29.06.2024

Правила электролиза: Электролиз, подготовка к ЕГЭ по химии

Содержание

Электролиз, подготовка к ЕГЭ по химии


Электролиз (греч. elektron — янтарь + lysis — разложение) — химическая реакция, происходящая при прохождении постоянного тока через
электролит. Это разложение веществ на их составные части под действием электрического тока.


Процесс электролиза заключается в перемещении катионов (положительно заряженных ионов) к катоду (заряжен отрицательно), и отрицательно
заряженных ионов (анионов) к аноду (заряжен положительно).

Электролиз


Итак, анионы и катионы устремляются соответственно к аноду и катоду. Здесь и происходит химическая реакция. Чтобы успешно решать задания
по этой теме и писать реакции, необходимо разделять процессы на катоде и аноде. Именно так и будет построена эта статья.

Катод


К катоду притягиваются катионы — положительно заряженные ионы: Na+, K+, Cu2+, Fe3+,
Ag+ и т.д.


Чтобы установить, какая реакция идет на катоде, прежде всего, нужно определиться с активностью металла: его положением в электрохимическом
ряду напряжений металлов.

Электролиз катод


Если на катоде появился активный металл (Li, Na, K) то вместо него восстанавливаются молекулы воды, из которых выделяется водород. Если металл средней
активности (Cr, Fe, Cd) — на катоде выделяется и водород, и сам металл. Малоактивные металлы выделяются на катоде в чистом виде (Cu, Ag).


Замечу, что границей между металлами активными и средней активности в ряду напряжений считается алюминий. При электролизе на катоде металлы
до алюминия (включительно!) не восстанавливаются, вместо них восстанавливаются молекулы воды — выделяется водород.


В случае, если на катод поступают ионы водорода — H+ (например при электролизе кислот HCl, H2SO4) восстанавливается
водород из молекул кислоты: 2H+ — 2e = H2

Анод


К аноду притягиваются анионы — отрицательно заряженные ионы: SO42-, PO43-, Cl, Br,
I, F, S2-, CH3COO.

Электролиз анод


При электролизе кислородсодержащих анионов: SO42-, PO43- — на аноде окисляются не анионы, а молекулы
воды, из которых выделяется кислород.


Бескислородные анионы окисляются и выделяют соответствующие галогены. Сульфид-ион при оксилении окислении серу. Исключением является фтор — если он
попадает анод, то разряжается молекула воды и выделяется кислород. Фтор — самый электроотрицательный элемент, поэтому и является исключением.


Анионы органических кислот окисляются особым образом: радикал, примыкающий к карбоксильной группе, удваивается, а сама карбоксильная группа (COO)
превращается в углекислый газ — CO2.

Примеры решения


В процессе тренировки вам могут попадаться металлы, которые пропущены в ряду активности. На этапе обучения вы можете пользоваться расширенным рядом
активности металлов.

Ряд активности металлов


Теперь вы точно будете знать, что выделяется на катоде ;-)


Итак, потренируемся. Выясним, что образуется на катоде и аноде при электролизе растворов AgCl, Cu(NO3)2, AlBr3,
NaF, FeI2, CH3COOLi.

Задания на электролиз


Иногда в заданиях требуется записать реакцию электролиза. Сообщаю: если вы понимаете, что образуется на катоде, а что на аноде,
то написать реакцию не составляет никакого труда. Возьмем, например, электролиз NaCl и запишем реакцию:


NaCl + H2O → H2 + Cl2 + NaOH


Натрий — активный металл, поэтому на катоде выделяется водород. Анион не содержит кислорода, выделяется галоген — хлор. Мы пишем уравнение, так
что не можем заставить натрий испариться бесследно 🙂 Натрий вступает в реакцию с водой, образуется NaOH.


Запишем реакцию электролиза для CuSO4:


CuSO4 + H2O → Cu + O2 + H2SO4


Медь относится к малоактивным металлам, поэтому сама в чистом виде выделяется на катоде. Анион кислородсодержащий, поэтому в реакции выделяется
кислород. Сульфат-ион никуда не исчезает, он соединяется с водородом воды и превращается в серую кислоту.

Электролиз расплавов


Все, что мы обсуждали до этого момента, касалось электролиза растворов, где растворителем является вода.


Перед промышленной химией стоит важная задача — получить металлы (вещества) в чистом виде. Малоактивные металлы (Ag, Cu) можно легко получать
методом электролиза растворов.


Но как быть с активными металлами: Na, K, Li? Ведь при электролизе их растворов они не выделяются на катоде в чистом виде, вместо них восстанавливаются
молекулы воды и выделяется водород. Тут нам как раз пригодятся расплавы, которые не содержат воды.

Электролиз расплава


В безводных расплавах реакции записываются еще проще: вещества распадаются на составные части:


AlCl3 → Al + Cl2


LiBr → Li + Br2


© Беллевич Юрий Сергеевич 2018-2020


Данная статья написана Беллевичем Юрием Сергеевичем и является его интеллектуальной собственностью. Копирование, распространение
(в том числе путем копирования на другие сайты и ресурсы в Интернете) или любое иное использование информации и объектов
без предварительного согласия правообладателя преследуется по закону. Для получения материалов статьи и разрешения их использования,
обратитесь, пожалуйста, к Беллевичу Юрию.

ЕГЭ. Электролиз растворов. Примеры

Электролиз растворов электролитов с инертными электродами

Напомним, что на катоде протекают процессы восстановления, на аноде — процессы окисления.

Процессы, протекающие на катоде:

В растворе имеются несколько видов положительно заряженных частиц, способных восстанавливаться на катоде:

1) Катионы металла восстанавливаются до простого вещества, если металл находится в ряду напряжений правее алюминия (не включая сам Al). Например:

Zn2+ +2e → Zn0.

 

2) В случае раствора соли или щелочи: катионы водорода восстанавливаются до простого вещества, если металл находится в ряду напряжений металлов до H2:

2H2O + 2e → H20 + 2OH.

Например, в случае электролиза растворов NaNO3 или KOH.

 

3) В случае электролиза раствора кислоты: катионы водорода восстанавливаются до простого вещества:

2H+ +2e → H2.

Например, в случае электролиза раствора H2SO4.

Процессы, протекающие на аноде:

На аноде легко окисляются кислотные остатки не содержащие кислород. Например, галогенид-ионы (кроме F), сульфид-анионы, гидроксид-анионы и молекулы воды:

1) Галогенид-анионы окисляются до простых веществ:

2Cl – 2e → Cl2.

 

2) В случае электролиза раствора щелочи в гидроксид-анионах кислород окисляется до простого вещества. Водород уже имеет степень окисления +1 и не может быть окислен дальше. Также будет выделение воды — почему? Потому что больше ничего написать и не получится: 1) H+ написать не можем, так как OH и H+ не могут стоять по разные стороны одного уравнения; 2) H2 написать также не можем, так как это был бы процесс восстановления водорода (2H+ +2e → H2), а на аноде протекают только процессы окисления.

4OH – 4e → O2 + 2H2O.

 

3) Если в растворе есть анионы фтора или любые кислородсодержащие анионы, то окислению будет подвергаться вода с подкислением прианодного пространства согласно следующему уравнению:

2H2O – 4e → O2 + 4H+.

Такая реакция идет в случае электролиза растворов кислородсодержащих солей или кислородсодержащих кислот. В случае электролиза раствора щелочи окисляться будут гидроксид-анионы согласно правилу 2) выше.

 

4) В случае электролиза раствора соли органической кислоты на аноде всегда происходит выделение CO2 и удвоение остатка углеродной цепи:

2R-COO – 2e → R-R + 2CO2.

Примеры:

1. Раствор NaCl

Расписываем диссоциацию на ионы:

NaCl → Na+ + Cl

Металл Na стоит в ряду напряжений до алюминия, следовательно, восстанавливаться на катоде не будет (катионы остаются в растворе). Согласно правилу выше, на катоде восстанавливается водород. Хлорид-анионы будут окисляться на аноде до простого вещества:

 

К: 2Na+ (в растворе)

     2H2O + 2e → H20 + 2OH
А: 2Cl – 2e → Cl2

 

Коэффициент 2 перед Na+ появился из-за наличия аналогичного коэффициента перед хлорид-ионами, так как в соли NaCl их соотношение 1:1.

Проверяем, что количество принимаемых и отдаваемых электронов одинаковое, и суммируем левые и правые части катодных и анодных процессов:

 

2Na+ + 2Cl + 2H2O → H20 + 2Na+ + 2OH + Cl2. Соединяем катионы и анионы:

2NaCl + 2H2O → H20 + 2NaOH + Cl2.

 

2. Раствор Na2SO4

Расписываем диссоциацию на ионы:

Na2SO4 → 2Na+ + SO42–

 

Натрий стоит в ряду напряжений до алюминия, следовательно, восстанавливаться на катоде не будет (катионы остаются в растворе). Согласно правилу выше, на катоде восстанавливается только водород. Сульфат-анионы содержат кислород, поэтому окисляться не будут, также оставаясь в растворе. Согласно правилу выше, в этом случае окисляются молекулы воды:

К: 2H2O + 2e → H20 + 2OH
А: 2H2O – 4e → O20 + 4H+.

