05.03.2025

Полупроводниковый стабилитрон: Принцип работы стабилитрона – параметры, характеристики, маркировка

Содержание

Принцип работы стабилитрона – параметры, характеристики, маркировка


Принцип работы стабилитрона основан на подаче на диод через резистор запирающего напряжения, величина которого больше напряжения пробоя диода. У стабилизатора высокое сопротивление, до пробоя через него идут незначительные токи утечки. Когда наступает пробой, величина протекающего тока существенно увеличивается, а сопротивление снижается. В результате напряжение поддерживается достаточно точно в широком диапазоне обратных токов.


Главной характеристикой стабилитрона является стабилизация выходного напряжения. Устройство работает в цепях постоянного тока, напряжение подается в обратной полярности: на катод – «плюс», на анод – «минус». Параметры входного напряжения могут изменяться, а на стабилитроне будет меняться только обратный ток, напряжение при нагрузке будет оставаться стабильным.

Параметры и характеристики


При разработке схем применения устройства необходимо знать:

  • напряжение стабилизации;
  • минимальные токи;
  • предельно-допустимый обратный ток.


Основной характеристикой стабилитрона является стабилизирующее напряжение – средняя величина между минимальным и максимальным значением. Также устройство характеризует минимальный ток, соответствующий минимальному значению стабилизирующего напряжения, при котором происходит обратный пробой. Если прибор используется в схеме переменного тока и ток должен проводиться в оба полупроводника, используют величину предельно допустимого прямого тока. Максимально допустимый прямой ток – это величина прямого тока, которую p-n переход (электронно-дырочный) может выдерживать длительное время, не разрушаясь от выделяемого тепла.


Маркировка


Стабилитроны имеют цветную маркировку, в которой:

  • первая полоска указывает на тип устройства;
  • вторая – тип полупроводника;
  • третья – прибор и проводимость;
  • четвертая – номер разработки;
  • пятая – модификация.


Обозначение стабилитрона может включать букву и цифру или только букву. По маркировке определяют тип устройства, дату изготовления. Для СМД обозначают тип микросхемы.

Типы устройств

  • Прецизионные – отличаются повышенной стабильностью напряжения.
  • Двухсторонние – стабилизируют и ограничивают двухполярное напряжение.
  • Быстродействующие – имеют пониженную величину барьерной емкости, отличаются коротким периодом переходного процесса. Устройства можно использовать в области кратковременных импульсов напряжений.


По распределению мощности выделяют мощные и маломощные приборы.

Как проверить стабилитрон?


Процедура проводится с помощью любого мультиметра в режиме прозвона диода либо определения величины сопротивления.


Порядок действий при проверке стабилитрона:

  • установка диапазона измерения Омов;
  • присоединение измерительных щупов к выводам радиодетали;
  • оценка показаний: мультиметр должен показать доли Ом при подключении источника питания «плюсом» к аноду;
  • замена щупов местами, изменение полярности напряжения на выводах полупроводника для получения сопротивления, близкого к бесконечности (показывает исправность прибора).


Чтобы быть уверенным в исправности устройства, нужно переключить мультиметр на диапазон измерения в килоомах и провести измерение. Если оборудование исправно, показания должны быть в пределах десятков и сотен тысяч Ом. Это означает, что прибор пропускает ток, как диод.

Как выбрать устройство?


Элементы различаются по показателю напряжения стабилизации. Для получения точного значения Uн приборы выбирают из одной партии. Подбирают изделия по параметрам. Для правильного выбора предлагается проконсультироваться с квалифицированными специалистами.



Была ли статья полезна?

Да

Нет

Оцените статью

Что вам не понравилось?



Анатолий Мельник


Специалист в области радиоэлектроники и электронных компонентов. Консультант по подбору деталей в компании РадиоЭлемент.











Принцип работы и маркировка стабилитронов ⋆ diodov.net

Программирование микроконтроллеров Курсы

Стабилитрон относится к одному из применяемых радиоэлектронных элементов. Каждый более-менее качественный блок питания содержит узел стабилизации напряжения, которое может изменяться при изменении сопротивления нагрузки либо при отклонении входного напряжения от номинального значения.

Стабилитрон

Стабилизация напряжения выполняется главным образом с целью обеспечения нормального режима работы остальных радиоэлементов устройства, например микросхем, транзисторов, микроконтроллеров и т.п.

Стабилитроны широко используются в маломощных блоках питания либо в отдельных его узлах, мощность которых редко превышает десятки ватт.

Главное преимущество стабилитронов – их малая стоимость и габариты, поэтому они до сих пор не могут вытисниться интегральными стабилизаторами напряжения типа LM7805 или 78L05 и т.п.

Стабилитрон очень похож на диод, поскольку его полупроводниковый кристалл помещен в аналогичный корпус.

Стабилитроны

Условное графическое обозначение стабилитрона на чертежах электрических схем также похоже на обозначение диода, только со стороны катода добавлена короткая горизонтальная черточка, направленная в сторону анода.

Обозначение стабилитрона в схеме

Принцип работы стабилитрона

Рассмотрим принцип работы стабилитрона на примере схемы его включения и вольт-амперной характеристике. Для выполнения своей основной функции стабилитрон VD соединяется последовательно с резистором Rб и вместе они подключаются к источнику входного нестабилизированного напряжения Uвх. Уже стабилизированное выходное напряжение Uвых снимается только с выводов 2, 3 VD. Поэтому нагрузка Rн подключается к соответствующим точкам 2 и 3. Как видно из схемы, VD и Rб образуют делитель напряжения. Только сопротивление стабилитрон имеет не постоянно значение и называется динамическим, поскольку зависит от величины электрического тока, протекающего через полупроводниковый прибор.

Схема включения стабилитрона

Величина напряжения Uвх, подаваемого на стабилитрон с резисторов должна быть выше на минимум на пару вольт выходного напряжения Uвых, в противном случае полупроводниковый прибор VD не откроется и не сможет выполнять свою основную функцию.

Допустим, в какой-то произвольный момент времени на выходах 1 и 3 значение Uвх начало возрастать. В схеме начнут протекать следующие процессы. С ростом напряжения согласно закону Ома начнет возрастать ток, назовем его входным током Iвх. С увеличением ток возрастет падение напряжения на резисторе Rб, а на VD она останется неизменным (это будет пояснено далее на характеристике), поэтому и Uвых останется на прежнем уровне. Следовательно, прирост входного напряжения упадет или погасится на резисторе Rб. Поэтому Rб называют гасящим или балластным.

Теперь, допустим, изменилась нагрузка, например, снизилось сопротивление Rн, соответственно возрастет и ток Iн. В этом случае снизится ток, протекающий стабилитрон Iст, а Iвх останется практически без изменений.

Вольт-амперная характеристика стабилитрона

Вольт-амперная характеристика (ВАХ) стабилитрона аналогично ВАХ диода и имеет две ветви: прямую и обратную. Прямая ветвь является рабочей для диода, а обратная ветвь характеризует работу стабилитрона, поэтому он включается в электрическую цепь в обратном направлении (катодом к плюсу, а анодом к минусу) по сравнению с диодом. Поэтому стабилитрон называю опорным диодом, а источник питания с данным полупроводниковым элементом называют опорным источником напряжения. Такой терминологий будем пользоваться и мы.

Вольт-амперная характеристика стабилитрона ВАХ

На обратной ветви вольт-амперной характеристик опорного диода выделим две характерные точки 1 и 3. Точка 1 отвечает минимальному значению тока стабилизации, который находится в пределах единиц миллиампер. Если ток, протекающий через стабилитрон, будет ниже точки 1, то он не сможет выполнять свои функции (не откроется). В случае превышения тока выше точки 3 опорный диод перегреется и выйдет из строя. Поэтому оптимальной точкой в большинстве случае будет точка посредине обратной ветви ВАХ, то есть точка 2. Тогда при изменении тока в широких пределах (смотрите ось Y) точка 2 будет изменять свое положение, перемещаясь вверх или вниз по обратной ветви, а напряжение будет изменяться незначительно (смотрите ось X).

Встречное, параллельное, последовательное соединение стабилитронов

Для повышения напряжения стабилизации можно последовательно соединять два и более стабилитрона. Например на нагрузке нужно получить 17 В, тогда, в случае отсутствия нужного номинала, применяют опорные диоды на 5,1 В и на 12 В.

Схема последовательного соединения стабилитронов

Параллельное соединение применяется с целью повышения тока и мощности.

Также стабилитроны находят применение для стабилизации переменного напряжения. В этом случае они соединяются последовательно и встречно.

Схема стабилизации переменного напряжения, встречное соединение стабилитронов

В один полупериод переменного напряжения работает один стабилитрон, а второй работает как обычный диод. Во второй полупериод полупроводниковые элементы выполняют противоположные функции. Однако в таком случае форма выходного напряжения будет отличается от входного и выглядит как трапеция. За счет того, что опорный диод будет отсекать напряжение, превышающее уровень стабилизации, верхушки синусоиды будут срезаться.

Переменное напряжение подаваемое на стабилитрон

Осциллограмма стабилизированного стабилитроном переменного напряжения

Маркировка стабилитронов

Маркировка наносится на корпус стабилитрона в виде цифр и букв (или буквы). Различают принципиально два разных типа маркировки. Стабилитрон в стеклянном корпусе имеет привычную для нас маркировку, непосредственно обозначающую номинальное напряжение стабилизации. Цифры могут быть разделены буквой V, выполняющую роль десятичной точки. Например, 5V1 означает 5,1 В.

Маркировка стабилитронов в стеклянном корпусе

Менее понятный способ маркировки состоит из четырех цифр и буквы в конце. Если вы не опытный радиолюбитель, то без даташита никак не обойтись. Для примера расшифруем параметры опорного диода серии 1N5349B. Больше всего нас интересует первый столбец, в котором приведено номинальное напряжение 12 В. Второй столбец – номинальное значения ток – 100 мА.

Маркировка стабилитронов

Катод стабилитрона любого типа обозначается кольцом черного или синего цвета, которое наносится на корпус со стороны соответствующего вывода.

Обозначение выводов стабилитрона анод, катод

Маркировка SMD стабилитронов

Наибольшее распространение получили опорные диоды в стеклянном корпусе и в пластмассовом корпусе с тремя выводами. Маркировка SMD стабилитрона в стеклянном корпусе состоит из цветного кольца, цвет которого обозначает параметры данного полупроводникового прибора.

SMD стабилитрон в стеклянном корпусе

Если вам встретился SMD стабилитрон с тремя выводами, то следует знать, что один вывод – это «пустышка», то есть он не задействован и применяется лишь для надежной фиксации элемента на печатной плате после пайки. Анод и катод такого экземпляра проще всего определить с помощью мультиметра.

SMD стабилитрон с тремя выводами

Мощность рассеивания стабилитрона

Мощность рассеивания стабилитрона Pст характеризует его способность не перегреваться выше определенной температуры на протяжении длительного времени. Чем выше значение Pст, тем больше тепла способен рассеять полупроводниковый прибор. Мощность рассеивания рассчитывается для самых неблагоприятных условий работы прибора, поэтому в ниже приведенную формулу подставляют максимально возможное в работе Uвх и наименьшие значения и :

Мощность рассеивания стабилитрона формула

Существует ряд стандартных номиналом по данному параметру: 0,3 Вт, 0,5 Вт, 1,3 Вт, 5 Вт и т.п. Чем больше Pст, тем больше габариты полупроводникового прибора.

Стабилитрон мощностью 0,3 Вт, 0,5 Вт, 1,3 Вт, 5 Вт

Как проверить стабилитрон

Проверить стабилитрон на предмет исправности довольно просто и быстро можно с помощью простейшего мультиметра. Для этого мультиметр следует перевести в режим «прозвонка», как правило, обозначенный знаком диода. Затем, если положительным щупом мультиметра прикоснуться анода, а отрицательным – катода, то на дисплее измерительного прибора мы увидим некоторое значение падения напряжения на pn-переходе. Поскольку к полупроводниковому прибору приложено прямое напряжение (смотрите прямую ветвь вольт-амперной характеристики), то опорный диод откроется.

Как проверить стабилитрон

Теперь, если щупы мультиметра поменять местами, тем самым приложить к выводам полупроводникового прибора обратное напряжение (смотрите обратную ветвь ВАХ), то он окажется заперт и не будет проводить ток. На дисплее измерительного прибора отобразится единица, обозначающая бесконечно высокое сопротивление.

Как проверить стабилитрон мультиметром

Если в обеих случаях мультиметр покажет единицу или будет звенеть, то стабилитрон непригоден.

Электроника для начинающих

Еще статьи по данной теме

Как работает стабилитрон и для чего он нужен?

Что такое стабилитрон, какой у него принцип действия и назначение. Основные характеристики стабилитронов и их маркировка. Условное обозначение на схеме.

Основой надежной и продолжительной работы электронной аппаратуры является стабильное напряжение питания. Для этого применяют стабилизированные источники питания. Можно сказать, что основным элементом, который определяет уровень выходного напряжения блока питания, это полупроводниковый прибор – стабилитрон. Он может быть как основой линейного стабилизатора, так и пороговым элементом в цепи обратной связи импульсного источника питания. В этой статье мы расскажем читателям сайта Сам Электрик про устройство и принцип работы стабилитрона.

Содержание:

Что это такое

В литературе дается следующее определение:

Стабилитрон или диод Зенера это прибор, предназначенный для стабилизации напряжения в электрических цепях. Работает при обратном смещении в режиме пробоя. До наступления пробоя имеет высокое сопротивление перехода. Протекающие при этом токи незначительны. Широко используются в электронике и в электротехнике.

Если говорить простыми словами, то стабилитрон предназначен для стабилизации напряжения в электронных схемах. В цепь он включается в обратном направлении. При достижении напряжения, превышающего напряжение стабилизации, происходит обратимый электрический пробой pn-перехода. Как только оно понизится до номинала, пробой прекращается, и стабилитрон закрывается.

На нижеприведенном рисунке представлена графическая схема для чайников, позволяющая понять принцип действия диода Зенера.

Основными преимуществами является невысокая стоимость и небольшие габариты. Промышленность выпускает устройства с напряжением стабилизации о 1,8 — 400 В в металлических, керамических или корпусах из стекла. Это зависит от мощности, на которую рассчитан стабилитрон и других характеристик.

Для стабилизации высоковольтного напряжения от 0,4 до нескольких десятков кВ, применяются стабилитроны тлеющего разряда. Они имеют стеклянный корпус и до появления полупроводниковых приборов применялись в параметрических стабилизаторах.

Аналогичными свойствами обладают приборы, меняющие свое сопротивление в зависимости от приложенного напряжения – это варисторы. Между стабилитроном и варистором разница заключается в том, что последний обладает двунаправленными симметричными характеристиками. А это значит, что в отличие от диодов, он не имеет полярности. Кратко варистор предназначен для обеспечения защиты от перенапряжения электронных схем.

Для предохранения аппаратуры от скачков напряжения применяют супрессоры. Между стабилитроном и супрессором отличия заключаются в том, что первый постепенно изменяет свое внутреннее сопротивление в зависимости от приложенного напряжения. Второй при достижении определенного порога напряжения открывается сразу. Т.е. его внутреннее сопротивление стремится к нулю. Основное назначение супрессоров — защита аппаратуры от скачков питания.

На рисунке ниже представлено условно графическое обозначение (УГО по ГОСТ) полупроводника и его вольт-амперная характеристика.

На рисунке цифрами указан участок 1-2. Он является рабочим и предназначен для стабилизации напряжения в цепях. Если прибор включить в прямом направлении, то он будет работать как обычный диод.

Рекомендуем посмотреть следующий видеоролик, чтобы подробнее изучить принцип действия стабилитрона, обозначение элементов и область их применения.

Основные характеристики

При проектировании блоков питания, следует уметь правильно произвести расчет и подобрать по значениям необходимый элемент. Неправильно подобранный стабилитрон сразу выйдет из строя или не будет поддерживать напряжение на необходимом уровне.

Основными характеристиками являются:

  • напряжение Ucт. стабилизации;
  • номинальный ток стабилизации Iст., протекающий через стабилитрон;
  • допустимая мощность рассеивания;
  • температурный коэффициент стабилизации;
  • динамическое сопротивление.

Эти характеристики определены заводом-изготовителем и указываются в справочной литературе.

Условно графическое обозначение на схемах

Все приборы имеют графическое обозначение. Это необходимо, чтобы не загромождать электрическую схему. Стабилитрон имеет свое условно-графическое обозначение, которое утверждено межгосударственным стандартом единого стандарта конструкторской документации (ЕСКД).

На рисунке снизу представлено как обозначается на схеме по ГОСТ 2.730-73, стабилитрон обозначается практически как диод, так как, в сущности, является одной из его разновидностей.

Для правильного включения следует различать, где плюс, где минус. Если смотреть на приведенный выше рисунок, то на нем плюс (анод) расположен слева, а минус (катод) справа. Согласно ЕСКД размеры УГО диодов должны составлять 5/5 мм. Это иллюстрирует рисунок снизу.

Схема подключения

Рассмотрим работу стабилитрона на примере схемы параметрического стабилизатора. Это типовая схема. Приведем формулы для расчета стабилизатора.

Допустим, что имеется 15 Вольт, а на выходе необходимо получить 9 В. По таблице напряжений в справочнике подбираем стабилитрон Д810. Произведем расчет токоограничивающего резистора R1, согласно рисунку ниже. На нем показан токоограничивающий резистор и схема включения. Режим регулирования напряжения отмечен на вольт-амперной характеристике 1,2.

Для того чтобы полупроводник не вышел из строя, необходимо учитывать ток стабилизации и ток нагрузки. Из справочника определяем ток стабилизации.

Он равен 5 мА. На рисунке снизу представлена часть справочника.

Предполагаем, что ток нагрузки равен 100 мА:

R1= (Uвх-Uст)/(Iн+Icт)= (15-9)/(0.1+0.005)=57.14 Ом.

Если нужен мощный стабилизатор, то стоит собирать схему из стабилитрона и транзистора.

Как работает стабилитрон и для чего он нужен?

Если необходимо изготовить стабилизатор на небольшое напряжение 0,2-1 В, для этого применяется стабистор. Он является разновидностью стабилитрона, но работает в прямой ветви ВАХ и включается в прямом направлении, в чем его уникальная особенность и заключается.

Аналогичным образом можно изготовить блок питания, где стабилизатор изготовлен из диодов. Как и стабистор их включают в прямом направлении. Нужное напряжение набирают прямыми падениями напряжений на диоде, для кремниевых диодов оно находится в пределах 0.5-0.7В. При отсутствии диодов, можно собрать стабилитрон из транзистора.

На нижеприведенном рисунке представлена схема на транзисторе.

Промышленность выпускает и управляемые стабилитроны. Или, точнее сказать, это микросхема — TL431. Это универсальная микросхема, позволяет регулировать напряжение в пределах от 2,5 до 36 вольт.

Регулировка осуществляется путем подбора делителя сопротивлений. На нижеприведенной схеме представлен стабилизатор на 5 вольт. Делитель собран на резисторах номиналом 2,2 К.

Специалист должен знать, как проверить мультиметром работоспособность стабилитрона. Сразу отметим, что проверить можно только однонаправленный элемент, сдвоенные (двунаправленные) такой проверке не подлежат. Если диод Зенера исправен, то при «прозвонке» тестером в одну сторону он будет показывать обрыв, а во вторую минимальное сопротивление. Неисправный звонится в обе стороны.

Маркировка

В зависимости от мощности диода, они выпускаются в различных корпусах. На металлических корпусах большой мощности указывается буквенное обозначение типа прибора.

На нижеприведенных фото представлены приборы советского производства, и как они выглядели.


Сейчас маломощные диоды выпускаются в стеклянных корпусах. Маркировка импортных приборов имеет цветовое обозначение. На корпус наносится маркировка полосами или цветными кольцами.

На нижеприведенном рисунке представлена маркировка SMD-диодов.

Отечественные диоды в стеклянных корпусах маркируют полосами или кольцами. Определить тип и параметры можно по любому справочнику радиоэлектронных компонентов. Например, зеленая полоса обозначает стабилитрон КС139А, а голубая полоса (или кольцо) указывает на КС133А.

На мощных устройствах в металлических корпусах указывается буквенное обозначение, например, Д816, как показано на фото вверху. Это необходимо для того, чтобы знать, как подобрать аналог.

Вот мы и рассмотрели, какие бывают стабилитроны, как они работают и для чего нужны. Если остались вопросы, задавайте их в комментариях под статьей!

Материалы по теме:

  • Что такое транзистор-тестер
  • Как работает резистор
  • Как выпаивать радиодетали из плат

Опубликовано: 25.03.2020 Обновлено: 25.03.2020 нет комментариев

Диод. Светодиод. Стабилитрон / Хабр

Не влезай. Убьет! (с)

Постараюсь объяснить работу с диодами, светодиодами, а также стабилитронами на пальцах. Опытные электронщики могут пропустить статью, поскольку ничего нового для себя не обнаружат. Не буду вдаваться в теорию электронно-дырочной проводимости pn-перехода. Я считаю, что такой подход обучения только запутает начинающих. Это голая теория, почти не имеющая отношения к практике. Впрочем, интересующимся теорией предлагаю эту статью. Всем желающим добро пожаловать под кат.

Это вторая статья из цикла электроники. Рекомендую к прочтению также первую, которая повествует о том, что такое электрический ток и напряжение.

Диод – полупроводниковый прибор, имеющий 2 вывода для подключения. Изготавливается, упрощенно говоря, путем соединения 2х полупроводников с разным типом примеси, их называют донорной и акцепторной, n и p соответственно, поэтому диод содержит внутри pn-переход. Выводы, обычно состоящие из луженой меди, называют анод (А) и катод (К). Эти термины пошли еще со времен электронных ламп и используются в письменном виде, для обозначения направленности диода. Гораздо проще графическое обозначение. Названия выводов диода запомнятся сами собой при применении на практике.

Как я уже писал, мы не будем использовать теорию электронно-дырочной проводимости диода. Просто инкапсулируем эту теорию до черного ящика с двумя зажимами для подключения. Примерно так же программисты инкапсулируют работу со сторонними библиотеками, не вдаваясь в е… подробности их работы. Или, например, когда, пользуясь пылесосом, мы не вдаёмся в подробности, как он устроен внутри, он просто работает и нам важно одно из свойств пылесоса – сосать пыль.

Рассмотрим свойства диода, самые очевидные:

  • От анода к катоду, такое направление называется прямым, диод пропускает ток.
  • От катода к аноду, в обратном направлении, диод ток не пропускает. (Вообще-то нет. Но об этом позже.)
  • При протекании тока, в прямом направлении, на диоде падает некоторое напряжение.

Возможно эти свойства вам и так хорошо известны. Но есть некоторые дополнения. Что же считать прямым, а что обратным направлением? Прямым называют такое включение, когда на аноде напряжение больше, чем на катоде. Обратное, наоборот. Прямое и обратное включение – это условность. В реальных схемах напряжение на одном и том же диоде может меняться с прямого на обратное и наоборот.

Кремниевый диод начинает пропускать хоть какой-либо значимый ток только тогда, когда на аноде напряжение будет больше примерно на 0,65 В, чем на катоде. Нет, не так. При протекании хоть какого-либо тока, на диоде образуется падение напряжения, примерно равное 0,65 В и выше.

Напряжение 0,65 В – называют прямым падением напряжения на pn-переходе. Это лишь примерная средняя величина, она зависит от тока, температуры кристалла и технологии изготовления диода. При изменении протекающего тока, она изменяется нелинейно. Чтобы как-то обозначить эту нелинейность графически, производители снимают вольтамперные характеристики диода. В мощных высоковольтных диодах падение напряжения может быть больше в 2, 3 и т.д. раза. Это означает, что внутри диода включено несколько pn-переходов последовательно.

Для определения падения напряжения можно использовать вольтамперную характеристику (ВАХ) диода в виде графика. Иногда эти графики приводятся в дата-листах (datasheets) на реальные модели диода, но чаще их нет. На первом мне попавшемся графике ниже приведены ВАХ КД243А, хотя это не важно, они все примерно похожи.

На графике Uпр – это прямое падение напряжения на диоде. Iпр – протекающий через диод ток. График показывает какое падение напряжения на диоде будет, при протекании n-го тока. Но чаще всего в даталистах не показываются реальные ВАХ, а приводится прямое падение напряжения, указанное при определенном токе. В английской литературе падение напряжения обозначается как forward voltage.

Как применять

Падение напряжения на диоде – для нас плохая характеристика, поскольку это напряжение не совершает полезной работы и рассеивается в виде тепла на корпусе диода. Чем меньше падение, тем лучше. Обычно падение напряжения на диоде определяют исходя из тока, протекающего через диод. Например, включим диод последовательно с нагрузкой. По сути это будет защита схемы от переплюсовки, на случай, если блок питания отсоединяемый. На рисунке ниже в качестве защищаемой схемы взят резистор 47 Ом, хотя в реальности это может быть все, что угодно, например, участок большой схемы. В качестве блока питания – батарея на 12 В.
Допустим, нагрузка без диода потребляет 255 мА. В данном случае это можно посчитать по закону Ома: I= U / R = 12 / 47 = 0,255 А или 255 мА. Хотя обычно потребление сферической схемы в вакууме уже известно, хотя бы по максимальным характеристикам блока питания. Найдем на графике ВАХ, указанный выше, падение напряжения для диода КД243А при 0,255 А протекающего тока, при 25 градусах. Оно равно примерно 0,75 В. Эти 0,75 В упадут на диоде, и для питания схемы останется 12 — 0,75 = 11,25 В — иногда может и не хватить. Как бонус, можно найти мощность, в виде тепла и потерь выделяющуюся на диоде по формуле P = I * U = 0,75 * 0,255 = 0,19 Вт, где I и U – ток через диод и падение напряжения на диоде.

Что же делать, когда график ВАХ недоступен? Например, для популярного диода 1n4007 указано только прямое напряжения forward voltage 1 В при токе 1 А. Нужно и использовать это значение, либо измерить реальное падение. А если для какого-либо диода это значение не указано, то сойдет среднее 0,65 В. В реальности проще это падение напряжения измерить вольтметром в схеме, чем выискивать в графиках. Думаю, не надо объяснять, что вольтметр должен быть включен на постоянное напряжение, если через диод течет постоянный ток, а щупы должны касаться анода и катода диода.

Немного про другие характеристики

В предыдущем примере, если перевернуть батарейку, я имею ввиду поменять полярность, см. нижний рисунок, ток не потечет и падение напряжения на диоде в худшем случае составит 12 В — напряжение батареи. Главное, чтобы это напряжение не превышало напряжение пробоя нашего диода, оно же обратное напряжение, оно же breakdown voltage. А также важно еще одно условие: ток в прямом направлении через диод не превышал номинальный ток диода, он же forward current. Это два основных параметра по которых выбирается диод: прямой ток и обратное напряжение.

Иногда в даталистах также указывается рассеиваемая мощность диодом или номинальная мощность (power dissipation). Если она указана, то ее нельзя превышать. Как ее посчитать, мы уже разобрались на предыдущем примере. Но если мощность не указана, тогда надо ориентироваться по току.

Говорят, что в обратном направлении ток через диод не течет, ну или почти не потечет. На самом деле через него протекает ток утечки, reverse current в английской литературе. Этот ток очень маленький, от нескольких наноампер у маломощных диодов до нескольких сот микроампер, у мощных. Также этот ток зависит от температуры и приложенного напряжения. В большинстве случаем ток утечки не играет никакой роли, например, в как в предыдущем примере, но, когда вы будете работать с наноамперами и поставите какой-либо защитный диод на входе операционного усилителя, тогда может случиться ой… Схема поведет себя совсем не так, как задумывалась.

У диодов так же есть некоторая маленькая паразитная емкость capacitance. Т.е., по сути, это конденсатор, параллельно включенный с диодом. Эту емкость надо учитывать при быстрых процессах при работе диода в схеме с десятками-сотнями мегагерц.

Также несколько слов по поводу термина «номинал». Обычно номинальные ток и напряжение обозначают, что при превышении этих параметров производитель не гарантирует работу изделия, если не сказано другое. И это для всех электронных компонентов, а не только для диода.

Что еще можно сделать

Применений диодов существует множество. Разработчики-радиоэлектронщики обычно выдумывают свои схемы из кусочков других схем, так называемых строительных кирпичиков. Вот несколько вариантов.

Например, схема защиты цифровых или аналоговых входов от перенапряжения:

Диоды в этой схеме при нормальной работе не пропускают ток. Только ток утечки. Но когда по входу возникает перенапряжение с положительной полуволной, т.е. напряжение входа становится больше чем Uпит плюс прямое падение напряжения на диоде, то верхний диод открывается и вход замыкается на шину питания. Если возникает отрицательная полуволна напряжения, то открывается нижний диод и вход замыкается на землю. В этой схеме, кстати, чем меньше утечки и емкость у диодов, тем лучше. Такие схемы защиты уже, как правило, стоят во всех современных цифровых микросхемах внутри кристалла. А внешними мощными сборками TVS-диодов защищают, например, USB порты на материнских платах.

Также из диодов можно собрать выпрямитель. Это очень распространённый тип схем и вряд ли кто-то из читателей про них не слышал. Выпрямители бывают однополупериодные, двухполупериодные и мостовые. С однополупериодным выпрямителем мы уже познакомились в нашем самом первом многострадальном примере, когда рассматривали защиту от переплюсовки. Никакими особыми плюсами не обладает, кроме плюса на батарейке. Один из самых важных минусов, который ограничивает применение схемы однополупериодного выпрямителя на практике: схема работает только с положительной полуволной напряжения. Отрицательное напряжение напрочь отсекает и ток при этом не течет. «Ну и что?», скажете вы, «Такой мощности мне будет достаточно!». Но нет, если такой выпрямитель стоит после трансформатора, то ток будет протекать только в одну сторону через обмотки трансформатора и, таким образом, трансформаторное железо будет дополнительно подмагничиваться. Трансформатор может войти в насыщение и греться намного больше положенного.

Двухполупериодные выпрямители этого недостатка лишены, но им необходим средний вывод обмотки трансформатора. Здесь при положительной полярности переменного напряжения открыт верхний диод, а при отрицательной – нижний. КПД трансформатора используется не полностью.

Мостовые схемы лишены обоих недостатков. Но теперь на пути тока включены два диода в любой момент времени: прямой диод и обратный. Падение напряжения на диодах удваивается и составляет не 0,65-1В, а в среднем 1,3-2В. С учетом этого падения считается выпрямленное напряжение.
Например, нам надо получить 18 вольт выпрямленного напряжения, какой трансформатор для этого выбрать? 18 вольт плюс падение на диодах, возьмем среднее 1,4 В, равно 19,4 В. Мы знаем из предыдущей статьи, что амплитудное значение переменного напряжения в корень из 2 раз больше его действующего значения. Поэтому во вторичной цепи трансформатора переменное действующее напряжение равно 19,4 / 1,41 = 13,75В. С учетом того, что напряжение в сети может гулять на 10%, а также под нагрузкой напряжение немного просядет, выберем трансформатор 230/15 В.

Мощность требуемого нам трансформатора можно посчитать от тока нагрузки. Например, мы собираемся подключать к трансформатору нагрузку в один ампер. Это если с запасом. Всегда оставляйте небольшой запас, в 20-40%. Просто по формуле мощности можно найти P = U * I = 15 * 1 = 15 ВА, где U и I – напряжение и ток вторичной обмотки. Если вторичных обмоток несколько, то их мощности складываются. Плюс потери на трансформацию, плюс запас, поэтому выберем трансформатор 20-40 ВА. Хотя часто трансформаторы продаются с указанием тока вторичных обмоток, но проверить по габаритной мощности не помешает.

После выпрямительного моста необходим сглаживающий конденсатор, на рисунке не показан. Не забывайте про него! Есть умные формулы по расчету этого конденсатора в зависимости от количества пульсаций, но порекомендую такое правило: ставить конденсатор 10000мкФ на один ампер потребления тока. Вольтаж конденсатора не меньше, чем выпрямленное без нагрузки напряжение. В данном примере можно взять конденсатор с номиналом 25В.

Диоды в этой схеме выберем на ток >=1А и обратное напряжение, с запасом, больше 19,4 В, например, 50-1000 В. Можно применить диоды Шоттки. Это те же диоды, только с очень маленьким падением напряжения, которое часто составляет десятки милливольт. Но недостаток диодов Шоттки – их не выпускают на более-менее высокие напряжения, больше 100В. Точнее с недавнего времени выпускают, но их стоимость заоблачная, а плюсы уже не так очевидны.

Светодиод

Внутри устроен совсем по другому, чем диод, но имеет те же самые свойства. Только еще и светится при протекании тока в прямом направлении.
Все отличие от диода в некоторых характеристиках. Самое важное – прямое падение напряжения. Оно гораздо больше, чем 0,65 В у обычного диода и зависит в основном от цвета светодиода. Начиная от красного, падение напряжения которого составляет в среднем 1,8 В, и заканчивая белым или синим светодиодом, падение у которых около 3,5 В. Впрочем, у невидимого спектра эти значения шире.
По сути падение напряжения здесь – минимальное напряжение зажигания диода. При меньшем напряжении, у источника питания, тока не будет и диод просто не загорится. У мощных осветительных светодиодов падение напряжения может составлять десятки вольт, но это значит лишь, что внутри кристалла много последовательно-параллельных сборок диодов.

Но сейчас поговорим об индикаторных светодиодах, как наиболее простых. Их выпускают в различных корпусах, наиболее часто в полуокруглых, диаметром 3, 5, 10 мм.

Любой диод светится в зависимости от протекающего тока. По сути это токовый прибор. Падение напряжения получается автоматически. Ток мы задаем сами. Современные индикаторные диоды более-менее начинают светиться при токе 1 мА, а при 10 мА уже выжигают глаза. Для мощных осветительных диодов надо смотреть документацию.

Применение светодиода

Имея лишь соответствующий резистор можно задать нужный ток через диод. Конечно, понадобится еще и блок питания постоянного напряжения, например, батарейка 4,5 В или любой другой БП.

Например, зададим ток 1мА через красный светодиод с падением напряжения 1,8 В.

На схеме показаны узловые потенциалы, т.е. напряжения относительно нуля. В каком направлении включать светодиод нам подскажет лучше всего мультиметр в режиме прозвонки, поскольку иногда попадаются напрочь китайские светодиоды с перепутанными ногами. При касании щупов мультиметра, в правильном направлении, светодиод должен слабо светиться.

Поскольку применен красный светодиод, то на резисторе упадет 4,5 — 1,8 = 2,7В. Это известно по второму закону Кирхгофа: сумма падений напряжения на последовательных участках схемы равно ЭДС батарейки, т.е. 2,7 + 1,8 = 4,5В. Чтобы ограничить ток в 1мА, резистор по закону Ома должен обладать сопротивлением R = U / I = 2,7 / 0,001 = 2700 Ом, где U и I – напряжение на резисторе и необходимый нам ток. Не забываем переводить величины в единицы СИ, в амперы и вольты. Поскольку выпускаемые номиналы сопротивлений стандартизованы выберем ближайший стандартный номинал 3,3кОм. Конечно, при этом ток изменится и его можно пересчитать по закону Ома I = U / R. Но зачастую это не принципиально.

В этом примере ток, отдаваемый батарейкой, мал, так что внутренним сопротивлением батареи можно пренебречь.

С осветительными светодиодами все тоже самое, только токи и напряжения выше. Но иногда им уже не требуется резистор, надо смотреть документацию.

Что-то еще про светодиод

По сути, светить – это основное назначение светодиода. Но есть и другое применение. Например, светодиод может выступать в качестве источника опорного напряжения. Они необходимы, например, для получения источников тока. В качестве источников опорного напряжения, как менее шумные, применяют красные светодиоды. Их включают в схему так же, как и в предыдущем примере. Поскольку напряжение батарейки относительно постоянное, ток через резистор и светодиод тоже постоянный, поэтому падение напряжения остается постоянным. От анода светодиода, где 1,8В, делается отвод и используется это опорное напряжение в других участках схемы.

Для более надежной стабилизации тока на светодиоде, при пульсирующем напряжении источника питания, вместо резистора в схему ставят источник тока. Но источники тока и источники опорного напряжения – это тема еще одной статьи. Возможно, когда-нибудь я ее напишу.

Стабилитрон

В английской литературе стабилитрон называется Zener diode. Все тоже самое, что и диод, в прямом включении. Но сейчас поговорим только про обратное включение. В обратном включении под действием определенного напряжения на стабилитроне возникает обратимый пробой, т.е. начинает течь ток. Этот пробой полностью штатный и рабочий режим стабилитрона, в отличие от диода, где при достижении номинального обратного напряжения диод просто выходил из строя. При этом, ток через стабилитрон в режиме пробоя может меняться, а падение напряжение на стабилитроне остается практически неизменным.
Что нам это дает? По сути это маломощный стабилизатор напряжения. Стабилитрон имеет все те же характеристики, что и диод, плюс добавляется так же напряжение стабилизации Uст или nominal zener voltage. Оно указывается при определенном токе стабилизации Iст или test current. Также в документации на стабилитроны указываются минимальный и максимальный ток стабилизации. При изменении тока от минимального до максимального, напряжение стабилизации несколько плавает, но незначительно. См. вольт-амперные характеристики.
Рабочая зона стабилитрона обозначена зеленым цветом. На рисунке видно, что напряжение на рабочей зоне практически неизменно, при широком диапазоне изменения тока через стабилитрон.

Чтобы выйти на рабочую зону, нам надо установить ток стабилитрона между [Iст. min – Iст. max] с помощью резистора точно так же, как это делалось в примере со светодиодом (кстати, можно также с помощью источника тока). Только, в отличие от светодиода, стабилитрон включен в обратном направлении.

При меньшем токе, чем Iст. min стабилитрон не откроется, а при большем, чем Iст. max – возникнет необратимый тепловой пробой, т.е. стабилитрон просто сгорит.

Расчёт стабилитрона

Рассмотрим на примере нашего рассчитанного трансформаторного БП. У нас есть блок питания, выдающий минимум 18 В (по сути там больше, из-за трансформатора 230/15 В, лучше мерить в реальной схеме, но суть сейчас не в этом), способный отдавать ток 1 А. Нужно запитать нагрузку с максимальным потреблением 50 мА стабилизированным напряжением 15 В (например, пусть это будет какой-нибудь абстрактный операционный усилитель – ОУ, у них примерно такое потребление).
Такая слабая нагрузка выбрана неспроста. Стабилитроны довольно маломощные стабилизаторы. Они должны проектироваться так, чтобы через них мог проходить без перегрева весь ток нагрузки плюс минимальный ток стабилизации Iст. min. Это необходимо, потому что ток после резистора R1 делится между стабилитроном и нагрузкой. В нагрузке ток может быть непостоянным, либо нагрузка может выключаться из схемы совсем. По сути это параллельный стабилизатор, т.е. весь ток, который не уйдет в нагрузку, примет на себя стабилитрон. Это как первый закон Кирхгофа I = I1 + I2, только здесь I = Iнагр + Iст. min.

Итак, выберем стабилитрон с напряжением стабилизации 15 В. Для установки тока через стабилитрон всегда необходим резистор (или источник тока). На резисторе R1 упадет 18 – 15 = 3 В. Через резистор R1 будет протекать ток Iнагр. + Iст. min. Примем Iст. min = 5 мА, это примерно достаточный ток для всех стабилитронов с напряжением стабилизации до 100 В. Выше 100 В можно принимать 1мА и меньше. Можно взять Iст. min и больше, но это только будет бесполезно греть стабилитрон.

Итак, через R1 течет Ir1 = Iнагр. + Iст. min = 50 + 5 = 55 мА. По закону Ома находим сопротивление R1 = U / I = 3 / 0,055 = 54,5 Ом, где U и I – напряжение на резисторе и ток через резистор. Выберем из ближайшего стандартного ряда сопротивление 47 Ом, будет чуть больше ток через стабилитрон, но ничего страшного. Его даже можно посчитать, общий ток: Ir1 = U / R = 3 / 47 = 0,063А, далее минимальный ток стабилитрона: 63 — 50 = 13 мА. Мощность резистора R1: P = U * I = 3 * 0,063 = 0,189 Вт. Выберем стандартный резистор на 0,5 Вт. Советую, кстати, не превышать мощность резисторов примерно Pmax/2, дольше проживут.

На стабилитроне тоже рассеивается мощность в виде тепла, при этом в самом худшем случае она будет равна P = Uст * (Iнагр + Iст.) = 15 * (0,050 + 0,013) = 0,945 Вт. Стабилитроны выпускают на разную мощность, ближайшая 1Вт, но тогда температура корпуса при потреблении около 1Вт будет где-то 125 градусов С, лучше взять с запасом, на 3 Вт. Стабилитроны выпускают на 0,25, 0,5, 1, 3, 5 Вт и т.д.

Первый же запрос в гугле «стабилитрон 3Вт 15В» выдал 1N5929BG. Далее ищем «datasheet 1N5929BG». По даташиту у него минимальный ток стабилизации 0,25 мА, что меньше 13 мА, а максимальный ток 100 мА, что больше 63 мА, т.е. укладывается в его рабочий режим, поэтому он нам подходит.

В общем-то, это весь расчёт. Да, стабилизатор это неидеальный, внутреннее сопротивление у него не нулевое, но он простой и дешевый и работает гарантировано в указанном диапазоне токов. А также поскольку это параллельный стабилизатор, то ток блока питания будет постоянным. Более мощные стабилизаторы можно получить, умощнив стабилитрон транзистором, но это уже тема следующей статьи, про транзисторы.

Проверить стабилитрон на пробой обычным мультиметром, как правило, нельзя. При более-менее высоковольтном стабилитроне просто не хватит напряжения на щупах. Единственное, что удастся сделать, это прозвонить его на наличие обычной диодной проводимости в прямом направлении. Но это косвенно гарантирует работоспособность прибора.

Еще стабилитроны можно использовать как источники опорного напряжения, но они шумные. Для этих целей выпускают специальные малошумящие стабилитроны, но их цена в моем понимании зашкаливает за кусочек кремния, лучше немного добавить и купить интегральный источник с лучшими параметрами.

Также существует много полупроводниковых приборов, похожих на диод: тиристор (управляемый диод), симистор (симметричный тиристор), динистор (открываемый импульсно только по достижении определенного напряжения), варикап (с изменяемой емкостью), что-то еще. Первые вам понадобятся в силовой электронике при постройки управляемых выпрямителей или регуляторов активной нагрузки. А с последними я уже лет 10 не сталкивался, поэтому оставляю эту тему для самостоятельного чтения в вики, хотя бы про тиристор.

1.6. Полупроводниковый стабилитрон

Полупроводниковый стабилитрон – это
диод, предназначенный для работы в
режиме пробоя на обратной ветви
вольтамперной характеристики. Стабилитроны
проектируются и изготавливаются таким
образом, что либо туннельный, либо
лавинный пробой, либо оба эти явления
вместе возникают задолго до того, как
в кристалле диода возникнут предпосылки
к тепловому пробою. Состояние пробоя
не ведет к порче стабилитрона, а является
его нормальным рабочим состоянием.

Напряжение пробоя стабилитрона
определяется концентрациями акцепторов
и доноров и профилем легирования области
p-n-перехода. Чем выше концентрации
примесей и чем больше их градиент в
переходе, тем больше напряжённость
электрического поля в области
пространственного заряда при равном
обратном напряжении, и тем меньше
обратное напряжение, при котором
возникает пробой.

Стабилитроны общего назначения
используются в схемах стабилизаторов
источников питания, ограничителей,
фиксаторов уровня напряжения.

Прецизионные стабилитроны используются
в качестве источников опорного напряжения
с высокой степенью стабилизации и
термокомпенсации.

Импульсные стабилитроны используются
для стабилизации постоянного и импульсного
напряжений, а также ограничения амплитуды
импульсов напряжения малой длительности.

Двухдиодные стабилитроны работают в
схемах стабилизации, ограничителях
напряжения различной полярности, в
качестве источников опорного напряжения.

Стабисторы используются для стабилизации
малых значений напряжения, причем
рабочим является прямое смещение диода.

1.7. Вольтамперная характеристика и параметры стабилитрона

Напряжение на обратной ветви ВАХ
стабилитрона в области электрического
пробоя слабо зависит от значения
проходящего тока. Вольтамперная
характеристика стабилитрона приведена
на рисунке 6.

Рисунок 6 –
УГО стабилитрона и его вольтамперная
характеристика

Как видно, в области пробоя напряжение
на стабилитроне Uстлишь незначительно изменяется при
больших изменениях тока стабилизацииIст.
Такая характеристика используется для
получения стабильного (опорного)
напряжения.

Стабилитроны характеризуются следующими
параметрами:

  1. напряжение стабилизации Uст.

Напряжение, которое устанавливается
на выводах стабилитрона при протекании
через него обратного тока в пределах
Iст minIст
max,
называется напряжением стабилизации.
Напряжение стабилизацииUстнезначительно зависит от токаIст.
Напряжение стабилизации связано с
напряжением пробоя, но не равно ему, так
как ВАХ имеет определенную крутизну.

В общем случае Uстопределяется шириной запирающего слояp-n-перехода, то есть концентрацией
примесей в полупроводнике. В случае
большой концентрации примесиp-n-переход
получается тонким, и в нем даже при малых
напряжениях возникает электрическое
поле, вызывающее туннельный пробой. При
малой концентрации примесиp-n-переход
имеет значительную ширину, и лавинный
пробой наступает раньше. Иногда помимо
напряжения стабилизации нормируется
разброс величины напряжения стабилизации
ΔUст ном,
представляющий собой максимально
допустимое отклонение напряжения
стабилизации от номинального для
стабилитронов одного типа.

  1. минимально допустимый ток стабилизации
    Iст min.

При малых обратных токах стабилитрон
работает на начальном участке вольтамперной
характеристики, где значение обратного
напряжения неустойчиво и может колебаться
в пределах от 0 до Uст.
Величина минимально допустимого тока
стабилизацииIст minзадает минимальный ток, при котором
гарантируется вводp-n-перехода
стабилитрона в режим устойчивого пробоя
и, как следствие, стабильное значение
напряжения стабилизацииUст.

  1. максимально допустимый ток стабилизации
    Iст max.

Максимально допустимый ток стабилизации
– это максимальный ток, при котором
гарантируется надежная работа
стабилитрона. Он определяется максимально
допустимой рассеиваемой мощностью
прибора. Рабочий ток стабилитрона (его
обратный ток) не должен превышать
максимально допустимого значения
Iст maxво избежание теплового пробоя
полупроводниковой структуры и выхода
стабилитрона из строя.

  1. номинальный ток стабилизации:

. (7)

  1. номинальное напряжение стабилизации
    Uст ном– падение напряжения на стабилитроне
    в области стабилизации при номинальном
    значении токаIст ном.

  2. динамическое (дифференциальное)
    сопротивление – отношение приращения
    напряжения стабилизации к вызвавшему
    его малому приращению тока:

. (8)

Чем меньше rд,
тем лучше стабилизация напряжения.

  1. статическое сопротивление стабилитрона
    Rств данной рабочей точке характеризует
    омические потери:

. (9)

  1. коэффициент качества стабилитрона:

. (10)

Коэффициент качества представляет
собой отношение относительного изменения
напряжения на стабилитроне к относительному
изменению тока. Качество стабилитрона
тем выше, чем меньше Q.

  1. температурный коэффициент напряжения
    стабилизации.

Температурный коэффициент напряжения
стабилизации αUстпоказывает, на сколько процентов
изменится относительное изменение
напряжения стабилизации при изменении
температуры окружающей среды на 1°C и
постоянном токе стабилизации:

,[%/°С]. (11)

В сильно легированных полупроводниках
вероятность туннельного пробоя с
увеличением температуры возрастает
из-за уменьшения ширины запрещённой
зоны. Поэтому напряжение стабилизации
у таких стабилитронов при нагревании
уменьшается, то есть они имеют отрицательный
температурный коэффициент напряжения
стабилизации ТКН.

В слабо легированных полупроводниках
при увеличении температуры уменьшается
длина свободного пробега носителей
вследствие возрастания рассеяния на
фононах решётки, что приводит к увеличению
порогового значения напряжения, при
котором начинается лавинный пробой.
Такие стабилитроны имеют положительный
ТКН.

Минимальный ТКН имеют кремниевые
стабилитроны с напряжением пробоя
5-7 В, когда туннельный и лавинный
пробои развиваются одновременно.

Путем последовательного соединения
двух или более p-n-переходов с
различными по знаку ТКН удается получить
прецизионные стабилитроны с ТКН не
более 0,0005 %/°C в широком диапазоне
температур.

Полупроводниковый стабилитрон Википедия

Zener diode symbol ru.svg
Zener diode symbol ru 2a.svg
Условные графические обозначения обычных (вверху) и двуханодных (внизу) стабилитронов на принципиальных схемах

Стабилитрон в стеклянном корпусе с рассеиваемой мощностью 0,5 Вт

Полупроводнико́вый стабилитро́н, или диод Зенера — полупроводниковый диод, работающий при обратном смещении в режиме пробоя[1]. До наступления пробоя через стабилитрон протекают незначительные токи утечки, а его сопротивление весьма высоко[1]. При наступлении пробоя ток через стабилитрон резко возрастает, а его дифференциальное сопротивление падает до величины, составляющей для различных приборов от долей ома до сотен oм[1]. Поэтому в режиме пробоя напряжение на стабилитроне поддерживается с заданной точностью в широком диапазоне обратных токов[2].

Основное назначение стабилитронов — стабилизация напряжения[1][2]. Серийные стабилитроны изготавливаются на напряжения от 1,8 В до 400 В[3]. Интегральные стабилитроны со скрытой структурой на напряжение около 7 В являются самыми точными и стабильными твердотельными источниками опорного напряжения: лучшие их образцы приближаются по совокупности показателей к нормальному элементу Вестона. Особый тип стабилитронов, высоковольтные лавинные диоды («подавители переходных импульсных помех», «супрессоры», «TVS-диоды») применяется для защиты электроаппаратуры от перенапряжений.

Полупроводниковый стабилитрон — это… Что такое Полупроводниковый стабилитрон?



Полупроводниковый стабилитрон
        Полупроводниковый диод, на выводах которого напряжение остаётся почти постоянным при изменении в некоторых пределах величины протекающего в нём электрического тока. Рабочий участок вольтамперной характеристики П. с. находится в узкой области обратных напряжений, соответствующих электрическому пробою его р—n-перехода. При напряжениях пробоя Unp 5 в механизм резкого возрастания тока (пробой) связан с туннельным эффектом (См. Туннельный эффект), а при Unp> 6,5 в — с лавинным умножением носителей заряда; при промежуточных напряжениях генерируемые первоначально (вследствие туннельного эффекта) носители заряда создают условия для управляемого лавинного пробоя. В СССР выпускаются (1975) кремниевые П. с. на различные номинальные напряжения стабилизации в диапазоне от 3 до 180 в. П. с. применяют главным образом для стабилизации напряжения и ограничения амплитуды импульсов, в качестве источника опорного напряжения, в потенциометрических устройствах.

         Лит.: Михин Д. В., Кремниевые стабилитроны, М. — Л., 1965.

         И. Г. Васильев.

Большая советская энциклопедия. — М.: Советская энциклопедия.
1969—1978.

  • Полупроводниковый спектрометр
  • Полупродукт

Смотреть что такое «Полупроводниковый стабилитрон» в других словарях:

  • полупроводниковый стабилитрон — стабилитрон Ндп. зенеровский диод Полупроводниковый диод, напряжение на котором сохраняется с определенной точностью при протекании через него тока в заданном диапазоне, и предназначенный для стабилизации напряжения. [ГОСТ 15133 77] Недопустимые …   Справочник технического переводчика

  • полупроводниковый стабилитрон — полупроводниковый стабилитрон; отрасл. ценеровский диод; зинеровский диод Полупроводниковый диод, напряжение на котором в области электрического пробоя слабо зависит от тока …   Политехнический терминологический толковый словарь

  • Стабилитрон (значения) — Стабилитрон электронный прибор, имеющий на вольт амперной характеристике участок с очень высокой крутизной (напряжение на элементе почти не изменяется при значительном изменении тока), и предназначенный для работы в этом участке. Разновидности… …   Википедия

  • Стабилитрон — У этого термина существуют и другие значения, см. Стабилитрон (значения) …   Википедия

  • Полупроводниковый диод —         двухэлектродный электронный прибор на основе полупроводникового (ПП) кристалла. Понятие «П. д.» объединяет различные приборы с разными принципами действия, имеющие разнообразное назначение. Система классификации П. д. соответствует общей… …   Большая советская энциклопедия

  • Стабилитрон —         [от лат. stabilis устойчивый, постоянный и (элек (См. Электрон)) трон (См. …трон)], двухэлектродный газоразрядный или полупроводниковый прибор, напряжение на котором при изменении (в определённых пределах) протекающего в нём тока… …   Большая советская энциклопедия

  • СТАБИЛИТРОН — (от лат. stabilis устойчивый, постоянный) полупроводниковый полупроводниковый прибор, предназначенный для стабилизации напряженияв электрич. цепях (см. Стабилизация тока и напряжения). Представляетсобой диод, работающий при обратном напряжении;… …   Физическая энциклопедия

  • СТАБИЛИТРОН — (от лат. stabilis устойчивый и …трон) газоразрядный или полупроводниковый прибор для стабилизации напряжения. Действие основано на резком нарастании тока (при определенном напряжении) в результате ионизации газа при тлеющем или коронном разряде …   Большой Энциклопедический словарь

  • СТАБИЛИТРОН — двухэлектродный газоразрядный или полупроводниковый прибор, предназначенный для (см.) напряжения …   Большая политехническая энциклопедия

  • стабилитрон — (от лат. stabilis  устойчивый и …трон), газоразрядный или полупроводниковый прибор для стабилизации напряжения. Действие основано на резком нарастании тока (при определённом напряжении) в результате ионизации газа при тлеющем или коронном… …   Энциклопедический словарь

Что такое стабилитрон

Стабилитрона широко используются в качестве опорного напряжения, где его обратная пробая характеристика обеспечивает напряжение стабильного через диод свыше для диапазона токов, протекающих хотя он.


Учебное пособие по стабилитронам / эталонным диодам Включает:
стабилитрон
Теория работы стабилитрона
Технические характеристики стабилитрона
Схемы на стабилитронах

Другие диоды: Типы диодов


Стабилитрона является формой полупроводникового диода, который широко используется в схемах электроники в качестве опорного напряжения.

Стабилитрон или опорный диод напряжения — это электронный компонент, который обеспечивает стабильное и заданное напряжение. В результате схемы на стабилитронах часто используются в источниках питания, когда требуются регулируемые выходы. Эти диоды также используются для многих других применений, где необходимы стабильные определенные опорного напряжения. Их также можно использовать для ограничения напряжения в ограничителях напряжения или для удаления скачков напряжения в линиях напряжения.

Стабилитроны

/ опорные диоды напряжения дешевы, они также просты в использовании, и эти электронные компоненты легко доступны для различных напряжений, с различными номинальными мощностями и т. Д.

Стабилитрон работает как обычный диод с PN переходом в прямом направлении, но обеспечивает очень резкий пробой в обратном направлении при определенном напряжении. Именно это обратное напряжение пробоя, которое используется для опорного напряжения или в стрижке приложений.

История стабилитрона

История стабилитронов

берет свое начало в разработке первых полупроводниковых диодов. Хотя первые детекторы, такие как «кошачий ус» и диоды с точечным контактом, были доступны примерно с 1905 года, большая часть работ по полупроводникам и полупроводниковым диодам была предпринята во время и после Второй мировой войны.

Первым человеком, описавшим электрические свойства стабилитрона, был Кларенс Мелвин Зинер (родился 1 декабря 1905 г., умер 15 июля 1993 г.).

Кларенс Зенер был физиком-теоретиком, который работал в Bell Labs, и в результате его работы Белл назвал стабилитрон в его честь. Он впервые постулировал эффект пробоя, носящий его имя, в статье, опубликованной в 1934 году.

Основы стабилитрона

Стабилитроны

иногда называют эталонными диодами, поскольку они могут обеспечивать стабильное эталонное напряжение для многих электронных схем.Сами диоды дешевы, их много, и их можно купить практически в каждом магазине электронных компонентов.

Стабилитроны

имеют многие из основных свойств обычных полупроводниковых диодов. Они проводят в прямом направлении и имеют такое же напряжение включения, что и обычные диоды. Для кремния это около 0,6 вольт.

IV характеристика стабилитрона

В обратном направлении стабилитрон работает иначе, чем обычный диод. При низком напряжении диоды проводят не так, как ожидалось.Однако при достижении определенного напряжения диод «выходит из строя» и течет ток.

Глядя на кривые стабилитрона, можно увидеть, что напряжение почти постоянно, независимо от протекаемого тока. Это означает, что диод Зенера обеспечивает стабильное и известное опорное напряжение для широкого диапазона текущих уровней.

Замечательная стабильность напряжения пробоя в широком диапазоне уровней пропускной способности — вот что делает эталонный стабилитрон таким полезным.Он может быть использован в самых разнообразных схем для обеспечения стабильного опорного напряжения, а также используется в различных других схемах, где могут быть использованы его обратный пробой характеристикой.

Обозначение схемы стабилитрона

Для стабилитрона существует множество стилей корпусов. Некоторые из них используются для высокого уровня рассеивания мощности, а другие содержатся в форматах для поверхностного монтажа. Для домашнего строительства наиболее распространенный тип заключен в небольшую стеклянную капсулу.У него есть полоса вокруг одного конца, которая отмечает катод.

Видно, что полоса вокруг упаковки соответствует линии на символе диодной цепи, и это может быть простым способом запомнить, какой конец какой. Для стабилитрона, работающего в режиме обратного смещения, полоса является более положительной клеммой в цепи.

Маркировка стабилитронов, символы и контуры упаковки

Чтобы отличить стабилитрон или эталонный диод от других форм диодов в пределах принципиальной схемы, символ цепи стабилитрона помещает две метки на конце полосы: одна направлена ​​вверх, а другая — в нижнее направление, как показано на схеме.

Типовой номер стабилитрона

С точки зрения нумерации типа, стабилитронов, или опорного напряжения диодов представляют собой небольшую проблему для типа нумерации их. Может быть общая серия диодов одного семейства, но с разными пробивными или опорными напряжениями.

В результате можно зарезервировать последовательный ряд номеров диодов в системе или добавить суффикс к номеру основного типа, чтобы указать напряжение.

Один из методов нумерации стабилитронов из одного семейства, но с разными напряжениями — это использовать серию в рамках стандартной системы нумерации.Одним из примеров является серия от 1N4728A до 1N4764A с одним номером детали, назначенным для каждого напряжения. Эти диоды представляют собой стабилитроны мощностью 400 мВт с диапазоном напряжений от 3,3 до 100 В с допуском 5% и диапазоном E24.

Другой используемый метод заключается в том, чтобы указать номер для семейства, а затем добавить к номеру детали напряжение, например BZY88 C5V6 где 5V6 — напряжение, 5,6 вольт.

Зенер значение диоды или опорное напряжение диода, как правило, расположены с использованием серии E12, хотя некоторые из них доступны в серии E24, е.g 5V1 используется для ряда логических микросхем, где используется очень простой стабилитрон. Если транзисторный эмиттерный повторитель используется для большего тока, то стабилитрон 5V6 лучше, так как транзистор упадет на 0,6 вольт, и это делает его идеальным.

Хотя лучше всего придерживаться более широко используемой серии E12, а еще лучше E6 или даже E3, часто это невозможно, и доступны значения напряжения стабилитронов из серии E24.

Стандартное напряжение стабилитрона E24 серии
(Примечание: значения E12 выделены жирным шрифтом)
1.0 1,1 1,2
1,3 1,5 1,6
1,8 2,0 2,2
2,4 2,7 3,0
3,3 3,6 3,9
4,3 4,7 5.1
5,6 6,2 6,8
7,5 8,2 9,1

Примечание: Значения E12 выделены жирным шрифтом.

Стабилитроны

обычно не поставляются последовательно выше диапазона E24. Причина этого в том, что производственные допуски недостаточны, и их использование обычно не требует.

Стабилитрон с технологией

Стабилитроны

работают при обратном смещении и используют две формы обратного пробоя. Одной из форм обратного пробоя называется пробоем стабилитрона, и это дает имя часто используется для описания всех форм опорного напряжения диода. Другой тип обратного пробоя может быть назван ударно-ионизационным пробоем.

Обнаружено, что из двух эффектов эффект Зенера преобладает выше примерно 5,5 вольт, тогда как ударная ионизация является основным эффектом ниже этого напряжения.

Поскольку два эффекта имеют температурные коэффициенты, которые находятся в противоположных смыслах, это означает, что диоды с напряжением около 5,5 В являются наиболее стабильными по температуре.

Зенер характеристики диода ссылки диодов / напряжение

При выборе диода Зенера или опорного напряжения диод для использования в схеме, существует несколько спецификаций, которые необходимо учитывать, чтобы гарантировать, что выбран оптимальный диод для применения.

Очевидная спецификация стабилитрона — это обратное напряжение, но другие характеристики, такие как рассеиваемая мощность, обратный ток и т.п., также важны для любой схемы, которая может включать диод.

Цепи стабилитронов

Есть много способов, в которых могут быть использованы диоды Зенера или опорное напряжение диоды. Наиболее широко известно, в качестве опорного напряжения в той или иной форме регулятора напряжения, но они также могут быть использованы в качестве формы сигнала для схем ограничителей, где это может быть необходимо, чтобы ограничить экскурсию формы сигнала для предотвращения перегрузки и т.д. Они также могут быть использованы в переключателях напряжения.

Соответственно, стабилитроны часто используются в конструкциях электронных схем, и огромное количество их повторно используется в производстве, как в качестве устройств с выводами, так и в форматах для поверхностного монтажа.

Стабилитрон — особенно полезный компонент для разработки электронных схем. В результате миллионы стабилитронов ежегодно используются при создании электронного оборудования как в виде дискретных компонентов, так и в качестве компонентов, содержащихся в больших интегральных схемах.

Хотя опорное напряжение интегральных схем доступны, которые обеспечивают очень высокую степень точности и температурную стабильность, для большинства применений простого стабилитрона более удовлетворительных и обеспечат более дешевое решение.Соответственно, это помогает узнать, что такое стабилитрон, как он работает, и основы схемы диода Зенера.

Другие электронные компоненты:
Резисторы
Конденсаторы
Индукторы
Кристаллы кварца
Диоды
Транзистор
Фототранзистор
FET
Типы памяти
Тиристор
Разъемы
Разъемы RF
Клапаны / трубки
Аккумуляторы
Переключатели
Реле

Вернуться в меню «Компоненты».. .

.Стабилитрон

Работа с принципиальной схемой и приложениями

Диод является одним из основных компонентов электронных схем. Если вы хотите знать о напряжениях, вы должны знать о диодах. Диод в основном состоит из полупроводников, которые имеют две характеристики: тип «P» и тип «N». Полупроводники типа «P» и «N» представляют собой полупроводники положительного и отрицательного типа. Полупроводник P-типа будет иметь избыточное количество дырок в конфигурации, а полупроводник N-типа будет иметь избыточное количество электронов.Если в монокристалле присутствуют оба типа характеристик, то его можно назвать диодом. Положительная клемма батареи соединяется со стороной «P», а отрицательная сторона — со стороной «N». Давайте обсудим, как работает стабилитрон. Это не что иное, как простой диод, подключенный в обратном направлении.

Zener Diode Zener Diode Стабилитрон

Стабилитрон

В основном это особые свойства диода, а не какого-либо специального оборудования. Человек по имени Клиренс Зинер изобрел это свойство диода, поэтому он назван в его честь как память.Особое свойство диода состоит в том, что в цепи произойдет пробой, если напряжение приложено к цепи с обратным смещением. Это не позволяет току течь по нему. Когда напряжение на диоде увеличивается, температура также увеличивается, и ионы кристалла колеблются с большей амплитудой, и все это приводит к пробою обедненного слоя. Слой на стыке типа «П» и типа «Н». Когда приложенное напряжение превышает определенную величину, происходит пробой Зенера.

Zener Diode V-I Characteristics Zener Diode V-I Characteristics Стабилитрон V-I Характеристики

Стабилитрон — это не что иное, как один диод, подключенный в режиме обратного смещения, и стабилитрон может быть подключен в положительном положении с обратным смещением в цепи, как показано на рисунке. Мы можем подключать его для различных приложений.

Условное обозначение цепи стабилитрона такое, как показано на рисунке. Для удобства используется нормально. Обсуждая диодные схемы, следует обратить внимание на графическое представление работы стабилитрона.Это называется ВАХ обычного диода с p — n переходом.

Zener Diode connection Zener Diode connection Подключение стабилитрона

Характеристики стабилитрона

На приведенной выше диаграмме показаны характеристики V-I поведения стабилитрона. Когда диод подключен в прямом смещении, диод работает как обычный диод. Когда напряжение обратного смещения больше заданного напряжения, возникает напряжение пробоя стабилитрона. Для получения напряжения пробоя контролируется резкое и отчетливое легирование и устраняются дефекты поверхности.В приведенных выше характеристиках V-I Vz — это напряжение стабилитрона. А также напряжение на коленях, потому что в этот момент ток очень быстрый.

Zener Diode behaviour Zener Diode behaviour Поведение стабилитрона

Применение стабилитрона

Стабилитрон широко используется в качестве шунтирующего регулятора или регулятора напряжения. Изучив первую часть статьи, мы знаем, что такое стабилитрон и каков основной принцип работы. Здесь возникает вопрос, где могут быть полезны диоды этого типа.Основное применение этого типа диодов в качестве защитного напряжения regulator.Over напряжения, в качестве опорного напряжения.

PCBWay PCBWay
Zener Diode checking Zener Diode checking Проверка стабилитрона

Мы обсудили применение стабилитрона в качестве стабилизатора напряжения, а теперь обсудим два других момента.

Защита от перенапряжения осуществляется с помощью стабилитронов, поскольку через диод проходит ток после того, как напряжение обратного смещения превышает определенное значение. Эта схема обеспечивает безопасность оборудования, подключенного к клеммам.Обычно ток не должен превышать нормальный клапан, но если из-за какой-либо неисправности в цепи ток превышает максимально допустимое напряжение, то оборудование системы может быть повреждено. Используется SCR, с помощью которого быстро снижается выходное напряжение и перегорает предохранитель, который отключает питание входного источника. Схемное показан ниже для лучшего понимания,

Zener Diode connection Zener Diode connection стабилитрон соединение

опорного напряжения определяет постоянную подачу тока или напряжения питания в качестве работ напряжения Зенера.Если ток такой же, то во избежание нестабильной работы мы используем стабилитроны. Они используются там, где опорное напряжение требуется, как амперметры, омметры и вольтметры.

Стабилитрон как регулятор напряжения

Термин «регулятор» означает то, что регулирует. Стабилитрон может работать как регулятор напряжения, если он включен в схему. Выходной сигнал на диоде будет постоянным. Он приводится в действие источником тока. Как мы знаем, если напряжение на диоде превышает определенное значение, он потребляет чрезмерный ток от источника питания.Базовая схема стабилитрона в качестве регулятора напряжения приведена ниже:

Чтобы зафиксировать ток, проходящий через стабилитрон, вводится последовательное сопротивление R, значение которого может быть выбрано из следующего уравнения

Величина резистора (Ом) = (V1 — V2) / (Ток стабилитрона + ток нагрузки)

На приведенной выше диаграмме показан шунтирующий стабилизатор, поскольку регулирующий элемент параллелен нагрузочному элементу. Диод Зенера производит стабильное опорное напряжение на нагрузке, которая удовлетворяет критериям требования регулятора.

Стабилитрон позволяет току течь в прямом направлении так же, как идеальный диод. Он также позволяет течь в обратном направлении, когда напряжение выше определенного значения, известного как напряжение пробоя.

Это устройство названо в честь Зенера. Зинер обнаружил это электрическое свойство. Стабилитрон — это диод, в котором обратный пробой происходит из-за квантового туннелирования электронов под действием высокого электрического поля, называемого эффектом Зенера. Многие диоды, описываемые как стабилитроны, вместо этого полагаются на лавинный пробой.Оба типа используются с преобладанием эффекта Зенера при напряжении 5,6 В и лавинным пробоем выше. Обычные приложения включают в себя обеспечение опорного напряжения для регуляторов напряжения. Это необходимо для защиты устройств от кратковременных импульсов напряжения.

Zener Diode Connectivity Zener Diode Connectivity Связь с стабилитроном

Эти устройства также встречаются последовательно с базовым эмиттерным переходом. На транзисторных каскадах, когда выборочный выбор устройства сосредоточен вокруг лавины или точки Зенера. Его можно использовать для введения компенсирующего температурного коэффициента балансировки транзистора.Усилитель ошибки постоянного тока, используемый в системе обратной связи цепи регулируемого источника питания, является одним из примеров.

Они также используются в устройствах защиты от перенапряжения для ограничения систем с импульсными скачками напряжения, а еще одним применением стабилитрона является использование шума, вызванного его лавинным пробоем в генераторе случайных чисел. Не могли бы вы рассказать мне еще о некоторых применениях стабилитрона? Комментируя….

Фото:

.

применений стабилитрона и его практическое применение в реальной жизни

    • БЕСПЛАТНАЯ ЗАПИСЬ КЛАСС
    • КОНКУРСНЫЕ ЭКЗАМЕНА
      • BNAT
      • Классы
        • Класс 1-3
        • Класс 4-5
        • Класс 6-10
        • Класс 110003 CBSE
          • Книги NCERT
            • Книги NCERT для класса 5
            • Книги NCERT, класс 6
            • Книги NCERT для класса 7
            • Книги NCERT для класса 8
            • Книги NCERT для класса 9
            • Книги NCERT для класса 10
            • NCERT Книги для класса 11
            • NCERT Книги для класса 12
          • NCERT Exemplar
            • NCERT Exemplar Class 8
            • NCERT Exemplar Class 9
            • NCERT Exemplar Class 10
            • NCERT Exemplar Class 11
            • 9plar

            • RS Aggarwal
              • Решения RS Aggarwal Class 12
              • RS Aggarwal Class 11 Solutions
              • RS Aggarwal Решения класса 10
              • Решения RS Aggarwal класса 9
              • Решения RS Aggarwal класса 8
              • Решения RS Aggarwal класса 7
              • Решения RS Aggarwal класса 6
            • RD Sharma
              • RD Sharma Class 6 Решения
              • RD Sharma Class 7 Решения
              • Решения RD Sharma класса 8
              • Решения RD Sharma класса 9
              • Решения RD Sharma класса 10
              • Решения RD Sharma класса 11
              • Решения RD Sharma Class 12
            • PHYSICS
              • Механика
              • Оптика
              • Термодинамика
              • Электромагнетизм
            • ХИМИЯ
              • Органическая химия
              • Неорганическая химия
              • Периодическая таблица
            • MATHS
              • Статистика
              • 9000 Pro Числа
              • Числа
              • 9000 Pro Числа Тр Игонометрические функции
              • Взаимосвязи и функции
              • Последовательности и серии
              • Таблицы умножения
              • Детерминанты и матрицы
              • Прибыль и убытки
              • Полиномиальные уравнения
              • Деление фракций
            • Microology
                0003000
            • FORMULAS
              • Математические формулы
              • Алгебраические формулы
              • Тригонометрические формулы
              • Геометрические формулы
            • КАЛЬКУЛЯТОРЫ
              • Математические калькуляторы
              • 0003000
              • 000 Калькуляторы
              • 000 Физические модели 900 Образцы документов для класса 6
              • Образцы документов CBSE для класса 7
              • Образцы документов CBSE для класса 8
              • Образцы документов CBSE для класса 9
              • Образцы документов CBSE для класса 10
              • Образцы документов CBSE для класса 1 1
              • Образцы документов CBSE для класса 12

      .Стабилитрон

      | Стабилитроны — для онлайн-продажи дискретных полупроводников Стабилитрон

      | Стабилитроны — для онлайн-продаж дискретных полупроводников | Компоненты RS

      Стабилитроны

      Стабилитрон — это тип полупроводникового диода, который отличается от обычного диода, поскольку он позволяет току течь от анода к катоду в прямом или обратном направлении, но только при достаточном напряжении. Стабилитроны разработаны для надежной работы в области пробоя, в отличие от обычных диодов, которые могут перегреваться.Они являются наиболее распространенными и удобными решениями ряда задач в схемотехнике.

      Стабилитроны предназначены для изменения направления тока, когда напряжение достигает определенного, определенного уровня напряжения. Это также означает, что стабилитроны могут непрерывно работать в режиме пробоя. Уровень напряжения, который изменяет направление потока, называется напряжением стабилитрона или напряжением пробоя. Он может быть определен для конкретных диодов от 1,8 до 200 В.

      Ключевые атрибуты стабилитрона:

      & # 149; Конфигурация устройства, включая двойной или общий анод
      & # 149; Тип стабилитрона, включая лавинный или стабилизатор напряжения
      & # 149; Допуск напряжения
      & # 149; Дрейф напряжения с температурой
      & # 149; Импеданс (макс.)

      Каково типичное применение стабилитронов?
      Стабилитроны используются во всех видах электронного оборудования и используются для защиты цепей от перенапряжения и электростатического разряда или для коммутации.Они являются одним из основных строительных блоков электронных схем.


      Наш веб-сайт использует файлы cookie и аналогичные технологии, чтобы предоставить вам лучший сервис при поиске или размещении заказа, в аналитических целях и для персонализации нашей рекламы для вас.
      Вы можете изменить настройки файлов cookie, прочитав нашу политику в отношении файлов cookie. В противном случае мы будем считать, что вы согласны с использованием файлов cookie.

      Хорошо, я понимаю

      .

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *