Основная причина в том, что затвор изолирован, поэтому требуется мощность только на перезаряд емкости затвор-исток, и в статическом режиме цепь затвора практически не потребляет тока. В этом отношении мощные MOSFET по своим характеристикам приближаются к «идеальному переключателю». Основные недостатки, которые не дают MOSFET стать «идеальным», это сопротивление открытого канала RDS(on), и значительная величина положительного температурного коэффициента (чем выше температура, тем выше сопротивление открытого канала). В этом апноуте обсуждаются эти и другие основные особенности высоковольтных N-канальных мощных MOSFET, и предоставляется полезная информация по выбору транзисторов и их применению (перевод статьи [1]).
Для того, чтобы было проще понять работу полевого N-канального транзистора MOSFET, его стоит сравнить с широко распространенным биполярным кремниевым транзистором структуры NPN. Электроды у биполярного транзистора называются база, коллектор, эмиттер, а у полевого транзистора затвор, сток, исток.
База выполняет те же функции, что и затвор, коллектор соответствует стоку, а эмиттер соответствует истоку.
Давайте рассмотрим простейшую схему включения транзистора NPN:
Когда входной ключ разомкнут, то через эмиттерный переход транзистора T1 ток не течет, и канал коллектор-эмиттер имеет высокое сопротивление. Говорят, что транзистор закрыт, через его канал коллектор-эмиттер ток практически не течет. Когда замыкается входной ключ, то от батарейки B1 через резистор R1 и эмиттерный переход транзистора течет открывающий ток. Когда транзистор открыт, то его сопротивление канала коллектор-эмиттер уменьшается, и почти все напряжение батареи B2 оказывается приложенным к нагрузке R3. Т. е. когда во входной цепи течет ток (через R1), то в выходной цепи тоже течет ток (через R3), но в выходной цепи ток и напряжение (т. е. действующая мощность) в несколько раз больше. Здесь как раз и проявляются усиливающие свойства транзистора — маленькая мощность на входе позволяет управлять большой мощностью на выходе.
А так будет в этой схеме работать транзистор MOSFET:
На первый взгляд все то же самое — когда на входе есть управляющая мощность, она также появляется и на выходе (обычно усиленная во много раз). В этом смысле биполярный транзистор и MOSFET-транзистор очень похожи. Но есть два самых важных различия:
• Биполярный транзистор управляется током, а полевой транзистор напряжением.
Примечание: отсюда, кстати и пошло название полевого транзистора: его канал управляется не током, а электрическим полем затвор-исток.
Это означает, что входное сопротивление биполярного транзистора мало, а входное сопротивление MOSFET-транзистора очень велико. Обратите внимание на входной ток биполярного транзистора — 0.3 мА, этот ток в основном определяется сопротивлением резистора R1. Причина проста: на входе у биполярного транзистора имеется эмиттерный переход, который по сути обыкновенный диод, смещенный в прямом направлении. Если ток через этот диод есть, то транзистор открывается, если нет, то закрывается. Открытый диод имеет малое сопротивление, и максимальное падение напряжения на нем составляет около 0.7V. Поэтому практически все напряжение B1 (если быть точным, то 3.7 — 0.7 = 3V) оказывается приложенным к резистору R1. Этот резистор играет роль ограничителя входного тока биполярного транзистора.
У полевого транзистора MOSFET в этом отношении все по-другому. Входной ток определяется главным образом сопротивлением резистора R2, поэтому входной ток очень мал. Практически все входное напряжение оказывается приложенным к R2 и к переходу затвор — исток полевого транзистора. Причина проста: затвор и исток изолированы друг от друга слоем оксида кремния, по сути это конденсатор, поэтому ток через затвор практически не течет.
По этой причине на низких частотах, когда входная емкость не шунтирует источник сигнала, полевой транзистор имеет гораздо большее усиление по мощности в сравнении с биполярным транзистором. И действительно, в нашем примере входная мощность у биполярного транзистора составляет 0.3 мА * 3.7V = 1.11 мВт, а у полевого транзистора входная мощность составит всего лишь 0.00366 мА * 3.7V = 0.0135 мВт, т. е. в 82 раза меньше! Это соотношение могло бы быть еще больше не в пользу биполярного транзистора, если увеличить сопротивление резистора R2.
• Падение напряжения на выходном канале у полевого транзистора намного меньше, чем у биполярного.
Для данного примера падение напряжения коллектор-эмиттер биполярного транзистора составит примерно 0.3V, а у полевого 0.1V и даже меньше. Обычно выходное сопротивление у полевого транзистора намного меньше, чем у биполярного.
В исходном состоянии, когда на затворе относительно истока нулевое положительное напряжение, сопротивление канала определяется количеством неосновных носителей в полупроводнике, и очень велико. Когда к затвору прикладывается положительное напряжение относительно истока, то появляется проводящий ток канал сток-исток. Поэтому MOSFET иногда называют полевым транзистором с индуцированным каналом.
[Структура мощного транзистора MOSFET]
На рис. 1 показан срез структуры N-канального транзистора MOSFET компании Advanced Power Technology (APT). (Здесь рассматриваются MOSFET только N-структуры, как самые популярные.) Положительное напряжение, приложенное от вывода истока (source) к выводу затвора (gate), заставляет электроны притянуться ближе к выводу затвора в области подложки. Если напряжение исток-затвор равно или больше определенного порогового напряжения, достаточного для накапливания нужного количества электронов для достижения инверсии слоя n-типа, то сформируется проводящий канал через подложку (говорят, что канал MOSFET расширен). Электроны могут перетекать в любом направлении через канал между стоком и истоком. Положительный (или прямой) ток стока втекает в сток, в то время как электроны перемещаются от истока к стоку. Прямой ток стока будет заблокирован, как только канал будет выключен, и предоставленное напряжение сток-исток будет прикладываться в обратном направлении к p-n переходу подложка-сток. В N-канальных MOSFET только электроны формируют проводимость, здесь нет никаких не основных носителей заряда. Скорость переключения канала ограничена только длительностью перезаряда паразитных емкостей между электродами MOSFET. Поэтому переключение может быть очень быстрым, приводя к низким потерям при переключении. Этот фактор делает мощные MOSFET такими эффективными для работы на высокой частоте переключения.
Рис. 1. Срез рабочей структуры транзистора MOSFET.
RDS(on). Основные составляющие, которые входят в сопротивление открытого канала RDS(on), включают сам канал, JFET (аккумулирующий слой), область дрейфа Rdrift, паразитные сопротивления (металлизация, соединительные провода, выводы корпуса). При напряжениях приблизительно выше 150V в сопротивлении открытого канала доминирует область дрейфа. Эффект RDS(on) относительно невелик на высоковольтных транзисторах MOSFET. Если посмотреть на рис. 2, удвоение тока канала увеличивает RDS(on) только на 6%.
Рис. 2. Зависимость RDS(on) от тока через канал.
Температура, с другой стороны, сильно влияет на RDS(on). Как можно увидеть на рис. 3, сопротивление приблизительно удваивается при возрастании температуры от 25°C до 125°C. Температурный коэффициент RDS(on) определяется наклоном кривой графика рис. 3, и он всегда положителен для большинства поставщиков транзисторов MOSFET. Большой положительный температурный коэффициент RDS(on) определяется потерями на соединении I2R, которые увеличиваются с ростом температуры.
Рис. 3. Зависимость RDS(on) от температуры.
Положительный температурный коэффициент RDS(on) очень полезен, когда нужно параллельно включать транзисторы MOSFET, поскольку это обеспечивает их температурную стабильность и равномерное распределение рассеиваемой мощности между транзисторами. Этим MOSFET выгодно отличаются от традиционных биполярных транзисторов. Но это не гарантирует, что параллельно соединенные транзисторы будут равномерно распределять между собой общий ток. Это широко распространенное заблуждение [2]. То, что действительно делает MOSFET простыми для параллельного включения — это их относительно малый разброс по параметрам между отдельными экземплярами в пределах серии, в частности по параметру RDS(on), в комбинации с более безопасными свойствами канала в контексте перегрузки по току, когда благодаря положительному температурному коэффициенту RDS(on) сопротивление канала растет при повышении температуры.
Для любого заданного размера кристалла RDS(on) также увеличивается с увеличением допустимого напряжения V(BR)DSS, как это показано на рис. 4.
Рис. 4. Зависимость нормализированного RDS(on) от V(BR)DSS.
Кривая нормализированного RDS(on) в зависимости от V(BR)DSS для Power MOS V и Power MOS 7 MOSFET показывает, что RDS(on) растет пропорционально квадрату V(BR)DSS. Эта нелинейная зависимость между RDS(on) и V(BR)DSS является побудительным стимулом для исследования технологий с целью уменьшить потери проводимости мощных транзисторов [3].
[Внутренние и паразитные элементы]
JFET. В структуре MOSFET Вы можете представить себе встроенный JFET, как это показано на рис. 1. JFET оказывает значительное влияние на RDS(on), и является частью нормального функционирования MOSFET.
Внутренний диод на подложке (Intrinsic body diode). Переход p-n между подложкой и стоком формирует внутренний диод, так называемый body diode (см. рис. 1), или паразитный диод. Обратный ток стока не может быть блокирован, потому что подложка замкнута на исток, предоставляя мощный путь для тока через body diode. Расширение канала транзистора (при положительном напряжении на затворе относительно истока) уменьшает потери на прохождение обратного тока стока, потому что электроны проходят через канал в дополнение к электронам и неосновным носителям, проходящим через body diode.
Наличие внутреннего диода на подложке удобно в схемах, для которых требуется путь для обратного тока стока (часто называемого как ток свободного хода), таких как схемах мостов. Для таких схем предлагаются транзисторы FREDFET, имеющие улучшенные восстановительные характеристики (FREDFET это просто торговое имя компании Advanced Power Technology, используемое для выделения серий MOSFET с дополнительными шагами в производстве, направленными на ускорение восстановления intrinsic body diode). В FREDFET нет отдельного диода; это тот же MOSFET intrinsic body diode. Для управления временем жизни неосновных носителей во внутреннем диоде применяется либо облучение электронами (наиболее часто используемый вариант) или легирование платиной, что значительно уменьшает заряд обратно смещенного перехода и время восстановления.
Побочный эффект от обработки FREDFET — повышенный ток утечки, особенно на высоких температурах. Однако, если учесть, что MOSFET имеет очень малый начальный ток утечки, то добавленный через FREDFET ток утечки остается допустимым до температур перехода ниже 150°C. В зависимости от дозы облучения FREDFET может иметь RDS(on) больше, чем у соответствующего MOSFET. Прямое напряжение для паразитного диода для FREDFET также немного больше. Заряд затвора и скорость переключения у MOSFET и FREDFET идентичны. Поэтому термин MOSFET здесь будет использоваться всегда для обоих типов MOSFET и FREDFET, если специально не оговорено что-то другое.
Скорость восстановления для паразитного диода у MOSFET или даже у FREDFET намного хуже в сравнении со скоростью быстрого дискретного диода. В приложениях, где жесткие рабочие условия с температурой порядка 125°C, потери на включение из-за восстановления из обратного смещения примерно в 5 раз выше, чем у быстрых дискретных диодов. НА это есть 2 причины:
1. Рабочая область паразитного диода совпадает с рабочей областью MOSFET или FREDFET, и рабочая область у дискретного диода для той же функции намного меньше, поэтому у дискретного диода намного меньше заряд восстановления.
2. Паразитный диод MOSFET или даже FREDFET не оптимизирован под обратное восстановление, как это сделано для дискретного диода.
Как и любой стандартный кремниевый диод, у паразитного диода заряд восстановления и время зависит от температуры, di/dt (скорости изменения тока), и величины тока. Прямое напряжение паразитного диода, VSD, уменьшается с ростом температуры по коэффициенту примерно 2.5 mV/°C.
Паразитный биполярный транзистор. Разделенная на слои структура MOSFET также формирует паразитный биполярный транзистор (BJT) структуры NPN, и его включение на является частью нормального функционирования. Если BJT откроется и войдет в насыщение, то это может вызвать самоблокировку, при которой MOSFET не может быть выключен кроме как через внешний разрыв цепи тока стока. Высокая мощность рассеивания (например, при возникновении сквозного тока в плече моста) при самоблокировке может вывести MOSFET из строя.
База паразитного BJT замкнута на исток, чтобы предотвратить самоблокировку, и потому что напряжение пробоя (breakdown voltage) было бы значительно уменьшено (для того же самого значения RDS(on)), если бы база была оставлена плавающей. Существует теоретическая возможность самоблокировки при очень большой скорости dv/dt в момент выключения. Однако для современных стандартных мощных транзисторов очень трудно создать схему, где будет достигнута такое высокое dv/dt.
Есть риск включения паразитного BJT, если внутренний диод проводит, и затем выключается с чрезмерно высоким изменением dv/dt. Мощная коммутация dv/dt вызывает высокую плотность неосновных носителей заряда (положительные носители, или дырки) в подложке, что может создать напряжение на подложке, достаточное для включения паразитного BJT. По этой причине в даташите указано ограничение пиковой коммутации (восстановление встроенного диода) dv/dt. Пиковая коммутация dv/dt для FREDFET выше в сравнении с MOSFET, потому что у FREDFET снижено время жизни неосновных носителей заряда.
[На что влияет температура]
Скорость переключения. Температура практически не влияет на скорость переключения и потери, потому что (паразитные) емкости мало зависят от температуры. Однако ток обратного восстановления в диоде увеличивается с температурой, так что температурные эффекты внешнего диода (это может быть дискретный диод, или внутренний диод в MOSFET или FREDFET) влияют на потери включения мощных схем.
Пороговое напряжение, или напряжение отсечки (Threshold voltage). Напряжение отсечки затвора, обозначаемое как VGS(th), является важным стандартным параметром. Оно говорит, насколько много миллиампер через сток будет течь при пороговом напряжении на затворе, когда транзистор в основном выключен, но находится на пороге включения. У напряжения отсечки есть отрицательный температурный коэффициент; это означает, что напряжение отсечки уменьшается с ростом температуры. Температурный коэффициент влияет на время задержки включения и выключения, и следовательно влияет на выбор «мертвого времени» в мостовых схемах.
Переходная характеристика (Transfer characteristic). На рис. 5 показана переходная характеристика MOSFET-транзистора APT50M75B2LL.
Рис. 5. Пример переходной характеристики MOSFET.
Переходная характеристика зависит как от температуры, так и от тока стока. На рис. 5 при токе ниже 100 A напряжение затвор-исток имеет отрицательный температурный коэффициент (при заданном токе стока уменьшается напряжение затвор-исток при повышении температуры). При токе выше 100 A температурный коэффициент становится положительным. Температурный коэффициент напряжения затвор-исток и ток стока в том месте, где коэффициент меняет знак, важен для проектирования работы схем в линейном режиме [4].
Напряжение пробоя (Breakdown voltage). Напряжение пробоя имеет положительный температурный коэффициент, этот будет обсуждаться в секции Walkthrough.
Устойчивость к перегрузке по току (Short circuit capability). Возможность противостояния коротким замыканиям не всегда встречается в даташите. Причина понятна — MOSFET стандартной мощности не подходят для устойчивой работы в режиме перегрузки по току в сравнению с IGBT или другими транзисторами, работающими с высокой плотностью тока. Само собой разумеется, что MOSFET и FREDFET (в некотором смысле) устойчивы к перегрузке по току.
[Обзор параметров даташита. Максимальные предельные значения]
Назначение даташитов, предоставляемых APT, состоит в предоставлении соответствующей информации, которая полезна и удобна для выбора подходящего устройства в конкретном приложении. Предоставляются графики, чтобы можно было экстраполировать от одного набора рабочих условий к другому. Следует отметить, что графики предоставляют типичную производительность, но не минимумы или максимумы. Производительность также зависит кое в чем от схемы; различные тестовые схемы приведут к отличающимся результатам.
VDSS, напряжение сток-исток. Это оценка максимального напряжения сток-исток не вызывая лавинного пробоя (avalanche breakdown) с затвором, замкнутым на исток при температуре 25°C. В зависимости от температуры напряжение лавинного пробоя могло бы быть фактически меньше, чем параметр VDSS. См. описание V(BR)DSS в разделе «Статические электрические характеристики».
VGS, напряжение затвор-исток. Это предельное напряжение между выводами затвора и истока. Назначение этого параметра — предотвратить повреждение изолирующего оксидного слоя затвора (например, от статического электричества). Фактическая устойчивость оксидной пленки затвора намного выше, чем заявленный параметр VGS, но он варьируется в зависимости от производственных процессов, так что если укладываться в предел VGS, то это гарантирует надежную работу приложения.
ID, непрерывный ток стока. ID определяет максимальный уровень продолжающегося постоянного тока, когда транзистор выходит из строя при максимальной температуре перехода TJ(max), для случая 25°C, и иногда для более высокой температуры. Он основан на термосопротивлении между корпусом и переходом RӨJC, и для случая температуры TC может быть вычислен по формуле:
Это выражение просто говорит о том, какая максимальная мощность может рассеиваться
при максимальной генерируемой теплоте из-за потерь в соединении I2D X RDS(on)@TJ(max), где RDS(on)@TJ (max) сопротивление открытого канала при максимальной температуре перехода. Отсюда можно вывести ID:
Обратите внимание, что в ID не входят никакие потери на переключение, и случай с температурой 25°C на практике встречается редко. По этой причине в приложениях, где MOSFET часто переключается, фактический коммутируемый ток обычно меньше половины ID @ TC = 25°C; обычно между 1/4 до 1/3.
Зависимость ID от TC. Этот график просто отражает формулу 2 для диапазона температур. Здесь также не учтены потери на переключение. На рис. 6 приведен пример такого графика. Обратите внимание, что в некоторых случаях выводы корпуса транзистора ограничивают максимально допустимый продолжительный ток (переключаемый ток может быть больше): 100 A для корпусов TO-247 и TO-264, 75 A для TO-220 и 220 A для SOT-227.
Рис. 6. Максимальный ток стока в зависимости от температуры.
IDM, импульсный ток стока. Этот параметр показывает, какой импульс тока может выдержать устройство. Этот ток может значительно превышать максимально допустимый постоянный ток. Назначение этого параметра IDM состоит в том, чтобы удержать рабочий омический регион в пределе выходных характеристик. Посмотрите на рис. 7:
Рис. 7. Выходная характеристика MOSFET.
На этом графике есть максимальный ток стока для соответствующего напряжения затвор-исток, когда транзистор MOSFET открыт. Если рабочая точка при данном напряжении затвор-исток переходит выше омического региона «колена» рис. 7, то любое дальнейшее увеличение тока через сток приведет к значительному увеличению напряжения сток-исток (транзистор переходит из режима насыщения в линейный режим) и последующей потере проводимости. Если мощность рассеивания станет слишком велика, и это будет продолжаться довольно долго, то устройство может выйти из строя. Параметр IDM нужен для того, чтобы установить рабочую точку ниже «колена» для типичных применений транзистора в ключевом режиме.
Нужно ограничить плотность тока, чтобы предотвратить опасный нагрев, что иначе может привести к необратимому перегоранию MOSFET.
Чтобы избежать проблем с превышением тока через соединительные провода иногда применяют плавкие предохранители. В случае перегрузки по току выгорят именно они вместо транзистора.
Относительно температурных ограничений на IDM, рост температуры зависит от длительности импульса тока, интервала времени между импульсами, интенсивности рассеивания тепла, сопротивления открытого канала RDS(on), а также и от формы и амплитуды импульса тока. Если просто удержаться в пределах IDM, то это еще не означает, что температура перехода не будет превышена. См. обсуждение переходного теплового сопротивления в разделе «Температурные и механические характеристики», чтобы узнать способ оценки температуры перехода во время импульса тока.
PD, общая мощность рассеивания. Этот параметр определяет максимальную мощность, которую может рассеивать устройство, и он основан на максимально допустимой температуре перехода и термосопротивлении RӨJC для случая температуры 25°C.
Линейный коэффициент снижения мощности это просто инверсия RӨJC.
TJ, TSTG: рабочий и складской диапазон температур перехода. Этот параметр ограничивает допустимую температуру кристалла устройства во время работы и во время хранения. Установленные пределы гарантируют, что будут соблюдены гарантийные эксплуатационные сроки устройства. Работа в пределах этого диапазона может значительно увеличить срок службы.
EAS, лавинная энергия одиночного импульса. Если импульс напряжения (возникающий обычно из-за утечки и случайной индуктивности) не превышает напряжение пробоя, то не будет лавинного пробоя устройства, так что нет необходимости рассеивать энергию пробоя. Параметр максимальной лавинной энергии оценивает устройство в плане рассеивания мощности режима лавинного пробоя при переходных процессах с повышенным напряжением.
Все устройства, которые оценены по лавинной энергии, имеют параметр EAS. Лавинная энергия связана с параметром разблокированного индуктивного переключения (unclamped inductive switching, UIS). EAS показывает, сколько лавинной энергии устройство может поглотить. Условия для схемы тестирования Вы можете найти в документации по ссылкам, и EAS вычисляется по формуле:
Здесь L величина индуктивности, из которой поступает импульс тока iD, случайно поступающий в на закрытый переход транзистора через сток при тесте. Индуцируемое напряжение превышает напряжение пробоя MOSFET, что вызывает лавинный пробой. Лавинный пробой позволяет импульсу тока от индуктивности течь через MOSFET, даже если он закрыт. Энергия, запасенная в индуктивности, аналогична энергии, сохраненной в утечке и/или случайной индуктивности, и она должна быть рассеяна в MOSFET.
Когда транзисторы MOSFET соединены параллельно, это совершенно не означает, что у них одинаковое напряжение пробоя. Обычно пробьется только один транзистор, и только на него поступит вся энергия тока лавинного пробоя.
EAR, повторная лавинная энергия. Этот параметр стал «промышленным стандартом», но он не имеет смысла без информации о частоте, других потерях и эффективности охлаждения. Рассеивание тепла (охлаждение) часто ограничивает значение повторной рассеиваемой энергии. Также трудно предсказать, сколько энергии находится в лавинном событии. То, о чем говорит EAR в действительности, означает, что устройство может выдерживать повторяющиеся лавинные пробои без какого-либо ограничения по частоте, если устройство не перегрето, что в принципе верно для любого устройства, которое может испытать лавинный пробой. Во время анализа проекта хорошей практикой является измерение температуры устройства или его радиатора во время работы — чтобы увидеть, что MOSFET не перегрет, особенно если возможны условия лавинного пробоя.
IAR, ток лавинного пробоя. Для некоторых устройств, которые могут выйти из строя во время лавинного пробоя, этот параметр дает лимит на максимальный ток пробоя. Так что это как бы «точный отпечаток» спецификаций лавинной энергии, показывающий реальные возможности устройства.
[Статические электрические характеристики]
V(BR)DSS, Drain-source breakdown voltage, напряжение пробоя сток-исток. Параметр V(BR)DSS (иногда его называют BVDSS) определяет максимальное напряжение сток-исток, при котором через канал сток-исток будет течь ток не больше допустимого при заданной температуре и нулевом напряжении между затвором и истоком. Фактически этот параметр соответствует напряжению лавинного пробоя канала сток-исток закрытого транзистора.
Как показано на рис. 8, у параметра V(BR)DSS есть положительный температурный коэффициент. Таким образом, MOSFET может выдержать больше напряжение, если он нагрет, по сравнению с холодным состоянием. Фактически в охлажденном состоянии V(BR)DSS будет меньше, чем предельно допустимое напряжение сток-исток VDSS, указанное для температуры 25°C. В примере, показанном на рис. 8 при -50°C, напряжение V(BR)DSS будет составлять 90% от максимально допустимого VDSS, указанного для температуры 25°C.
Рис. 8. Нормализованная зависимость напряжения пробоя от температуры.
VGS(th), Gate threshold voltage, напряжение отсечки затвора. Это пороговое напряжение затвор-исток, при превышении которого транзистор начнет открываться. Т. е. при напряжении на затворе выше VGS(th) транзистор MOSFET начинает проводить ток через канал сток-исток. Для параметра VGS(th) также указываются условия проверки (ток стока, напряжение сток-исток и температура кристалла). Все транзисторы MOSFET допускают некоторый разброс порогового напряжения отсечки затвора от устройства к устройству, что вполне нормально. Таким образом, для VGS(th) указывается диапазон (минимум и максимум), в который должны попасть все устройства указанного типа. Как уже обсуждалось ранее в разделе «На что влияет температура», VGS(th) имеет отрицательный температурный коэффициент. Это значит, что с увеличением нагрева MOSFET откроется при более низком напряжении затвор-исток.
RDS(on), ON resistance, сопротивление в открытом состоянии. Этот параметр определяет сопротивление открытого канала сток-исток при указанном токе (обычно половина от тока ID), напряжении затвор-исток (обычно 10V) и температуре 25°C, если не указано что-либо другое.
IDSS, Zero gate voltage drain current, ток утечки канала. Это ток, который может течь через закрытый канал сток-исток, когда напряжение на затвор-исток равно нулю. Поскольку ток утечки увеличивается с температурой, то IDSS указывается для комнатной температуры и для нагретого состояния. Потери мощности из-за тока утечки IDSS через канал сток-исток обычно незначительны.
IGSS, Gate-source leakage current, ток утечки затвора. Это ток, который может через затвор при указанном напряжении затвор-исток.
[Динамические характеристики]
Рис. 9 показывает месторасположения внутренних емкостей транзистора MOSFET. Величина этих емкостей определяется структурой MOSFET, используемыми материалами и приложенными напряжениями. Эти емкости не зависят от температуры, так что температура не влияет на скорость переключения MOSFET (за исключением незначительного эффекта, связанного с пороговым напряжением, которое зависит от температуры).
Рис. 9. Паразитные емкости транзистора MOSFET в структуре кристалла.
Емкости Cgs и Cgd меняются в зависимости от приложенного к ним напряжений, потому что они затрагивают обедненные слои в устройстве [8]. Однако на Cgs намного меньше меняется напряжение в сравнении с Cgd, так что емкость Cgs изменяется меньше. Изменение Cgd при изменении напряжения сток-затвор может быть больше, потому что напряжение может меняться в 100 раз или больше.
На рис. 10 показаны внутренние емкости MOSFET с точки зрения схемотехники. Емкости затвор-сток и затвор-исток могут повлиять на схему управления, и вызвать нежелательные эффекты при быстрых переключениях в мостовых схемах.
Рис. 10. Паразитные емкости транзистора MOSFET в рабочей схеме.
Если кратко, то чем меньше Cgd, тем будет меньше влияние на схему управления при перепаде напряжения при включении транзистора. Также емкости Cgs и Cgd формируют емкостный делитель напряжения, и при большом соотношении Cgs к Cgd желательно защитить схему управления от паразитных помех от перепадов напряжения, возникающих при переключении. Это соотношение, умноженное на пороговое напряжение, определяет качество защиты схемы управления от переключений в выходной цепи, и силовые транзисторы MOSFET компании APT лидируют в индустрии по этому показателю.
Ciss, Input capacitance, входная емкость. Это емкости, измеренная между выводами затвора истока, когда по переменному напряжению сток замкнут на исток. Ciss состоит из параллельно соединенных емкостей Cgd (емкость затвор-сток) и Cgs (емкость затвор-исток):
Входная емкость должна быть заряжена до порогового напряжения перед тем, как транзистор начнет открываться, и разряжена до напряжения общего провода перед тем, как транзистор выключится. Таким образом, сопротивление управляющей схемы и емкость Ciss образуют интегрирующую цепь, которая напрямую влияет на задержки включения и выключения.
Coss — Output capacitance, выходная емкость. Это емкость, измеренная между стоком и истоком, когда затвор замкнут по переменному току на сток. Coss состоит из параллельно соединенных емкостей Cds (емкость сток-исток) и Cgd (емкость затвор-сток):
Для приложений с мягким переключением параметр Coss важен, потому что влияет на резонанс схемы.
Crss, Reverse transfer capacitance, обратная переходная емкость. Это емкость, измеренная между стоком и затвором, когда исток соединен с землей. Обратная переходная емкость эквивалентна емкости затвор-сток.
Обратная переходная емкость часто упоминается как емкость Миллера. Это один из главных параметров, влияющих на время нарастания и спада напряжения во время переключения. Он также влияет на эффекты времени задержки выключения.
На рис. 11 показан пример зависимости типичных значений емкости от напряжения сток-исток.
Рис. 11. Зависимость емкости от напряжения.
Емкости уменьшаются при увеличении напряжения сток-исток, особенно это влияет на выходную и обратную переходную емкости.
Qgs, Qgd и Qg, Gate charge, заряд затвора. Значения заряда отражают заряд, сохраненный на внутренних емкостях, описанных ранее. Заряд затвора используется для разработки схемы управления, поскольку нужно учитывать изменения емкости при изменении напряжения на переходах переключения [9, 10].
На рис. 12 показано, что Qgs заряжается от начала координат до первого перегиба и далее заряжается до второго перегиба кривой (этот заряд известен как заряд Миллера), и Qg является зарядом от начала координат до точки, где VGS равно указанному управляющему напряжению затвора.
Рис. 12. VGS как функция заряда затвора.
Заряд затвора незначительно изменяется с током стока и напряжением сток-исток, но не зависит от температуры. Для этого параметра указываются условия тестирования. График заряда затвора, обычно приведенный в даташите, показывает кривые заряда затвора для фиксированного тока стока и различных напряжений сток-исток. Напряжение горизонтального участка VGS(pl), «плато», показанное на рис. 12, незначительно увеличивается с ростом тока (и соответственно уменьшается при снижении тока). Напряжение также имеет прямо пропорциональную зависимость от порогового напряжения, так что изменения порогового напряжения коррелирует и изменением напряжения плато.
[Резистивные параметры времени переключения (данные resistive switching)]
Эти параметры имеются в даташите по чисто историческим причинам.
td(on), Turn-on delay time, время задержки включения. Это время от момента, когда напряжение затвор-исток на 10% превысит напряжение отсечки затвора до момента времени, когда ток стока вырастет больше 10% от указанного выходного тока. Это показывает задержку начала поступления тока в нагрузку.
td(off), Turn-off delay Time, время задержки выключения. Это время от момента, когда напряжение затвор-исток упадет ниже 90% напряжения отсечки затвора до момента, когда ток стока упадет ниже 90% от указанного выходного тока. Это показывает задержку отключения тока в нагрузке.
tr, Rise time, время нарастания. Это время, за которое ток стока вырастет от 10% до 90% (значение тока указывается).
tf, Fall time, время спада. Это время, за которое ток стока спадет от 90% до 10% (значение тока указывается).
[Энергии переключения в индуктивностях]
Из-за того, что данные resistive switching трудно использовать для предсказания потерь на переключение в реальных рабочих условиях мощных преобразователей, компания Advanced Power Technology включает во многие даташиты транзисторов MOSFET и FREDFET данные энергии переключения в индуктивностях. Это предоставляет разработчику ключевых блоков питания удобный способ сравнения быстродействия транзисторов MOSFET или FREDFET с другими транзисторами, даже если они выполнены по другой технологии наподобие IGBT. Поэтому можно использовать для разработки самый подходящий по качеству мощный транзистор.
На рис. 13 показана схема тестирования переключения транзистора с учетом потерь в индуктивностях. Это импульсный тест, где применяется очень короткий по длительности цикл открытого состояния транзистора, так что энергия, запасенная в индуктивности, успеет рассеяться намного раньше поступления последующих импульсов, и саморазогрев можно не учитывать. Температура транзистора и фиксирующего диода во время теста регулируется принудительно от внешнего термостата.
Рис. 13. Схема тестирования потерь на индуктивности.
В таблице динамических характеристик указываются следующие условия тестирования: VDD на рис. 13, ток теста, напряжение управления для затвора, сопротивление затвора и температура кристалла. Обратите внимание, то сопротивление затвора может включать сопротивление выхода микросхемы драйвера. Поскольку время переключения и энергии меняются с температурой (главным образом из-за диода в тестовой схеме), то данные предоставляются как для комнатной температуры, так и для разогретого состояния диода и тестируемого транзистора. Также предоставляется график зависимости между временем переключения и энергиями тока стока, и сопротивлением затвора. Определения времени задержки (включения) и времени нарастания и спада тока совпадают с аналогичными временами для данных resistive switching.
Фактические формы сигнала при переключениях используются в даташите для определения различных измеренных параметров. Рис. 14 показывает форму сигнала включения и определения, связанные с ним. Энергия переключения может быть масштабирована напрямую для изменений между напряжением в приложении и энергией при тестовом напряжении, указанном в даташите. Так что, к примеру, если тесты в даташите были проведены при напряжении 330V, и в приложении применяется напряжение 400, то для масштабирования нужно просто умножить энергию переключения из даташита на коэффициент 400/330.
Рис. 14. Формы сигналов включения и соответствующие определения.
Времена переключения и энергии очень зависят от других компонентов и случайных (паразитных) индуктивностей в схеме. Диод сильно влияет на энергию включения. Паразитная индуктивность, включенная последовательно с истоком, является частью пути возвратного управляющего тока, и поэтому значительно влияет на времена переключения и энергии. Таким образом, время переключения и значения энергии, представленные в даташите, могут отличаться от того, что наблюдается в реальном приложении силового узла блока питания или ключа управления мотором.
Eon, Turn-on switching energy with diode, энергия включения с диодом. Это зафиксированная индуктивная энергия включения, которая включает индуктивный коммутирующий реверсивный ток восстановления диода в тестируемом транзисторе, и она учитывает потери при включении. Обратите внимание, что транзисторы FREDFET в схемах мостов получают жесткие условия переключения, где паразитный диод сложно коммутируется, и энергия включения примерно в 5 раз выше, чем если бы использовался дискретный диод с быстрым восстановлением, наподобие того как показано в схеме рис. 13.
Энергия включения является интегралом результата от тока стока и напряжения сток-исток на интервале от момента, когда ток стока вырастет больше 5% или 10% от тестового тока, то момента, когда напряжение спадет ниже 5% от тестового напряжения, как это показано на рис. 14.
Eoff, Turn-off switching energy, энергия выключения. Это параметр, характеризующий фиксацию потерь на индуктивности при выключении. На рис. 13 показана схема тестирования, и рис. 15 показывает форму сигнала и определения. Eoff является интегралом результата от тока стока и напряжением сток-исток на интервале времени от момента, когда напряжение затвор-исток упадет ниже 90% до момента, когда ток стока станет нулевым. Это соответствует измерениям энергии выключения по JEDEC-стандарту 24-1.
Рис. 15. Формы сигналов выключения и соответствующие определения.
[Температурные и механические характеристики]
RƟJC, Junction to case thermal resistance, тепловое сопротивления между подложкой и корпусом. Этот параметр характеризует эффективность передачи тепла от кристалла к внешнему корпусу транзистора. Выделяющееся тепло является результатом потерь мощности в самом транзисторе. Обратите внимание, что тесты компании APT показывают температуры пластмассы, совпадающую с металлической частью корпуса дискретного компонента.
Максимальное значение RƟJC включает допуск, учитывающий погрешности изменения для обычного процесса производства. Из-за улучшений производственного процесса в индустрии есть тенденция сокращения разницы между максимальным значением RƟJC и его реальным значением.
ZƟJC, Junction to case transient thermal impedance, переходной термический импеданс между подложкой и корпусом. Этот параметр учитывает теплоемкость устройства, так что он может использоваться для оценки мгновенных температур из-за потерь мощности.
В условиях проведения теста на термоимпеданс на тестируемый транзистор прикладываются импульсы мощности различной длительности, и при этом ждут спада температуры между каждым импульсом. Это дает измерение переходного термосопротивления для «одиночного импульса». Из этого строится модель резистор-емкость (RC) по кривой изменения температуры. Рис. 16 показывает такую RC-модель переходного термосопротивления. Некоторые даташиты могут показывать конденсаторы и резисторы, включенные параллельно, но это будет ошибкой. Конденсаторы «заземлены», как это показано на рис 16, и значения компонента остаются такими же. Нет никакого физического значения для промежуточных узлов в модели. Разное количество пар резистор-конденсатор используется просто для того, чтобы создать хорошую подгонку к фактическим измененным данным термосопротивления.
Рис. 16. RC-модель переходного термосопротивления.
Чтобы симулировать возрастание температуры с помощью RC-модели, Вы прикладываете источник тока с магнитудой, соответствующей рассеиваемой мощности в MOSFET. Таким образом, Вы можете использовать систему PSPICE или другой программный симулятор электронных схем, чтобы применить ввод произвольных потерь мощности. Из этого Вы можете оценить повышение температуры участка подложка-корпус как напряжение на ступеньках лестницы, установив ZEXT в ноль, как это показано на рис. 16. Вы можете расширить модель, чтобы включить теплоотвод, добавив дополнительные конденсаторы и/или резисторы.
Переходное термосопротивление в виде семейства кривых, опубликованное в даташите, это просто симуляция прямоугольного импульса, основанная на RC-модели термосопротивления. Рис. 17 показывает пример. Вы можете использовать семейство кривых для оценки пикового нарастания температуры для прямоугольных импульсов мощности, которые являются обычными в источниках питания. Однако из за того, что минимальная длительность импульса 10 мкс, график имеет значение только для частот ниже 100 кГц. На более высоких частотах Вы будете просто использовать термосопротивление RƟJC.
Рис. 17. Семейство кривых термосопротивления.
[Пример анализа даташита]
Предположим, что в реальном приложении ключевого блока питания Вы хотите применить жесткое переключение тока 15A на частоте 200 кГц при напряжении 400V, при средней скважности 35%. Напряжение управления затвора 15V, и сопротивление цепи управления затвора составляет 15Ω для включения и 5Ω для выключения. Также предположим, что Вы хотите позволить максимальную температуру перехода 112°C, с удержанием температуры корпуса транзистора 75°C. С транзистором, рассчитанным на 500V, есть запас только в 100V между напряжением в приложении и VDSS. С учетом скачков напряжения на шине питания 400V узкий запас по напряжению все равно достаточен, потому что у транзистора MOSFET есть эффект лавинного пробоя, который дает «безопасную цепь». Это конфигурация с продолжительной проводимостью, так что быстро восстанавливающийся диод FREDFET не нужен, MOSFET будет работать достаточно хорошо. Такой транзистор Вам следует выбрать?
Поскольку это приложение с довольно высокой частотой переключения, то лучшим выбором будет серия Power MOS 7. Посмотрим на транзистор APT50M75B2LL. Его расчетный ток 57A, что больше чем в 3 раза переключаемого тока — хорошая стартовая точка, учитывая высокую частоту и жесткое переключение. Давайте оценим потери проводимости, потери переключения, и посмотрим, будет ли тепло рассеиваться достаточно быстро. Общая мощность, которую можно рассеять:
При 112°C сопротивление RDS(on) примерно в 1.8 раз больше, чем при комнатной температуре (см. рис. 3). Так что потери на проводимость составят:
Pconduction = (1.8*0.075Ω * 15A) * 15A = 30.4 Вт
Для оценки потерь на включение мы можем посмотреть на график зависимости потерь переключения от тока при температуре 125°C, показанный на рис. 18. Даже при том, что наше приложение требует максимальную температуру перехода 112°C, этот график будет достаточно точен, потому что энергия переключения MOSFET не чувствительна к температуре, за исключением изменений температуры, связанных с диодом в схеме. Поэтому не будет больших изменений при переходе от 112°C к 125°C. В любом случае, наша оценка будет консервативной.
Рис. 18. Индуктивные потери переключения.
По рис. 18 на токе 15A значение Eon будет около 300 μJ, и Eoff около 100 μJ. Значения были измерены при 330V, а в нашем приложении на шине питания 400V. Так что мы можем просто сделать масштабирование энергий переключения по напряжению:
Данные на рис. 18 были также измерены при сопротивлении затвора 5Ω, и мы будем использовать 15Ω при включении. Поэтому мы можем использовать график зависимости энергии переключения от данных сопротивления затвора, показанный на рис. 19, чтобы снова сделать масштабирование энергии.
Рис. 19. Зависимость энергии переключения от сопротивления затвора.
Даже при том, что тестовый ток на рис. 19 больше, чем в нашем приложении, разумно учесть соотношение в изменении энергии переключения между рис. 19 и нашим случаем. От 5Ω до 15Ω значение Eon поменяется с коэффициентом около 1.2 (1500μJ / 1250μJ, см. рис. 19). Применим это с данным, скорректированным по напряжению, которые мы видим на рис. 18, и получим Eon = 1.2*364μJ = 437μJ.
Потери на переключение составят:
Pswitch = fswitch — ( Eon + Eoff) = 200kHz — (437μJ +121μJ) = 112 Вт
Pconduction + Pswitch = 142.4 Вт, что дает возможность сохранить температуру перехода ниже 112°C в случае корпуса, охлажденного до 75°C. Так что APT50M70B2LL будет удовлетворять требованиям этого примера применения. Такая же техника может использоваться для менее мощных транзисторов MOSFET. На практике потери часто больше всего бывают на переключении. Чтобы поместить транзистор на радиатор и поддерживать температуру корпуса 75°C вероятно потребуется керамическая прокладка (для электрической изоляции) между корпусом и теплоемким радиатором. Преимущество MOSFET состоит в том, что могут применяться демпферы и/или техники резонанса для уменьшения потерь на переключение, причем с транзисторами MOSFET не нужно беспокоиться о влиянии на переключение эффектов зависимости от напряжения или температуры.
[UPD160207. Figure-of-merit]
Для оценки транзисторов FET применяют так называемый показатель качества, Figure of merit (FOM) [11]. Он учитывает одновременно потери на включенном транзисторе и потери на переключение. Обычно FOM вычисляется как произведение сопротивления канала сток-исток открытого транзистора R(DS)ON на заряд затвора QG. QG это заряд, который надо поместить на затвор транзистора MOSFET, чтобы он полностью открылся. С точки зрения рационального дизайна трудно одновременно снизить оба параметра, так что они хороши для оценки качества разработки ключа на полевом транзисторе.
Конечно, сравнение имеет смысл делать только в неком стандартном наборе условий. Это означает, что не только напряжение между затвором и истоком VGS поставляет заряд, также и напряжение сток-исток VDS влияет на сопротивление R(DS). (Это означает, что не просто канал полностью открыт, а то, что сопротивление R(DS) изменяется вверх и вниз.) Усложненный анализ учитывает, что R(DS)ON немного меняется с током стока, так что при сравнении переключающихся транзисторов рабочий ток стока ID также должен быть определен.
Иногда Вы увидите незначительно отличающийся показатель качества FOM: FOMSW, который будет произведением от which R(DS)ON и Q. Он характеризует заряд переключения, который немного меньше QG.
[Ссылки]
1. Power MOSFET tutorial site:eetimes.com.
2. R. Severns, E. Oxner; «Parallel Operation of Power MOSFETs», technical article TA 84-5, Siliconix Inc.
3. J. Dodge; «Latest Technology PT IGBTs vs. Power MOSFETs», application note, Advanced Power Technology.
4. R. Frey, D. Grafham — APT, T. Mackewicz — TDIDynaload; «New 500V Linear MOSFETs for a 120 kW Active Load», application note APT0002, Advanced Power Technology.
5. Реле и транзисторы: как они работают в качестве электронных переключателей.
6. JFET site:wikipedia.org.
7. Bipolar junction transistor site:wikipedia.org.
8. N. Mohan, T. Undeland, W. Robbins; «Power Electronics » Converters Applications, and Design», text book published by Wiley.
9. K. Dierberger, «Gate Drive Design for Large Die MOSFETs», application note APT9302, Advanced Power Technology.
10. R. McArthur, «Making Use of Gate Charge Information in MOSFET and IGBT Datasheets», application note APT0103, Advanced Power Technology.
11. Оценка качества транзисторов MOSFET.
Ионно-чувствительный полевой транзистор
— Принцип работы ISFET
Ионно-чувствительный полевой транзистор — это новые интегрированные устройства в микроэлектрохимической лаборатории на микросхемах. Это обычный тип химически чувствительных полевых транзисторов, и их структура такая же, как и у обычных полевых транзисторов на основе оксидов металлов и полупроводников. Чувствительная область представляет собой затвор транзистора и включает в себя средства преобразования концентрации ионов в напряжение.В случае ISFET оксид металла и металлические затворы обычного МОП-транзистора заменяются простым решением с электродами сравнения глубоко в растворах, а изолирующие слои предназначены для обнаружения конкретного аналита. Характер изолирующих слоев определяется как функциональность и чувствительность датчика ISFET.
Что такое ISFET?
Аббревиатура ISFET — ионно-чувствительный полевой транзистор. Это полевой транзистор, используемый для измерения концентрации ионных растворов.Концентрация ионов, таких как H +, изменяется как pH, а следовательно, изменяется ток через транзистор. Здесь электрод затвора представляет собой раствор, а напряжение между поверхностью оксида и подложкой обусловлено ионной оболочкой.
ISFET
Принцип работы ISFET
Принцип работы pH-электрода ISFET представляет собой замену нормального полевого транзистора, и они используются во многих схемах усилителя. В ISFET вход обычно используется как металлические вентили, которые заменяются ионно-чувствительной мембраной.Таким образом, ISFET собирает в одном устройстве чувствительную поверхность, а один усилитель дает сильный ток и низкий импеданс на выходе, что позволяет использовать соединительные кабели без ненужного экранирования. На следующей диаграмме показан pH-электрод ISFET.
Принцип работы ISFET
Существуют различные устройства для измерения pH от традиционного стеклянного электрода. Принцип измерения основан на контроле тока, протекающего между двумя полупроводниками, сток и исток.Эти два полупроводника соединены вместе с третьим электродом, и он ведет себя как вывод затвора. Терминал затвора напрямую контактирует с измеряемым раствором.
Построение ISFET
Этапы изготовления ISFET
- В следующем пошаговом процессе показано, как изготовление ISFET
- ISFET производится с помощью технологии CMOS и без каких-либо этапов постобработки
- Все изготовление выполняется в Лаборатория
- Материалом должна быть 4-дюймовая кремниевая пластина p-типа
- В ISFET вывод затвора готовится из материала SiO2, Si3N4, обоих материалов, вычисляемых COMS.
- Есть шесть шагов маскирования, которые представляют собой создание n-колодцев, n и p стоков источника, затвора, контакта и материала.
- Конструкция Si3N4 и SiO2 основана на буферных растворах для травления оксидов.
Следующие этапы изготовления демонстрируют стандартный процесс MOSFET и вплоть до времени осаждения нитрида кремния в качестве ионно-чувствительной пленки. Осаждение нитрида кремния осуществляется с помощью метода химического осаждения из паровой плазмы.Толщина пленки измеряется эллипсометром. После осаждения нитрида процесс продолжается до контактной формы с использованием контактной маски.
Влажное химическое травление BHF используется для травления и нижележащих нитридных и оксидных пленок от области истока и стока. Обычай BHF помогает исключить дополнительную стадию травления нитрида кремния. Последний и последний шаг — это металлизация при изготовлении ISFET. Вблизи затвора ионно-чувствительный полевой транзистор не имеет металлического слоя, металлизация обеспечивается на контактах истока и стока.Простые и основные этапы изготовления ионно-чувствительных полевых транзисторов показаны на следующей диаграмме.
ISFET pH Sensor
Эти типы сенсоров подходят для измерения pH и необходимы для более высокого уровня производительности. Размер датчика очень мал, и датчики используются для исследования медицинских приложений. Датчик pH ISFET используется в FDA и CE, которые одобряют медицинские устройства, и они также лучше всего подходят для пищевых продуктов, потому что без стекла и вставлены в зонды с помощью небольшого профиля, что минимизирует ущерб для продукции.Датчик pH ISFET применим во многих средах и промышленных условиях, которые различаются для влажных и сухих условий, а также в некоторых физических условиях, таких как давление, заставляющее обычные стеклянные pH-электроды.
ISFET pH Sensor
Характеристики ISFET pH
Общие характеристики pH ISFET следующие:
- Химическая чувствительность ISFET полностью контролируется свойствами электролита
- Существуют различные типы органических материалов для датчика pH Подобно Al2O3, Si3N4, Ta2O5 обладают лучшими свойствами, чем SiO2, и обладают большей чувствительностью и низким дрейфом.
Преимущества ISFET
- Очень быстрый отклик
- Это простая интеграция с измерительной электроникой
- Уменьшите размер биологии зонда.
Применение ISFET
Основное преимущество ISFET заключается в том, что он может интегрироваться с MOSFET и стандартными транзисторами интегральных схем.
Недостатки ISFET
- Большой дрейф требует негибкой герметизации краев кристалла и привязки проводов
- Несмотря на то, что усилительные свойства транзистора этого устройства выглядят очень хорошо.Для чувствительных химикатов ответственность изоляционной мембраны за экологическое отравление и последующий выход из строя транзистора помешала ISFE получить популярность на коммерческих рынках.
В этой статье описывается принцип работы ISFET и пошаговый процесс его изготовления. Приведенная в статье информация дает основы работы с ионно-чувствительным полевым транзистором, и если у вас есть какие-либо сведения об этой статье или о изготовлении CMOS и NMOS, пожалуйста, прокомментируйте в разделе ниже.Вот вам вопрос, какова функция ISFET?
Фото:
Соединительный полевой транзистор, работающий с характеристиками
В целом, различные типы электрических и электронных компонентов, таких как транзисторы, интегральные схемы, микроконтроллеры, трансформаторы, регуляторы, двигатели, устройства сопряжения, модули и базовые компоненты используются (согласно требованиям) для разработки различных проектов в области электротехники и электроники. Важно знать о работе каждого компонента, прежде чем использовать его практически в схемных приложениях.Обсудить подробно обо всех важных компонентах электроники в одной статье очень сложно. Поэтому давайте подробно обсудим переходный полевой транзистор, характеристики JFET и его работу. Но, прежде всего, мы должны знать, что такое полевые транзисторы.
Полевые транзисторы
В твердотельной электронике с изобретением транзистора произошло революционное изменение, которое происходит от слова «резистор передачи». Из самого названия мы можем понять, как работает транзистор i.е., передаточный резистор. Транзисторы подразделяются на разные типы, такие как полевой транзистор, транзистор с биполярным переходом и так далее.
Полевые транзисторы
Полевые транзисторы (FET) обычно называют униполярными транзисторами, потому что эти полевые транзисторы связаны с типом с одной несущей. Полевые транзисторы подразделяются на различные типы, такие как MOSFET, JFET, DGMOSFET, FREDFET, HIGFET, QFET и так далее. Но в большинстве приложений обычно используются только полевые МОП-транзисторы (металлооксидные полупроводниковые полевые транзисторы) и полевые полевые транзисторы (переходные полевые транзисторы).Итак, прежде чем подробно обсуждать переходные полевые транзисторы, в первую очередь мы должны знать, что такое JFET.
Полевой транзистор с переходным эффектом
Полевой транзистор с переходным эффектом
Как мы обсуждали ранее, полевой транзистор с переходным эффектом — это один из типов полевых транзисторов, который используется в качестве переключателя, которым можно управлять электрически. Через активный канал электрическая энергия будет течь между выводом истока и выводом стока. Если на клемму затвора подается напряжение обратного смещения, то ток полностью отключится и канал будет деформирован.Полевой транзистор с переходом обычно делится на два типа в зависимости от их полярности:
- Полевой транзистор с N-каналом
- Полевой транзистор с P-каналом
Полевой транзистор с N-каналом
N -Канальный JFET
JFET, в котором электроны в основном состоят в качестве носителя заряда, называется N-канальным JFET. Следовательно, если транзистор включен, то можно сказать, что ток в основном обусловлен движением электронов.
Полевой транзистор с P-канальным переходом
JFET с P-каналом
JFET, в котором дырки в основном состоят из носителей заряда, называется JFET с P-каналом. Следовательно, если транзистор включен, то можно сказать, что ток протекает в первую очередь из-за отверстий.
Работа JFET
Работа JFET может быть изучена отдельно как для N-канала, так и для P-канала.
Работа JFET с N-каналом
Работа JFET может быть объяснена путем обсуждения того, как включить N-канальный JFET и как отключить N-канальный JFET.Для включения N-канального JFET положительное напряжение VDD должно быть подано на вывод стока транзистора относительно вывода истока, так что вывод стока должен быть более положительным, чем вывод истока. Таким образом, ток может течь через сток в канал истока. Если напряжение на выводе затвора, VGG, равно 0 В, то на выводе стока будет максимальный ток, и говорят, что N-канальный JFET находится в состоянии ВКЛ.
Работа с N-каналом JFET
Для отключения N-канального JFET можно отключить положительное напряжение смещения или подать отрицательное напряжение на вывод затвора.Таким образом, изменяя полярность напряжения затвора, можно уменьшить ток стока, и тогда N-канальный полевой транзистор считается выключенным.
Работа JFET с P-каналом
Для включения полевого транзистора с P-каналом можно подать отрицательное напряжение на вывод стока транзистора относительно вывода истока, так что вывод стока должен быть соответственно более отрицательным, чем вывод истока. Таким образом, ток пропускается через сток в канал истока. Если напряжение на выводе затвора, VGG, равно 0 В, то на выводе стока будет максимальный ток, и говорят, что P-канальный JFET находится в состоянии ВКЛ.
Работа JFET с P-каналом
Для выключения P-канала JFET можно отключить отрицательное напряжение смещения или подать положительное напряжение на клемму затвора. Если на клемму затвора подается положительное напряжение, токи стока начинают уменьшаться (до отключения), и, таким образом, говорят, что полевой транзистор P-канала находится в состоянии ВЫКЛ.
Характеристики JFET
Характеристики JFET можно изучить как для N-канала, так и для P-канала, как описано ниже:
Характеристики N-канала JFET
Характеристики N-канального JFET или кривая крутизны показаны на рисунке ниже которая отображается между током стока и напряжением затвор-исток.На кривой крутизны есть несколько областей: омические области, области насыщения, отсечки и пробоя.
Характеристики N-канального JFET
Омическая область
Единственная область, в которой кривая крутизны показывает линейный отклик, а ток стока встречает сопротивление JFET-транзистора, называется омической областью.
Область насыщения
В области насыщения полевой транзистор с N-канальным переходом находится во включенном состоянии и активен, так как максимальный ток течет из-за приложенного напряжения затвор-исток.
Область отсечки
В этой области отсечки не будет протекать ток стока, и, таким образом, N-канальный JFET находится в состоянии ВЫКЛ.
Область пробоя
Если напряжение VDD, приложенное к выводу стока, превышает максимально необходимое напряжение, то транзистор не может противостоять току и, таким образом, ток течет от вывода стока к выводу истока. Следовательно, транзистор попадает в область пробоя.
Характеристики P-канального JFET-транзистора
Характеристики P-канального JFET-транзистора или кривая крутизны показаны на рисунке ниже, который представляет собой график между током стока и напряжением затвор-исток.На кривой крутизны есть несколько областей: омические области, области насыщения, отсечки и пробоя.
Характеристики полевого транзистора с P-каналом
Омическая область
Единственная область, в которой кривая крутизны показывает линейный отклик, а ток стока встречает сопротивление JFET-транзистора, называется омической областью.
Область насыщения
В области насыщения полевой транзистор с N-канальным переходом находится во включенном состоянии и активен, так как максимальный ток течет из-за приложенного напряжения затвор-исток.
Область отсечки
В этой области отсечки не будет протекать ток стока, и, таким образом, N-канальный JFET находится в состоянии ВЫКЛ.
Область пробоя
Если напряжение VDD, приложенное к выводу стока, превышает максимально необходимое напряжение, то транзистор не сможет противостоять току и, таким образом, ток будет течь от вывода стока к выводу истока. Следовательно, транзистор попадает в область пробоя.
Вы хотите знать о практических применениях полевого транзистора при разработке проектов электроники? Затем разместите свои комментарии в разделе комментариев ниже для получения дополнительной технической помощи.
Как работают транзисторы? — Объясни, что материал
Криса Вудфорда. Последнее изменение: 21 сентября 2020 г.
Ваш мозг содержит около 100 миллиардов клеток, называемых нейронами, — крошечных переключателей, которые позволяют вам думать и запоминать вещи.
Компьютеры содержат миллиарды
миниатюрных «мозговых клеток». Их называют транзисторами и
они сделаны из кремния, химического элемента, обычно встречающегося в песке.
Транзисторы произвели революцию в электронике с момента их появления
изобретен более полувека назад Джоном Бардином, Уолтером Браттейном и
Уильям Шокли.Но что они такое и как они работают?
Фото: Насекомое с тремя ногами? Нет, типичный транзистор на электронной плате. Хотя простые схемы содержат отдельные транзисторы, подобные этому, сложные схемы внутри компьютеров также содержат микрочипы, каждый из которых может иметь тысячи, миллионы или сотни миллионов транзисторов, упакованных внутри. (Технически, если вас интересуют более интересные элементы, это кремниевый транзистор усилителя PNP 5401B. Я объясню, что все это означает сейчас.)
Что на самом деле делает транзистор?
Фото: Компактные слуховые аппараты были одними из первых применений транзисторов — и этот датируется концом 1950-х или 1960-х годов. Он был размером с колоду игральных карт, поэтому его можно было носить в кармане пиджака или на нем. С другой стороны корпуса находится микрофон, который улавливает окружающие звуки. Вы можете ясно видеть четыре маленьких задних транзистора внутри, усиливающих эти звуки, а затем выстреливающих их в небольшой динамик, который находится у вас в ухе.
Транзистор действительно прост — и действительно сложен. Давайте начнем с
простая часть. Транзистор — это миниатюрный электронный компонент, который
может выполнять две разные работы. Может работать как усилитель или как переключатель:
- Когда работает как усилитель, нужно
в крошечном электрическом токе на одном конце (
входной ток) и производит гораздо больший электрический ток (выходной
ток) на другой. Другими словами, это своего рода усилитель тока. Это входит
действительно полезно в таких вещах, как слуховые аппараты, одна из первых вещей
люди использовали транзисторы для.В слуховом аппарате есть крошечный микрофон.
который улавливает звуки из окружающего вас мира и превращает их в
колеблющиеся электрические токи. Они подаются на транзистор, который
усиливает их и приводит в действие крошечный громкоговоритель,
так что вы слышите гораздо более громкую версию окружающих вас звуков.
Уильям Шокли, один из изобретателей транзистора, однажды объяснил студенту транзисторные усилители в более подробном виде.
юмористический способ: «Если взять тюк сена и привязать его к
хвост мула, а затем чиркнуть спичкой и поджечь тюк сена,
и если вы затем сравните энергию, затраченную вскоре после этого,
мул с энергией, затраченной вами на зажигание спички,
вы поймете концепцию усиления.« - также могут работать как переключатели. А
крошечный электрический ток, протекающий через одну часть транзистора, может значительно увеличить
ток течет через другую его часть. Другими словами, маленький
ток переключается на больший. По сути, так работают все компьютерные микросхемы. За
например, микросхема памяти
содержит сотни миллионов или даже миллиарды транзисторов,
каждый из которых можно включать или выключать индивидуально. Поскольку каждый
транзистор может находиться в двух различных состояниях, он может
хранить два разных числа, ноль и единицу.С миллиардами транзисторов микросхема может хранить миллиарды нулей и единиц, и
почти столько же обычных цифр и букв (или символов, как мы их называем). Подробнее об этом чуть позже.
Транзисторы
Самое замечательное в машинах старого образца было то, что вы могли
их отдельно, чтобы выяснить, как они работают. Это никогда не было слишком сложно, с
немного толкать и тыкать, чтобы узнать, какая часть что и как
вещь привела к другому. Но электроника совсем другая. Это все
об использовании электронов для управления электричеством.Электрон — это
минута
частица внутри атома. Он такой маленький, весит чуть меньше
0.000000000000000000000000000001 кг! Работают самые современные транзисторы
контролируя движения отдельных электронов, чтобы вы могли
представьте, насколько они маленькие. В современном компьютерном чипе размер
ноготь, вы, вероятно, найдете от 500 миллионов
и два миллиарда отдельных транзисторов. Нет шанса разобрать транзистор, чтобы узнать, как он
работает, поэтому мы должны понять это с помощью теории и воображения.Во-первых, это помогает, если мы знаем, из чего сделан транзистор.
Как делается транзистор?
Фото: Кремниевая пластина. Фото любезно предоставлено Исследовательским центром Гленна НАСА (NASA-GRC).
Транзисторы изготовлены из кремния, химического элемента, содержащегося в песке, который обычно не проводит
электричество (оно не позволяет электронам легко проходить через него).
Кремний — это полупроводник, а это значит, что он
ни на самом деле
проводник (что-то вроде металла, пропускающего электричество), ни
изолятор (что-то вроде пластика, останавливающего ток электричества).Если
мы обрабатываем кремний с примесями (процесс, известный как легирование),
мы можем заставить его вести себя по-другому
путь. Если мы добавим в кремний химические элементы мышьяк, фосфор,
или сурьмы, кремний получает дополнительные «свободные» электроны — те, которые
может проводить электрический ток, поэтому электроны будут вытекать
об этом более естественно. Поскольку электроны имеют отрицательный заряд, кремний
обработанный таким образом, называется n-типом (отрицательный
тип). Мы также можем легировать кремний другими примесями, такими как бор,
галлий и алюминий.В кремнии, обработанном таким образом, меньше таких
«свободные» электроны, поэтому электроны в соседних материалах будут стремиться втекать в него. Мы называем этот кремний p-типа (положительный тип).
Вкратце, мимоходом, важно отметить, что ни кремний n-типа, ни p-типа на самом деле не имеет заряда сам по себе : оба они электрически нейтральны. Это правда, что кремний n-типа имеет дополнительные «свободные» электроны, которые увеличивают его проводимость, в то время как кремний p-типа имеет меньше этих свободных электронов, что помогает увеличить его проводимость противоположным образом.В каждом случае дополнительная проводимость возникает из-за добавления к кремнию нейтральных, (незаряженных) атомов примесей, которые изначально были нейтральными — и мы не можем создавать электрические заряды из воздуха! Для более подробного объяснения мне потребуется представить идею под названием
теория полос, что немного выходит за рамки данной статьи. Все, что нам нужно помнить, это то, что «лишние электроны» означают лишние свободных электронов — те, которые могут свободно перемещаться и помогать переносить электрический ток.
Кремниевые бутерброды
Теперь у нас есть два разных типа кремния. Если мы сложим их вместе
слоями, делая бутерброды из материала p-типа и n-типа, мы можем сделать
различные виды электронных компонентов, которые работают во всех видах
способами.
Предположим, мы соединяем кусок кремния n-типа с частью p-типа
кремний и поставьте электрические контакты с обеих сторон. Увлекательно и полезно
вещи начинают происходить на стыке двух
материалы. Если мы обратимся
от тока, мы можем заставить электроны течь через переход от
сторона n-типа к стороне p-типа и наружу через цепь.Этот
происходит из-за отсутствия электронов на стороне p-типа
переход притягивает электроны со стороны n-типа и наоборот. Но
если
мы меняем направление тока, электроны вообще не текут. Что мы
сделанное здесь называется диодом (или выпрямителем).
Это электронный
компонент, который позволяет току течь через него только в одном направлении. Это
полезно, если вы хотите превратить переменный (двусторонний) электрический ток в
постоянный (односторонний) ток. Диоды тоже можно сделать так, чтобы они испускали
светится, когда через них проходит электричество.Вы могли видеть эти
светодиоды на карманных калькуляторах и электронных
дисплеи на Hi-Fi стереооборудовании.
Как работает соединительный транзистор
Фотография: Типичный кремниевый PNP-транзистор (A1048, разработанный как усилитель звуковой частоты).
Теперь предположим, что вместо этого мы используем три слоя кремния в нашем сэндвиче.
из двух. Мы можем сделать бутерброд p-n-p (с ломтиком n-типа
кремний как заполнение между двумя пластинами p-типа) или n-p-n
сэндвич (с p-типом между двумя плитами n-типа).Если мы
присоедините электрические контакты ко всем трем слоям сэндвича, мы можем
сделать компонент, который будет либо усиливать ток, либо включать его, либо
выключен — другими словами, транзистор. Посмотрим, как это работает в случае
n-p-n транзистор.
Итак, мы знаем, о чем говорим, давайте дадим имена трем
электрические контакты. Мы назовем два контакта, соединенных с двумя
кусочки кремния n-типа эмиттер и коллектор,
и контакт
соединенный с кремнием p-типа, который мы назовем базой.Когда нет
ток
протекает в транзисторе, мы знаем, что кремний p-типа не хватает
электронов (показаны здесь маленькими знаками плюс, обозначающими положительные
зарядов) и два куска кремния n-типа имеют лишние электроны
(показаны маленькими знаками минус, обозначающими отрицательные заряды).
Другой способ взглянуть на это — сказать, что в то время как n-тип имеет
избыток электронов, p-тип имеет дырки, где электроны
должно быть. Обычно отверстия в основании действуют как барьер, предотвращающий
значительный ток от эмиттера к коллектору при
транзистор находится в выключенном состоянии.
Транзистор работает, когда электроны и дырки начинают двигаться
через два перехода между кремнием n-типа и p-типа.
Давай
подключить транзистор к некоторой мощности. Допустим, мы прикрепляем небольшой
положительное напряжение на базу, сделайте эмиттер отрицательно заряженным и
сделать коллектор положительно заряженным. Электроны вытягиваются из
эмиттер в базу, а затем из базы в коллектор. А также
транзистор переходит в состояние «включено»:
Малый ток, который мы включаем на базе, создает большой ток.
поток между эмиттером и коллектором.Повернув небольшой вход
ток в большой выходной ток, транзистор действует как усилитель. Но
в то же время он действует как переключатель. Когда нет тока
база, между коллектором и
эмиттер. Включите базовый ток, и течет большой ток. Итак, база
ток включает и выключает весь транзистор. Технически это
тип транзистора называется биполярным, потому что
два разных вида (или «полярностей») электрического заряда (отрицательные электроны и
положительные отверстия) участвуют в протекании тока.
Мы также можем понять транзистор, представив его как пару диодов. С
база положительная, а эмиттер отрицательная, переход база-эмиттер похож на прямое смещение
диод, электроны движутся в одном направлении через переход (слева направо в
диаграмму) и отверстия, идущие в противоположную сторону (справа налево). База-коллектор
переход похож на диод с обратным смещением. Положительное напряжение коллектора тянет
большая часть электронов проходит через внешнюю цепь и попадает во внешнюю цепь (хотя некоторые электроны рекомбинируют с дырками в основании).
Как работает полевой транзистор (FET)
Все транзисторы работают, управляя движением электронов, но
не все из них делают это одинаково. Подобно переходному транзистору, полевой транзистор
(полевой транзистор) имеет три разных контакта, но они
иметь названия источник (аналог эмиттера), сток
(аналогично
коллектор), и затвор (аналог цоколя). В полевом транзисторе
слои
Кремний n-типа и p-типа устроен несколько иначе и
покрытый слоями металла и оксида.Это дает нам устройство под названием
MOSFET (Металлооксидное полупроводниковое поле)
Эффектный транзистор).
Хотя в истоке и стоке n-типа есть лишние электроны,
они не могут перетекать от одного к другому из-за дыр в
ворота p-типа между ними. Однако если приложить положительный
напряжение на затвор, там создается электрическое поле, позволяющее
электроны должны течь по тонкому каналу от истока к стоку. Этот
«полевой эффект» пропускает ток и включает транзистор:
Для полноты картины отметим, что полевой МОП-транзистор является униполярным
транзистор потому что только один («полярность»)
электрического заряда участвует в его работе.
Как работают транзисторы в калькуляторах и компьютерах?
На практике вам не нужно ничего знать об этом
электроны и дыры, если вы не собираетесь
разрабатывать компьютерные чипы для заработка! Все, что вам нужно знать, это то, что
транзистор работает как усилитель или переключатель, используя небольшой ток
чтобы включить больший. Но есть еще одна вещь, которую стоит знать:
как все это помогает компьютерам хранить
информацию и принимать решения?
Мы можем соединить несколько транзисторных ключей, чтобы что-то сделать
называется логическим вентилем, который сравнивает несколько
входные токи и в результате дает другой выход.Логические ворота позволяют компьютерам создавать
очень простые решения с использованием математической техники, называемой булевой алгеброй. Точно так же и ваш мозг принимает решения. Например,
используя «вводные» (то, что вы знаете) о погоде и о том, что у вас
в коридоре, вы можете принять такое решение: «Если идет дождь И я
есть зонтик, я пойду в
магазины «. Это пример булевой алгебры, использующей так называемое И
«оператор» (слово «оператор» — это просто математический жаргон,
заставляют вещи казаться более сложными, чем они есть на самом деле).Ты можешь сделать
аналогичные решения с другими операторами. «Если ветрено ИЛИ идет снег,
тогда я надену пальто «- это
пример использования оператора ИЛИ. Или как насчет «Если идет дождь И я
есть зонтик ИЛИ у меня пальто, тогда можно выйти на улицу «. Используя AND,
ИЛИ и другие операторы, вызываемые
Компьютеры NOR, XOR, NOT и NAND могут складывать или сравнивать двоичные числа.
Эта идея является краеугольным камнем компьютерных программ: логическая
серия инструкций, которые заставляют компьютеры действовать.
Обычно переходной транзистор выключен, когда нет базы.
ток и переключается на «включено», когда течет базовый ток.Это значит
требует электрического тока для включения или выключения транзистора. Но
такие транзисторы можно подключить к логическим элементам, чтобы их выход
соединения возвращаются на свои входы. Транзистор
затем остается включенным даже после снятия основного тока. Каждый раз новый
основание
ток течет, транзистор «переключается» или выключается. Остается в одном из
эти стабильные состояния (включены или выключены) до тех пор, пока другой ток
приходит и переворачивает его в другую сторону. Такое расположение
известен как триггер, и это превращает
транзистор в простой
запоминающее устройство, в котором хранится ноль (когда он выключен) или один (когда он
на).Шлепанцы — это основная технология микросхем памяти компьютера.
Кто изобрел транзистор?
Изображение: Оригинальный дизайн точечного транзистора, изложенный в
Патент Джона Бардина и Уолтера Браттейна в США (2,524,035), поданный в июне 1948 г. (примерно через шесть месяцев после
оригинальное открытие) и награжден 3 октября 1950 г. Это простой PN-транзистор с
тонкий верхний слой германия P-типа (желтый) на нижнем слое германия N-типа (оранжевый).Три контакта — это эмиттер (E, красный), коллектор (C, синий) и база (G, зеленый).
Вы можете прочитать больше в оригинальном патентном документе, который указан в ссылках ниже.
Изображение любезно предоставлено Управлением по патентам и товарным знакам США.
транзисторов были изобретены в Bell Laboratories в Нью-Джерси в 1947 году.
трех блестящих американских физиков: Джона Бардина (1908–1991), Уолтера
Браттейн (1902–1987) и Уильям
Шокли (1910–1989).
Команда, возглавляемая Шокли, пыталась
разработать новый тип усилителя для телефонной системы США — но что
собственно изобретенные они оказались гораздо более распространенными
Приложения.Бардин и Браттейн создали первый практический транзистор
(известный как точечный транзистор) во вторник, 16 декабря 1947 г.
Хотя Шокли сыграл большую роль в этом проекте, он был
в ярости и волнении из-за того, что его оставили в стороне. Вскоре после этого во время
остановиться в отеле на конференции по физике, единолично выяснил он
теория переходного транзистора — устройство гораздо лучше, чем
точечный транзистор.
Пока Бардин покинул Bell Labs, чтобы стать академиком (он
пользуются еще большим успехом при изучении сверхпроводников в Университете Иллинойса),
Браттейн остался на некоторое время, прежде чем уйти на пенсию, чтобы стать учителем.Шокли основал собственную компанию по производству транзисторов и помог вдохновить
современный феномен «Силиконовая долина» (процветающий район
вокруг Пало-Альто, Калифорния, где корпорации электроники
собраны). Двое его сотрудников, Роберт Нойс и Гордон Мур, ушли
чтобы основать Intel, крупнейшего в мире производителя микрочипов.
Бардин, Браттейн и Шокли ненадолго воссоединились несколько лет спустя, когда
они поделились ведущей мировой наукой
награда,
Нобелевская премия по физике 1956 г.,
за их открытие.Их история
захватывающий рассказ о
интеллектуальный талант борется с мелкой ревностью, и это хорошо
стоит прочтения
больше о. Вы можете найти отличные отчеты об этом среди книг и
веб-сайты, перечисленные ниже.
Как это работает »Электроника
Описание того, что такое транзистор, как работает биполярный транзистор, а также сведения о транзисторах NPN и PNP.
Transistor Tutorial:
Основы транзисторов
Усиление: Hfe, hfe и бета
Характеристики транзистора
Коды нумерации транзисторов и диодов
Выбор транзисторов на замену
Транзисторы лежат в основе современной электронной техники.Развитие биполярного транзистора или биполярного переходного транзистора, BJT, привело ко многим изменениям в мире.
Введение биполярного транзистора позволило использовать многие технологии, которые мы сегодня воспринимаем как должное: от портативных транзисторных радиоприемников до мобильных телефонов и компьютеров, удаленного управления, функциональности, которую мы принимаем как должное в современных автомобилях, и т. Д. . . . Все эти и многие другие предметы повседневного обихода стали возможны благодаря изобретению транзистора.
Сегодня биполярные транзисторы доступны во многих формах. Существует базовый транзистор с выводами или транзистор для поверхностного монтажа. Но транзисторы также широко используются в интегральных схемах. В большинстве цифровых ИС используется технология полевого эффекта, но многие аналоговые ИС используют биполярную технологию для обеспечения требуемых характеристик.
Вместе с их полевыми транзисторами, полевыми транзисторами, родственниками, которые используют совершенно другой принцип, биполярный транзистор составляет основу большинства современного электронного оборудования, будь то дискретные устройства или интегральные схемы.
Выбор транзисторов с пластиковыми выводами
Разработка транзисторов
Полупроводниковая технология сейчас хорошо известна, но используется уже более ста лет. Первые полупроводниковые эффекты были замечены еще в начале 1900-х годов, когда использовались первые беспроводные или радиоприемники. В качестве детекторов исследовались различные идеи.
Термоэмиссионный клапан или технология вакуумных трубок была представлена в 1904 году, но эти устройства были дорогими и также требовали питания от батареи.Вскоре после этого был обнаружен детектор Cat’s Whisker. Он состоял из тонкой проволоки, помещенной на один из нескольких типов материала. Эти материалы известны сегодня как полупроводники и составляют основу современной электронной техники.
Примечание к истории транзисторов:
Биполярный транзистор был изобретен тремя исследователями, работающими в Bell Labroratories: Джоном Бардином, Уолтером Браттейном и Уильямом Шокли. Они работали над идеей, в которой для управления током в полупроводнике использовался эффект поля, но они не смогли реализовать эту идею.Они обратили свое внимание на другую возможность и создали устройство с тремя выводами, используя два близко расположенных точечных контакта на пластине из германия. Эта идея сработала, и они смогли продемонстрировать, что она принесла прибыль в конце 1949 года.
Подробнее о История биполярных транзисторов
Старый биполярный транзистор OC71
После того, как основная идея была разработана, потребовалось некоторое время, прежде чем полупроводниковая технология была принята, но как только это произошло, она стала популярной, как мы знаем сегодня.
Что такое биполярный транзистор
стоит в двух словах определить, что такое биполярный транзистор:
Определение биполярного транзистора:
Биполярный транзистор — это полупроводниковый прибор, состоящий из трех областей P-типа или N-типа — область одного типа зажата между областями другого. Транзистор в основном усиливает ток, но его можно включать в схемы, предназначенные для усиления напряжения или мощности.
Биполярный транзистор необходимо отличать от полевого транзистора.Биполярный транзистор, BJT, получил свое название из-за того, что в своей работе он использует как дырки, так и электроны. Полевые транзисторы — это униполярные устройства, использующие один или любой из типов носителей заряда.
Биполярный транзистор, или, точнее, биполярный транзистор с переходным соединением, BJT, имеет два PN-диодных перехода, соединенных спиной друг к другу. Биполярный транзистор имеет три вывода, называемых эмиттером, базой и коллектором.
Транзистор усиливает ток — биполярные транзисторы являются устройствами тока, в отличие от вакуумных ламп с термоэмиссионными лампами и полевых транзисторов, которые являются устройствами напряжения.Ток, протекающий в цепи базы, влияет на ток, протекающий между коллектором и эмиттером.
Примечание по конструкции схемы транзистора:
Транзистор представляет собой трехконтактное устройство, обеспечивающее усиление по току. Существует три конфигурации, которые можно использовать для транзистора: общий эмиттер, общий коллектор и общая база. Каждый из них имеет разные характеристики, и, спроектировав схему на основе одной из этих конфигураций, можно достичь требуемых характеристик.
Подробнее о схеме биполярного транзистора
Базовая структура транзистора
Транзистор представляет собой устройство с тремя выводами и состоит из трех отдельных слоев. Два из них легированы, чтобы дать один тип полупроводника, а есть противоположный тип, то есть два могут быть n-типа и один p-тип, или два могут быть p-типа, а один может быть n-типом. расположены так, что два одинаковых слоя транзистора смещают слой противоположного типа.В результате эти полупроводниковые устройства обозначаются как транзисторы PNP или транзисторы NPN в зависимости от способа их изготовления.
Базовая структура и символы схем для транзисторов NPN и PNP
Названия трех электродов широко используются, но их значения не всегда понятны:
- База: База транзистора получила свое название из-за того, что в ранних транзисторах этот электрод служил базой для всего устройства.Самые ранние транзисторы с точечным контактом имели два точечных контакта, размещенных на основном материале. Этот базовый материал сформировал базовое соединение. . . и название прижилось.
- Эмиттер: Эмиттер получил свое название от того факта, что он испускает носители заряда.
- Коллектор: Коллектор получил свое название от того факта, что он собирает носители заряда.
Для работы транзистора важно, чтобы область базы была очень тонкой.В современных транзисторах ширина основания обычно может составлять всего около 1 мкм. Тот факт, что базовая часть транзистора тонкая, является ключом к работе устройства
.
Как работает транзистор: основы
Транзистор можно рассматривать как два P-N перехода, соединенных спина к спине. Один из них, а именно переход базового эмиттера, смещен в прямом направлении, а другой — переход базового коллектора — в обратном направлении. Обнаружено, что когда ток течет в переходе база-эмиттер, больший ток протекает в цепи коллектора, даже если переход база-коллектор имеет обратное смещение.
Для наглядности взят пример NPN-транзистора. Те же рассуждения можно использовать и для устройства PNP, за исключением того, что дырки являются основными носителями вместо электронов.
Когда ток течет через переход база-эмиттер, электроны покидают эмиттер и перетекают в базу. Однако легирование в этой области остается низким, и имеется сравнительно небольшое количество дырок, доступных для рекомбинации. В результате большая часть электронов может течь прямо через базовую область и далее в область коллектора, притягиваясь положительным потенциалом.
Базовый режим работы транзистора
Показан режим работы транзистора NPN
Лишь небольшая часть электронов эмиттера объединяется с дырками в области базы, что приводит к возникновению тока в цепи база-эмиттер. Это означает, что ток коллектора намного выше.
Отношение между током коллектора и током базы обозначается греческим символом. Для большинства транзисторов с малым сигналом это значение может составлять от 50 до 500. В некоторых случаях оно может быть даже выше.Это означает, что ток коллектора обычно в 50-500 раз больше, чем ток в базе. Для транзистора большой мощности значение несколько меньше: 20 — довольно типичное значение.
Почему транзисторы NPN используются чаще, чем транзисторы PNP
При просмотре схем, а также в таблицах данных и т. Д. Можно заметить, что транзисторы NPN гораздо более популярны, чем транзисторы PNP.
На это есть несколько причин:
- Подвижность носителей: Транзисторы NPN используют электроны в качестве основных носителей, а не дырки, которые являются основными носителями в транзисторах PNP.Поскольку дырки перемещаются внутри кристаллической решетки намного легче, чем электроны, т.е.они имеют более высокую подвижность, они могут работать быстрее и обеспечивать гораздо лучший уровень производительности.
- Отрицательное заземление: С годами отрицательное заземление стало стандартом, например в автомобилях и т. д., а полярность транзисторов NPN означает, что базовые конфигурации транзисторов работают с отрицательным заземлением.
- Производственные затраты: Производство полупроводниковых компонентов на основе кремния наиболее экономично с использованием больших кремниевых пластин N-типа.Хотя производство транзисторов PNP возможно, требуется в 3 раза больше площади поверхности пластины, а это значительно увеличивает затраты. Поскольку стоимость полупроводниковой пластины составляет основную часть общей стоимости компонентов, это значительно увеличило производственные затраты на транзисторы PNP.
Биполярные транзисторы, BJT, были первой формой изобретенного транзистора, и они до сих пор очень широко используются во многих областях. Они просты в использовании, дешевы и имеют спецификации, отвечающие большинству требований.Они идеальны для многих схем, хотя, естественно, спецификации биполярного транзистора должны соответствовать спецификации схемы.
Другие электронные компоненты:
Резисторы
Конденсаторы
Индукторы
Кристаллы кварца
Диоды
Транзистор
Фототранзистор
FET
Типы памяти
Тиристор
Разъемы
Разъемы RF
Клапаны / трубки
Аккумуляторы
Переключатели
Реле
Вернуться в меню «Компоненты».. .
Полевые транзисторы — Скачать PDF бесплатно
УСИЛИТЕЛЬ НА JFET ОБЩЕГО ИСТОЧНИКА
ЭКСПЕРИМЕНТ 04 Цели: Теория: 1. Оценить усилитель с общим источником, используя эквивалентную модель слабого сигнала.2. Узнать, что влияет на усиление напряжения. Самосмещенный n-канальный полевой транзистор JFET с AC
Подробнее
Полевые транзисторы (FET)
Полевые транзисторы (FET) Литература: Hayes & Horowitz (стр. 142-162 и 244-266), Rizzoni (главы 8 и 9) В полевом транзисторе (FET) ширина проводящего канала в полупроводнике и ,
Подробнее
МОП-транзистор
MOSFET-транзистор Основным активным компонентом всех кремниевых микросхем является MOSFET-металлооксидный полупроводниковый полевой транзистор. Условное обозначение G Затвор S Источник D Сток Напряжение на затворе управляет
Подробнее
Глава 10 Расширенные схемы CMOS
Шлюзы передачи Глава 10 Расширенные схемы CMOS Шлюз передачи NMOS Активная схема инвертора подтягивания заставляет задуматься об альтернативных вариантах использования устройств NMOS.Рассмотрим схему, показанную в
Подробнее
Интегральные схемы и системы
Федеральный университет Санта-Катарина Центр технологий Компьютерные науки и электроника Интегральные схемы и системы INE 5442 Лекция 11 MOSFET, часть 2 [email protected] I D -V Характеристики DS
Подробнее
Смещение в усилителях MOSFET
Смещение в усилителях с МОП-транзисторами Смещение: создание схемы для установления желаемых напряжений и токов постоянного тока для работы усилителя. Четыре распространенных способа :.Смещение путем фиксации GS. Смещение фиксированием
Подробнее
Полевые транзисторы
506 19 Принципы работы полевых транзисторов в электронике 191 Типы полевых транзисторов 193 Принципы и работа полевого транзистора с полевым транзистором 195 Важность полевого транзистора с полевым транзистором 197 в качестве усилителя 199 Существенные особенности
Подробнее
Пиковый ограничитель звука на полевых транзисторах
1 Пиковый ограничитель аудиосигнала на полевых транзисторах W.Маршалл Лич младший, профессор Технологического института Джорджии, Школа электротехники и вычислительной техники Атланта, Джорджия 30332-0250 США, электронная почта: [email protected] Copyright
Подробнее
Характеристики. Символ JEDEC TO-220AB
Технический паспорт Июнь 1999 г. Номер файла 2253.2 3A, 5 В, 0,4 Ом, N-канальный силовой МОП-транзистор Это силовой полевой транзистор с кремниевым затвором с N-канальным режимом улучшения, разработанный для таких приложений, как коммутация
Подробнее
Характеристики и усилители BJT
Характеристики и усилители БЮТ Мэтью Беклер beck0778 @ umn.edu EE2002 Lab Section 003 2 апреля 2006 г. Резюме Как основной компонент в конструкции усилителя, свойства биполярного переходного транзистора
Подробнее
Основы биполярных переходных транзисторов
Кеннет А. Кун, 29 сентября 2001 г., ред. 1 Введение Биполярный транзистор (BJT) — это трехслойное полупроводниковое устройство с конструкцией NPN или PNP. Обе конструкции имеют одинаковые
Подробнее
Рекомендации по применению AN-940
Замечания по применению AN-940 Как МОП-транзисторы с P-каналом могут упростить вашу схему Содержание Стр. 1.Основные характеристики силовых полевых МОП-транзисторов с P-каналом … 1 2. Заземленные нагрузки … 1 3. Переключение тотемных полюсов
Подробнее
BUZ11. 30 А, 50 В, 0,040 Ом, N-канальный силовой полевой МОП-транзистор. Характеристики. [/ Заголовок (BUZ1 1) / Тема. (30 А, 50 В, 0,040 Ом, канал N. Информация для заказа
Технические данные Июнь 1999 Номер файла 2253.2 [/ Название (BUZ1 1) / Тема (3A, 5V, 0,4 Ом, N-Channel Power MOS- FET) / Автор () / Ключевые слова (Intersil Corporation, N-Channel Power MOS- FET, TO- 22AB) / Создатель
Подробнее
Основы микроэлектроники
Основы микроэлектроники. Ч2 Почему именно микроэлектроника? Ch3 Основы физики полупроводников Ch4 Диодные схемы Ch5 Физика биполярных транзисторов CH5 Биполярные усилители CH6 Физика МОП-транзисторов
Подробнее
Диоды и транзисторы
Диоды Для чего мы используем диоды? Диоды и транзисторы защищают схемы, ограничивая напряжение (отсечение и фиксирование), превращают переменный ток в постоянный (выпрямитель напряжения) умножители напряжения (например.грамм. двойное входное напряжение)
Подробнее
Полностью дифференциальный КМОП-усилитель
ECE 511 Аналоговая электроника Срок действия проекта Полностью дифференциальный усилитель CMOS Saket Vora 6 декабря 2006 г. Доктор Кевин Гард Государственный университет NC 1 Введение В этом проекте используется полностью дифференциальный CMOS
Подробнее
ГЛАВА 2 УСИЛИТЕЛЬ МОЩНОСТИ
ЧАТЕР 2 ВЛАДЕНИЕ АМЛФЕРОМ 2.0 Введение Основными характеристиками усилителя являются линейность, КПД, выходная мощность и усиление сигнала. В целом, между этими характеристиками есть компромисс. Для
Подробнее
g fs R D A V D g os g os
Методы смещения полевых транзисторов AN12 Введение Инженеры, не знакомые с надлежащими методами смещения, часто проектируют усилители на полевых транзисторах, которые излишне чувствительны к характеристикам устройства.Один из способов получить
Подробнее
Характеристики JFET
Характеристики полевого транзистора Цель Хотя возможно, что первым транзистором был изобретен полевой транзистор, он не стал важным полупроводниковым устройством до тех пор, пока не получил опыт работы с BJT
.
Подробнее
Полевые транзисторы и шум
Physics 3330 Эксперимент № 8 Осень 2005 г. Полевые транзисторы и шум Цель В этом эксперименте мы вводим полевые транзисторы.Мы измерим выходные характеристики полевого транзистора, а затем построим
Подробнее
МОП-транзисторы как переключатели
МОП-транзисторы как переключатели G (затвор) НМО-транзистор: закрыт (проводящий), когда затвор = 1 (В DD), D (сток) S (исток), Oen (непроводящий), когда затвор = 0 (земля, 0 В) Закрытые (проводящие)
Подробнее
Боб Йорк.Основы транзисторов — БЮТ
ob York Transistor asics — Полярные переходные транзисторы (JT) JT Ключевые моменты: JT — это устройства с управлением по току, очень JT имеет базу, коллектор и эмиттер. Базовый ток управляет током коллектора
Подробнее
Характеристики. Приложения
Таймер LM555 Общее описание LM555 — высокостабильное устройство для генерации точных временных задержек или колебаний.При желании предусмотрены дополнительные клеммы для запуска или сброса. В
Подробнее
RFG70N06, RFP70N06, RF1S70N06, RF1S70N06SM
A M A A Декабрь 995 г. ПОЛУПРОВОДНИК RFG7N6, RFP7N6, RFS7N6, RFS7N6SM 7A, 6 В, лавинный, N-канальный силовой МОП-транзистор Характеристики 7A, 6 В r DS (вкл.) = 0,4 Ом PSPICE, модель
с температурной компенсацией
Типы транзисторов
— переходные транзисторы и полевые транзисторы
В этом руководстве мы узнаем о классификации и различных типах транзисторов.Транзистор стал важным компонентом современной электроники, и мы не можем представить мир без транзисторов.
Введение
Транзистор — это полупроводниковое устройство, которое используется для усиления сигналов, а также в схемах переключения. Обычно транзистор изготавливается из твердого материала, который содержит три вывода, такие как эмиттер (E), база (B) и коллектор (C) для соединения с другими компонентами схемы. Некоторые транзисторы также содержат четвертый вывод i.е. субстрат (S). Транзистор — один из активных компонентов.
Со времени изобретения первого транзистора до наших дней транзисторы классифицируются на различные типы в зависимости от конструкции или работы, они поясняются с помощью древовидной диаграммы, как показано ниже.
НАЗАД
Древовидная схема транзисторов
Классификацию транзисторов можно понять, просмотрев приведенную выше древовидную диаграмму. Транзисторы в основном делятся на два типа; это биполярные переходные транзисторы (BJT) и полевые транзисторы (FET).BJT снова подразделяются на транзисторы NPN и PNP. Полевые транзисторы подразделяются на JFET и MOSFET.
Junction FET транзисторы подразделяются на N-канальный JFET и P-канальный JFET в зависимости от их функции. MOSFET-транзисторы подразделяются на режим истощения и режим улучшения. Опять же, транзисторы режима обеднения и улучшения подразделяются на N-канальный JFET и P-канал.
В настоящее время электронные лампы заменяются транзисторами, потому что транзисторы имеют больше преимуществ перед электронными лампами.Транзисторы имеют небольшие размеры, для работы требуется низкое напряжение, а также низкое рассеивание мощности. По этим причинам транзистор используется во многих приложениях, таких как усилители, схемы переключения, генераторы, а также почти во всех электронных схемах.
НАЗАД
Типы транзисторов
Транзистор — это правильное расположение различных полупроводниковых материалов. Обычные полупроводниковые материалы, используемые для транзисторов, — это кремний, германий и арсенид галлия.В основном транзисторы классифицируются в зависимости от их конструкции. У каждого типа транзисторов есть свои особенности, преимущества и недостатки.
Некоторые транзисторы предназначены в первую очередь для целей переключения, другие — для целей усиления, а некоторые транзисторы предназначены как для усиления, так и для целей переключения. В зависимости от конструкции транзисторы подразделяются на BJT и FET.
НАЗАД
Переходные транзисторы
Переходный транзистор
обычно называют биполярным переходным транзистором (BJT).Транзисторы BJT имеют три терминала: эмиттер (E), база (B), коллектор (C). Само название указывает на то, что он имеет два перехода между полупроводниками p-типа и n-типа. Транзисторы BJT подразделяются на транзисторы NPN и PNP в зависимости от конструкции.
В отличие от полевых транзисторов, биполярные транзисторы являются устройствами с регулируемым током. Если через базу BJT-транзистора протекает небольшой ток, он вызывает протекание большого тока от эмиттера к коллектору. Биполярные транзисторы имеют низкий входной импеданс, что приводит к протеканию большого тока через транзистор.
BJT-транзисторы — это только транзисторы, которые включаются входным током, подаваемым на базу. Транзисторы с биполярным переходом могут работать в трех регионах, их
- Область отсечки: Здесь транзистор находится в состоянии «ВЫКЛ», т.е. ток, протекающий через транзистор, равен нулю.
- Активная область: Здесь транзистор действует как усилитель.
- Область насыщения: Здесь транзистор находится в полностью включенном состоянии и также работает как замкнутый переключатель.
НАЗАД В начало
NPN Транзистор
NPN — это один из двух типов биполярных переходных транзисторов (BJT). Транзистор NPN состоит из двух полупроводниковых материалов n-типа, разделенных тонким слоем полупроводника p-типа. Здесь основными носителями заряда являются электроны, а неосновными носителями заряда являются дырки. Прохождение электронов от эмиттера к коллектору формирует ток, протекающий в транзисторе через вывод базы.
Небольшой ток на выводе базы вызывает протекание большого тока от эмиттера к коллектору.В настоящее время обычно используемым биполярным транзистором является транзистор NPN, поскольку подвижность электронов выше подвижности дырок. Стандартное уравнение для токов, протекающих в транзисторе, равно
.
I E = I B + I C
Символы и структура NPN-транзисторов приведены ниже.
НАЗАД
PNP Транзистор
PNP — это еще один тип биполярных переходных транзисторов (BJT).Транзисторы PNP содержат два полупроводниковых материала p-типа и разделены тонким слоем полупроводника n-типа. Основными носителями заряда в транзисторах PNP являются дырки, а электроны — неосновные носители заряда. Стрелка на выводе эмиттера транзистора указывает протекание обычного тока. В транзисторе PNP ток течет от эмиттера к коллектору.
Транзистор PNP включен, когда клемма базы переведена в низкий уровень по отношению к эмиттеру. Символ и структура транзистора PNP показаны ниже.
НАЗАД
FET (полевой транзистор)
Полевой транзистор (FET) — еще один тип транзисторов. Обычно полевые транзисторы имеют три вывода: затвор (G), сток (D) и исток (S). Полевые транзисторы подразделяются на полевые транзисторы с переходным эффектом (JFET) и полевые транзисторы с изолированным затвором (IG-FET) или полевые МОП-транзисторы. Для соединений в схеме мы также рассматриваем четвертую клемму, называемую базой или подложкой.Полевые транзисторы контролируют размер и форму канала между истоком и стоком, который создается под действием приложенного напряжения. Транзисторы FET являются однополярными транзисторами, потому что они выполняют одноканальную работу, тогда как транзисторы BJT являются транзисторами с биполярным переходом. Транзисторы FET имеют более высокое усиление по току, чем транзисторы BJT.
НАЗАД
JFET (переходно-полевой транзистор)
Junction-Field-Effect Transistor (JFET) — это самый ранний и простой тип полевых транзисторов.Эти полевые транзисторы используются в качестве переключателей, усилителей и резисторов. Этот транзистор представляет собой устройство, управляемое напряжением. Ему не нужен ток смещения. Напряжение, приложенное между затвором и истоком, управляет потоком электрического тока между истоком и стоком транзистора. Транзисторы JFET доступны как в N-канальном, так и в P-канальном исполнении.
НАЗАД
N-канальный JFET
В N-канальном JFET ток протекает за счет электронов. Когда между затвором и истоком подается напряжение, между истоком и стоком образуется канал для протекания тока.Этот канал называется N-каналом. В настоящее время N-канальный JFET-транзистор является наиболее предпочтительным типом, чем P-канальный JFET. Обозначения для N-канального JFET-транзистора приведены ниже.
НАЗАД
P-канальный JFET
В этом транзисторе JFET ток протекает из-за дыр. Канал между истоком и стоком называется P-каналом. Обозначения для P-канальных JFET-транзисторов приведены ниже. Здесь стрелки указывают направление тока.
НАЗАД
МОП-транзистор
Полевой транзистор металл-оксид-полупроводник (MOSFET) является наиболее полезным типом среди всех транзисторов. Само название указывает на то, что он содержит металлический зажим для ворот. МОП-транзистор имеет четыре вывода: сток, исток, затвор и корпус или подложку (B). MOSFET имеет много преимуществ перед BJT и JFET, в основном он предлагает высокий входной импеданс и низкий выходной импеданс. Он используется в схемах малой мощности, в основном, в технологиях проектирования микросхем.
MOSFET-транзисторы доступны в вариантах с истощением и улучшением. Кроме того, типы истощения и улучшения подразделяются на типы с N-каналом и P-каналом.
НАЗАД
N-канальный полевой МОП-транзистор
MOSFET, имеющий N-канальную область между истоком и стоком, называется N-канальным MOSFET. Здесь выводы истока и затвора сильно легированы материалами n-типа, а подложка легирована полупроводниковым материалом p-типа. Здесь ток между истоком и стоком происходит из-за электронов.Напряжение на затворе регулирует ток в цепи. MOSFET с N-каналом является наиболее предпочтительным, чем MOSFET с P-каналом, поскольку подвижность электронов выше подвижности дырок. Обозначения для N-канальных MOSFET-транзисторов приведены ниже.
НАЗАД
МОП-транзистор с P-каналом
МОП-транзистор, имеющий область P-канала между истоком и стоком, называется MOSFET-транзистором с P-каналом. Здесь выводы истока и стока сильно легированы материалом P-типа, а подложка легирована материалом N-типа.Ток между истоком и стоком обусловлен концентрацией дырок. Приложенное напряжение на затворе будет управлять потоком тока через область канала. Обозначения для P-канальных MOSFET-транзисторов в режимах истощения и расширения приведены ниже.
НАЗАД
Транзисторы на основе функции
Транзисторы
также классифицируются в зависимости от функций, которые означают, что они делают. Ниже описаны различные типы транзисторов в зависимости от их функции.
НАЗАД
Малосигнальные транзисторы
Основная функция малосигнальных транзисторов заключается в усилении слабых сигналов, даже если эти транзисторы используются для переключения. Малосигнальные транзисторы доступны на рынке в виде транзисторов NPN и PNP. Мы можем видеть некоторое значение на корпусе малосигнального транзистора, это значение указывает на hFE транзистора.
В зависимости от этого значения hFE мы можем понять способность транзистора усиливать сигнал.Значения hFE находятся в диапазоне от 10 до 500. Значение тока коллектора этих транзисторов составляет от 80 до 600 мА. Этот тип транзисторов работает в диапазоне частот от 1 до 300 МГц. Само название транзистора указывает на то, что эти транзисторы усиливают слабые сигналы, в которых используются небольшие напряжения и токи, например, несколько милливольт и миллиампер тока.
Ссылка на ресурс: learningaboutelectronics.com/images/Small-signal-transistor.png
Малосигнальные транзисторы используются почти во всех типах электронного оборудования, а также эти транзисторы используются в нескольких приложениях, некоторые из них — переключатели ВКЛ или ВЫКЛ для общего использования, драйвер светодиодного диода, драйвер реле, функция отключения звука, схемы таймера, инфракрасный порт. диодный усилитель, цепи питания смещения и т. д.
НАЗАД
Малые переключающие транзисторы
Малые переключающие транзисторы — это транзисторы, которые в основном используются для переключения, а затем используются для усиления. Как и малосигнальные транзисторы, небольшие переключающие транзисторы также доступны в форме NPN и PNP, и этот тип транзисторов также имеет значения hFE. Диапазон значений hFE для этих транзисторов составляет от 10 до 200. При значении hFE 200 транзисторы не являются хорошими усилителями, хотя они действуют как лучшие переключатели.Значения тока коллектора колеблются от 10 до 1000 мА. Эти транзисторы используются в основном в коммутационных устройствах.
Ссылка на ресурс: learningaboutelectronics.com/images/Small-switching-transistor.png
НАЗАД
Силовые транзисторы
Транзисторы, которые используются в усилителях большой мощности и источниках питания, называются «усилителями мощности». Коллекторный вывод этого транзистора подключен к основанию металлического устройства, и эта структура действует как теплоотвод, который рассеивает избыточную мощность для приложений.
Эти типы транзисторов доступны в виде транзисторов NPN, PNP и Дарлингтона. Здесь значения тока коллектора колеблются от 1 до 100А. Диапазон рабочих частот от 1 до 100 МГц. Значения мощности этих транзисторов находятся в диапазоне от 10 до 300 Вт. Само название транзистора указывает на то, что силовые транзисторы используются в приложениях, где требуются высокая мощность, высокое напряжение и большой ток.
Ссылка на ресурс: learningaboutelectronics.com/images/Power-transistors.png
НАЗАД
Высокочастотные транзисторы
Высокочастотные транзисторы используются для небольших сигналов, которые работают на высоких частотах, и они используются в приложениях для высокоскоростной коммутации. Высокочастотные транзисторы также называют РЧ-транзисторами. Эти транзисторы имеют максимальные значения частоты около 2000 МГц. Значение тока коллектора (IC) колеблется от 10 до 600 мА. Эти типы транзисторов также доступны в форме NPN и PNP.Они в основном используются в приложениях с высокочастотными сигналами, а также эти транзисторы должны быть включены или выключены только на высоких скоростях. Эти транзисторы используются в схемах генераторов и усилителей HF, VHF, UHF, CATV и MATV.
Ссылка на ресурс: learningabouelectronics.com/images/High-frequency-transistors.jpg
НАЗАД
Фототранзистор
Фототранзисторы — это транзисторы, которые работают в зависимости от света, что означает, что эти транзисторы светочувствительны.Обычный фототранзистор — это не что иное, как биполярный транзистор, который содержит светочувствительную область вместо клеммы базы. Фототранзисторы имеют только 2 вывода вместо обычных 3 выводов. Транзистор работает в зависимости от света. Когда светочувствительная область темна, тогда в транзисторе не течет ток, т.е. транзистор находится в выключенном состоянии.
Ссылка на ресурс: learningaboutelectronics.com/images/Phototransistors.jpg
Когда светочувствительная область подвергается воздействию света, на клеммах базы генерируется небольшой ток, который вызывает протекание большого тока от коллектора к эмиттеру.Фототранзисторы доступны как в типах транзисторов BJT, так и на полевых транзисторах. Они называются фото-BJT и фото-FET.
В отличие от фото-BJT, фото-полевые транзисторы генерируют ток затвора с помощью света, который контролирует ток между выводами стока и истока. Фото-полевые транзисторы более чувствительны к свету, чем фото-полевые транзисторы. Символы фото-BJT и фото-полевых транзисторов показаны выше.
НАЗАД
Однопереходные транзисторы:
Ссылка на ресурс: Learningaboutelectronics.com / images / Unijunction-transistor.png
Однопереходные транзисторы используются только как переключатели с электрическим управлением. Эти транзисторы не имеют усилительных характеристик из-за своей конструкции. Обычно это трехпроводные транзисторы. Теперь мы видим работу однопереходного транзистора. Если нет разницы потенциалов между эмиттером и любым из выводов базы (B1 или B2), то между B1 и B2 протекает небольшой ток.
Если на вывод эмиттера подается достаточное количество напряжения, то на выводе эмиттера генерируется большой ток, который добавляется к небольшому току между B1 и B2, что вызывает протекание большого тока в транзисторе.Здесь ток эмиттера является основным источником тока для полного тока в транзисторе. Ток между выводами B1 и B2 очень мал, по этой причине эти транзисторы не подходят для целей усиления.
НАЗАД
ПРЕДЫДУЩИЙ — ВВЕДЕНИЕ ТРАНЗИСТОРОВ
СЛЕДУЮЩИЙ — ТРАНЗИСТОР NPN
.