 

Уравниваем число принимаемых и отдаваемых электронов на катоде и аноде. Для этого необходимо умножить все коэффициенты катодного процесса на 2:
К: 4H2O + 4e → 2H20 + 4OH
А: 2H2O – 4e → O20 + 4H+.

 

Складываем левые и правые части катодных и анодных процессов:

6H2O → 2H20 + 4OH + 4H+ + O20.

 

4OH- и 4H+ соединяем в 4 молекулы H2O:

6H2O → 2H20 + 4H2O + O20.

 

Сокращаем молекулы воды, находящиеся по обе стороны уравнения, т.е. вычитаем из каждой части уравнения 4H2O и получаем итоговое уравнение гидролиза:

2H2O → 2H20 + O20.

 

Таким образом, гидролиз растворов кислородсодержащих солей активных металлов (до Al включительно) сводится к гидролизу воды, так как ни катионы металлов, ни анионы кислотных остатков не принимают участие в окислительно-восстановительных процессах, протекающих на электродах.

 

3. Раствор CuCl2

Расписываем диссоциацию на ионы:

CuCl2 → Cu2+ + 2Cl

 

Медь находится в ряду напряжений металлов после водорода, следовательно, только она будет восстанавливаться на катоде. На аноде будут окисляться только хлорид-а

Электролиз | CHEMEGE.RU

  Химические реакции, сопровождающиеся переносом электронов (окислительно-восстановительные реакции) делятся на два типа: реакции, протекающие самопроизвольно и реакции, протекающие при прохождении тока через раствор или расплав электролита.

  Раствор или расплав электролита помещают в специальную емкость — электролитическую ванну.

  Электрический ток — это упорядоченное движение заряженных частиц — ионов, электронов и др. под действием внешнего электрического поля. Электрическое поле в растворе или расплаве электролита создают электроды.

  Электроды — это, как правило, стержни из материала, проводящего электрический ток. Их помещают в раствор или расплав электролита, и подключают к электрической цепи с источником питания.

  При этом отрицательно заряженный электрод катод — притягивает положительно заряженные ионы — катионы. Положительно заряженный электрод (анод) притягивает отрицательно заряженные частицы (анионы). Катод выступает в качестве восстановителя, а анод — в качестве окислителя.

 Различают электролиз с активными и инертными электродами. Активные (растворимые) электроды подвергаются химическим превращениям в процессе электролиза. Обычно их изготавливают из меди, никеля и других металлов. Инертные (нерастворимые) электроды химическим превращениям не подвергаются. Их изготавливают из неактивных металлов, например, платины, или графита.

Электролиз растворов

   Различают электролиз раствора или расплава химического вещества. В растворе присутствует дополнительное химическое вещество — вода, которая может принимать участие в окислительно-восстановительных реакциях.

Катодные процессы

  В растворе солей катод притягивает катионы металлов. Катионы металлов могут выступать в качестве окислителей. Окислительные способности ионов металлов различаются. Для оценки окислительно-восстановительных способностей металлов применяют электро-химический ряд напряжений:

     Каждый металл характеризуется значением электрохимического потен-циала. Чем меньше потенциал, тем больше восстановительные свойства металла и тем меньше окислительные свойства соответствующего иона этого металла. Разным ионам соответствуют разные значения этого потенциала. Электрохимический потенциал — относительная величина. Электрохимический потенциал водорода принят равным нулю.

   Также около катода находятся молекулы воды Н2О. В составе воды есть окислитель — ион H+

При электролизе растворов солей на катоде наблюдаются следующие закономерности:

1. Если металл в соли — активный (до Al3+ включительно в ряду напряжений), то вместо металла на катоде восстанавливается (разряжается) водород, т.к. потенциал водорода намного больше. Протекает процесс восстановления молекулярного водорода из воды, при этом образуются ионы OH, среда возле катода — щелочная:

2H2O +2ē → H2 + 2OH

Например, при электролизе раствора хлорида натрия на катоде будет вос-станавливаться только водород из воды.

2. Если металл в соли –  средней активности (между Al3+ и Н+), то на катоде восстанавливается (разряжается) и металл, и водород, так как потенциал таких металлов сравним с потенциалом водорода:

Men+ + nē → Me0

2H+2O +2ē → H20 + 2OH

Например, при электролизе раствора сульфата железа (II) на катоде будет восстанавливаться (разряжаться) и железо, и водород:

Fe2+ + 2ē → Fe0

2H+2O +2ē → H20 + 2OH

3. Если металл в соли — неактивный (после водорода в ряду стандартных электрохимических металлов), то ион такого металла является более сильным окислителем, чем ион водорода, и на катоде восстанавливается только металл:

Men+ + nē → Me0

Например, при электролизе раствора сульфата меди (II) на катоде будет восстанавливаться медь:

Cu2+ + 2ē → Cu0

4. Если на катод попадают катионы водорода H+, то они и восстанавливаются до молекулярного водорода:

2H+ + 2ē → H20

Анодные процессы

Положительно заряженный анод притягивает анионы и молекулы воды. Анод – окислитель. В качестве восстановителей выступаю либо анионы кислотных остаток, либо молекулы воды (за счет кислорода в степени окисления -2: H2O-2).

При электролизе растворов солей на аноде наблюдаются следующие закономерности:

1. Если на анод попадает бескислородный кислотный остаток, то он окисляется до свободного состояния (до степени окисления  0):

неМеn- – nē = неМе0

Например: при электролизе раствора хлорида натрия на аноде окисляют-ся хлорид-ионы:

2Cl – 2ē = Cl20

Действительно, если вспомнить Периодический закон: при увеличении электроотрицательности неметалла его восстановительные свойства уменьшаются. А кислород – второй по величине электроотрицательности элемент. Таким образом, проще окислить практически любой неметалл, а не кислород. Правда, есть одно исключение. Наверное, вы уже догадались. Конечно же, это фтор. Ведь электроотрицательность фтора больше, чем у кислорода. Таким образом, при электролизе растворов фторидов окисляться будут именно молекулы воды, а не фторид-ионы:

2H2O-2 – 4ē → O20+ 4H+

2. Если на анод попадает кислородсодержащий кислотный остаток, либо фторид-ион, то окислению подвергается вода с выделением молекулярно-го кислорода:

2H2O-2 – 4ē → O20 + 4H+

3. Если на анод попадает гидроксид-ион, то он окисляется и происходит выделение молекулярного кислорода:

 4O-2H – 4ē → O20 + 2H2O

4. При электролизе растворов солей карбоновых кислот окислению под-вергается атом углерода карбоксильной группы, выделяется углекислый газ и соответствующий алкан. 

Например, при электролизе растворов ацетатов выделяется углекислый газ и этан:

2CH3C+3OO 2ē → 2C+4O2+ CH3-CH3

Суммарные процессы электролиза

Рассмотрим электролиз растворов различных солей.

Например, электролиз раствора сульфата меди. На катоде восстанавливаются ионы меди:

Катод (–): Cu2+ + 2ē → Cu0

На аноде окисляются молекулы воды:

Анод (+): 2H2O-2 – 4ē → O2 + 4H+

Сульфат-ионы в процессе не участвуют. Мы их запишем в итоговом уравнении с ионами водорода в виде серной кислоты:

2Cu2+SO4 + 2H2O-2 → 2Cu0 + 2H2SO4 + O20

Электролиз раствора хлорида натрия выглядит так:

На катоде восстанавливается водород:

Катод (–): 2H+2O +2ē → H20 + 2OH

На аноде окисляются хлорид-ионы:

Анод (+): 2Cl – 2ē → Cl20

Ионы натрия в процессе электролиза не участвуют. Мы записываем их с гидроксид-анионами в суммарном уравнении электролиза раствора хлорида натрия:

2H+2O +2NaCl → H20 + 2NaOH + Cl20

Следующий пример: электролиз водного раствора карбоната калия.

На катоде восстанавливается водород из воды:

Катод (–): 2H+2O +2ē → H20 + 2OH

На аноде окисляются молекулы воды до молекулярного кислорода:

Анод (+): 2H2O-2 – 4ē → O20 + 4H+

Таким образом, при электролизе раствора карбоната калия ионы калия и карбонат-ионы в процессе не участвуют. Происходит электролиз воды:

2H2+O-2 →  2H20 + O20 

Еще один пример: электролиз водного раствора хлорида меди (II).

На катоде восстанавливается медь:

Катод (–): Cu2+ + 2ē → Cu0

На аноде окисляются хлорид-ионы до молекулярного хлора:

Анод (+): 2Cl – 2ē → Cl20

Таким образом, при электролизе раствора карбоната калия происходит электролиз воды:

Cu2+Cl2– → Cu0 + Cl20

Еще несколько примеров: электролиз раствора гидроксида натрия.

На катоде восстанавливается водород из воды:

Катод (–): 2H+2O +2ē → H20 + 2OH

На аноде окисляются гидроксид-ионы до молекулярного кислорода:

Анод (+): 4O-2H – 4ē → O20 + 2H2O

Таким образом, при электролизе раствора гидроксида натрия происходит разложение воды, катионы натрия в процессе не участвуют:

2H2+O-2 →  2H20 + O20 

Электролиз расплавов

  При электролизе расплава на аноде окисляются анионы кислотных остатков, а на катоде восстанавливаются катионы металлов. Молекул воды в системе нет.

Например: электролиз расплава хлорида натрия. На катоде восстанавли-ваются катионы натрия:

Катод (–): Na+ + ē → Na0

На аноде окисляются анионы хлора:

Анод (+): 2Cl – 2ē → Cl20

Суммарное уравнение электролиза расплава хлорида натрия:

2Na+Cl →  2Na0 + Cl20 

Еще один пример: электролиз расплава гидроксида натрияНа катоде восстанавливаются катионы натрия:

Катод (–): Na+ + ē → Na0

На аноде окисляются гидроксид-ионы:

Анод (+): 4OH – 4ē → O20 + 2H2O

Суммарное уравнение электролиза расплава гидроксида натрия:

4Na+OH →  4Na0 + O20+ 2H2

Многие металлы получают в промышленности электролизом расплавов.

Например, алюминий получают электролизом раствора оксида алюминия в расплаве криолита. Криолит – Na3[AlF6] плавится при более низкой температуре (1100оС), чем оксид алюминия (2050оС). А оксид алюминия отлично растворяется в расплавленном криолите.

В растворе криолите оксид алюминия диссоциирует на ионы:

Al2O3 = Al3+ + AlO33-

На катоде восстанавливаются катионы алюминия:

Катод (–): Al3+ + 3ē → Al0

На аноде окисляются алюминат-ионы:

Анод (+): 4AlO33 – 12ē → 2Al2O3 + 3O20 

 Общее уравнение электролиза раствора оксида алюминия в расплаве криолита:

2Al2О3 = 4Al0 + 3О20

В промышленности при электролизе оксида алюминия в качестве электродов используют графитовые стержни. При этом электроды частично окисляются (сгорают) в выделяющемся кислороде:

C0 + О20 = C+4O2-2 

Электролиз с растворимыми электродами

Если материал электродов выполнен из того же металла, который присут-ствует в растворе в виде соли, или из более активного металла, то на аноде разряжаются не молекулы воды или анионы, а окисляются частицы самого металла в составе электрода.

Например, рассмотрим электролиз раствора сульфата меди (II) с медными электродами.

На катоде разряжаются ионы меди из раствора:

Катод (–): Cu2+ + 2ē → Cu0

На аноде окисляются частицы меди из электрода:

Анод (+): Cu0 – 2ē → Cu2+

 

Электролиз ℹ️ понятие, правила применения первого и второго законов Фарадея, уравнения и схемы процесса на катоде и аноде, примеры решений


Огромной популярностью в металлургии и химической промышленности имеет такой физико-химический процесс, как электролиз, происходящий с помощью электролизера. Чтобы понять принцип его действия, нужно изучить определение, нюансы и особенности явления.


Понятие электролиза


Электролиз — процесс, который возникает при воздействии электрического тока на электролит и заключается в выделении электродами составных частей. 


Значение явления заключается в том, что путём воздействия электричества на ионы можно организовывать новые формы, структуры или даже сами вещества. Это позволяет человеку контролировать некоторые процессы, протекающие на молекулярном уровне. Законы данного явления в химии и физике открыл английский учёный Фарадей.


Явление происходит при участии электродов, которые делятся на катод и анод:


  • катод — электрод с отрицательным зарядом, на котором происходит восстановление катионов;


  • анод — электрод с положительным зарядом, где происходит окисление анионов.


Приборы чаще всего изготавливаются из материалов, пропускающих электрический ток, например, из графита или большинства металлов. Оба прибора подключаются к отрицательному и положительному полюсам соответственно.


Явление происходит в следующем порядке:


  1. Диссоциация.


  2. Электролиз.


Очень важно не путать такие близкие определения, как гидролиз и электролиз. Первым явлением считается разложение раствора вещества на ионы (заряженные частицы) в воде.


Первый закон Фарадея


Установленный Фарадеем первый закон говорит о прямой пропорциональности между массой вещества, выделившейся в ходе электролиза, и величиной заряда, который прошел через электролит.


Правило подкреплено формулой m = k * q, то есть произведение заряда вещества на его электрохимический эквивалент, что равняется его массе.


Проверка первого закона Фарадея происходит следующим образом:


  • нужно взять три любых электролита, например, А, Б и В и пропустить ток через каждый;


  • если вещества одни и те же, то массы выделившихся можно назвать Г, Г1 и Г2;


  • при этом будет верным следующее равенство: Г= Г1+Г2.


Второй закон Фарадея


Данное правило, установленное Фарадеем, указывает на зависимость между атомной массой вещества, количеством возможных химических связей и самим электрохимическим эквивалентом. 


Таким образом, электрохимический эквивалент прямо пропорционален атомной массе вещества, но валентности вещества он обратно пропорционален.


Таблица изменения веществ с помощью электролиза


Усиление восстановительных способностей веществ:




Na+


Mg2+


Al3+


Zn2+


Fe3+


Ni2+


Sn2+


Pb2+


H+


Cu2


Ag+


Натрий


Магний


Алюминий


Цинк


Железо


Никель


Олово


Свинец


Водород


Медь


Серебро



Усиление окислительных способностей веществ:




I-


Br-


Cl-


OH-


NO3-


CO32-


SO42-.


Йодид (соли, образованные йодоводородной кислотой)


Бромид (соли, образованные бромоводородной кислотой)


Хлорид (соли, образованные соляной кислотой)


Гидроксид


Нитрат (соли, образованные азотной кислотой)


Карбонат (соли, образованные угольной кислотой)


Сульфат (соли, образованные серной кислотой)


 







Катод (отрицательный)


Анод (положительный)


Восстановление катионов после водорода


Окисление анионов кислот, не содержащих кислорода


Восстановление катионов, имеющих среднюю активность


Окисление анионов оксокислот


Восстановление наиболее активных катионов


Окисление анионов гидроксидов


Восстановление катионов водорода


 


Уравнения и схемы процессов электролиза, протекающих на катоде и аноде


Электролиз воды


Вода является слабым электролитом, из-за чего процесс будет протекать очень медленно.


Общее уравнение реакции: 2H2O => 2H2 + O2.


Схема водного электролиза:





Анод


Катод


2H2O => O2 + 4H+ + 4e–


4H+ + 4e– => 2H2


3H2O => O3 + 6e– + 6H+


O2 + 2H2O + 2e– => H2O2 + 2OH–

Электролиз расплавов солей


Данную разновидность реакции можно рассмотреть на примере расплава гидроксида натрия, то есть NaOH.





Диссоциация гидроксида


NaOH => Na+ + OH-


Окислительный и восстановительный процессы


4OH- — 4ē => 2H2O + O2↑ (окисление)


Na+ + 1ē => Na0 (восстановление)


Электролиз


4NaOH => 4Na + 2H2O + O2

Электролиз растворов солей


Явление можно рассмотреть на примере поваренной соли, имеющей формулу NaCl.


Схема с использованием инертных электродов:





Диссоциация соли


NaCl => Na+ + Cl-


Окислительный и восстановительный процессы


2Cl- — 2ē => Cl2


2H2O + 2ē => H2↑ + 2OH-.


Электролиз


2NaCl + 2H2O => H2↑ + Cl2↑ + 2NaOH.


Таким образом, продуктом химической реакции было получение гидроксид натрия.


Также следует отметить такую особенность солей карбоновых кислот, как их способность к декарбоксилированию, как например реакция с ацетатом калия:


2CH3COOK + 2H2O => H+ 2KOH + CH3-CH3­ + 2CO2­.


Электролиз веществ — одна из важнейших тем при изучении химии как неорганической, так и органической. Нужно научиться решать подобные задачи для полного понимания химических процессов и метаморфозов веществ.


Электролиз расплавов и растворов (солей, щелочей, кислот).

Что такое электролиз? Для более простого понимания ответа на этот вопрос давайте представим себе любой источник постоянного тока. У каждого источника постоянного тока всегда можно найти положительный и отрицательный полюс:

Подсоединим к нему две химически стойких электропроводящих пластины, которые назовем электродами. Пластину, присоединенную к положительному полюсу назовем анодом, а к отрицательному катодом:

Далее, представьте, что у вас есть возможность опустить эти два электрода в расплав хлорида натрия:

Хлорид натрия является электролитом, при его расплавлении происходит диссоциация на катионы натрия и хлорид-ионы:

NaCl = Na+ + Cl

Очевидно, что заряженные отрицательно анионы хлора направятся к положительно заряженному электроду – аноду, а положительно заряженные катионы Na+ направятся к отрицательно заряженному электроду – катоду. В результате этого и катионы Na+ и анионы Cl разрядятся, то есть станут нейтральными атомами. Разрядка происходит посредством приобретения электронов в случае ионов Na+ и потери электронов в случае ионов Cl. То есть на катоде протекает процесс:

Na+ + 1e = Na0,

А на аноде:

Cl − 1e = Cl

Поскольку каждый атом хлора имеет по неспаренному электрону, одиночное существование их невыгодно и атомы хлора объединяются в молекулу из двух атомов хлора:

Сl∙ + ∙Cl = Cl2

Таким образом, суммарно, процесс, протекающий на аноде, правильнее  записать так:

2Cl − 2e = Cl2

То есть мы имеем:

Катод: Na+ + 1e = Na0

Анод: 2Cl − 2e = Cl2

Подведем электронный баланс:

Na+ + 1e = Na0 |∙2

2Cl − 2e = Cl2 |∙1<

Сложим левые и правые части обоих уравнений полуреакций, получим:

2Na+ + 2e + 2Cl − 2e= 2Na0 + Cl2

Сократим два электрона аналогично тому, как это делается в алгебре получим ионное уравнение электролиза:

2Na++ 2Cl = 2Na0 + Cl2

далее, объединив ионы Na+  и Cl получим, уравнение электролиза расплава хлорида натрия:

2NaCl(ж.)  => 2Na + Cl2

Рассмотренный выше случай является с теоретической точки зрения наиболее простым, поскольку в расплаве хлорида натрия из положительно заряженных ионов были только ионы натрия, а из отрицательных – только анионы хлора.

Другими словами, ни у катионов Na+, ни у анионов Cl не было «конкурентов» за катод и анод.

А, что будет, например, если вместо расплава хлорида натрия ток пропустить через его водный раствор? Диссоциация хлорида натрия наблюдается и в этом случае, но становится невозможным образование металлического натрия в водном растворе. Ведь мы знаем, что натрий – представитель щелочных металлов – крайне активный металл, реагирующий с водой очень бурно. Если натрий не способен восстановиться в таких условиях, что же тогда будет восстанавливаться на катоде?

Давайте вспомним строение молекулы воды. Она представляет собой диполь, то есть у нее есть отрицательный и положительный полюсы:

Именно благодаря этому свойству, она способна «облеплять» как поверхность катода, так и поверхность анода:

При этом могут происходить процессы:

Катод:

2H2O + 2e = 2OH + H2

Анод:

2H2O – 4e = O2 + 4H+

Таким образом, получается, что если мы рассмотрим раствор любого электролита, то мы увидим, что катионы и анионы, образующиеся при диссоциации электролита, конкурируют с молекулами воды за восстановление на катоде и окисление на аноде.

Так какие же процессы будут происходить на катоде и на аноде? Разрядка ионов, образовавшихся при диссоциации электролита или окисление/восстановление молекул воды? Или, возможно, будут происходить все указанные процессы одновременно?

В зависимости от типа электролита при электролизе его водного раствора возможны самые разные ситуации. Например, катионы щелочных, щелочноземельных металлов, алюминия и магния просто не способны восстановиться в водной среде, так как при их восстановлении должны были бы получаться соответственно щелочные, щелочноземельные металлы, алюминий или магний т.е. металлы, реагирующие с водой.

В таком случае является возможным только восстановление молекул воды на катоде.

Запомнить то, какой процесс будет протекать на катоде при электролизе раствора какого-либо электролита можно, следуя следующим принципам:

1) Если электролит состоит из катиона металла, который в свободном состоянии в обычных условиях реагирует с водой, на катоде идет процесс:

2H2O + 2e = 2OH + H2

Это касается металлов, находящихся в начале ряда активности по Al включительно.

2) Если электролит состоит из катиона металла, который в свободном виде не реагирует с водой, но реагирует с кислотами неокислителями, идут сразу два процесса, как восстановления катионов металла, так и молекул воды:

2H2O + 2e = 2OH + H2 ­­­

Men+ + ne = Me0

К таким металлам относятся металлы, находящиеся между Al и Н в ряду активности.

3) Если электролит состоит из катионов водорода (кислота) или катионов металлов, не реагирующих с кислотами неокислителями — восстанавливаются только катионы электролита:

+ + 2е = Н2 – в случае кислоты

Men+ + ne = Me0 – в случае соли

На аноде тем временем ситуация следующая:

1) Если электролит содержит анионы бескислородных кислотных остатков (кроме F), то на аноде идет процесс их окисления, молекулы воды не окисляются. Например:

2Сl − 2e = Cl2

S2- − 2e = So

Фторид-ионы не окисляются на аноде поскольку фтор не способен образоваться в водном растворе (реагирует с водой)

2) Если в состав электролита входят гидроксид-ионы (щелочи) они окисляются вместо молекул воды:

4ОН − 4е = 2H2O + O2

3) В случае того, если электролит содержит кислородсодержащий кислотный остаток (кроме остатков органических кислот) или фторид-ион (F) на аноде идет процесс окисления молекул воды:

2H2O – 4e = O2 + 4H+

4) В случае кислотного остатка карбоновой кислоты на аноде идет процесс:

2RCOO − 2e = R-R + 2CO2

Давайте потренируемся записывать уравнения электролиза для различных ситуаций:

Пример №1

Напишите уравнения процессов протекающих  на катоде и аноде при электролизе расплава хлорида цинка, а также общее уравнение электролиза.

Решение

При расплавлении хлорида цинка происходит его диссоциация:

ZnCl2 = Zn2+ + 2Cl

Далее следует обратить внимание на то, что электролизу подвергается именно расплав хлорида цинка, а не водный раствор. Другими словами, без вариантов, на катоде может происходить только восстановление катионов цинка, а на аноде окисление хлорид-ионов т.к. отсутствуют молекулы воды:

Катод: Zn2+ + 2e = Zn0 |∙1

Анод: 2Cl − 2e = Cl2 |∙1

ZnCl2 = Zn + Cl2

Пример №2

Напишите уравнения процессов протекающих  на катоде и аноде при электролизе водного раствора хлорида цинка, а также общее уравнение электролиза.

Так как в данном случае, электролизу подвергается водный раствор, то в электролизе, теоретически, могут принимать участие молекулы воды. Так как цинк расположен в ряду активности между Al и Н то это значит, что на катоде будет происходить как восстановление катионов цинка, так и молекул воды.

Катод:

2H2O + 2e = 2OH + H2 ­­­

Zn2+ + 2e = Zn0

Хлорид-ион является кислотным остатком бескислородной кислоты HCl, поэтому в конкуренции за окисление на аноде хлорид-ионы «выигрывают» у молекул воды:

Анод:

2Cl − 2e = Cl2

В данном конкретном случае нельзя записать суммарное уравнение электролиза, поскольку неизвестно соотношение между выделяющимися на катоде водородом и цинком.

Пример №3

Напишите уравнения процессов протекающих  на катоде и аноде при электролизе водного раствора нитрата меди, а также общее уравнение электролиза.

Нитрат меди в растворе находится в продиссоциированном состоянии:

Cu(NO3)2 = Cu2+ + 2NO3

Медь находится в ряду активности правее водорода, то есть на катоде восстанавливаться будут катионы меди:

Катод:

Cu2+ + 2e = Cu0

Нитрат-ион NO3 — кислородсодержащий кислотный остаток, это значит, что в окислении на аноде нитрат ионы «проигрывают» в конкуренции молекулам воды:

Анод:

2H2O – 4e = O2 + 4H+

Таким образом:

Катод: Cu2+ + 2e = Cu0 |∙2

Анод: 2H2O – 4e = O2 + 4H+ |∙1

2Cu2+ + 2H2O = 2Cu0 + O2 + 4H+

Полученное в результате сложения уравнение является ионным уравнением электролиза. Чтобы получить полное молекулярное уравнение электролиза нужно добавить по 4 нитрат иона в левую и правую часть полученного ионного уравнения в качестве противоионов. Тогда мы получим:

2Cu(NO3)2 + 2H2O = 2Cu0 + O2 + 4HNO3

Пример №4

Напишите уравнения процессов, протекающих  на катоде и аноде при электролизе водного раствора ацетата калия, а также общее уравнение электролиза.

Решение:

Ацетат калия в водном растворе диссоциирует на катионы калия и ацетат-ионы:

СН3СООК = СН3СОО + К+

Калий является щелочным металлом, т.е. находится в ряду электрохимическом ряду напряжений в самом начале. Это значит, что его катионы не способны разряжаться на катоде. Вместо них восстанавливаться будут молекулы воды:

Катод:

2H2O + 2e = 2OH + H2

Как уже было сказано выше, кислотные остатки карбоновых кислот «выигрывают» в конкуренции за окисление у молекул воды на аноде:

Анод:

2СН3СОО − 2e = CH3−CH3 + 2CO2

Таким образом, подведя электронный баланс и сложив два уравнения полуреакций на катоде и аноде получаем:

Катод: 2H2O + 2e = 2OH + H2 |∙1

Анод: 2СН3СОО − 2e = CH3−CH3 + 2CO2 |∙1

2H2O + 2СН3СОО = 2OH + Н2+ CH3−CH3 + 2CO2

Мы получили полное уравнение электролиза в ионном виде. Добавив по два иона калия в левую и правую часть уравнения и сложив с противоионами мы получаем полное уравнение электролиза в молекулярном виде:

2H2O + 2СН3СООK = 2KOH + Н2+ CH3−CH3 + 2CO2

Пример №5

Напишите уравнения процессов, протекающих  на катоде и аноде при электролизе водного раствора серной кислоты, а также общее уравнение электролиза.

Серная кислота диссоциирует на катионы водорода и сульфат-ионы:

H2SO4 = 2H+ + SO42-

На катоде будет происходить восстановление катионов водорода H+ , а на аноде окисление молекул воды, поскольку сульфат-ионы являются кислородсодержащими кислотными остатками:

Катод: 2Н+ + 2e = H2 |∙2

Анод: 2H2O – 4e = O2 + 4H+ |∙1

+ + 2H2O = 2H2 + O2 + 4H+

Сократив ионы водорода в левой и правой и левой части уравнения получим уравнение электролиза водного раствора серной кислоты:

2H2O = 2H2 + O2

Как можно видеть, электролиз водного раствора серной кислоты сводится к электролизу воды.

Пример №6

Напишите уравнения процессов, протекающих  на катоде и аноде при электролизе водного раствора гидроксида натрия, а также общее уравнение электролиза.

Диссоциация гидроксида натрия:

NaOH = Na+ + OH

На катоде будут восстанавливаться только молекулы воды, так как натрий – высокоактивный металл, на аноде только гидроксид-ионы:

Катод: 2H2O + 2e = 2OH + H2 |∙2

Анод: 4OH − 4e = O2 + 2H2O |∙1

4H2O + 4OH = 4OH + 2H2 + O2 + 2H2O

Сократим две молекулы воды слева и справа и 4 гидроксид-иона и приходим к тому, что, как и в случае серной кислоты электролиз водного раствора гидроксида натрия сводится к электролизу воды:

2H2O = 2H2 + O2

Электролиз водных растворов солей | Дистанционные уроки

12-Окт-2012 | комментариев 59 | Лолита Окольнова

 

Тема электролиза довольна большая, формул в ней много и, как мне кажется, больше ее изучают на уроках физики… Я хочу рассмотреть ту часть, которая касается химии, и при этом только формат ЕГЭ — электролиз водных  растворов солей.

 

Электролиз водных растворов солей

 

Для начала давайте представим себе систему, в которой происходит электролиз.

 

электролиз растворов солей

 

Электролиз — физико-химический процесс, состоящий в выделении на электродах составных частей растворённых веществ или других веществ, который возникает при прохождении электрического тока через раствор либо расплав электролита.

 

Электроды — это такие пластинки или стержни, опущенные в раствор, они подключены к источнику тока.

 

  • Анод — положительно заряженный электрод
  • Катод — отрицательно заряженный электрод

 

Мы будем рассматривать случай инертных электродов — т.е. они не будут вступать ни в какие химические реакции.

 

При пропускании электрического тока, вещество раствора будет претерпевать химические изменения, т.е. буду образовываться новые химические вещества. Они будут притягиваться к электродам следующим образом:

 

  •  Неметаллы и их производны, анионы — к аноду
  • Металлы и их производный, катионы — к катоду

 

Теперь рассмотрим электролиз водных растворов различных солей

 

Для этого нам понадобится ряд активности металлов \ электрохимический ряд напряжений:

 

ряд напряжений

 

электролиз растворов солей

 

Разберем сначала катионы:

 

  • Если металл стоит до Н, то вместо него электролизу подвергается вода:
    2H2O + 2е = H2 + 2OH      Образовавшийся водород h3 идет к катоду
  • Если металл стоит после Н, то он сам восстанавливается:
    Cu2+ + 2е = Cu0    Медь осаждается на катоде
  • Катионы металлов, стоящие в ряду напряжений после алюминия до водорода, могут восстанавливаться вместе с молекулами воды:
    2О + 2е = Н2 + 2ОНZn2+ + 2e = Zn0

Электролиз водных растворов солей

 

Теперь анионы-кислотные остатки:

  • Кислородсодержащие кислотные остатки — вместо них электролизу подвергается вода:
    2H2O — 4e = O2 + 4H+  Образовавшийся O2 выделяется на аноде
  • Бескислородные кислотные остатки — окисляются до простого вещества:
    Cl — 1e = Cl20  Хлор выделяется на аноде
  • Исключение:   F — вместо него будет выделяться кислород.

 

Примеры:

 

1.1. Катион стоит в ряду до Н, кислотный остаток содержит кислород О:

K2SO4↔2K++SO42−

K(-): 2H2O + 2e = H2 + 2OH

A(+): 2H2O — 4e = O2 + 4H+

2H2O (электролиз) → 2H2 + O2

1.2. Катион стоит в ряду до Н, кислотный остаток беcкислородный:

LiCl ↔ Li+ + Cl

катод (-): 2H2O + 2e = H2 + 2OH

анод (+): Cl — 1e = Cl0; Cl0+Cl0=Cl2

2LiCl + 2H2O(электролиз) → H2 + Cl2 +2LiOH

2.1. Катион стоит в ряду после Н, кислотный остаток содержит кислород О:

СuSO4 ↔ Cu2++SO42−

K(-): Cu2+ + 2e = Cu0

A(+): 2H2O — 4e = O2 + 4Н+

2CuSO4 + 2H2O(электролиз) → 2Cu + 2H2SO4 + O2

2.2. Катион стоит в ряду после Н, кислотный остаток беcкислородный:

катод (-): Cu2+ + 2e = Cu0

анод (+): 2Cl — 2e = 2Cl0

CuCl2 (электролиз) →Cu + Cl2

электролиз водных растворов солей

Электролиз водных растворов солей отличается от электролиза расплавов.

 

 Отличие — в наличии растворителя. При электролизе водных растворов солей кроме ионов самого вещества в процессе участвуют ионы растворителя. При электролизе расплавов — только ионы самого вещества.

 


 

  • ЕГЭ это вопрос Части B № 3

 


 
[TESTME 56]
 
 
 


Категории:
|

Обсуждение: «Электролиз водных растворов солей»

(Правила комментирования)

Тема №34 «Электролиз расплавов и растворов»

Оглавление

  1. Электролиз расплавленных солей
  2. Электролитические диссоциация и ассоциация
  3. Шпаргалка
  4. Задания для самопроверки

Электролиз расплавленных солей

Электролиз — это окислительно-восстанови­тельный процесс, протекающий на электродах при прохождении электрического тока через расплав или раствор электролита.

Рассмотрим процесс электролиза расплава хло­рида натрия. В расплаве идет процесс термической диссоциации:

Под действием электрического тока катионы Na+ движутся к катоду и принимают от него элек­троны:

Анионы Cl движутся к аноду и отдают элек­троны:

Суммарное уравнение процессов:

или

На катоде образуется металлический натрий, на аноде — газообразный хлор.

Главное, что вы должны помнить: в процессе электролиза за счет электрической энергии осу­ществляется химическая реакция, которая само­произвольно идти не может.
Электролитические диссоциация и ассоциация

Более сложный случай — электролиз растворов электролитов. В растворе соли кроме ионов металла и кислот­ного остатка присутствуют молекулы воды. Поэтому при рассмотрении процессов на электродах не­обходимо учитывать их участие в электролизе.

Для определения продуктов электролиза во­дных растворов электролитов существуют следую­щие правила.

1. Процесс на катоде зави­сит не от материала катода, из которого он сделан, а от положения металла (катио­на электролита) в электрохи­мическом ряду напряжений, при этом, если:

1) катион электролита расположен в ряду напря­жений в начале ряда по Al включительно, то на катоде идет процесс восстановления воды (выделяется водород H2↑). Катионы металла не восстанавливаются, они остаются в раст­воре;

2) катион электролита находится в ряду напряже­ний между алюминием и водородом, то на ка­тоде восстанавливаются одновременно и ионы металла, и молекулы воды;

3) катион электролита находится в ряду напряже­ний после водорода, то на катоде восстанавли­ваются катионы металла;

4) в растворе содержатся катионы разных метал­лов, то сначала восстанавливается катион ме­талла, стоящий в ряду напряжений правее.

2. Процесс на аноде зависит от материала ано­да и от природы аниона:

1) если анод растворяется (железо, цинк, медь, серебро и все металлы, которые окисляются в процессе электролиза), то окисляется металл анода, несмотря на природу аниона;

2) если анод не растворяется (его называют инер­тным — графит, золото, платина), то:

• при электролизе рас­творов солей бескисло­родных кислот (кроме фторидов) на аноде идет процесс окисле­ния аниона;

• при электролизе рас­творов солей кислород­содержащих кислот и фторидов на аноде идет процесс окисления воды (выделяется 02↑). Анионы не окисляют­ся, они остаются в растворе;

• анионы по их способности окисляться рас­полагаются в следующем порядке:

Попробуем применить эти правила в конкрет­ных ситуациях.

Рассмотрим электролиз раствора хлорида на­трия в случае, если анод нерастворимый и если анод растворимый.

1. Анод нерастворимый (например, графитовый).

В растворе идет процесс электролитической диссоциации:

Суммарное уравнение:

Учитывая присутствие ионов Na+ в растворе, составляем молекулярное уравнение:

(гидроксид натрия образуется в катодном пространстве)

2. Анод растворимый (например, медный):

Если анод растворимый, то металл анода будет окисляться:

Катионы Cu2+ в ряду напряжений стоят после (Н+), поэтому они и будут восстанавливаться на ка­тоде.

Концентрация NaCl в растворе не меняется. Рассмотрим электролиз раствора сульфата ме­ди (II) на нерастворимом аноде:

Суммарное ионное уравнение:

Суммарное молекулярное уравнение с учетом присутствия анионов SO42- в растворе:

(серная кислота образуется в анодном пространстве)

Рассмотрим электролиз раствора гидроксида ка­лия на нерастворимом аноде:

Суммарное ионное уравнение:

Суммарное молекулярное уравнение:

В данном случае, оказывается, идет только электролиз воды. Аналогичный результат получим и в случае электролиза растворов H2SO4, NaNO3, K2SO4 и др.

Электролиз расплавов и растворов веществ ши­роко используется в промышленности.

 

Шпаргалка

 

Справочный материал для прохождения тестирования:

Таблица Менделеева

Таблица растворимости

Электролиз растворов

ЭЛЕКТРОЛИЗ РЕШЕНИЙ


 

На этой странице рассматривается электролиз водных растворов соединений. Большинство людей довольно часто встречают это на курсах химии для детей от 14 до 16 лет.


 

Основные идеи

Роль воды в электролизе водных растворов электролитов

Ситуация усложняется, когда вы электролизуете раствор, а не расплав, из-за присутствия воды.

Вода сама по себе является очень слабым электролитом, потому что она в очень небольшой степени расщепляется на ионы водорода и ионы гидроксида.


Примечание: Я, конечно, упрощаю это. Вы должны знать, что ион водорода не существует сам по себе в этих обстоятельствах — он фактически присоединяется к другой молекуле воды, чтобы дать ион гидроксония, H 3 O + . Это означает символ состояния (aq).


Это означает, что на каждый электрод может приходить более одного иона, и можно выбрать, какой из них будет разряжаться.

Например, если вы электролизовали раствор хлорида натрия, ионы натрия и ионы водорода (из воды) притягиваются к катоду, а ионы хлорида и ионы гидроксида (из воды) притягиваются к аноду.


 

Электрохимическая серия

В таблице ниже перечислены несколько металлов (и водород), показывающих их склонность к потере электронов.Чем более отрицательным является значение E ° (обычно читаемое как «E-ноль»), тем левее находится положение равновесия.

Это означает, что чем больше отрицательное значение E °, тем больше у одного из этих элементов склонности к потере электронов и образованию своих ионов.

Это также означает, что что-то вроде лития будет иметь небольшую тенденцию собирать электроны для образования атомов после ионизации.

Напротив, что-то с положительным значением E ° будет неохотно терять электроны для образования ионов, но будет довольно легко заставить один из его ионов улавливать электроны, чтобы снова стать нейтральным элементом.

Итак, золото не будет очень реактивным, потому что у него очень положительное значение E °. Нелегко удалить электроны, чтобы получить ионы золота, но ионы золота снова легко превратить в металлическое золото.

Электрохимический ряд можно рассматривать как расширенный и слегка модифицированный ряд реактивности.

Все, что вам действительно нужно знать об электролизе:

  • Чем выше в электрохимическом ряду находится что-то в правой части равновесия, тем легче оно теряет электроны.

  • Чем ниже в электрохимическом ряду находится что-то в левой части равновесия, тем легче оно будет улавливать электроны.


Примечание: Для целей электролиза вам не нужно понимать, откуда берутся эти числа или к чему именно относятся равновесия.

Если вы хотите узнать больше об электрохимических рядах, включая происхождение этих чисел, вы найдете их, перейдя по этой ссылке.Это вторая страница в серии страниц, посвященных окислительно-восстановительным потенциалам, и вам, вероятно, также потребуется прочитать первую страницу. Это не обязательно для просмотра остальной части текущей страницы.


Подведение итогов

Я хочу подвести итоги этого, прежде чем подробно рассматривать конкретные примеры. Важно помнить шаблоны, приведенные в следующем разделе.

Что происходит на катоде?

Положительные ионы притягиваются к катоду, где они захватывают один или несколько электронов и разряжаются.

Либо металл осаждается, либо водород образуется из воды. Что вы получите, зависит от положения металла в электрохимическом ряду и, в некоторых случаях, от концентрации раствора.

  • Если металл ниже водорода в электрохимическом ряду (если он имеет положительное значение E °), то вы получите металл. К таким металлам относятся медь и серебро.

  • Если металл занимает высокое место в электрохимическом ряду (если он имеет довольно отрицательное значение E °), то вы получаете водород.К таким металлам относятся магний и натрий.

  • Металлы от, скажем, свинца до цинка в электрохимическом ряду более сложные. Что получится, зависит от концентрации раствора. Если раствор достаточно концентрированный, вы получите осаждение металла. Если раствор очень разбавлен на , вы получите водород. При промежуточных концентрациях вы можете получить и то, и другое.

Чем выше элемент в электрохимическом ряду, тем легче он теряет электроны и тем труднее забирает их обратно.Гораздо легче убедить медь взять обратно электроны, чтобы превратить ион в атом, чем, скажем, сделать то же самое с литием.

Что происходит на аноде?

Использование инертных электродов, таких как платиновый или угольный

Как правило, если у вас есть галоген, вы получите галоген. Со всеми другими распространенными анионами (отрицательными ионами) вы будете получать кислород из воды.

Но концентрация здесь играет роль.Например, если у вас есть концентрированный раствор хлорида натрия, вы получите в основном хлор на аноде. Чем больше и больше разбавленных растворов, тем меньше хлора и больше кислорода. Очень и очень разбавленные растворы будут давать в основном кислород.

Если анод не инертен

Сложность возникает, если анод не инертен, и мы рассмотрим пару примеров этого далее на странице.


 

Некоторые примеры

Электролиз раствора сульфата меди (II) угольными электродами

Медь находится ниже уровня водорода в электрохимическом ряду, поэтому, используя приведенное выше резюме, можно предсказать, что медь будет выделяться на катоде.

Продолжая использовать приведенное выше резюме, вы можете предсказать, что кислород будет выделяться на аноде, потому что в нем нет галогена.

Именно это и происходит.

На катоде

Ионы меди (II) и ионы водорода притягиваются к отрицательному катоду. Медь находится ниже водорода в электрохимическом ряду, поэтому именно медь принимает электроны от катода.

Катод покрывается медью.

На аноде

Ионы сульфата и ионы гидроксида притягиваются к положительному катоду, но очень трудно убедить ионы сульфата отдать электроны.

Теперь все усложняется, потому что есть два способа описания анодной реакции в подобных случаях. Самый простой способ — представить это в терминах гидроксид-ионов.

Предполагая, что гидроксид-ионы разряжены

Кислород выделяется.

Проблема в том, что в растворе сульфата меди (II) будет очень мало гидроксид-ионов. Вы можете обойти это, заметив, что реакция воды, в результате которой образуются ионы водорода и гидроксида, является равновесной. Когда вы разряжаете ионы гидроксида, равновесие смещается, чтобы заменить их.

Получение кислорода непосредственно из молекул воды

Общий эффект точно такой же, как если бы вы выпустили ионы гидроксида, и водное равновесие сместилось, чтобы заменить их.Сдвиг равновесия также будет производить ионы водорода. Они, конечно, будут отталкиваться от анода.

Итак, что правильно?

Это почти наверняка зависит от pH раствора. В этом конкретном случае раствор сульфата меди (II) является умеренно кислым, а это означает, что гидроксид-ионов даже меньше, чем в чистой воде, поэтому второе уравнение (вода), вероятно, будет более точным.


Примечание: Что вы делаете с этим для экзамена? Вам нужно выяснить, какую версию этих уравнений используют ваши экзаменаторы, и затем придерживаться ее — не беспокойтесь об изменении ее от примера к примеру.Вам необходимо проверить, какие из них они использовали в своих прошлых работах и ​​какая форма их предпочтительнее в их схемах оценок. Вполне вероятно, что они примут то и другое, но вы должны быть уверены.


Подобные случаи

Любой раствор, содержащий сульфат-ионы (в том числе разбавленную серную кислоту), будет вести себя точно так же на инертном аноде — будет выделяться кислород.

Ионы нитрата также производят кислород. Вывести гидроксид-ионы из воды (или из самой воды, если вы используете это уравнение) легче, чем из нитрат-иона.


 

Электролиз раствора хлорида натрия угольными электродами

Натрий значительно превосходит водород в электрохимическом ряду, поэтому, используя приведенное выше резюме, можно предсказать, что водород будет выделяться на катоде.

Продолжая использовать приведенное выше резюме, можно предположить, что хлор (галоген) будет выделяться на аноде.

Оказывается, этот случай немного сложнее, потому что результат на аноде зависит от концентрации раствора.

На катоде

Прибывают ионы натрия и ионы водорода (из воды), но натрий настолько высок в электрохимическом ряду, что его ионы не разряжаются там, где есть какой-либо выбор.

Если вы электролизуете расплавленный хлорид натрия, то выбора нет — нужно разряжать ионы натрия. Но в решении у вас есть альтернатива. К сожалению, есть два разных взгляда на это, как и на проблему с анодом, описанную выше.

Предполагая, что ионы водорода разряжены

Выделяется водород.

Вы можете преодолеть тот факт, что в растворе не очень много ионов водорода, если вспомнить, что когда вода ионизируется с образованием ионов водорода и гидроксид-ионов, это равновесие. По мере того, как ионы водорода разряжаются, больше воды расщепляется, чтобы заменить их.

Получение водорода непосредственно из молекул воды

Как и в случае с аналогичным анодным случаем выше, как бы вы ни смотрели на него, общий эффект будет таким же.Вы получаете газообразный водород и образование гидроксид-ионов — вместе с ионами водорода, когда водное равновесие смещается, чтобы заменить высвобождаемые ионы водорода.

Итак, какое уравнение вам следует использовать?

Вы должны руководствоваться тем уравнением, которое используют ваши экзаменаторы в своих вопросах или в схемах выставления оценок. На практике они, скорее всего, примут и то, и другое.

Подобные случаи

Всякий раз, когда вы электролизуете соединение металла выше водорода в электрохимическом ряду и получаете водород, применяется тот же аргумент.Однако есть некоторые случаи, когда водород не выделяется при таких обстоятельствах, и мы рассмотрим их далее на странице.

На аноде

Ионы хлора и ионы гидроксида притягиваются к положительному аноду. На самом деле, ионы гидроксида немного легче разряжать, но в основном вы получаете хлор.

  • Если раствор хлорида натрия достаточно концентрирован, вы получите в основном хлор.

  • Если раствор хлорида натрия очень разбавлен , вы получите в основном кислород.

  • При промежуточных концентрациях вы получите смесь обоих.


Примечание: На этом уровне это то, что вам в основном просто необходимо принять. Не существует простого объяснения , которое я мог бы добавить, не делая эту длинную и часто сложную страницу еще хуже. Я думаю, очень маловероятно, что вам когда-нибудь придется объяснять причину этого на экзамене по химии на этом уровне.

Если вы столкнетесь с вопросами от экзаменаторов, которые, по-видимому, нуждаются в надлежащих пояснениях, не могли бы вы сообщить мне об этом по адресу, указанному на странице об этом сайте.Было бы полезно, если бы вы также могли точно сказать мне, что ваши экзаменаторы ожидают от вас.


Образование хлора определяется уравнением:

А образование кислорода задается одним из уравнений:

или:

Водные растворы бромидов и иодидов

В обоих случаях можно предположить, что на аноде образуется бром или йод.Уравнения аналогичны разряду ионов хлора, описанному выше.


 

Электролиз раствора хлорида натрия с использованием ртутного катода

Это хороший пример случая, когда природа электрода имеет огромное значение.

Когда-то это был основной промышленный метод производства раствора гидроксида натрия, а также хлора и водорода, но теперь его заменили более экологически чистые методы. В прошлом были серьезные примеры опасного загрязнения из-за утечки ртути в окружающую среду.

На катоде

Когда ионы натрия и ионы водорода попадают на ртутный катод, именно ионы натрия выделяются в виде металлического натрия. Он растворяется в ртути с образованием раствора, известного как «натриевая амальгама».

Амальгама натрия вытекает из электролизной ячейки и вступает в реакцию с водой, освобождая ртуть для рециркуляции через ячейку с образованием раствора гидроксида натрия и водорода.

На аноде

Хлор производится, как и следовало ожидать.


 

Электролиз раствора сульфата цинка угольными электродами

Я использую соединение цинка в качестве примера довольно неожиданных результатов, которые вы получаете при электролизе растворов соединений металлов от свинца до цинка в электрохимической серии.

Все они выше водорода в электрохимическом ряду, и поэтому можно ожидать, что водород будет выделяться на катоде, а не на металле. Это не то, что происходит при любой разумной концентрации растворов солей этих металлов.

На катоде

Ионы цинка захватывают электроны с катода, образуя атомы цинка, которые прикрепляются к катоду.

На аноде

Это еще один случай электролиза сульфата, и мы подробно рассмотрели его далее на странице, рассказывая об электролизе раствора сульфата меди (II).


Примечание: Опять же, не существует быстрого и простого способа объяснить, почему разряжаются ионы цинка, а не ионы водорода, и очень маловероятно, что вас попросят объяснить это на экзамене на этом уровне.

Если вы хотите узнать больше, вы можете погуглить перенапряжение . Вы можете встретить такие фразы, как «большое перенапряжение водорода». Использование слова «перенапряжение» на самом деле ничего не объясняет. Все, что он на самом деле говорит, — это то, что водород труднее разрядить, чем можно было бы ожидать, исходя из его положения в электрохимическом ряду — и мы знаем это, потому что экспериментально в том случае, о котором мы говорим, вы получаете цинк, а не водород.

Итак, если вы хотите проследить за этим (почти наверняка не требуется для экзаменов по химии на этом уровне), поищите объяснения, объясняющие, почему значение E ° водорода не применимо в реальной ситуации электролиза раствора сульфата цинка.


Электролиз раствора нитрата серебра с использованием серебряного анода

Это пример случая, когда вы используете электрод, который химически участвует в реакции.

На катоде

Если вы электролизуете раствор нитрата серебра с использованием серебра в качестве анода, серебро осаждается на любом материале, из которого сделан катод, как и следовало ожидать.

Может использоваться для серебряного покрытия.

На аноде

Но на аноде, вместо того, чтобы что-либо выгружать из раствора, серебро из анода переходит в раствор в виде ионов серебра, оставляя электроны на аноде.

Анод теряет серебро, и чистое изменение — это просто перенос серебра с анода на катод.


 

Электролиз раствора сульфата меди (II) с медным анодом

Аналогичное изменение происходит при электролизе раствора сульфата меди (II) с помощью медных электродов.Медь осаждается на катоде, как и следовало ожидать, но вместо кислорода, выделяемого на аноде, ионы меди (II) переходят в раствор. Опять же, есть чистый перенос меди от анода к катоду.

Используется для очистки меди, и вы можете узнать об этом больше, прочитав часть страницы о меди. Вам не нужна вся страница — только раздел об очищении.


 

Практическая деталь

Конечно, вы можете электролизовать раствор, поместив его в химический стакан с двумя угольными электродами и подключив электроды к источнику постоянного тока, например батарее.

Тем не менее, вы можете захотеть собрать все выделяемые газы для проверки и, возможно, измерить их объем. В заключительной части этой страницы рассматриваются два простых устройства, которые позволят вам это сделать.

Сбор любых газов для проверки

Если у вас есть газы, исходящие от обоих электродов, вам необходимо держать их отдельно, а также собирать их. Это дешевый и простой способ сделать это.

Изначально обе маленькие пробирки заполнены любым раствором, который вы можете подвергать электролизу.Газы, выходящие из двух электродов, не смешиваются, и, если есть два газа, оба могут быть проверены отдельно.

Помимо газов, отчетливо видны любые осажденные на катоде металлы, а также любые растворы брома или йода, образующиеся на аноде. Раствор брома от бледного до средне-оранжевого цвета; Цвет раствора йода варьируется в зависимости от концентрации йода от оранжевого до темно-красного.


Примечание: Йод можно получить только при электролизе раствора йодида.Освободившийся йод фактически реагирует с непрореагировавшими ионами йодида с образованием растворимого иона I 3 . Это вызывает появление красного цвета.


Сбор любых газов для их измерения

Самый простой способ — использовать U-образную трубку с боковым рычагом. Вы можете собирать и измерять объем выделяемых газов, собирая их над водой в перевернутые мерные цилиндры или в газовые шприцы.

Амперметр включен в схему, потому что, если вы измеряете выделяемые объемы, вы почти наверняка захотите узнать, какой ток протекает, чтобы делать какие-либо вычисления. Расчеты описаны на других страницах этого раздела.


 

 

Куда бы вы сейчас хотели пойти?

В меню «Электролиз». . .

В меню «Неорганическая химия».. .

В главное меню. . .


 


© Джим Кларк, 2017

.

Электролиз и гальваника — определение, принцип работы, приложение

    • БЕСПЛАТНАЯ ЗАПИСЬ КЛАСС
    • КОНКУРСНЫЕ ЭКЗАМЕНА
      • BNAT
      • Классы
        • Класс 1-3
        • Класс 4-5
        • Класс 6-10
        • Класс 110003 CBSE
          • Книги NCERT
            • Книги NCERT для класса 5
            • Книги NCERT, класс 6
            • Книги NCERT для класса 7
            • Книги NCERT для класса 8
            • Книги NCERT для класса 9
            • Книги NCERT для класса 10
            • NCERT Книги для класса 11
            • NCERT Книги для класса 12
          • NCERT Exemplar
            • NCERT Exemplar Class 8
            • NCERT Exemplar Class 9
            • NCERT Exemplar Class 10
            • NCERT Exemplar Class 11
            • 9plar

            • RS Aggarwal
              • Решения RS Aggarwal Class 12
              • RS Aggarwal Class 11 Solutions
              • RS Aggarwal Решения класса 10
              • Решения RS Aggarwal класса 9
              • Решения RS Aggarwal класса 8
              • Решения RS Aggarwal класса 7
              • Решения RS Aggarwal класса 6
            • RD Sharma
              • RD Sharma Class 6 Решения
              • RD Sharma Class 7 Решения
              • Решения RD Sharma класса 8
              • Решения RD Sharma класса 9
              • Решения RD Sharma класса 10
              • Решения RD Sharma класса 11
              • Решения RD Sharma Class 12
            • PHYSICS
              • Механика
              • Оптика
              • Термодинамика
              • Электромагнетизм
            • ХИМИЯ
              • Органическая химия
              • Неорганическая химия
              • Периодическая таблица
            • MATHS
              • Статистика
              • 9000 Pro Числа
              • Числа
              • 9000 Pro Числа Тр Игонометрические функции
              • Взаимосвязи и функции
              • Последовательности и серии
              • Таблицы умножения
              • Детерминанты и матрицы
              • Прибыль и убытки
              • Полиномиальные уравнения
              • Деление фракций
            • Microology
                0003000
            • FORMULAS
              • Математические формулы
              • Алгебраические формулы
              • Тригонометрические формулы
              • Геометрические формулы
            • КАЛЬКУЛЯТОРЫ
              • Математические калькуляторы
              • 0003000
              • 000 Калькуляторы
              • 000 Физические модели 900 Образцы документов для класса 6
              • Образцы документов CBSE для класса 7
              • Образцы документов CBSE для класса 8
              • Образцы документов CBSE для класса 9
              • Образцы документов CBSE для класса 10
              • Образцы документов CBSE для класса 1 1
              • Образцы документов CBSE для класса 12
            • Вопросники предыдущего года CBSE
              • Вопросники предыдущего года CBSE, класс 10
              • Вопросники предыдущего года CBSE, класс 12
            • HC Verma Solutions
              • HC Verma Solutions Класс 11 Физика
              • HC Verma Solutions Класс 12 Физика
            • Решения Лакмира Сингха
              • Решения Лахмира Сингха класса 9
              • Решения Лахмира Сингха класса 10
              • Решения Лакмира Сингха класса 8
            • 9000 Класс

            9000BSE 9000 Примечания3 2 6 Примечания CBSE

          • Примечания CBSE класса 7
          • Примечания

          • Примечания CBSE класса 8
          • Примечания CBSE класса 9
          • Примечания CBSE класса 10
          • Примечания CBSE класса 11
          • Примечания 12 CBSE
        • Примечания к редакции 9000 CBSE 9000 Примечания к редакции класса 9
        • CBSE Примечания к редакции класса 10
        • CBSE Примечания к редакции класса 11
        • Примечания к редакции класса 12 CBSE
      • Дополнительные вопросы CBSE
        • Дополнительные вопросы по математике класса 8 CBSE
        • Дополнительные вопросы по науке 8 класса CBSE
        • Дополнительные вопросы по математике класса 9 CBSE
        • Дополнительные вопросы по математике класса 9 CBSE Вопросы
        • CBSE Class 10 Дополнительные вопросы по математике
        • CBSE Class 10 Science Extra questions
      • CBSE Class
        • Class 3
        • Class 4
        • Class 5
        • Class 6
        • Class 7
        • Class 8 Класс 9
        • Класс 10
        • Класс 11
        • Класс 12
      • Учебные решения
    • Решения NCERT
      • Решения NCERT для класса 11
        • Решения NCERT для класса 11 по физике
        • Решения NCERT для класса 11 Химия
        • Решения NCERT для биологии класса 11
        • Решение NCERT s Для класса 11 по математике
        • NCERT Solutions Class 11 Accountancy
        • NCERT Solutions Class 11 Business Studies
        • NCERT Solutions Class 11 Economics
        • NCERT Solutions Class 11 Statistics
        • NCERT Solutions Class 11 Commerce
      • NCERT Solutions for Class 12
        • Решения NCERT для физики класса 12
        • Решения NCERT для химии класса 12
        • Решения NCERT для биологии класса 12
        • Решения NCERT для математики класса 12
        • Решения NCERT, класс 12, бухгалтерия
        • Решения NCERT, класс 12, бизнес-исследования
        • NCERT Solutions Class 12 Economics
        • NCERT Solutions Class 12 Accountancy Part 1
        • NCERT Solutions Class 12 Accountancy Part 2
        • NCERT Solutions Class 12 Micro-Economics
        • NCERT Solutions Class 12 Commerce
        • NCERT Solutions Class 12 Macro-Economics
      • NCERT Solut Ионы Для класса 4
        • Решения NCERT для математики класса 4
        • Решения NCERT для класса 4 EVS
      • Решения NCERT для класса 5
        • Решения NCERT для математики класса 5
        • Решения NCERT для класса 5 EVS
      • Решения NCERT для класса 6
        • Решения NCERT для математики класса 6
        • Решения NCERT для науки класса 6
        • Решения NCERT для класса 6 по социальным наукам
        • Решения NCERT для класса 6 Английский язык
      • Решения NCERT для класса 7
        • Решения NCERT для математики класса 7
        • Решения NCERT для науки класса 7
        • Решения NCERT для социальных наук класса 7
        • Решения NCERT для класса 7 Английский язык
      • Решения NCERT для класса 8
        • Решения NCERT для математики класса 8
        • Решения NCERT для науки 8 класса
        • Решения NCERT для социальных наук 8 класса ce
        • Решения NCERT для класса 8 Английский
      • Решения NCERT для класса 9
        • Решения NCERT для класса 9 по социальным наукам
      • Решения NCERT для математики класса 9
        • Решения NCERT для математики класса 9 Глава 1
        • Решения NCERT для математики класса 9, глава 2
        • Решения NCERT

        • для математики класса 9, глава 3
        • Решения NCERT для математики класса 9, глава 4
        • Решения NCERT для математики класса 9, глава 5
        • Решения NCERT

        • для математики класса 9, глава 6
        • Решения NCERT для математики класса 9 Глава 7
        • Решения NCERT

        • для математики класса 9 Глава 8
        • Решения NCERT для математики класса 9 Глава 9
        • Решения NCERT для математики класса 9 Глава 10
        • Решения NCERT

        • для математики класса 9 Глава 11
        • Решения NCERT для математики класса 9 Глава 12
        • Решения NCERT

        • для математики класса 9

.

Основные расчеты электролиза

Константа Фарадея — это самый важный бит информации в расчетах электролиза. Убедитесь, что вы действительно понимаете следующую часть.


 

Кулоны

кулон — это мера количества электричества. Если в течение 1 секунды протекает ток в 1 ампер, значит, прошел 1 кулон электричества.

Это означает, что вы можете вычислить, сколько электричества прошло за заданное время, умножив ток в амперах на время в секундах.

Количество кулонов = ток в амперах x время в секундах

Если вам дано время в минутах, часах или днях, тогда вы должны преобразовать это время в секунды, прежде чем делать что-либо еще.

Например, если в течение часа течет ток 2 ампера, то:

Количество кулонов = 2 x 60 x 60 = 7200

(60 минут в каждом час; 60 секунд в каждой минуте)

Это просто!


 

Фарадей

Электричество — это поток электронов.Для расчетов нам нужно знать, как связать количество молей электронов, которые текут, с измеренным количеством электричества.

Заряд, который несет каждый электрон, составляет 1,60 x 10 -19 кулонов. Если вам когда-нибудь понадобится использовать его на экзамене, вам будет дана ценность.

1 моль электронов содержит постоянную Авогадро, L, электронов — то есть 6,02 x 10 23 электронов. Вам также дадут это на экзамене, если вам нужно его использовать.

Это означает, что 1 моль электронов должен нести

6.02 x 10 23 x 1,60 x 10 -19 кулонов

= 96320 кулонов

Это значение известно как постоянная Фарадея.

Вы можете встретить формулу F = Le , где F — постоянная Фарадея, L — постоянная Авогадро, а e — заряд электрона (в терминах количества кулонов, которые он несет). Мы только что использовали это, фактически не заявляя об этом — это в основном очевидно!


 

Числа, которые мы здесь используем, округлены.Расчет просто показывает, как решить эту проблему, если это необходимо, но не дает обычно используемого значения. Для целей экзамена значение постоянной Фарадея обычно принимается равным 9,65 x 10 4 C моль -1 (кулонов на моль). Это еще одно число, которое вам вряд ли придется запоминать.

Это 96500 кулонов на моль.

Итак, 96500 кулонов называется 1 фарадей . Обратите внимание на маленькую букву «f», когда она используется как единица измерения.

Всякий раз, когда у вас есть уравнение, в котором есть 1 моль электронов, это представлено в электрической цепи 1 фарадем электричества — другими словами, 96500 кулонами.

.

Simple English Wikipedia, бесплатная энциклопедия

Электролиз — это научный способ «расщепления» веществ. Электролиз означает «электрическое расщепление» и включает разделение веществ с помощью электрического тока.

Металлы над углеродом в ряду реакционной способности (калий, натрий, литий, кальций, магний и алюминий) извлекаются электролизом.

Электролиз используется в горнодобывающей промышленности для отделения химически активных металлов от руд после того, как они были извлечены из земли.Гальваника также используется для покрытия (покрытия) предметов металлом, потому что это дешевле, чем использование, например, чистого золота для изготовления украшений.

Многие салоны красоты используют для удаления волос электролиз или электролиз. Это делается путем «стрижки» волос таким образом, чтобы они расслоились вдоль корня.

Электролиз заставляет анионы (отрицательные ионы) переходить на анод (положительный электрод), а катионы (положительные ионы) — на катод (отрицательный электрод). Так, например, кислород попадет на анод, а железо на катод.

Викискладе есть медиафайлы, связанные с Electrolysis .

Эту небольшую статью о химии можно сделать длиннее. Вы можете помочь Википедии, добавив к ней .

.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *