Однофазные асинхронные электродвигатели INNOVARI – серия асинхронных электродвигателей с короткозамкнутым ротором для общепромышленного и бытового применения. Электродвигатели предназначены для питания от однофазной сети напряжения 230 В, 50 Гц, и продолжительного (S1) режима работы при классе нагревостойкости изоляции F (фактическая температура до 155°С). Класс защиты корпуса IP55 – пылевлагозащищенный. Конструктивно электродвигатели выполнены в вариантах фланцевого присоединения типов В5 и В14. Для последнего варианта предусматривается 8 крепежных отверстий, чтобы исключить присоединение к редуктору с углом поворота. Обмотка статора разных исполнений двигателей может быть 2-х и 4-х полюсной, с синхронными скоростями соответственно 3000/1500 об/мин. Серия адаптирована для работы с преобразователями частоты. Для исключения протекания паразитных токов через вал и станину двигателя, вал ротора устанавливается на изолированных подшипниках. Модельный ряд однофазных асинхронных двигателей INNOVARIОсновные модели и электромеханические характеристики однофазных асинхронных двигателей с короткозамкнутым ротором серии INNOVARI.
Технические характеристики однофазных асинхронных двигателей INNOVARI
Габаритные размерыСопутствующие товары к асинхронным двигателямПрименение однофазных асинхронных двигателей INNOVARIВ основном однофазные асинхронные электродвигатели с короткозамкнутым ротором INNOVARI предназначены для применения в промышленных электрических приводах малой мощности. Относительная дешевизна и надежность двигателей с короткозамкнутым ротором обеспечивают очень широкий спектр применения: устройства промышленной автоматики, манипуляторы, электроинструмент, вентиляторы, насосы, компрессоры, бытовая техника. Преимущества применения однофазных асинхронных двигателей INNOVARI:
Принцип работы однофазных асинхронных двигателей с короткозамкнутымМагнитная система однофазного асинхронного электродвигателя состоит из сердечников статора и ротора, выполняемых из листов электротехнической стали. Сердечник статора фиксируется в станине двигателя, которая неподвижно закрепляется на фундаменте. Сердечник ротора насаживается на вал двигателя, а концы вала опираются на подшипники, расположенные в станине. В пазах статора размещается, как правило, двухфазная многополюсная обмотка, питаемая от однофазного источника напряжения. В пазах ротора располагается короткозамкнутая обмотка типа беличьей клетки. Между статором и ротором имеется небольшой воздушный зазор. Чтобы обмотка статора создавала вращающееся магнитное поле, фазы обмотки сдвинуты в пространстве на некоторый угол и запитываются токами, сдвинутыми по фазе во времени. Для этого последовательно или параллельно с одной из обмоток включается конденсатор определенной ёмкости, располагающийся непосредственно на двигателе. Вращающийся магнитный поток, пересекая витки обмотки ротора, индуцирует в ней электродвижущую силу и электрический ток, частота и величина которого зависит от разности скоростей – синхронной и механической скорости вращения ротора. В результате взаимодействия тока ротора с магнитным потоком в зазоре между ротором и статором, возникает электромагнитный момент, заставляющий ротор вращаться и приводить в движение нагрузку двигателя – трансмиссию и рабочий механизм. Сертификаты
| Европейское качество Лучшее решение Новости 04 Главное вовремя остановиться 01 Нет предела совершенству 29 Взгляд со стороны 28 Техника бесконтактного измерения 25 Лучше предотвратить, чем исправить последствия |
Однофазные асинхронные двигатели устройство принцип работы
Однофазный электродвигатель 220 Вольт
Однофазная энергетическая система широко применяется по сравнению с трёхфазной для домашнего пользования, коммерческих целей и, в какой-то степени, для индустриальных задач. Однофазная система более экономична, энергетические же потребности в большинстве домов, офисов, магазинов весьма невелики. По этой причине однофазная система является очень подходящей в данном случае.
Однофазные электродвигатели просты по своей конструкции. Они недороги, прочны, их легко обслуживать и ремонтировать. Благодаря всем этим достоинствам, однофазный мотор нашёл применение в вентиляторах, пылесосах и т.д.
Данные моторы классифицируют так:
1. Однофазные индукционные двигатели или асинхронные двигатели.
2. Однофазные синхронные двигатели.
3. Коллекторные двигатели.
Устройство электродвигателя.
Как и любой электродвигатель, асинхронный мотор также имеет две главные составляющие. Этими компонентами являются ротор и статор.
Статор
Как можно догадаться из его названия, статор является стационарной частью индукционного мотора. На статор этого двигателя подаётся однофазный переменный ток.
Ротор
Ротор является вращающейся частью индукционного мотора. Ротор соединен с механической нагрузкой за счёт вала. Ротор в однофазном индукционном двигателе относится к типу роторов, который называют клетка для белки.
Конструкция данного электродвигателя почти такая же, как “клетка для белки” трёхфазного двигателя, за исключением того, что в асинхронном двигателе у статора две обмотки, по сравнению с одиночной обмоткой статора у трёхфазного индукционного мотора.
Радиальные вентиляторы с электродвигателем
В современных системах вентиляции, охлаждения, нагнетания воздуха повсеместно наблюдается тенденция замещения осевых вентиляторов устройствами центробежного типа – радиальными вентиляторами . Подобная конструкция позволяет существенно повысить мощность и КПД, обеспечивает стабильность работы и долговечность механизма. Рост спроса и, как следствие, быстрое развитие рынка сформировало широкий ассортимент центробежных вентиляторов, которые дифференцируются на различные подвиды.
Одним из наиболее перспективных является конструкция с предустановленным электродвигателем, основными преимуществами которой является отсутствие промежуточных приводных механизмов, а значит – высокая эффективность, низкий уровень шума и вибраций. Кроме того, обеспечивается защищенность силового агрегата от внешних воздействий, изолированность от потока, что создает благоприятные рабочие условия.
Про статор однофазного индукционного двигателя
Статор этого двигателя имеет многослойную штамповку для уменьшения потерь вихревого тока на его периферии. Слоты, предусмотренные на штамповке, предназначены для удерживания статора или основной обмотки. Для того чтобы уменьшить гистерезисные потери, штамповка сделана из кремнистой стали. Когда на обмотку статора подаётся однофазный переменный ток, образуется магнитное поле и двигатель вращается на скорости, которая несколько меньше синхронной скорости Ns, которая получается за счёт:
Где, f = частота подающегося напряжения, P = нормально разомкнутые полюсы мотора.
Конструкция статора асинхронного мотора похожа на конструкцию трёхфазного индукционного двигателя за исключением двух отличий в области обмотки в однофазном индукционном моторе.
1. Во-первых, однофазные индукционные моторы в большинстве своём выпускаются с катушками, имеющими не перекрещивающиеся лобовые соединения. Количество оборотов на катушку может быть легко отрегулировано при помощи катушек с не перекрещивающимися лобовыми соединениями. Распределение магнитодвижущей силы почти синусоидально.
2. За исключением двигателя с экранированным полюсом, асинхронный мотор имеет две обмотки на статоре, а именно основную и вспомогательную. Данные обмотки размещены квадратурно по отношению друг к другу.
Классификация радиальных вентиляторов с электродвигателем
Классификация устройств, оснащенных электродвигателем, может осуществляться как по признакам, свойственным всему классу вентиляторов центробежного типа, так и по некоторым специфическим признакам. Начнем с общих. Основным и важнейшим из них является назначение, которым может быть:
- вентиляция помещений;
- перемещение газообразных веществ;
- создание давления или разрежения;
- охлаждение или подогрев.
От назначения зависит и комплектация устройств дополнительными деталями и элементами. Это могут быть крепежные детали, магистрали, нагревательные элементы, датчики и др.
На характер работы вентилятора существенно влияет форма изгиба его лопастей. Так, загнутую вперед крыльчатку устанавливают в случае необходимости перемещения больших объемов газа в течение малого периода времени, при этом обязательным условием является малое давление среды и отсутствие в ней механических примесей.
Изгиб назад также очень эффективен, кроме того, он обеспечивает гибкий диапазон пользовательских настроек и предоставляет возможность работы со среднезагрязненными средами.
Прямые лопасти – шумный и крайне малопроизводительный вариант, к достоинствам которого относится полная неприхотливость к разновидности среды, ее составу и чистоте.
Важной характеристикой является класс защиты вентилятора по двум стандартам – пылевлагозащищенности и взрывозащищенности. Если первый важен исключительно для обеспечения бесперебойной работы подвижных элементов и электрических систем, то второй обязательно учитывается при работе с огне- и взрывоопасными веществами, а также организации вентиляции мест их теоретического или фактического скопления, к примеру, шахт.
Специфические критерии классификации зависят от параметров электродвигателя, к которым относятся:
- Тип, напряжение, частота и сила тока. В промышленных сетях наибольшее распространение получили трехфазные электродвигатели номинальным напряжением 220 В или 380 В при частоте тока 50 Гц.
- Мощность – величина, характеризующая количество расходуемой энергии, измеряется в Вт и кВт. Характерная особенность радиальных вентиляторов с электродвигателем – наличие двух взаимосвязанных мощностей. Первая (она несколько больше) характеризует электрическую мощность как произведение напряжения и силы тока. Вторая (фактическая) учитывает потери в процессе трансформации и передачи энергии и представляет собой механическую величину.
- Скорость вращения, интенсивность потока и другие динамические показатели – являются результатом измерения и анализа работы устройства с помощью соответствующих датчиков.
- Время и условия включения – параметр, обоснованный идей обеспечения относительной автономности устройства. Его примером может служит оснащение охлаждающего вентилятора элементарным температурным датчиком, включающим устройство при превышении определенного порога. Использование электричества в качестве источника энергии позволило массово использовать подобные механизмы.
Выбор конкретного вида должен осуществляться с учетом особенностей системы, условий внешней среды, а также длительного прогноза возможных изменений этих параметров. Учитывается объем газообразного вещества, перемещаемого за единицу времени, выполненная при этом механическая и электрическая работа, влияние этих и других параметров на ресурс аппаратной части устройства.
Только после детальной проработки теоретической базы, выполнения расчетов и сопоставления полученных значений с практическими данными этап проектирования установки радиального вентилятора с электродвигателем можно считать завершенным.
Источник
О роторе однофазного электродвигателя.
Устройство данной составляющей этого двигателя похоже на “клетку для белки” трёхфазного индукционного мотора. Ротор имеет форму цилиндра. У данной составляющей двигателя есть слоты по всей периферии. Слоты не параллельны по отношению друг к другу, но немного скошены, так как скашивание препятствует магнитной блокировке зубов статора и ротора и делает работу индукционного мотора более гладкой и тихой.
Ротор в форме клетки для белки состоит из стержней. Эти стержни сделаны из одного из трёх металлов. Они могут быть алюминиевыми, могут быть медными, могут латунными. Данные стержни называют проводниками ротора, и они располагаются в слотах на периферии данной составляющей двигателя. Проводники перманентно замкнуты за счёт медных или алюминиевых колец, которые называют замыкающими кольцами. Для того чтобы обеспечивать механическую силу, эти проводники связаны с замыкающим кольцом, и следовательно, они формируют абсолютно замкнутую схему, напоминающую клетку. Поэтому эти двигатели и стали называть индукционными моторами-клетками для белки.
Так как стержни перманентно замкнуты при помощи замыкающих колец, электрическое сопротивление данной части мотора очень невелико, и нет возможности добавить внешнее сопротивление, поскольку стержни, как уже говорилось, перманентно замкнуты. Отсутствие контактного кольца и щёток делает устройство однофазного индукционного мотора очень простым и надёжным.
Перемотка якоря
Процесс замены обмотки коллекторного двигателя несколько похож за исключением небольших нюансов, связанных с особенностью исполнения. Например, на перемотку отправляют якорь, а не корпус, при условии, что проблема возникла не с катушками возбуждения. Помимо этого имеются следующие отличия:
- Для намотки применяется специальный станок, более сложной конфигурации.
- Обязательно необходима проточка, балансировка якоря (в финальной части процесса), а также его чистка и шлифовка.
- При помощи специального фрезерного станка производится нарезка коллектора.
Для перечисленных процессов требует спецоборудование, без него перемотка электродвигателей — пустая трата времени.
Источник
Принцип работы двигателя
ВНИМАНИЕ: Известно, что для действия любого мотора, который действует за счёт электроэнергии, будь-то мотор, использующий переменный ток или постоянный, нужно два магнитных потока. Взаимодействие между этими вот потоками обеспечивает требуемый крутящий момент, который является желаемым параметром для любого вращающегося мотора.
Когда на обмотку статора мотора приходит однофазный переменный ток, переменный ток начинает проходить через статор или основную обмотку. Этот переменный ток порождает переменный магнитный поток, который называют основным магнитным потоком.
Почему данный мотор не является самозапускающимся?
Согласно теории, гласящей о двойном вращающемся поле, любое изменяющееся значение может быть поделено на 2 компонента. Каждый имеет магнитуду, равную половине максимальной магнитуды переменного значения. Оба данных компонента крутятся в противоположном направлении по отношению друг к другу. Например, магнитный поток, φ может быть разделён на 2 составляющие:
Каждый из этих компонентов вращается в противоположном направлении. Если один φm / 2 вращается по часовой стрелке, то другой φm / 2 вращается против. Когда однофазный переменный ток идёт на обмотку статора данного двигателя, он производит собственный магнитный поток магнитуды, φm.
В соответствии с теорией о двойном поле, которое вращается, этот переменный магнитный поток, φm разделён на 2 компонента магнитуды φm / 2. Каждый будет вращаться в противоположном направлении, с синхронной скоростью, Ns. Назовём эти 2 компонента магнитного потока как передний компонент потока, φf и задний компонент потока, φb.
Результат двух компонентов в любой момент даёт значение мгновенного магнитного потока статора в данный конкретный момент.
Теперь при старте, и передняя, и задняя составляющие магнитного потока точно являются противоположными. Также оба компонента магнитного потока равны по магнитуде. Поэтому они аннулируют друг друга, и поэтому получающийся крутящий момент у ротора на старте равен нулю. Поэтому такие вот двигатели не являются самозапускающимися.
Методы, которыми можно сделать данный электродвигатель самостартующим
Эти моторы не запускаются сами, потому что создаваемый магнитный поток статора является изменяющимся по характеру и при запуске 2 компонента этого потока аннулируют друг друга, и поэтому не появляется крутящего момента .
Решить эту проблему можно, если сделать магнитный поток статора потоком вращающегося типа, а не переменного типа, который вращается лишь в одну сторону. Тогда мотор станет самозапускающимся. Теперь, для того чтобы произвести это вращающееся магнитное поле, понадобится два переменных магнитных потока, имеющие угол фазы с некоторой разницей между ними.
Когда эти два потока взаимодействуют, они производят результирующий магнитный поток. Этот поток вращается по своей сути и вращается в пространстве только в одном направлении. Когда двигатель начнёт вращаться, дополнительный магнитный поток может быть удалён.
Мотор будет продолжать вращаться под воздействием только основного магнитного потока. В зависимости от методов превращения асинхронного электродвигателя в самозапускающийся мотор, существует в основном 4 типа однофазных индукционных моторов, а именно:
1. Индукционный электродвигатель с проскальзывающей фазой.
2. Ёмкостной электродвигатель со стартовым индуктором.
3. Емкостной индукционный электродвигатель со стартовым конденсатором.
4. Индукционный электродвигатель со экранированным полюсом.
5. Перманентный емкостной электродвигатель с проскальзыванием или ёмкостной мотор с одним значением.
Сравнение однофазных и трёхфазных индукционных электродвигателей
1. Однофазные электродвигатели надёжны, просты в устройстве, экономичны для маленькой мощности, если сравнивать с трёхфазными.
2. Электрический фактор мощности однофазных электродвигателей низок, если сравнить с трёхфазными.
3. Несмотря на одинаковые размеры, однофазные электродвигатели производят около 50% на выходе, тогда как трёхфазные – меньше.
4. Стартовый крутящий момент также низок для асинхронных моторов / однофазных индукционных моторов.
5. Эффективность однофазных электродвигателей меньше, чем у трёхфазных.
Однофазные индукционные электродвигатели просты, надёжны и дёшевы для маленьких мощностей. Они в целом доступны для мощности в 1 киловатт.
Пишите комментарии, дополнения к статье, может я что-то пропустил. Загляните на карту сайта Электронщик , буду рад если вы найдете на моем сайте еще что-нибудь полезное. Делитесь информацией в соцсетях, ставьте лайки, если вам понравилось — это поможет развитию канала
Источник
Однофазные электродвигатели АИРЕ — основные технические характеристики
Марка | Мощн, кВт | Об./мин | Напр В | Ток, А | КПД, % | Коэф. мощн | Мпуск/ Мном | Iпуск/ Iном | Масса, кг |
АИРЕ 71B2 | 0,75 | 2790 | 220 | 5,2 | 67 | 0,92 | 0,4 | 4,0 | 9,6 |
АИРЕ 71B4 | 0,55 | 1340 | 220 | 4,3 | 64 | 0,92 | 0,4 | 3,5 | 9,6 |
АИРЕ 71C2 | 1,1 | 2790 | 220 | 7,4 | 68 | 0,95 | 0,4 | 4,0 | 10,5 |
АИРЕ 71C4 | 0,75 | 1390 | 220 | 5,1 | 66 | 0,92 | 0,4 | 3,5 | 10,3 |
АИРЕ 80B2 | 1,5 | 2790 | 220 | 10,0 | 69 | 0,95 | 0,4 | 4,5 | 15,1 |
АИРЕ 80B4 | 1,1 | 1350 | 220 | 7,2 | 71 | 0,95 | 0,32 | 4,0 | 15,1 |
АИРЕ 80С2 | 2,2 | 2790 | 220 | 13,9 | 73 | 0,95 | 0,3 | 4,5 | 15,9 |
АИРЕ 80C4 | 1,5 | 1350 | 220 | 9,8 | 72 | 0,95 | 0,32 | 4,5 | 15,1 |
АИРЕ 90L2 | 3,0 | 2800 | 220 | 18,2 | 79 | 0,95 | 0,45 | 3,4 | 28,1 |
АИРЕ 100S4 | 2,2 | 1440 | 220 | 17,6 | 75 | 0,95 | 0,4 | 3,2 | 27,9 |
Однофазный асинхронный электродвигатель с пусковой обмоткой
Конструкция однофазного двигателя с вспомогательной или пусковой обмоткой
Статор
имеет две обмотки, расположенные под углом 90° относительно друг друга. Основная обмотка называется главной (рабочей) и обычно занимает 2/3 пазов сердечника статора, другая обмотка называется вспомогательной (пусковой) и обычно занимает 1/3 пазов статора.
Однофазный электродвигатель с экранированными полюсами
Двигатель с экранированными полюсами
— двигатель с расщепленной фазой, у которого вспомогательная обмотка короткозамкнута.
Статор
однофазного асинхронного двигателя с экранированными полюсами обычно имеет явно выраженные полюса. На явно выраженных полюсах статора намотаны катушки однофазной обмотки возбуждения. Каждый полюс статора разделен на две неравные части аксиальным пазом. Меньшую часть полюса охватывает короткозамкнутый виток.
Ротор
однофазного двигателя с экранированными полюсами — короткозамкнутый в виде «беличьей» клетки.
При включении однофазной обмотки статора в сеть в магнитопроводе двигателя создается пульсирующий магнитный поток. Одна часть которого проходит по неэкранированной Ф’, а другая Ф» — по экранированной части полюса. Поток Ф» наводит в короткозамкнутом витке ЭДС Ek, в результате чего возникает ток Ik отстающий от Ek по фазе из-за индуктивности витка. Ток Ik создает магнитный поток Фk, направленный встречно Ф», создавая результирующий поток в экранированной части полюса Фэ=Ф»+Фk. Таким образом, в двигателе потоки экранированной и неэкранированной частей полюса сдвинуты во времени на некоторый угол.
Пространственный и временной углы сдвига между потоками Фэ и Ф’ создают условия для возникновения в двигателе вращающегося эллиптического магнитного поля, так как Фэ ≠ Ф’.
Пусковые и рабочие свойства рассматриваемого двигателя невысоки. КПД намного ниже, чем у конденсаторных двигателей такой же мощности, что связано со значительными электрическими потерями в короткозамкнутом витке.
ДВУХФАЗНЫЕ И ОДНОФАЗНЫЕ АСИНХРОННЫЕ ДВИГАТЕЛИ
Если снабдить статор двигателя только одной однофазной обмоткой (рис. .14.33), то переменный ток в ней будет возбуждать в машине, пока ее ротор неподвижен, переменное магнитное поле, ось которого тоже неподвижна. Это поле будет индуктировать в обмотке ротора ЭДС, под действием которой в ней возникнут токи. Взаимодействие токов ротора с магнитным полем статора создаст электромагнитные силы f
, противоположно направленные в правой и левой половинах ротора. Вследствие этого результирующий момент, действующий на ротор, окажется равен нулю. Следовательно, при наличии одной обмотки начальный пусковой момент однофазного двигателя равен нулю, т. е. такой двигатель сам с места тронуться не может.
Применяются два способа создания в двигателях, подключаемых к одной фазе сети, начального пускового момента, в соответствии с чем эти двигатели делятся на двухфазные и однофазные.
Двухфазные асинхронные двигатели. Двухфазные двигатели помимо обмотки, включаемой непосредственно на напряжение сети, снабжаются второй обмоткой, соединяемой последовательно с тем или другим фазосмещающим устройством (конденсатором, катушкой индуктивности). Наиболее выгодным из них является конденсатор (рис. 14.34), а соответствующие двигатели именуются конденсаторными.
В пазах статора подобных двигателей размещаются две фазные обмотки, каждая из которых занимает половину всех пазов. Таким путем осуществляется условие получения вращающего момента посредством индукционного механизма (см. § 12.9): наличие двух переменных магнитных потоков, смещенных в пространстве и сдвинутых по фазе относительно друг друга.
Наиболее выгодным является круговое вращающееся магнитное поле. Оно может быть осуществлено в двухфазном двигателе. При этом, однако, приходится выбирать условия, при которых предпочтительнее получить круговое поле, а следовательно, и наибольший вращающий момент — при спуске двигателя или при номинальной нагрузке.
Действительно, если токи в обмотках статора 1
и 2 имеют равные действующие значения и сдвинуты относительно друг друга по фазе на угол /2, то возбуждаемое ими магнитное поле имеет составляющие
Вх
и
Ву,
определяемые выражениями (14. 2) и (14.3). Результирующее магнитное поле в этом случае представляет собой круговое вращающееся поле.
Если емкость конденсатора подобрана так, что круговое магнитно.: поле создается при пуске двигателя, то при номинальной нагрузке изменение тока второй обмотки вызовет изменение падения напряжения на конденсаторе, а следовательно, и напряжения на второй обмотке по значению и фазе. В результате вращающееся магнитное поле станет эллиптическим (при вращении поток будет пульсировать), что обусловит уменьшение вращающего момента.
Ценой усложнения установки — посредством отключения части конденсаторов при переходе от пусковых условий к рабочим (штрихпунктирные соединения на рис. 14.34) можно этот недостаток устранить. Это уменьшение емкости конденсаторов может выполняться автоматически центробежным выключателем,- срабатывающим, когда частота вращения двигателя достигает 75—80 % номинальной, или воздействием реле времени.
Двухфазные двигатели применяются в автоматических устройствах также в качестве управляемых двигателей: их частота вращения или вращающий момент регулируется изменением действующего значения или фазы напряжения на одной из обмоток. Такие двигатели вместо обычного ротора с короткозамкнутой обмоткой снабжаются ротором в виде полого тонкостенного алюминиевого цилиндра («стаканчика»), вращающегося в узком воздушном зазоре между статором и неподвижным центральным сердечником из листовой стали (внутренним статором). Это двигатели с полым ротором
обладают ничтожной инерцией, что практически очень важно при регулировании некоторых производственных процессов. На рис. 14.35 показан график зависимости частоты вращения такого двигателя от напряжения на управляющей обмотке.
Однофазные асинхронные двигатели не развивают начального пускового момента. Но если ротор однофазного двигателя раскрутить в любую сторону при помощи внешней силы, то в дальнейшем этот ротор будет вращаться самостоятельно и может развивать значительный вращающий момент.
Сходные условия создаются у трехфазного двигателя при перегорании предохранителя в одной из фаз. В таких условиях однофазного питания трехфазный двигатель будет продолжать работать. Только во избежание перегрева двух обмоток, остающихся включенными, необходимо, чтобы нагрузка двигателя не превышала 50—60 % номинальной.
Работу однофазного двигателя можно объяснить на основании того, что переменное магнитное поле можно рассматривать как результат наложения двух магнитных полей, вращающихся в противоположные стороны с постоянной угловой скоростью /р.
Амплитудные значения магнитных потоков этих полей
Ф1т
и
Ф
IIm одинаковы и равны половине амплитуды магнитного потока переменного поля машины:
Ф1т
=
Ф
IIm =
Ф
m /2
Простое графическое построение (рис. 14.36) показывает, как в результате сложения двух одинаковых магнитных потоков Ф1m и ФIIт, вращающихся в противоположные стороны, получается магнитный поток, изменяющийся по синусоидальному закону: Ф = Фт sin t.
В однофазном двигателе это положение справедливо, только пока ротор неподвижен. Рассматривая в этих условиях переменное поле как складывающееся из двух вращающихся полей, можно заключить, что под действием обоих этих полей в обмотке ротора будут одинаковые токи. Токи ротора, взаимодействуя с вращающимися полями, создтют два одинаковых вращающихся момента, направленных в противоположные стороны и уравновешивающих друг друга.
Это равенство двух моментов нарушается, если привести ротор во вращение в любом направлении. В этих условиях вращающий момент, создаваемый прямо вращающимся полем (короче, прямым полем), т. е. полем, вращающимся в ту же сторону, что и ротор, становится значительно больше момента, развиваемого обратно вращающимся полем (короче, обратным полем), благодаря чему ротор может не только самостоятельно вращаться, но и приводить во вращение какой-либо механизм.
Ослабление противодействующего момента при вращении ротора вызывается ослаблением обратного поля. Относительно этого поля, вращающегося против направления вращения ротора, скольжение ротора равно:
sII= = = 2-s1
где sI — скольжение ротора по отношению к прямому полю.
Выражение (14.36) показывает, что частота токов, индуктируемых в роторе обратным полем, относительно высока — близка к удвоенной частоте сети. Для токов такой повышенной частоты индуктивное сопротивление ротора во много раз больше его активного сопротивления, вследствие чего токи, индуктируемые обратным полем, становятся почти чисто реактивными. Согласно рис. 14.21 поле этих токов оказывает сильное размагничивающее действие на поле, их ин актирующее, следовательно, на обратное поле двигателя. Благодаря этому при малых скольжениях sl
результирующее магнитное поле машины становится почти круговым вращающимся полем, а противодействующий момент обратного поля в этих условиях мал.
Рис. 14.36.
Для каждого из полей мы можем применить известные нам кривые зависимости момента от скольжения обычного трехфазного асинхронного двигателя и определить результирующий момент М
как разность прямого MI и обратного MII моментов (рис. 14.37). Существенной особенностью однофазного двигателя является наличие небольшого отрицательного момента
М0
при синхронной частоте вращения ротора по отношению к прямому полю.
Возрастание скольжения sI, при увеличении нагрузки вызывает у однофазного двигателя не только увеличение тока I1 индуктируемого прямым полем, но и увеличение тормозного момента обратного поля, вследствие чего работа однофазного двигателя значительно менее устойчива, чем трех фазного, а его максимальный момент существенно меньше. Вследствие ряда дополнительных потерь КПД однофазного двигателязначительно ниже, чем трехфазного.
Задача пуска в ход однофазного двигателя решается посредством применения того или другого пускового устройства. Чаще всего это дополнительная обмотка, подобная второй обмотке двухфазного двигателя, но отключаемая по окончании пуска, так как она рассчитывается лишь на кратковременную нагрузку током. Последовательно с этой обмоткой включается то или иное фазосмещающее устройство.
Асинхронные двигатели с расщепленными полюсами. Пусковое устройство в однофазном асинхронном двигателе может оставаться включенным и при нормальной работе двигателя. Это имеет место в асинхронных двигателях с расщепленными полюсами. Такие двигатели можно рассматривать как промежуточные между однофазными и двухфазными асинхронными двигателями (рис. 14.38). Этот двигатель снабжен короткозамкнутой обмоткой шк, которая охватывает часть явновыраженного полюса, на котором размещена главная (первичная) обмотка 1
. Ток
I1
в обмотке
1
, подключенной к сети, возбуждает магнитный поток Ф1. Часть последнего, пронизывая обмотку
wK,
индуктирует в ней ток I2, значительно отстающий по фазе от
I1
. Этот ток возбуждает второй магнитный поток двигателя. Таким образом, в двигателе создается система двух переменных магнитных потоков, не совмещенных пространственно и сдвинутых по фазе, т. е. создаются условия, подобные условиям в индукционных электроизмерительных приборах (см. рис. 12.23), следовательно, возникает вращающееся магнитное поле, которое, воздействуя на короткозамкнутый ротор
2,
создает соответствующий вращающий момент. Эти двигатели изготовляются миниатюрными (мощностью 0,5—30 Вт) и широко применяются для самых различных целей — главным образом, в качестве привода исполнительных механизмов.
Однофазные асинхронные двигатели | Эксплуатация электрических машин и аппаратуры | Архивы
Страница 12 из 74
Преимущество однофазных двигателей перед трехфазными — их способность работать от однофазной сети.
Станина, сердечник статора и короткозамкнутый ротор в однофазных двигателях такие же, как и в трехфазных. Однофазная обмотка статора занимает 2/3 пазов сердечника. Переменный ток в однофазной обмотке создает пульсирующее, а не вращающее, магнитное поле. Такое поле не способно создать пусковой момент двигателя. Если ротор двигателя развернуть, то возникает момент, действующий в направлении вращения ротора. Однофазный двигатель с одной обмоткой на статоре не имеет преимущественного направления вращения: вращение ротора будет в направлении первоначального толчка.
Однофазные двигатели (рис. 41), кроме рабочей обмотки, имеют пусковую обмотку (фазу), которая занимает 1/3 пазов. Пусковую обмотку изготовляют из провода меньшего сечения, чем рабочую. Для получения фазы сдвига токов в обмотках последовательно с пусковой обмоткой включают активное сопротивление. Часто это сопротивление сосредоточено внутри пусковой обмотки.
Рис. 42. Схема однофазного конденсаторного двигателя: С — конденсатор.
Рис. 43. Схема конденсаторного двигателя с рабочей (Ср) и пусковой (Сп) емкостями.
Рис. 41. Схема однофазного асинхронного двигателя с пусковой обмоткой:
К — ключ; R — активное сопротивление.
При замкнутом ключе К и подаче напряжения к двигателю в системе двух обмоток образуется эллиптическое вращающееся магнитное поле; оно обусловливает пусковой момент. Когда скорость ротора достигнет 70—80% номинальной, пусковая обмотка отключается автоматически или вручную.
В однофазных двигателях с пусковой обмоткой небольшой пусковой момент, малая перегрузочная способность, низкие к. п. д. и Cos ср. Изготовляют такие двигатели мощностью ст нескольких десятков до нескольких сот ватт. Их применяют в стиральных машинах, холодильниках, вентиляторах и т. п.
Для увеличения пускового момента однофазного двигателя последовательно с пусковой обмоткой вместо активного сопротивления включают конденсатор. Благодаря емкости пусковые токи в фазах получаются сдвинутыми относительно друг друга на угол до 90°, что и обусловливает больший пусковой момент. После разбега двигателя пусковая обмотка с конденсатором отключается.
Однофазные конденсаторные двигатели на статоре имеют две обмотки (фазы), занимающие равное число пазов, и в одну из которых включен конденсатор (рис. 42). Постоянно включенный конденсатор обусловливает эллиптическое вращающееся магнитное поле, а в рабочем режиме при определенной нагрузке получается круговое поле, то есть такое же, как в трехфазном двигателе.
Конденсаторный двигатель обладает хорошими рабочими характеристиками. К. п. д. достигает 75%. cos φ = 0,9 и выше Пусковые характеристики этих двигателей неудовлетворительны. Пои пуске двигателя магнитное поле сильно отличается от кругового. Поэтому пусковой момент не превышает 30% номинального.
С целью увеличения пускового момента в однофазном конденсаторном двигателе параллельно рабочей емкости включают пусковую емкость, она после разбега двигателя отключается (рис. 43). Такой двигатель называют конденсаторным с пусковой емкостью.
Во всех однофазных двигателях — с пусковой обмоткой, с конденсаторным пуском и конденсаторных двигателях — для измене- нения направления вращения ротора нужно изменить направление тока в одной из обмоток, то есть переключить пусковую или рабочую фазу.
В однофазных асинхронных двигателях с двумя обмотками на статоре пусковой момент пропорционален произведению пусковых токов обмоток и синусу угла смещения этих токов. При заданных токах в обмотках пусковой момент будет наибольшим при фазе смещения токов на 90°, что можно достичь только включением емкости в одну (обычно пусковую) обмотку.
В однофазных конденсаторных двигателях для одной какой- либо нагрузки можно добиться строго кругового вращающегося магнитного поля. Для другой нагрузки изменением величины рабочей емкости можно уменьшить обратно вращающееся магнитное поле, но получить вновь строго круговое поле нельзя, оно будет эллиптическим.
Промышленность выпускает однофазные двигатели: АОЛБО с пусковой обмоткой и активным сопротивлением в качестве фазосдвигающего элемента; АОЛГО с пусковой обмоткой и конденсатором в качестве фазосдвигающего пускового элемента; АОЛДО — конденсаторный однофазный двигатель, в котором для увеличения пускового момента на время пуска параллельно работающей емкости включается пусковой конденсатор.
Кроме однофазных двигателей с двумя обмотками на статоре, есть однообмоточные двигатели. В них статор явно полюсной системы (как в машинах постоянного тока). Для создания вращающегося поля при пуске используют короткозамкнутые витки, охватывающие часть сердечников полюсов. В этих двигателях нельзя изменить направление вращения ротора.
Принцип работы однофазного асинхронного двигателя
Области применения. Асинхронные двигатели небольшой мощности (15 — 600 Вт) применяют в автоматических устройствах и электробытовых приборах для привода вентиляторов, насосов и другого оборудования, не требующего регулирования частоты вращения. В электробытовых приборах и автоматических устройствах обычно используют однофазные микродвигатели, так как эти приборы и устройства, как правило, получают питание от однофазной сети переменного тока.
Принцип действия и устройство однофазного двигателя. Обмотка статора однофазного двигателя (рис. 4.60, а) расположена в пазах, занимающих примерно две трети окружности статора, которая соответствует паре полюсов. В результате
Рис. 4.60. Поперечный разрез статора однофазного асинхронного двигателя (о) и направление вращающих моментов, действующих на его ротор (б) |
(см. гл. 3) распределение МДС и индукции в воздушном зазоре близко к синусоидальному. Поскольку по обмотке проходит переменный ток, МДС пульсирует во времени с частотой сети. Индукция в произвольной точке воздушного зазора
Таким образом, в однофазном двигателе обмотка статора создает неподвижный поток, изменяющийся во времени, а не круговой вращающийся поток, как в трехфазных двигателях при симметричном питании.
Для упрощения анализа свойств однофазного двигателя представим (4.99) в виде
т. е. заменим неподвижный пульсирующий поток суммой идентичных круговых полей, вращающихся в противоположных направлениях и имеющих одинаковые частоты вращения: n1пр= n1обр = n1 . Поскольку свойства асинхронного двигателя при круговом вращающемся поле подробно рассмотрены в § 4.7 — 4.12, анализ свойств однофазного двигателя можно свести к рассмотрению совместного действия каждого из вращающихся полей. Иными словами, однофазный двигатель можно представить в виде двух одинаковых двигателей, роторы которых жестко связаны между собой (рис. 4.60, б), при встречном направлении вращения магнитных полей и создаваемых ими моментов Мпр и Мобр . Поле, направление вращения которого совпадает с направлением вращения ротора, называют прямым; поле обратного направления — обратным или инверсным.
Допустим, что направление вращения роторов совпадает с направлением одного из вращающихся полей, например с nпр . Тогда скольжение ротора относительно потока Фпр
Скольжение ротора относительно потока Фобр
Из (4.100) и (4.101) следует, что
Электромагнитные моменты Мпр и Мобр , образуемые прямым и обратным полями, направлены в противоположные стороны, а результирующий момент однофазного двигателя Мрез равен разности моментов при одной и той же частоте вращения ротора.
На рис. 4.61 показана зависимость М = f(s) для однофазного двигателя. Рассматривая рисунок, можно сделать следующие выводы:
а) однофазный двигатель не имеет пускового момента; он вращается в ту сторону, в которую приводится внешней силой; б) частота вращения однофазного двигателя при холостом ходе меньше, чем у трехфазного двигателя, из-за наличия тормозящего момента, образуемого обратным полем;
в) рабочие характеристики однофазного двигателя хуже, чем трехфазного; он имеет повышенное скольжение при номинальной нагрузке, меньший КПД, меньшую перегрузочную способность, что также объясняется наличием обратного поля;
г) мощность однофазного двигателя составляет примерно 2/3 от мощности трехфазного двигателя того же габарита, так как в однофазном двигателе рабочая обмотка занимает только 2/3 пазов статора. Заполнять все пазы статора
Рис. 4.61. Механическая характеристика однофазного асинхронного двигателя |
так как при этом обмоточный коэффициент получается малым, расход меди возрастает примерно в 1,5 раза, в то время как мощность увеличивается только на 12%.
Пусковые устройства. Чтобы получить пусковой момент, однофазные двигатели имеют пусковую обмотку, сдвинутую на 90 электрических градусов относительно основной рабочей обмотки. На период пуска пусковую обмотку присоединяют к сети через фазосдвигающие элементы — емкость или активное сопротивление. После окончания разгона двигателя пусковую обмотку отключают, при этом двигатель продолжает работать как однофазный. Поскольку пусковая обмотка работает лишь короткое время, ее изготовляют из провода меньшего сечения, чем рабочую, и укладывают в меньшее число пазов.
Подробно рассмотрим процесс пуска при использовании в качестве фазосдвигающего элемента емкости С (рис. 4.62, а). На пусковой обмотке П напряжение
Ú1п = Ú1 — ÚC = Ú1 +jÍ1пXC, т. е. оно сдвинуто по фазе относительно напряжения сети U1 , приложенного к рабочей обмотке Р. Следовательно, векторы токов в рабочей I1р и пусковой I1побмотках сдвинуты по фазе на некоторый угол. Выбирая определенным образом емкость фазосдвигающего конденсатора, можно получить режим работы при пуске, близкий к симметричному (рис. 4.62, б), т. е. получить круговое вращающееся поле. На рис. 4.62, в показаны зависимости М = f(s) для двигателя при включенной (кривая 1) и выключенной (кривая 2) пусковой обмотке. Пуск двигателя осуществляется на части аb характеристики 1; в точке bпусковая обмотка выключается, и в дальнейшем двигатель работает на части сО характеристики 2.
Поскольку включение второй обмотки существенно улучшает механическую характеристику двигателя, в некоторых случаях применяют однофазные двигатели, в которых обмотки А и В
Рис. 4.62. Схема однофазного асинхронного двигателя с конденсаторным пуском (а), его векторная диаграмма (б) и механическая характеристика (в) |
Рис. 4.63. Схема конденсаторного асинхронного двигателя (a) и его механическая характеристика (б) |
включены все время (рис. 4.63, а). Такие двигатели называют конденсаторными.
Обе обмотки конденсаторных двигателей занимают, как правило, одинаковое число пазов и имеют одинаковую мощность. При пуске конденсаторного двигателя для увеличения пускового момента целесообразно иметь увеличенную емкость Ср + Сп . После разгона двигателя по характеристике 2 (рис. 4.63,б) и уменьшения тока часть конденсаторов Сн отключают, чтобы при номинальном режиме (когда ток двигателя становится меньшим, чем при пуске) увеличить емкостное сопротивление и обеспечить работу двигателя в условиях, близких к работе при круговом вращающемся поле. При этом двигатель работает на характеристике 1.
Конденсаторный двигатель имеет высокий cos φ. Недостатками его являются сравнительно большая масса и габариты конденсатора, а также возникновение несинусоидального тока при искажениях питающего напряжения, которое в ряде случаев приводит к вредному воздействию на линии связи.
При легких условиях пуска (небольшой нагрузочный момент в пусковой период) применяют двигатели с пусковым сопротивлением R (рис. 4.64, а). Наличие активного сопротивления в цепи пусковой обмотки обеспечивает меньший сдвиг фаз φп между напряжением и током в этой обмотке (рис. 4.64, б), чем сдвиг фаз φр в рабочей обмотке. В связи с этим токи в рабочей и пусковой обмотках оказываются сдвинутыми по фазе на угол φр — φп и образуют несимметричное (эллиптическое) вращающееся поле, благодаря которому и возникает пусковой момент. Двигатели с пусковым сопротивлением надежны в эксплуатации в выпускаются серийно. Пусковое сопротивление встраивают в корпус двигателя и охлаждают тем же воздухом, который охлаждает весь двигатель.
Рис. 4.64. Схема однофазного асинхронного двигателя с пусковым сопротивлением (а) и его векторная диаграмма (б) |
Однофазные микродвигатели с экранированными полюсами. В этих двигателях обмотку статора, подсоединяемую к сети, выполняют обычно сосредоточенной и укрепляют на явно-выраженных полюсах (рис. 4.65, а), листы которых штампуют совместно со статором. В каждом полюсе один из наконечников охватывается вспомогательной обмоткой, состоящей из одного или нескольких короткозамкнутых витков, которые экранируют от 1/5 до 1/2 полюсной дуги. Ротор двигателя — короткозамкнутый обычного типа.
Магнитный поток машины, создаваемый обмоткой статора (поток полюса), можно представить в виде суммы двух составляющих (рис. 4.65, б) Фп = Фп1 + Фп2 , где Фп1 — поток, проходящий через часть полюса, не охваченную короткозамкну-тым витком; Фп2 — поток, проходящий через часть полюса, экранированную короткозамкнутым витком.
Потоки Фп1 и Фп2 проходят через различные части полюсного наконечника, т. е. смещены в пространстве на угол β. Кроме того, они сдвинуты по фазе относительно МДС Fп обмотки статора на различные углы — γ1 и γ2 . Это объясняется тем, что каждый полюс описываемого двигателя можно рассматривать в первом приближении как трансформатор, первичной обмоткой которого является обмотка статора, а вторичной — короткозамкнутый виток. Поток обмотки статора индуцирует в короткозамкнутом витке ЭДС Eк (рис. 4.65, в), вследствие чего возникает ток Iк и МДС Fк, складывающаяся с МДС Fп обмотки статора. Реактивная составляющая тока Iкуменьшает поток Фп2 , а активная — смещает его по фазе относительно МДС Fп . Так как поток Фп1 не охватывает короткозамкнутый виток, угол γ1 имеет сравнительно небольшое значение (4—9°) — примерно такое же, как угол сдвига фаз между потоком трансформатора и МДС первичной обмотки в режиме холостого хода. Угол γ2 значительно больше (около 45°), т. е. такой, как в трансформаторе со вторичной обмоткой, замкнутой накоротко (например, в измерительном трансформаторе тока). Это объясняется тем, что потери мощности, от которых зависит угол γ2 , определяются не только магнитными потерями мощности в стали, но и электрическими потерями в короткозамкнутом витке.
Рис. 4.65. Конструктивные схемы однофазного двигателя с экранированными полюсами и его
векторная диаграмма:
1 — статор; 2 — обмотка статора; 3 —короткозамкнутый
виток; 4 — ротор; 5 – полюс
Потоки Фп1 и Фп2 , смещенные в пространстве на угол β и сдвинутые по фазе во времени на угол γ = γ2 — γl , образуют эллиптическое вращающееся магнитное поле (см. гл. 3), которое воздает вращающий момент, действующий на ротор двигателя в направлении от первого полюсного наконечника, не охватываемого короткозамкнутым витком, ко второму наконечнику (в соответствии с чередованием максимумов потоков «фаз»).
Для увеличения пускового момента рассматриваемого двигателя путем приближения его вращающегося поля к круговому применяют различные способы: устанавливают между полюсными наконечниками смежных полюсов магнитные шунты, которые усиливают магнитную связь между основной обмоткой и короткозамкнутым витком и улучшают форму магнитного поля в воздушном зазоре; увеличивают воздушный зазор под наконечником, не охватываемым короткозамкнутым витком; используют два и большее количество коротко-замкнутых витков на одном наконечнике с разными углами охвата. Имеются также двигатели без короткозамкнутых витков на полюсах, но с несимметричной магнитной системой: различной конфигурацией отдельных частей полюса и разными воздушными зазорами. Такие двигатели имеют меньший пусковой момент, чем двигатели с экранированными полюсами, но КПД их выше, так как у них отсутствуют потери мощности в короткозамкнутых витках.
Рассмотренные конструкции двигателей с экранированными полюсами являются нереверсивными. Для осуществления реверса в таких двигателях вместо короткозамкнутых витков применяют катушки В1, В2, В3 и В4 (рис. 4.65, в), каждая из которых охватывает половину полюса. Замыкая накоротко пару катушек В1 и В4 или В2 и В3,можно экранировать одну или другую половину полюса и изменять таким образом направление вращения магнитного поля и ротора.
Двигатель с экранированными полюсами имеет ряд существенных недостатков: сравнительно большие габаритные размеры и массу; низкий cos φ ≈ 0,4 ÷ 0,6; низкий КПД η = 0,25 ÷ 0,4 из-за больших потерь в короткозамкнутом витке; небольшой пусковой момент и др. Достоинствами двигателя являются простота конструкции и вследствие этого высокая надежность в эксплуатации. Благодаря отсутствию зубцов на статоре шум двигателя незначителен, поэтому он часто употребляется в устройствах по воспроизводству музыки и речи.
Не нашли то, что искали? Воспользуйтесь поиском:
Однофазные асинхронные двигатели – машины небольшой мощности, которые по конструктивному исполнению напоминают аналогичные трехфазные электродвигатели с короткозамкнутым ротором.
Однофазные асинхронные двигатели отличаются от трехфазных двигателей устройством статора, где в пазах магнитопровода находится двухфазная обмотка, состоящая из основной, или рабочей, фазы с фазной зоной 120 эл. град и выводами к зажимам с обозначениями С1 и С2, и вспомогательной, или пусковой, фазы с фазной зоной 60 эл. град и выводами к зажимам с обозначениями В1 и В2 (рис. 1).
Магнитные оси этих фаз обмотки смещены относительно друг друга па угол 0 = 90 эл. град. Одна рабочая фаза, присоединенная к питающей сети переменного напряжения, не может вызвать вращения ротора, так как ток ее возбуждает переменное магнитное поле с неподвижной осью симметрии, характеризуемое гармонически изменяющейся во времени магнитной индукцией.
Рис. 1. Схема включения однофазного асинхронного двигателя с короткозамкнутым ротором.
Это поле можно представить двумя составляющими – одинаковыми круговыми магнитными полями прямой и обратной последовательностей, вращающимися с магнитными индукциями, вращающимися в противоположные стороны с одной и той же скоростью. Однако при предварительном разгоне ротора в необходимом направлении он при включенной рабочей фазе продолжает вращаться в том же направлении.
По этой причине пуск однофазного двигателя начинают с разгона ротора путем нажатия пусковой кнопки, вызывающего возбуждение токов в обеих фазах обмотки статора, которые сдвинуты по фазе на величину, зависящую от параметров фазосдвигающего устройства Z, выполненного в виде резистора, индуктивной катушки или конденсатора, и элементов электрических цепей, в которые входят рабочая и пусковая фазы обмотки статора. Эти токи побуждают в машине вращающееся магнитное поле с магнитной индукцией в воздушном зазоре, которая периодически и монотонно изменяется в пределах максимального и минимального значений, а конец ее вектора описывает эллипс.
Это. эллиптическое вращающееся магнитное поле находит в проводниках короткозамкнутой обмотки ротора ЭДС и токи, которые, взаимодействуя с этим полем, обеспечивают разгон ротора однофазного двигателя в направлении вращения поля, и он в. течение нескольких секунд достигает почти номинальной скорости.
Отпускание пусковой кнопки переводит электродвигатель с двухфазного режима на однофазный, поддерживаемый в дальнейшем соответствующей составляющей переменного магнитного поля, которая при своем вращении несколько опережает вращающийся ротор из-за скольжения.
Своевременное отключение пусковой фазы обмотки статора однофазного асинхронного двигателя от питающей сети необходимо в связи с ее конструктивным исполнением, предусматривающим кратковременный режим работы – обычно до 3 с, что исключает длительное пребывание ее под нагрузкой в связи с недопустимым перегревом, сгоранием изоляции и выходом из строя.
Повышение надежности эксплуатации однофазных асинхронных двигателей обеспечивают встраиванием в корпус машин центробежного выключателя с размыкающими контактами, присоединенными к зажимам с обозначениями ВЦ и В2, и теплового реле с аналогичными контактами, имеющими выводы с обозначениями РТ и С1 (рис. 2, в, г).
Центробежный выключатель автоматически отключает пусковую фазу обмотки статора, присоединенную к зажимам с обозначениями В1 и В2 при достижении ротором скорости, близкой к номинальной, а тепловое реле — обе фазы обмотки статора от питающей сети, когда нагрев их окажется выше допустимого.
Перемена направления вращения ротора достигается изменением направления тока в одной из фаз обмотки статора при пуске путем переключения пусковой кнопки и перестановки металлической пластины на зажимах электродвигателя (рис. 2, а, б) или только перестановкой двух аналогичных пластин (рис. 2, в, г).
Рис. 2. Маркировка зажимов фаз обмотки статора однофазного асинхронного двигателя с короткозамкнутым ротором и их соединение для вращения ротора: а, в – правого, б, г – левого.
Сравнение технических характеристик однофазных и трехфазных асинхронных двигателей
Однофазные асинхронные двигатели отличаются от аналогичных по номинальной мощности трехфазных машин пониженной кратностью начального пускового момента k п = M п / M ном и повышенной кратностью пускового тока ki = Mi / M ном которые для однофазных электродвигателей с пусковой фазой обмотки статора, имеющей повышенное сопротивление постоянному току и. меньшую индуктивность, чем рабочая фаза, имеют значения k п – 1,0 – 1,5 и ki = 5 – 9.
Пусковые характеристики однофазных асинхронных двигателей хуже аналогичных характеристик трехфазных асинхронных двигателей в связи с тем, что возбуждаемое при пуске однофазных машин с пусковой фазой обмотки статора эллиптическое вращающееся магнитное поле, эквивалентное двум неодинаковым круговым вращающимся магнитным полям – прямому и обратному, вызывает появление тормозного эффекта.
Подбором параметров элементов электрических цепей рабочей и пусковой фаз обмотки статора можно обеспечить при пуске возбуждение кругового вращающегося магнитного поля, что возможно при фазосдвигающем элементе, выполненном в виде конденсатора соответствующей емкости.
Так как разгон ротора вызывает изменение параметров цепей машины, вращающееся магнитное поле из кругового переходит в эллиптическое, ухудшая этим пусковые характеристики двигателя. Поэтому при скорости около 0,8 номинальной пусковую фазу обмотки статора электродвигателя отключают вручную или автоматически, в результате чего двигатель переходит на однофазный режим работы.
Однофазные асинхронные двигатели с пусковым конденсатором имеют кратность начального пускового момента kп = 1,7 – 2,4 и кратность начального пускового тока ki = 3 – 5.
Двухфазные асинхронные двигатели
В двухфазных асинхронных двигателях обе фазы обмотки статора с фазными зонами по 90 эл. град являются рабочими. Они расположены в пазах магнитопровода статора так, что их магнитные оси образуют угол 90 эл. град. Эти фазы обмотки статора отличаются друг от друга не только числом витков, но и номинальными напряжениями и токами, хотя при номинальном режиме двигателя полные мощности их одинаковы.
В одной из фаз обмотки статора постоянно находится конденсатор Ср (рис. 3, а), который в условиях номинального режима двигателя обеспечивает возбуждение кругового вращающегося магнитного поля. Емкость этого конденсатора определяют по формуле:
C р = I1 sinφ1 / 2πfUn 2
где I1 и φ1 – соответственно ток и сдвиг фаз между напряжением и током цепи фазы обмотки статора без конденсатора при круговом вращающемся магнитном поле, I и U – соответственно частота переменного тока и напряжение питающей сети, n – коэффициент трансформации – отношение эффективных чисел витков фаз обмотки статора соответственно с конденсатором и без него, определяемое по формуле
n = k об2 w 2 / k об1 w 1
где k об2 и k об1 – обмоточные коэффициенты соответствующих фаз обмотки статора с числом витков w 2 и w1.
Напряжение на зажимах конденсатора Uc, включенного последовательно с фазой обмотки статора двухфазного асинхронного двигателя, при круговом вращающемся магнитном поле выше напряжения сети U и определяется так:
Переход к нагрузке двигателя, отличной от номинальной, сопровождается изменением вращающегося магнитного поля, которое вместо кругового становится эллиптическим. Это ухудшает рабочие свойства двигателя, а при пуске снижает начальный пусковой момент до Мп M ном, ограничивая этим применение двигателей с постоянно включенным конденсатором только в установках с легкими условиями пуска.
Для повышения начального пускового момента параллельно рабочему конденсатору Ср включают пусковой конденсатор Сп (рис. 3, б), емкость которого намного больше емкости рабочего конденсатора и зависит от кратности начального пускового момента, которая может быть доведена до двух и более.
Рис. 3. Схемы включения двухфазных асинхронных двигателей с короткозамкнутым ротором: а – спостоянно присоединенным конденсатором, б – с рабочим и пусковым конденсаторами.
После разгона ротора до скорости 0,6 – 0,7 номинальной пусковой конденсатор отключают для избежания перехода кругового вращающегося магнитного поля в эллиптическое, ухудшающее рабочие характеристики двигателя.
Пусковой режим таких конденсаторных двигателей характеризуется такими показателями: k п = 1,7 – 2,4 и k i = 4 – 6.
Конденсаторные двигатели отличаются лучшими энергетическими показателями, чем однофазные двигатели с пусковой фатой обмотки статора, я коэффициент мощности их, благодаря применению конденсаторов, выше, чем у трехфазных двигателей одинаковой мощности.
Универсальные асинхронные двигатели
В установках автоматического управления применяют универсальные асинхронные двигатели — трехфазные машины малой мощности, которые присоединяют к трехфазной или однофазной сети. При питании от однофазной сети пусковое и рабочие характеристики двигателей несколько хуже, чем при использовании их в трехфазном режиме.
Универсальные асинхронные двигатели серии УАД изготовляют двух- и четырехполюсными, которые при трехфазном режиме имеют номинальную мощность от 1,5 до 70 Вт, а при однофазном режиме – от 1 до 55 Вт и работают от сети переменного напряжения частотой 50 Гц с кпд η = 0,09 – 0. 65.
Однофазные асинхронные двигатели с расщепленными или экранированными полюсами
В однофазных асинхронных двигателях с расщепленными или экранированными полюсами, каждый полюс расщеплен глубоким пазом па две неравные части и несет на себе однофазную обмотку, охватывающую весь магнитопровод полюса, и короткозамкнутые витки, расположенные на его меньшей части.
Ротор у этих двигателей имеет короткозамкнутую обмотку. Включение обмотки статора на синусоидальное напряжение сопровождается установлением в ней тока и возбуждением переменного магнитного поля с неподвижной осью симметрии, которое наводит в короткозамкнутых витках соответствующие эдс и токи.
Под влиянием токов короткозамкнутых витков соответствующая им м. д. с, возбуждает магнитное поле, препятствующее усилению и ослаблению основного магнитного поля в экранированных частых полюсов. Магнитные поля экранированных и неэкранированных частей полюсов не совпадают по фазе во времени и, будучи смещенными в пространстве, образуют результирующее эллиптическое вращающееся магнитное поле, перемещающее в направлении от магнитной оси неэранированной части полюса к магнитной оси его экранированной части.
Взаимодействие этого поля с токами, индуктированными в обмотке ротора, вызывает появление начального пускового момента Мп = (0,2 – 0,6) Мном и разгон ротора до номинальной скорости, если тормозной момент приложенный к валу двигателя, не превышает начальный пусковой момент.
С целью увеличения начального пускового и максимального моментов однофазных асинхронных двигателях с расщепленными или экранированными полюсами между их полюсами располагают магнитные шунты из листовой стали, что приближает вращающееся магнитное поле к круговому.
Двигатели с расщепленными полюсами являются нереверсивными устройствами, допускающими частые пуски, внезапную остановку и могут длительное время находиться в заторможенном состоянии. Их изготовляют двух- и четырехполюсными номинальной мощностью от 0,5 до 30 Вт, а при усовершенствованной конструкции до 300 Вт для работы от сети переменного напряжения частотой 50 Гц с кпд η ном = 0,20 – 0,40.
Читайте также: Сельсины: назначение, устройство, принцип действия
Двигатель однофазный функционирует за счёт переменчивого электротока и подключается к сети с одной фазой. Линия должна иметь напряжённость 220 В и частоту 50 Гц.
Выпускаются модификации с мощностью от 5 Вт — 10 кВт.
Электромоторы этого вида находят применение в маломощных аппаратах:
- бытовой технике;
- вентиляторах;
- насосах;
- станках и т. п.
Значения КПД, силы и отправного момента у однофазных двигателей значительно ниже, нежели у трехфазных приборов тех же объёмов. Перегрузочная способность, кроме того, больше у моторов с 3 фазами. Таким образом, мощность однофазного приспособления не превосходит 70% силы трехфазного того же объёма.
Устройство однофазного двигателя
По сути, имеет 2 фазы, однако, работу осуществляет лишь один из них, по этой причине двигатель именуют однофазным. Как и все без исключения электромашины, однофазный двигатель складывается из 2 элементов: неподвижной (статор) и мобильной (ротор). Предполагает собой асинхронный электромотор, неподвижной частью которого является одна основная работающая обмотка, подключаемая к источнику переменного тока. К мощным граням двигателя этого вида можно причислить несложность системы, представляющую собой ротор с замкнутой обмоткой. К минусам — низкие значения отправного момента и КПД.
Главный недостаток однофазного тока — невозможность генерации им магнитного поля, исполняющего вращение. По этой причине однофазный электромотор не запустится сам при подсоединении к сети.
В теории электромашин функционирует принцип: чтобы появилось магнитное поле, крутящее ротор, в статоре должно быть 2 обмотки (фазы). Необходимо, кроме того, смещение одной обмотки на определённый ракурс относительно другой.
В период работы совершается обтекание обмоток неустойчивыми электрическими полями:
- В неподвижном месте однофазного двигателя находится так именуемая отправная электрообмотка. Она смещена на 90 градусов по отношению к основной рабочей.
- Сдвиг токов можно приобрести, включив в цепь фазосдвигающий элемент. Для этого могут применяться активные резисторы, катушки индукции и конденсаторы.
- В качестве основы для статоров и роторов применяется электротехническая сталь — 2212.
Неверно называть монофазными такие электродвигатели, которые по собственному строению считаются 2- и 3-фазными, однако, подсоединяются к однофазному источнику посредством методик согласования (конденсаторные электромоторы). Эти две фазы таких приборов считаются рабочими и включены все время.
Разновидности и применение
Моторы однофазные 220 В обширно применяются в разнообразном промышленном и бытовом оснащении.
Существуют 2 наиболее востребованных разновидности данных приборов:
Последние по собственной конструкции наиболее просты, но обладают рядом недочётов, из числа которых можно выделить трудности с переменой частоты и направления верчения ротора. Мощность этого мотора зависит от конструктивных отличительных черт и может колебаться от 5 до 10 кВт. Его ротор предполагает короткозамкнутую обмотку — алюминиевые или медные стержни, которые замкнуты с торцов.
Как правило, электромотор асинхронный однофазный снабжён 2-мя смещёнными на 90 ° друг к другу обмотками. При этом основная обмотка захватывает существенную часть пазов, а дополнительная (пусковая) захватывает оставшийся участок. Своё наименование электродвигатель асинхронный приобрёл лишь потому, что он содержит только лишь одну рабочую обмотку.
Протекающий по основной обмотке переменный электроток формирует магнитное меняющееся поле. Оно складывается из 2 слоёв равной амплитуды, вращение которых совершается навстречу друг другу. По закону индукции, изменяющийся в закрытых витках электромагнитный поток в роторах образует индукционный ток, который действует с полем, порождающим его. В случае если ротор в неподвижном состоянии, моменты сил на него равны и в результате он остаётся недвижимым.
При вращении ротора нарушится равенство момента сил, таким образом, движение его витков по отношению к крутящимся магнитным полям будет разным. Таким образом, функционирующая на роторные витки от непосредственного магнитного поля сила Ампера будет значительно больше, чем с края противоположного поля.
Схема запуска
В витках ротора индуктивный электроток может появляться только вследствие пересечения ими насильственных направлений магнитного поля. Их вращение должно реализоваться с быстротой чуть менее частоты верчения поля. Непосредственно отсюда и вышло название — асинхронный электродвигатель. Вследствие повышения механической перегрузки уменьшается быстрота верчения, увеличивается индуктивный электроток в роторных витках. А кроме того, увеличивается механическая мощность мотора и переменного тока, который он употребляет.
Принцип действия:
- Благодаря току появляется импульсное магнитное поле в статоре электромотора. Это поле возможно рассматривать как 2 различных поля, которые вращаются разнонаправленно и имеют похожие амплитуды и частоты.
- Если ротор располагается в неподвижном состоянии, данные поля приводят к появлению одинаковых по модулю, но разнонаправленных факторов.
- Если у двигателя отсутствуют особые начальные механизмы, в этом случае при старте результирующий момент станет равный нулю, а, следовательно — двигатель не будет вертеться.
- Если же ротор приведён в обращение в любую сторону, в таком случае соответствующий момент приступает доминировать, а следовательно, ось двигателя продолжит вертеться в определённом направлении.
Пуск выполняется магнитным полем, что крутит мобильную часть двигателя. Оно формируется 2 обмотками: основной и дополнительной. Заключительная обмотка имеет минимальный объем и считается пусковой. Она подключается к главной электрической сети через имеющуюся ёмкость или индуктивность. Подсоединение осуществляется только лишь в период запуска. В моторах с невысокой мощностью отправная фаза замкнута накоротко.
Запуск мотора осуществляют удержанием пусковой клавиши на несколько секунд, вследствие чего совершается разгон ротора. В период отпускания пусковой клавиши электродвигатель с двухфазного режима передаётся в однофазовый режим и его работа удерживается нужной компонентой переменчивого магнитного поля.
Отправная фаза рассчитана на временную работу — как правило, до 3 с. Более продолжительное время пребывания под нагрузкой может послужить причиной к перегреву, возгоранию изоляции и неисправности приспособления. Поэтому немаловажно своевременно освободить пусковую клавишу. С целью увеличения надёжности в корпус двигателей встраивают центробежный коммутатор и термическое реле.
Роль центробежного выключателя состоит в выключении пусковой фазы, если ротор наберёт скорость. Это происходит автоматом — без вмешательства. Тепловое реле отключает фазы обмотки, если они нагреваются свыше допустимого.
Работа механизма
Для работы устройства необходима 1 фаза с усилием 220 В. Это значит, что подсоединить его можно в домашнюю розетку. Непосредственно в этом причина известности двигателя среди населения. В абсолютно всех домашних устройствах, от соковыжималки до шлифующей машины, установлены механизмы такого типа.
Имеется 2 вида электромоторов: с пусковой обмоткой и с конденсатором.
- В первом виде приборов отправная обмотка функционирует с помощью конденсатора только в период старта. Уже после достижения техникой обычной скорости она выключается, и деятельность продолжается с 1 обмоткой.
- Во втором случае для двигателей с рабочим конденсатором, дополнительная электрообмотка подключена через конденсатор все время.
Электродвигатель может быть взят с одного устройства и включён к другому. К примеру, надёжный однофазный двигатель от стиральной машины либо пылесоса может применяться для работы газонокосилки, станка и т. д.
Схема подключения однофазного асинхронного двигателя:
- В 1 схеме работа запускающей обмотки производится с помощью конденсатора и только лишь в период пуска.
- 2 модель также учитывает временное подсоединение, но оно совершается через сопротивление, а не через холодильник.
- 3 модель считается наиболее популярной. В рамках этой схемы холодильник постоянно подключен к источнику электричества, а не только лишь в период старта.
Подключение мотора с пусковым противодействием
Дополнительная обмотка подобных приборов имеет высокое интенсивное противодействие. Для пуска электромашины этого вида может быть применён пусковой резистор. Его необходимо поочерёдно подсоединить к пусковой обмотке. Подобным способом можно приобрести сдвиг фаз в 30° меж токами обмоток, чего станет абсолютно достаточно для старта приспособления.
Помимо этого, сдвиг фаз может быть приобретён посредством применения пусковой фазы с огромным значением противодействия и наименьшей индуктивностью. У такого рода обмотки меньшее число витков и тоньше кабель.
Подключение двигателя с конденсаторным пуском
У этих электромашин отправная цепь включает конденсатор и вводится только лишь в период старта.
Для свершения наибольшего значения отправного момента необходимо циркулярное магнитное поле, что осуществляет оборот. Для того чтобы оно появилось, токи обмоток должны быть направлены на 90° друг к другу. Подобные фазосдвигающие компоненты, как резистор и дроссель, не гарантируют нужный сдвиг фаз. Только лишь вовлечение в цепь конденсатора даёт возможность приобрести сдвиг фаз 90°, если верно выбрать ёмкость.
Определить нужные провода и то, к какой обмотке они причисляются, можно посредством замера противодействия. У рабочей обмотки значение противодействия постоянно меньше (12 Ом), чем у пусковой обмотки (30 Ом). В соответствии с этим сечение провода основной обмотки больше, чем у пусковой.
Конденсатор подбирается согласно употребляемому двигателем току. К примеру, в случае если ток равен 1,4 А, то нужен конденсатор 6 мкФ.
Контроль функциональности
Ниже перечислены все дефекты, говорящие о вероятных проблемах с мотором, их причиной могла быть некорректная эксплуатация либо перегруженность:
- Неисправная опора или монтажные щели.
- В середине двигателя потемнела окраска (показывает на перегрев).
- Через щели в корпусе внутрь аппарата втянуты сторонние вещества.
Чтобы проконтролировать функциональность двигателя, необходимо включить его сначала на 1 минуту, а потом предоставить потрудиться приблизительно 15 минут.
Если уже после этого мотор окажется тёплым, то:
- вероятно, подшипники загрязнились, зажались либо попросту износились;
- причина может быть в очень повышенной ёмкости конденсатора.
Отключите конденсатор и опустите мотор вручную: в случае если он прекратит прогреваться — следует сократить конденсаторную ёмкость.
23. Устройство и принцип работы однофазного асинхронного двигателя.
В
быту и в технике, там, где нужны двигатели
небольшой мощности, часто используются
так называемые однофазные асинхронные
двигатели. Однофазный
двигатель отличается от трехфазного
тем, что его статор имеет одну обмотку
(иногда
две) и
питается от однофазной сети.
Ротор этих двигателей ввиду их малой
мощности всегда выполняется
коротко-замкнутым в виде беличьего
колеса и ничем не отличается от ротора
трехфазного двигателя.
Если
обмотку однофазного двигателя включить
в сеть, то протекающий по ней переменный
ток будет возбуждать в машине, пока ее
ротор неподвижен, переменное магнитное
поле, ось которого тоже неподвижна. Это
поле будет индуцировать в обмотке ротора
токи, взаимодействие которых с магнитным
полем приведет к возникновению сил,
противоположно направленных в правой
и левой половинах ротора, вследствие
чего результирующий момент, действующий
на ротор, окажется равным нулю.
Следовательно, при наличии одной обмотки
начальный пусковой момент однофазного
двигателя
равен
нулю, т. е. такой двигатель самостоятельно
не сможет тронуться с места. Однако,
если с помощью какой-либо внешней
силы сообщить ротору некоторую скорость
вращения, то он начнет вращаться.
Пуск
в ход однофазных двигателей осуществляется
с помощью того или иного пускового
устройства. Работа этих устройств
основана на использовании свойства
двух магнитных потоков, смещенных в
пространстве на 90° и сдвинутых по фазе
на пи/2, создавать вращающее магнитное
поле.
8.8.1.
Однофазные двигатели с пусковой обмоткой
На
статоре такого двигателя кроме рабочей
обмотки РО находится
так называемая пусковая
обмотка ПО, повернутая
в пространстве относительно рабочей
обмотки на 90° (рис.
8.14).
В
момент пуска пусковая обмотка замыкается
кнопкой К,
и в
результате
трансформаторной связи в ней возникает
ток, сдвинутый по фазе относительно
питающего тока почти на пи/2. Эти токи
создают вращающее магнитное поле,
которое и разгоняет ротор. После разгона
пусковая обмотка размыкается и в
дальнейшей работе двигателя не участвует.
Двигатели
с таким пуском встречаются иногда в
бытовых стиральных машинах.
8.8.2.
Конденсаторные двигатели
В
этих двигателях рабочая и пусковая
обмотки статора также смещены на
статоре друг относительно друга на 90°.
На время пуска пусковую обмотку ПО
подключают
к сети с помощью кнопки К
через
конденсатор
С
(рис.
8.15), благодаря которому ток в пусковой
обмотке отличается по фазе от тока в
рабочей обмотке на пи/2, чем и обеспечивается
разгон ротора.
В
некоторых двигателях используются два
параллельно включенных конденсатора
С1
и
С2
—
оба используются при
запуске,
а один из них (С2)
остается
включенным и во время
работы
двигателя, благодаря чему обе обмотки
являются рабочими (рис. 8.16).
Конденсаторные
двигатели имеют лучшие пусковые и
рабочие характеристики по сравнению
с другими однофазными двигателями,
поэтому они получили наиболее широкое
распространение.
8.8.3.
Однофазные двигатели с расщепленными
полюсами
Статор
двигателей очень малой мощности часто
делают с явно выраженными полюсами,
причем каждый полюс разрезан, а на
одну его часть надето медное кольцо,
играющее роль пусковой обмотки (рис.
8.17).
Под действием переменного магнитного
потока, создаваемого обмоткой статора,
в кольце индуцируется ЭДС, отстающая
по фазе от потока на л/2. Эта ЭДС создает
в кольце ток. Поскольку сопротивление
кольца практически чисто активное,
этот
ток
совпадает по фазе с ЭДС и отстает от
потока обмотки тоже на пи/2.
Этот
ток в кольце создает свой магнитный
поток, совпадающий с ним по фазе.
Таким образом, под полюсом действуют
два сдвинутых по фазе на пи/2 магнитных
потока, образуя вращающееся магнитное
поле. Это магнитное поле и увлекает
за собой короткозамкнутый ротор.
Двигатели
с расщепленными полюсами широко
применяются для маломощного привода
(кинопроекторы, вентиляторы и т. п.).
Включение
трехфазных двигателей в однофазную
сеть
г
Во
многих случаях трехфазные асинхронные
двигатели можно включать в однофазную
сеть переменного тока.
На
рис. 8.18, а, б
показаны
схемы включения трехфазных двигателей,
у которых выведены лишь по три конца
обмоток. Конденсатор С
создает
дополнительный сдвиг по фазе
между
током и
напряжением,
обеспечивая начальный
пусковой
момент.
Величина этого конденсатора рассчитывается
или подбирается так, чтобы обеспечить
примерное равенство всех трех фазных
токов. На рис. 8.18 в, г
показаны
схемы включения трехфазных асинхронных
двигателей, у которых выведены все шесть
концов статорной обмотки. Включение
трехфазных двигателей в однофазную
сеть позволяет получать от них лишь
40-50 % от их номинальной мощности в
трехфазном режиме.
§82. Однофазные и двухфазные асинхронные двигатели
Однофазные и двухфазные асинхронные двигатели.
Принцип действия однофазного двигателя. В однофазном асинхронном двигателе обмотка статора расположена в пазах, занимающих примерно 2/3 окружности, соответствующей паре полюсов (рис. 270, а). По этой причине мощность однофазного двигателя также составляет около 2/3 мощности трехфазного двигателя с теми же габаритными размерами.
Однофазная обмотка статора 2 создает пульсирующее магнитное поле, которое можно представить в виде двух полей, вращающихся в разные стороны с частотой n1 (рис. 270,б). Поле 5, которое вращается в том же направлении, что и ротор 3, называется прямым полем; поле 6, вращающееся в противоположном направлении,— обратным полем. Эти поля, воздействуя на ротор, создают два противоположно направленных электромагнитных момента Мпр и Мобр. Следовательно однофазный асинхронный
Рис. 270. Разрез однофазного асинхронного двигателя (а), прямое и обратное вращающиеся магнитные поля (б)
Рис. 271. Зависимости М(s) однофазного двигателя от прямого и обратного вращающихся полей
двигатель может быть представлен в виде двух совершенно одинаковых трехфазных двигателей, роторы которых тесно связаны друг с другом, а обмотки подключены к трехфазной сети так, что их магнитные поля вращаются в противоположных направлениях.
Однако если ротор раскрутить в каком-либо направлении, то моменты Мпр и Мобр не будут равны. В этом случае на вал двигателя будет действовать некоторый результирующий момент Mрез, который обеспечит его дальнейшее вращение в заданном направлении. Объясняется это тем, что ток в обмотке ротора, созданный обратным полем, оказывает сильное размагничивающее действие и существенно ослабляет обратное поле.
Из анализа кривых М (s), показанных на рис. 271, следует, что:
однофазный двигатель не имеет начального пускового момента так как при s=1, т. е. при неподвижном роторе, результирующий момент Мрeз = 0;
частота вращения однофазного двигателя при холостом ходе меньше, чем у трехфазного двигателя, из-за наличия тормозящего момента Мобр. По этой же причине однофазный двигатель имеет худшие рабочие характеристики: меньший к. п. д., меньшую перегрузочную способность, повышенное скольжение при номинальной нагрузке.
Пусковые устройства. Чтобы получить пусковой момент, однофазные двигатели снабжают пусковой обмоткой Я, расположенной со сдвигом на 90° по отношению к основной рабочей обмотке Р (рис. 272,а и б). На период пуска пусковую обмотку присоединяют к сети через фазосдвигающие элементы — конденсатор или резистор. После окончания разгона двигателя пусковую обмотку отключают, и двигатель продолжает работать как однофазный. Поскольку пусковая обмотка работает лишь короткое время, ее изготовляют из провода меньшего сечения по сравнению с рабочей обмоткой и укладывают в меньшее число пазов.
Если использовать в качестве фазосдвигающего элемента конденсатор С (рис. 273, а), то можно получить режим работы при пуске, близкий к симметричному, т. е. получить круговое вращающееся поле.
При легких условиях пуска (небольшой нагрузочный момент в пусковой период) применяют двигатели с пусковым резистором R (рис. 273,б). Наличие резистора в цепи пусковой обмотки обеспечивает меньший сдвиг фаз ?1 между напряжением и током в этой обмотке, чем сдвиг фаз ?2 в рабочей обмотке. В связи с этим
Рис. 272. Расположение обмоток статора в двухфазной двухполюсной машине
токи в рабочей и пусковой обмотках оказываются сдвинутыми по фазе на угол ?1 – ?2 и образуют несимметричное (эллиптическое) вращающееся поле, благодаря чему и возникает пусковой момент. Однофазные двигатели с конденсаторным пуском и двигатели с пусковым резистором имеют высокую эксплуатационную надежность.
Поскольку включение второй обмотки существенно улучшает характеристики двигателя, в некоторых случаях применяют двухфазные двигатели, в которых обе обмотки включены постоянно. Если сдвиг по фазе 90° между токами в фазах А и В (рис. 274) осуществляется путем включения в одну из них конденсаторов, то такие двигатели называются конденсаторными.
В двухфазных двигателях обе обмотки А и В занимают, как правило, одинаковое число пазов и имеют равную мощность. При пуске конденсаторного двигателя рационально иметь увеличенную емкость Ср + Сп. После разгона двигателя и уменьшения тока часть конденсаторов Сп отключают, чтобы увеличить емкостное сопротивление и при номинальном режиме (когда ток двигателя становится меньшим, чем при пуске) обеспечить режим работы дви-
Рис. 273. Схемы пуска однофазного асинхронного двигателя при использовании конденсатора (а) и резистора (б)
Рис. 274. Схема конденсаторного асинхронного двигателя
Рис. 275. Устройство однофазного асинхронного двигателя с беличьей клеткой на роторе (а) и с полым немагнитным ротором (б): 1-обмотка статора; 2 – корпус; 3 – внешний статор; 4 – ротор; 5 — подшипниковый щит; 6 — вал; 7 — внутренний статор
гателя в условиях, близких условиям работы при круговом вращающемся поле.
Устройство. Однофазные и двухфазные асинхронные двигатели устроены также, как и трехфазные: в них имеются однофазные или двухфазные обмотки статора и короткозамкнутый ротор с беличьей клеткой (рис. 275, а). Широкое распространение получили однофазные двигатели с полым немагнитным ротором (рис. 275, б) и внешним статором, на котором расположены две обмотки, сдвинутые в пространстве на 90°. Ротор выполнен в виде тонкостенного полого цилиндра из алюминия. Для уменьшения магнитного сопротивления магнитопровода двигателя имеется внутренний статор, набираемый из листов электротехнической стали, так же, как и внешний статор.
Полый ротор можно представить в виде совокупности элементарных проводников. Вращающееся магнитное поле, создаваемое обмоткой статора, индуцирует в каждом элементарном проводнике полого ротора э. д. с, под действием которой по ним протекают вихревые токи. В результате взаимодействия этих токов с вращающимся полем возникают электромагнитные силы и вращающий момент.
Однофазные и двухфазные асинхронные двигатели
Назначение, устройство и принцип действия однофазных асинхронных двигателей
Однофазные асинхронные двигатели — машины небольшой мощности, которые по конструктивному исполнению напоминают аналогичные трехфазные электродвигатели с короткозамкнутым ротором.
Однофазные асинхронные двигатели отличаются от трехфазных двигателей устройством статора, где в пазах магнитопровода находится двухфазная обмотка, состоящая из основной, или рабочей, фазы с фазной зоной 120 эл. град и выводами к зажимам с обозначениями С1 и С2, и вспомогательной, или пусковой, фазы с фазной зоной 60 эл. град и выводами к зажимам с обозначениями В1 и В2 (рис. 1).
Магнитные оси этих фаз обмотки смещены относительно друг друга па угол 0 = 90 эл. град. Одна рабочая фаза, присоединенная к питающей сети переменного напряжения, не может вызвать вращения ротора, так как ток ее возбуждает переменное магнитное поле с неподвижной осью симметрии, характеризуемое гармонически изменяющейся во времени магнитной индукцией.
Рис. 1. Схема включения однофазного асинхронного двигателя с короткозамкнутым ротором.
Это поле можно представить двумя составляющими — одинаковыми круговыми магнитными полями прямой и обратной последовательностей, вращающимися с магнитными индукциями, вращающимися в противоположные стороны с одной и той же скоростью. Однако при предварительном разгоне ротора в необходимом направлении он при включенной рабочей фазе продолжает вращаться в том же направлении.
По этой причине пуск однофазного двигателя начинают с разгона ротора путем нажатия пусковой кнопки, вызывающего возбуждение токов в обеих фазах обмотки статора, которые сдвинуты по фазе на величину, зависящую от параметров фазосдвигающего устройства Z, выполненного в виде резистора, индуктивной катушки или конденсатора, и элементов электрических цепей, в которые входят рабочая и пусковая фазы обмотки статора. Эти токи побуждают в машине вращающееся магнитное поле с магнитной индукцией в воздушном зазоре, которая периодически и монотонно изменяется в пределах максимального и минимального значений, а конец ее вектора описывает эллипс.
Это. эллиптическое вращающееся магнитное поле находит в проводниках короткозамкнутой обмотки ротора ЭДС и токи, которые, взаимодействуя с этим полем, обеспечивают разгон ротора однофазного двигателя в направлении вращения поля, и он в. течение нескольких секунд достигает почти номинальной скорости.
Отпускание пусковой кнопки переводит электродвигатель с двухфазного режима на однофазный, поддерживаемый в дальнейшем соответствующей составляющей переменного магнитного поля, которая при своем вращении несколько опережает вращающийся ротор из-за скольжения.
Своевременное отключение пусковой фазы обмотки статора однофазного асинхронного двигателя от питающей сети необходимо в связи с ее конструктивным исполнением, предусматривающим кратковременный режим работы — обычно до 3 с, что исключает длительное пребывание ее под нагрузкой в связи с недопустимым перегревом, сгоранием изоляции и выходом из строя.
Повышение надежности эксплуатации однофазных асинхронных двигателей обеспечивают встраиванием в корпус машин центробежного выключателя с размыкающими контактами, присоединенными к зажимам с обозначениями ВЦ и В2, и теплового реле с аналогичными контактами, имеющими выводы с обозначениями РТ и С1 (рис. 2, в, г).
Центробежный выключатель автоматически отключает пусковую фазу обмотки статора, присоединенную к зажимам с обозначениями В1 и В2 при достижении ротором скорости, близкой к номинальной, а тепловое реле — обе фазы обмотки статора от питающей сети, когда нагрев их окажется выше допустимого.
Перемена направления вращения ротора достигается изменением направления тока в одной из фаз обмотки статора при пуске путем переключения пусковой кнопки и перестановки металлической пластины на зажимах электродвигателя (рис. 2, а, б) или только перестановкой двух аналогичных пластин (рис. 2, в, г).
Рис. 2. Маркировка зажимов фаз обмотки статора однофазного асинхронного двигателя с короткозамкнутым ротором и их соединение для вращения ротороа: а, в — правого, б, г — левого.
Сравнение технических характеристик однофазных и трехфазных асинхронных двигателей
Однофазные асинхронные двигатели отличаются от аналогичных по номинальной мощности трехфазных машин пониженной кратностью начального пускового момента kп = Mп / Mном и повышенной кратностью пускового тока ki = Mi / Mном которые для однофазных электродвигателей с пусковой фазой обмотки статора, имеющей повышенное сопротивление постоянному току и. меньшую индуктивность, чем рабочая фаза, имеют значения kп — 1,0 — 1,5 и ki = 5 — 9.
Пусковые характеристики однофазных асинхронных двигателей хуже аналогичных характеристик трехфазных асинхронных двигателей в связи с тем, что возбуждаемое при пуске однофазных машин с пусковой фазой обмотки статора эллиптическое вращающееся магнитное поле, эквивалентное двум неодинаковым круговым вращающимся магнитным полям — прямому и обратному, вызывает появление тормозного эффекта.
Подбором параметров элементов электрических цепей рабочей и пусковой фаз обмотки статора можно обеспечить при пуске возбуждение кругового вращающегося магнитного поля, что возможно при фазосдвигающем элементе, выполненном в виде конденсатора соответствующей емкости.
Так как разгон ротора вызывает изменение параметров цепей машины, вращающееся магнитное поле из кругового переходит в эллиптическое, ухудшая этим пусковые характеристики двигателя. Поэтому при скорости около 0,8 номинальной пусковую фазу обмотки статора электродвигателя отключают вручную или автоматически, в результате чего двигатель переходит на однофазный режим работы.
Однофазные асинхронные двигатели с пусковым конденсатором имеют кратность начального пускового момента kп = 1,7 — 2,4 и кратность начального пускового тока ki = 3 — 5.
Двухфазные асинхронные двигатели
В двухфазных асинхронных двигателях обе фазы обмотки статора с фазными зонами по 90 эл. град являются рабочими. Они расположены в пазах магнитопровода статора так, что их магнитные оси образуют угол 90 эл. град. Эти фазы обмотки статора отличаются друг от друга не только числом витков, но и номинальными напряжениями и токами, хотя при номинальном режиме двигателя полные мощности их одинаковы.
В одной из фаз обмотки статора постоянно находится конденсатор Ср (рис. 3, а), который в условиях номинального режима двигателя обеспечивает возбуждение кругового вращающегося магнитного поля. Емкость этого конденсатора определяют по формуле:
Cр = I1sinφ1 / 2πfUn2
где I1 и φ1— соответственно ток и сдвиг фаз между напряжением и током цепи фазы обмотки статора без конденсатора при круговом вращающемся магнитном поле, I и U — соответственно частота переменного тока и напряжение питающей сети, n- коэффициент трансформации — отношение эффективных чисел витков фаз обмотки статора соответственно с конденсатором и без него, определяемое по формуле
n = kоб2 w2 / kоб1 w1
где kоб2 и kоб1 — обмоточные коэффициенты соответствующих фаз обмотки статора с числом витков w2 и w1.
Напряжение на зажимах конденсатора Uc, включенного последовательно с фазой обмотки статора двухфазного асинхронного двигателя, при круговом вращающемся магнитном поле выше напряжения сети U и определяется так:
Uc = U √1 + n2
Переход к нагрузке двигателя, отличной от номинальной, сопровождается изменением вращающегося магнитного поля, которое вместо кругового становится эллиптическим. Это ухудшает рабочие свойства двигателя, а при пуске снижает начальный пусковой момент до Мп Mном, ограничивая этим применение двигателей с постоянно включенным конденсатором только в установках с легкими условиями пуска.
Для повышения начального пускового момента параллельно рабочему конденсатору Ср включают пусковой конденсатор Сп (рис. 3, б), емкость которого намного больше емкости рабочего конденсатора и зависит от кратности начального пускового момента, которая может быть доведена до двух и более.
Рис. 3. Схемы включения двухфазных асинхронных двигателей с короткозамкнутым ротором: а — спостоянно присоединенным конденсатором, б — с рабочим и пусковым конденсаторами.
После разгона ротора до скорости 0,6 — 0,7 номинальной пусковой конденсатор отключают для избежания перехода кругового вращающегося магнитного поля в эллиптическое, ухудшающее рабочие характеристики двигателя.
Пусковой режим таких конденсаторных двигателей характеризуется такими показателями: kп = 1,7 — 2,4 и ki = 4 — 6.
Конденсаторные двигатели отличаются лучшими энергетическими показателями, чем однофазные двигатели с пусковой фатой обмотки статора, я коэффициент мощности их, благодаря применению конденсаторов, выше, чем у трехфазных двигателей одинаковой мощности.
Универсальные асинхронные двигатели
В установках автоматического управления применяют универсальные асинхронные двигатели — трехфазные машины малой мощности, которые присоединяют к трехфазной или однофазной сети. При питании от однофазной сети пусковое и рабочие характеристики двигателей несколько хуже, чем при использовании их в трехфазном режиме.
Универсальные асинхронные двигатели серии УАД изготовляют двух- и четырехполюсными, которые при трехфазном режиме имеют номинальную мощность от 1,5 до 70 Вт, а при однофазном режиме — от 1 до 55 Вт и работают от сети переменного напряжения частотой 50 Гц с кпд η= 0,09 — 0.65.
Однофазные асинхронные двигатели с расщепленными или экранированными полюсами
В однофазных асинхронных двигателях с расщепленными или экранированными полюсами, каждый полюс расщеплен глубоким пазом па две неравные части и несет на себе однофазную обмотку, охватывающую весь магнитопровод полюса, и короткозамкнутые витки, расположенные на его меньшей части.
Ротор у этих двигателей имеет короткозамкнутую обмотку. Включение обмотки статора на синусоидальное напряжение сопровождается установлением в ней тока и возбуждением переменного магнитного поля с неподвижной осью симметрии, которое наводит в короткозамкнутых витках соответствующие эдс и токи.
Под влиянием токов короткозамкнутых витков соо тветствующая им м. д. с, возбуждает магнитное поле, препятствующее усилению и ослаблению основного магнитного поля в экранированных частых полюсов. Магнитные поля экранированных и неэкранированных частей полюсов не совпадают по фазе во времени и, будучи смещенными в пространстве, образуют результирующее эллиптическое вращающееся магнитное поле, перемещающее в направлении от магнитной оси неэранированной части полюса к магнитной оси его экранированной части.
Взаимодействие этого поля с токами, индуктированными в обмотке ротора, вызывает появление начального пускового момента Мп = (0,2 — 0,6) Мном и разгон ротора до номинальной скорости, если тормозной момент приложенный к валу двигателя, не превышает начальный пусковой момент.
С целью увеличения начального пускового и максимального моментов однофазных асинхронных двигателях с расщепленными или экранированными полюсами между их полюсами располагают магнитные шунты из листовой стали, что приближает вращающееся магнитное поле к круговому.
Двигатели с расщепленными полюсами являются нереверсивными устройствами, допускающими частые пуски, внезапную остановку и могут длительное время находиться в заторможенном состоянии. Их изготовляют двух- и четырехполюсными номинальной мощностью от 0,5 до 30 Вт, а при усовершенствованной конструкции до 300 Вт для работы от сети переменного напряжения частотой 50 Гц с кпд ηном = 0,20 — 0,40.
Принцип работы однофазного асинхронного двигателя
Производство вращающегося поля
Рассмотрим две обмотки «A» и «B», смещенные таким образом, что они создают магнитное поле на 90 ° в пространстве. Результатом этих двух полей является вращающееся магнитное поле постоянной величины & phiv; м . Неоднородное магнитное поле создает неоднородный крутящий момент, который делает работу двигателя шумной и влияет на пусковой крутящий момент.
Рисунок: Создание однородного магнитного поля.
Принцип пуска
Однофазный асинхронный двигатель состоит из однофазной обмотки на статоре и клеточной обмотки на роторе. Когда к обмотке статора подключен однофазный источник питания, создается пульсирующее магнитное поле. В пульсирующем поле ротор не вращается по инерции. Поэтому однофазный асинхронный двигатель не запускается автоматически и требует определенных средств запуска. Были предложены две теории, чтобы определить производительность однофазного асинхронного двигателя.
- Теория двойного вращающегося поля.
- Теория кросс-поля.
Теория двойного вращающегося поля
Эта теория для однофазной среды утверждает, что стационарное пульсирующее магнитное поле может быть разделено на два RMF, каждая из которых имеет одинаковую величину, но вращается в противоположном направлении.
Асинхронная машина реагирует на каждое магнитное поле отдельно, и чистый крутящий момент в двигателе равен некоторой части крутящего момента, создаваемого каждым из двух магнитных полей.
Уравнение переменного магнитного поля, ось которого зафиксирована в пространстве:
β max — максимальное значение плотности потока синусоидально распределенного воздушного зазора. «В» представляет уравнение вращающегося поля, движущегося в положительном направлении α, а «А» представляет уравнение вращающегося поля, движущегося в положительном направлении. Поле, движущееся в положительном направлении α, называется полем, вращающимся вперед, а в направлении отрицательного α — полем, вращающимся назад.
Таким образом, делается вывод, что стационарное пульсирующее магнитное поле может быть разрешено из-за двух вращающихся магнитных полей, оба одинаковой величины и движущихся с синхронной скоростью в противоположном направлении с той же частотой, что и стационарное магнитное поле.
Теория, основанная на таком разрешении переменного поля на два поля, вращающихся в противоположных направлениях, называется теорией поля с двойным вращением и однофазной индукционной машины.
Однофазные асинхронные двигатели
— конструкция и принцип работы
Однофазные асинхронные двигатели:
Однофазный a.Источник питания c обычно используется для освещения магазинов, офисов, домов, школ и т. д. Следовательно, вместо двигателей постоянного тока используются двигатели, которые работают от однофазного переменного тока. поставка широко используются. Эти двигатели переменного тока называются однофазными асинхронными двигателями . Большое нет. отечественных приложений используют однофазные асинхронные двигатели . Здесь мы узнаем , как работает однофазный асинхронный двигатель .
Номинальная мощность этих двигателей очень мала. Некоторые из них представляют собой даже двигатели с дробной мощностью, которые используются в таких устройствах, как маленькие игрушки, маленькие вентиляторы, фены и т. Д.Эта статья объясняет конструкцию , принцип работы однофазных асинхронных двигателей .
Конструкция однофазных асинхронных двигателей:
Подобно двигателю постоянного тока, однофазный асинхронный двигатель также имеет две основные части: одна вращающаяся, а другая неподвижная. Стационарная часть однофазных асинхронных двигателей — это статор , а вращающаяся часть — это ротор .
Статор имеет многослойную конструкцию, состоящую из штамповок.Штампованные детали расположены на его периферии, чтобы нести обмотку, называемую обмоткой статора , или основной обмоткой. Он возбуждается однофазным источником переменного тока. Ламинированная конструкция сводит к минимуму потери в стали. Штампованные детали изготовлены из кремнистой стали, что минимизирует потери на гистерезис.
Обмотка статора намотана на определенное количество полюсов, то есть при возбуждении от однофазного источника переменного тока статор создает магнитное поле, которое создает эффект определенного количества полюсов. Количество полюсов, на которые наматывается обмотка статора, определяет синхронную скорость двигателя. Синхронная скорость обозначается как Ns и имеет фиксированную зависимость от частоты питания f и числа полюсов P.
Ns = 120f / p об / мин
Учебник «Электрические машины» П.С. Бхимбхры является лучшим в отрасли. Возьмите его сейчас по очень низкой цене.
Обязательно читать:
Асинхронный двигатель никогда не вращается с синхронной скоростью, а вращается со скоростью, немного меньшей, чем синхронная скорость.Конструкция ротора — беличья клетка. Этот ротор состоит из неизолированных медных или алюминиевых стержней, вставленных в пазы.
Шины постоянно закорочены на обоих концах с помощью токопроводящих колец, называемых концевыми кольцами. Вся конструкция выглядит как клетка, отсюда и название ротор с беличьей клеткой. Конструкция однофазных асинхронных двигателей показана на рисунке ниже:
Поскольку стержни постоянно закорочены относительно друг друга, сопротивление всего ротора очень мало. Воздушный зазор между статором и ротором должен быть одинаковым и минимальным. Основная особенность этого ротора заключается в том, что он автоматически настраивается на то же количество полюсов, что и обмотка статора. Принципиальная схема двухполюсного однофазного асинхронного двигателя показана на рисунке ниже:
Принцип работы однофазных асинхронных двигателей:
Для двигательного действия должны существовать два потока, которые взаимодействуют друг с другом для создания крутящего момента.В двигателях постоянного тока обмотка возбуждения создает основной поток, в то время как питание постоянного тока, подаваемое на якорь, отвечает за создание потока якоря. Главный магнитный поток и поток якоря взаимодействуют, создавая крутящий момент.
В однофазном асинхронном двигателе однофазное питание переменного тока подается на обмотку статора. В обмотке статора протекает переменный ток, который создает магнитный поток, который также имеет переменный характер. Этот поток называется основным потоком. Этот поток связан с проводниками ротора и благодаря действию трансформатора e.m.f индуцируется в роторе. Индуцированная ЭДС пропускает ток через ротор, поскольку цепь ротора является замкнутой.
Этот ток ротора создает другой магнитный поток, называемый магнитным потоком ротора, необходимый для движения. Таким образом, второй поток создается по принципу индукции из-за наведенной ЭДС, поэтому двигатель называется асинхронным двигателем . В отличие от этого в двигателе постоянного тока требуется отдельное питание якоря для создания магнитного потока якоря. Это важное различие между d.c двигатель и асинхронный двигатель.
Ключевой момент : Еще одно важное различие между ними заключается в том, что является постоянным током. двигатели самозапускаются, в то время как однофазные асинхронные двигатели не запускаются автоматически. Давайте посмотрим, , почему однофазные асинхронные двигатели не являются самозапускающимися с помощью теории под названием двухоборотная теория поля .
Настоящее учебное пособие «Электрические машины» П.S. Bhimbhra «является лучшим в отрасли. Купите его сейчас по очень низкой цене.
Обязательно к прочтению:
Теория двойного вращающегося поля в однофазных асинхронных двигателях:
Согласно этой теории, любая переменная величина может быть разделена на два вращающихся компонента, которые вращаются в противоположных направлениях, и каждая имеет величину, равную половине максимальной величины переменной величины. В случае однофазных асинхронных двигателей обмотка статора создает переменное магнитное поле, имеющее максимальную величину Φ1m.
В соответствии с теорией двухоборотного поля или y, рассмотрите две составляющие потока статора, каждая из которых имеет величину, равную половине максимальной величины магнитного потока статора, то есть (Φ1m / 2). Оба этих компонента вращаются в противоположных направлениях с синхронной скоростью Ns, которая зависит от частоты и полюсов статора.
Пусть Φf — прямая составляющая, вращающаяся против часовой стрелки, а Φb — обратная составляющая, вращающаяся по часовой стрелке.Результат этих двух компонентов в любой момент времени дает мгновенное значение потока статора в этот момент. Таким образом, результатом этих двух является исходный магнитный поток статора. На рисунке ниже показан поток статора и две его составляющие Φf и Φb.
Вначале оба компонента показаны на рисунке (а) напротив друг друга. Таким образом, результирующее ΦR = 0. Это не что иное, как мгновенное значение магнитного потока статора в начале. После 90 °, как показано на рисунке (b), два компонента поворачиваются таким образом, что оба указывают в одном направлении.
Следовательно, результирующий ΦR является алгебраической суммой величин двух компонентов. Итак, ΦR = (Φ1m / 2) + (Φ1m / 2) = Φ1m. Это не что иное, как мгновенное значение магнитного потока статора при 0 = 90 °, как показано на рисунке (c). Таким образом, непрерывное вращение двух компонентов дает исходный переменный магнитный поток статора.
Оба компонента вращаются и, следовательно, режутся проводниками ротора. Из-за отсечения флюса в роторе индуцируется ЭДС, которая циркулирует ток ротора.Ток ротора создает магнитный поток ротора. Этот поток взаимодействует с передающей составляющей Φf, создавая крутящий момент в одном конкретном направлении, например, против часовой стрелки. В то время как поток ротора взаимодействует с обратной составляющей Φb, создавая крутящий момент в направлении по часовой стрелке. Таким образом, если вращающий момент против часовой стрелки положительный, то вращающий момент по часовой стрелке отрицательный.
Вначале эти два момента равны по величине, но противоположны по направлению. Каждый крутящий момент пытается повернуть ротор в собственном направлении.Таким образом, чистый крутящий момент, испытываемый ротором, в начале равен нулю. Следовательно, однофазные асинхронные двигатели не запускаются автоматически. Обеспечивая дополнительный поток, мы можем запустить двигатель самостоятельно. Некоторые из однофазных асинхронных двигателей с самозапуском — это асинхронный двигатель с конденсаторным пуском, асинхронный двигатель с экранированными полюсами, двигатель с постоянным разделенным конденсатором.
Характеристики крутящего момента и скорости однофазных асинхронных двигателей:
Два противоположно направленных крутящих момента и результирующий крутящий момент могут быть эффективно показаны с помощью характеристики крутящий момент-скорость .
Можно видеть, что при пуске N = 0, и в этот момент результирующий крутящий момент равен нулю. Таким образом, однофазные асинхронные двигатели не запускаются самостоятельно. направление, в котором первоначально вращается ротор, и двигатель начинает вращаться в этом направлении.
Но на практике невозможно придать начальный крутящий момент ротору извне, поэтому в конструкцию однофазных асинхронных двигателей внесены некоторые изменения, чтобы сделать их самозапускающимися. Другая теория, которая также может быть использована для объяснения , почему однофазный асинхронный двигатель не самозапускается , — это теория перекрестного поля.
Теория кросс-поля в однофазных асинхронных двигателях:
Рассмотрим однофазный асинхронный двигатель с неподвижным ротором, как показано на рисунке ниже. Обмотка статора возбуждается однофазным переменным током. Этот источник питания создает переменный поток Φs, который действует вдоль оси обмотки статора.Из-за этого потока в проводниках ротора индуцируется ЭДС из-за действия трансформатора.
Поскольку ротор замкнут, эта ЭДС обеспечивает циркуляцию тока по проводникам ротора. Направление тока ротора показано на рисунке ниже. Направление тока ротора таково, чтобы противостоять причине, вызывающей его, которой является статор. поток Φs.
Теперь можно использовать правило левой руки Флеминга, чтобы найти направление силы, действующей на проводники ротора. Можно видеть, что когда Φs действует в направлении вверх и увеличивается положительно, проводники слева испытывают силу слева направо, а проводники справа. испытывайте силу справа налево.Таким образом, в целом сила, действующая на ротор, равна нулю, следовательно, на ротор отсутствует крутящий момент, и ротор не может начать вращаться.
Мы видели, что должны существовать два потока, разделенных некоторым углом, чтобы создать вращающееся магнитное поле. Согласно теории перекрестного поля , поток статора можно разделить на две составляющие, которые взаимно перпендикулярны. Один действует вдоль оси магнитного поля. обмотка статора и др. действует перпендикулярно ей.
Предположим теперь, что начальный толчок ротору направлен против часовой стрелки.Из-за вращения ротор физически сокращает поток статора, и в роторе индуцируется динамическая ЭДС. Это называется ЭДС скорости или ЭДС вращения. Направление такой ЭДС может быть получено с помощью правила правой руки Флеминга, и эта ЭДС находится в фазе с потоком статора Φs.
Направление ЭДС показано на рисунке ниже. Эта ЭДС обозначается E2N. Эта ЭДС обеспечивает циркуляцию тока через ротор I2N. Этот ток создает собственный поток, называемый потоком ротора Φr. Эта ось Φr расположена под углом 90 ° к оси потока статора, поэтому этот поток ротора он назвал поперечным полем.
Учебник «Электрические машины» П.С. Бхимбхры является лучшим в отрасли. Возьмите его сейчас по очень низкой цене.
купить сейчас
Обязательно к прочтению:
Из-за очень высокого реактивного сопротивления ротора ток I2N и Φr отстают от ЭДС вращения почти на 90 °. Таким образом, Φr находится в квадратуре с Φs в пространстве и отстает от Φs на 90 ° по фазе времени. Такие два потока создают вращающееся магнитное поле .
Направление этого вращающегося магнитного поля будет таким же, как направление первоначального толчка.Таким образом, на ротор действует крутящий момент в том же направлении, что и вращающееся магнитное поле, то есть в направлении первоначального толчка. Таким образом, в рассматриваемом случае ротор ускоряется против часовой стрелки и в установившемся режиме достигает подсинхронной скорости.
Заключение:
Сегодня мы обсудили принцип работы и конструкцию однофазных асинхронных двигателей . Вы можете скачать эту статью в формате pdf, ppt.
Комментарий ниже для любых запросов.
Схема и работа однофазного двигателя
Однофазные двигатели очень широко используются в домах, офисах, мастерских и т. Д., Поскольку в большинство домов и офисов подается однофазное питание. Кроме того, однофазные двигатели надежны, дешевы по стоимости, просты в конструкции и легко ремонтируются.
- Однофазный асинхронный двигатель (разделенная фаза, конденсатор, экранированный полюс и т. Д.)
- Однофазный синхронный двигатель
- Отталкивающий двигатель и т. Д.
Эта статья объясняет основную конструкцию и принцип работы однофазного асинхронного двигателя .
Однофазный асинхронный двигатель
Конструкция однофазного асинхронного двигателя аналогична конструкции трехфазного асинхронного двигателя с короткозамкнутым ротором, за исключением того, что статор намотан для однофазного питания. Статор также снабжен «пусковой обмоткой», которая используется только для пусковых целей. Это можно понять из схемы однофазного асинхронного двигателя слева.
Принцип работы однофазного асинхронного двигателя
Когда на статор однофазного двигателя подается однофазное питание, он создает переменный магнитный поток в обмотке статора. Переменный ток, протекающий через обмотку статора, вызывает индуцированный ток в стержнях ротора (ротора с короткозамкнутым ротором) в соответствии с законом Фарадея об электромагнитной индукции. Этот индуцированный ток в роторе также будет создавать переменный магнитный поток. Даже после установки обоих переменных потоков двигатель не запускается (причина объясняется ниже).Однако, если ротор запускается внешней силой в любом направлении, двигатель разгоняется до конечной скорости и продолжает работать с номинальной скоростью. Такое поведение однофазного двигателя можно объяснить с помощью теории вращения двойного поля.
Теория вращения двойного поля
Теория вращения двойного поля утверждает, что любая переменная величина (здесь переменный поток) может быть разделена на две составляющие, величина которых равна половине максимальной величины переменной величины, и обе эти составляющие вращаются в противоположном направлении.
Следующие рисунки помогут вам понять теорию вращения двойного поля.
Почему однофазный асинхронный двигатель не запускается автоматически?
Статор однофазного асинхронного двигателя намотан с однофазной обмоткой. Когда на статор подается однофазное питание, он создает переменный магнитный поток (который меняется только вдоль одной оси пространства). Переменный поток, действующий на ротор с короткозамкнутым ротором, не может производить вращение, только вращающийся поток может. Вот почему однофазный асинхронный двигатель не запускается автоматически.
Как сделать самозапуск однофазного асинхронного двигателя?
- Как объяснено выше, однофазный асинхронный двигатель не запускается автоматически . Для самозапуска его можно временно преобразовать в двухфазный двигатель при запуске. Это может быть достигнуто путем введения дополнительной «пусковой обмотки», также называемой вспомогательной обмоткой.
- Следовательно, статор однофазного двигателя имеет две обмотки: (i) основная обмотка и (ii) пусковая обмотка (вспомогательная обмотка). Эти две обмотки подключены параллельно к однофазному источнику питания и разнесены на 90 электрических градусов друг от друга. Разность фаз 90 градусов может быть достигнута подключением конденсатора последовательно с пусковой обмоткой.
- Следовательно, двигатель ведет себя как двухфазный двигатель, а статор создает вращающееся магнитное поле, которое заставляет ротор вращаться. Как только двигатель набирает скорость, скажем, до 80 или 90% от своей нормальной скорости, пусковая обмотка отключается от цепи с помощью центробежного переключателя, и двигатель работает только от основной обмотки.
Однофазные асинхронные двигатели | Двигатели переменного тока
Трехфазный двигатель может работать от однофазного источника питания. Однако он не запускается самостоятельно. Его можно запустить вручную в любом направлении и набрать скорость за несколько секунд. Он будет развивать только 2/3 номинальной мощности 3-φ, потому что одна обмотка не используется.
Двигатель с 3 фазами работает от мощности 1 фазы, но не запускается
Одиночная катушка однофазного двигателя
Одиночная катушка однофазного асинхронного двигателя создает не вращающееся магнитное поле, а пульсирующее поле, достигающее максимальной напряженности при электрическом напряжении 0 ° и 180 °.
Однофазный статор создает невращающееся пульсирующее магнитное поле
Другая точка зрения состоит в том, что одиночная катушка, возбуждаемая однофазным током, создает два вектора магнитного поля, вращающихся в противоположных направлениях, совпадающих дважды за оборот при 0 ° (рисунок выше-a) и 180 ° (рисунок e). Когда векторы поворачиваются на 90 ° и -90 °, они отменяются на рисунке c.
При 45 ° и -45 ° (рисунок b) они частично складываются по оси + x и сокращаются по оси y.Аналогичная ситуация наблюдается на рисунке d. Сумма этих двух векторов — это вектор, неподвижный в пространстве, но чередующийся во времени. Таким образом, пусковой крутящий момент не создается.
Однако, если ротор вращается вперед со скоростью немного меньшей, чем синхронная скорость, он будет развивать максимальный крутящий момент при 10% скольжении относительно вектора прямого вращения. Меньший крутящий момент будет развиваться выше или ниже 10% скольжения.
Ротор будет испытывать скольжение на 200% — 10% относительно вектора магнитного поля, вращающегося в противоположных направлениях.Небольшой крутящий момент (см. Кривую зависимости крутящего момента от скольжения), за исключением двукратной пульсации частоты, вырабатывается вектором встречного вращения. Таким образом, однофазная катушка будет развивать крутящий момент после запуска ротора.
Если ротор запускается в обратном направлении, он будет развивать такой же большой крутящий момент, поскольку он приближается к скорости вращающегося в обратном направлении вектора.
Однофазные асинхронные двигатели имеют медную или алюминиевую беличью клетку, встроенную в цилиндр из стальных пластин, типичных для многофазных асинхронных двигателей.
Двигатель с постоянным разделением конденсаторов
Одним из способов решения проблемы с однофазным двигателем является создание двухфазного двигателя, получающего двухфазное питание от однофазного. Для этого требуется двигатель с двумя обмотками, разнесенными друг от друга на 90 ° , электрический, питаемый двумя фазами тока, смещенными во времени на 90 ° . Это называется конденсаторным двигателем с постоянным разделением.
Асинхронный двигатель с постоянным разделением конденсаторов
Этот тип двигателя страдает от увеличенной величины тока и сдвига во времени назад, когда двигатель набирает скорость, с пульсациями крутящего момента на полной скорости.Решение состоит в том, чтобы уменьшить емкость конденсатора (импеданс), чтобы минимизировать потери.
Потери меньше, чем для двигателя с экранированными полюсами. Эта конфигурация двигателя хорошо работает до 1/4 лошадиных сил (200 Вт), хотя обычно применяется к меньшим двигателям. Направление двигателя легко изменить, включив конденсатор последовательно с другой обмоткой. Этот тип двигателя может быть адаптирован для использования в качестве серводвигателя, описанного в другом месте этой главы.
Однофазный асинхронный двигатель со встроенными катушками статора
Однофазные асинхронные двигатели могут иметь катушки, встроенные в статор двигателей большего размера. Тем не менее, меньшие размеры требуют менее сложных для создания концентрированных обмоток с выступающими полюсами.
Асинхронный двигатель с конденсаторным пуском
На рисунке ниже конденсатор большего размера может использоваться для запуска однофазного асинхронного двигателя через вспомогательную обмотку, если он отключается центробежным переключателем, когда двигатель набирает обороты. Кроме того, во вспомогательной обмотке может быть намного больше витков из более тяжелого провода, чем в двигателе с разделенным сопротивлением, чтобы уменьшить чрезмерное повышение температуры.
В результате для тяжелых нагрузок, таких как компрессоры кондиционеров, доступен больший пусковой крутящий момент. Эта конфигурация двигателя работает настолько хорошо, что доступна в многомощных (несколько киловаттных) размерах.
Асинхронный двигатель с конденсаторным пуском
Асинхронный двигатель с конденсаторным двигателем
Вариант двигателя с конденсаторным запуском (рисунок ниже) заключается в запуске двигателя с относительно большим конденсатором для высокого пускового момента, но после запуска оставляют конденсатор меньшей емкости на месте для улучшения рабочих характеристик, не потребляя чрезмерного тока. Дополнительная сложность конденсаторного двигателя оправдана для двигателей большего размера.
Асинхронный двигатель с конденсаторным двигателем
Пусковой конденсатор двигателя может представлять собой неполярный электролитический конденсатор с двойным анодом, который может представлять собой два последовательно соединенных поляризованных электролитических конденсатора + к + (или — к -). Такие электролитические конденсаторы переменного тока имеют такие высокие потери, что их можно использовать только в прерывистом режиме (1 секунда во включенном состоянии, 60 секунд в выключенном состоянии), например, при запуске двигателя.
Конденсатор для работы двигателя должен быть не электролитического типа, а из полимера с меньшими потерями.
Асинхронный двигатель с двухфазным электродвигателем с сопротивлением
Если во вспомогательной обмотке намного меньше витков, меньший провод размещен под углом 90 ° ° к главной обмотке, он может запустить однофазный асинхронный двигатель. При более низкой индуктивности и более высоком сопротивлении ток будет испытывать меньший фазовый сдвиг, чем основная обмотка.
Может быть получено около 30 ° разности фаз.Эта катушка создает умеренный пусковой момент, который отключается центробежным переключателем на 3/4 синхронной скорости. Эта простая (без конденсатора) конструкция хорошо подходит для двигателей мощностью до 1/3 лошадиных сил (250 Вт), управляющих легко запускаемыми нагрузками.
Асинхронный двигатель с разделенным фазным сопротивлением
Этот двигатель имеет больший пусковой крутящий момент, чем двигатель с экранированными полюсами (следующий раздел), но не такой большой, как двухфазный двигатель, построенный из тех же частей.Плотность тока во вспомогательной обмотке настолько высока во время пуска, что последующий быстрый рост температуры исключает частый перезапуск или медленные пусковые нагрузки.
Корректор коэффициента мощности Nola
Фрэнк Нола из НАСА предложил корректор коэффициента мощности для повышения эффективности асинхронных двигателей переменного тока в середине 1970-х годов. Он основан на предположении, что асинхронные двигатели неэффективны при нагрузке ниже полной. Эта неэффективность коррелирует с низким коэффициентом мощности.
Коэффициент мощности меньше единицы возникает из-за тока намагничивания, необходимого для статора.Этот фиксированный ток составляет большую долю от общего тока двигателя по мере уменьшения нагрузки двигателя. При небольшой нагрузке полный ток намагничивания не требуется. Его можно уменьшить, уменьшив подаваемое напряжение, улучшив коэффициент мощности и эффективность.
Корректор коэффициента мощности определяет коэффициент мощности и снижает напряжение двигателя, тем самым восстанавливая более высокий коэффициент мощности и уменьшая потери.
Поскольку однофазные двигатели примерно в 2–4 раза менее эффективны, чем трехфазные двигатели, существует потенциальная экономия энергии для двигателей 1-φ.Для полностью нагруженного двигателя нет экономии, поскольку требуется весь ток намагничивания статора.
Напряжение не может быть уменьшено. Но есть потенциальная экономия от менее чем полностью загруженного двигателя. Двигатель с номинальным напряжением 117 В переменного тока рассчитан на работу при напряжении от 127 В переменного тока до 104 В переменного тока. Это означает, что он не полностью загружен при работе с напряжением более 104 В переменного тока, например, с холодильником на 117 В переменного тока.
Контроллер коэффициента мощности может безопасно снизить сетевое напряжение до 104–110 В переменного тока.Чем выше начальное напряжение в сети, тем больше потенциальная экономия. Конечно, если энергокомпания подаст напряжение ближе к 110 В переменного тока, двигатель будет работать более эффективно без каких-либо дополнительных устройств.
Любой практически неработающий однофазный асинхронный двигатель с 25% FLC или менее является кандидатом на использование PFC. Однако он должен работать большое количество часов в год. И чем больше он простаивает, как в пилораме, штамповочном прессе или конвейере, тем выше вероятность оплаты контроллера через несколько лет эксплуатации.
За него должно быть втрое проще платить по сравнению с более эффективным 3-φ-двигателем. Стоимость PFC не может быть возмещена для двигателя, работающего всего несколько часов в день.
Описание: Однофазные асинхронные двигатели
- Однофазные асинхронные двигатели не могут запускаться самостоятельно без вспомогательной обмотки статора, приводимой в действие противофазным током около 90 ° . После запуска вспомогательная обмотка необязательна.
- Вспомогательная обмотка двигателя с постоянным разделением конденсаторов имеет конденсатор, включенный последовательно с ней во время пуска и работы.
- Асинхронный двигатель с конденсаторным запуском имеет только конденсатор, включенный последовательно со вспомогательной обмоткой во время запуска.
- Двигатель с конденсаторным питанием обычно имеет большой неполяризованный электролитический конденсатор, включенный последовательно со вспомогательной обмоткой для запуска, а затем меньший неэлектролитический конденсатор во время работы.
- Вспомогательная обмотка электродвигателя с расщепленным сопротивлением развивает разность фаз по сравнению с основной обмоткой во время пуска из-за разницы в сопротивлении.
СВЯЗАННЫЙ РАБОЧИЙ ЛИСТ:
Как работает однофазный двигатель?
Чтобы понять, как работает однофазный асинхронный двигатель переменного тока, полезно понять основы работы с трехфазным асинхронным двигателем.
Ток в статоре трехфазного двигателя (неподвижные катушки в двигателе) создает вращающееся магнитное поле.Магнитное поле вращается из-за сдвига фазы на 120 ° в каждой фазе источника питания. Это вращающееся магнитное поле индуцирует ток в стержнях ротора. Ток в роторе создает собственное магнитное поле. Взаимодействие между магнитными полями статора и ротора заставляет ротор вращаться. Важно отметить одну важную вещь для трехфазных двигателей: поскольку они работают на трех фазах, которые смещены друг относительно друга, они самозапускаются. (См. Верхний рисунок.)
Как он «вращается»
Однофазные двигатели работают по тому же принципу, что и трехфазные двигатели, за исключением того, что они работают только от одной фазы.Одна фаза создает колеблющееся магнитное поле, которое движется вперед и назад, а не вращающееся магнитное поле (см. Нижний рисунок). Из-за этого у истинно однофазного двигателя нулевой пусковой момент. Однако, как только ротор начинает вращаться, он продолжает вращаться в результате колебания магнитного поля в статоре.
Спустя годы инженеры придумали умные способы запуска однофазных двигателей. Большинство из них связано с созданием второй фазы, которая помогает создавать вращающееся магнитное поле в статоре.Эту фазу часто называют стартовой или вспомогательной.
Типы однофазных двигателей
Некоторыми из различных типов однофазных двигателей являются двигатель с экранированными полюсами, двигатель с расщепленной фазой, двигатель с постоянным разделенным конденсатором (также называемый двигателем с однофазным конденсатором) и двигатель с двухрядным конденсатором. Основное различие в конструкции этих двигателей заключается в том, как производится вторая фаза. В двигателях с экранированным полюсом и в двигателях с разделенной фазой конденсатор не используется, в то время как в двигателях с постоянным разделенным конденсатором (PSC) и двумя номинальными конденсаторами используется.Двигатели с разделенной фазой и конденсаторные двигатели с двумя номиналами могут использовать центробежный переключатель для отключения фазы запуска, когда двигатели набирают скорость, в то время как двигатели с экранированным полюсом и двигатели PSC не имеют переключателя.
У каждого из этих двигателей также есть свои компромиссы в производительности. Двигатели с экранированными полюсами — очень простые двигатели и, как правило, недорогие, но они имеют низкий КПД и, как правило, предназначены для применения с малой мощностью. Двигатели с расщепленной фазой, как правило, недорогие, но у них низкий пусковой момент и высокий пусковой ток.Двигатели PSC обеспечивают более высокий пусковой момент и более высокий КПД, чем двигатели без конденсатора.
>> Хотите узнать больше об асинхронных двигателях? Прочтите в нашем блоге сообщение о синхронных и асинхронных двигателях или посмотрите видео о том, как выбрать мотор-редуктор.
Однофазный асинхронный двигатель | Электрические уроки | Повязки Mepits
Однофазный асинхронный двигатель
Однофазный асинхронный двигатель — это двигатель переменного тока , в котором электрическая энергия преобразуется в механическую для выполнения некоторых физических задач.Этому асинхронному двигателю для правильной работы требуется только одна фаза питания. Они обычно используются в приложениях с низким энергопотреблением, в быту и промышленности. Простая конструкция, дешевая стоимость, лучшая надежность, простота ремонта и лучшее обслуживание — вот некоторые из его заметных преимуществ.
Конструкция однофазного асинхронного двигателя
Основными компонентами однофазного асинхронного двигателя являются статор и ротор. Статор , как известно, является неподвижной частью.Обычно на обмотку статора подается однофазное переменное питание. Ротор — это вращающаяся часть двигателя. Ротор соединен с механической нагрузкой с помощью вала. Здесь используется ротор с короткозамкнутым ротором . Он имеет ламинированный железный сердечник с множеством прорезей. Прорези ротора бывают закрытого или полузакрытого типа. Обмотки ротора симметричны и у одного типа короткозамкнуты. Между ротором и статором имеется воздушный зазор. Наиболее практично этот двигатель применяется в холодильниках, часах, дрелях, насосах, стиральных машинах и т. Д.Обмотка статора в асинхронном двигателе 1 Ø состоит из двух частей: основной обмотки и вспомогательной обмотки . Обычно вспомогательная обмотка перпендикулярна основной обмотке. В асинхронном двигателе 1 Ø обмотка с большим количеством витков называется основной обмоткой. А другой провод называется вспомогательной обмоткой.
Принцип работы
На обмотку статора подается однофазный переменный ток. Благодаря этому создается магнитное поле , которое пульсирует синусоидальным образом.Через некоторое время полярность поля меняется на противоположную, и переменный поток не может обеспечить необходимое вращение двигателя. Но если двигатель перемещается внешними средствами, двигатель будет вращаться с конечной скоростью. Используя теорию вращения двойного поля, поведение этого двигателя можно объяснить, как показано ниже.
Теория вращения двойного поля: Почему однофазный асинхронный двигатель не запускается автоматически?
Пусть Ø м будет пульсирующим полем в двигателе, который состоит из двух компонентов с величиной Ø м /2.Оба вращаются со скоростью ω рад / сек в противоположном направлении. Это показано на рисунке ниже. Переменный поток, создаваемый статором, представлен Ø 1 и Ø 2 . Каждый из потоков равен половине максимального значения переменного потока, и они вращаются с синхронной скоростью в противоположных направлениях. Поток Ø 1 приведет к крутящему моменту T 1 в направлении против часовой стрелки, а поток Ø 2 будет создавать крутящий момент T 2 в направлении по часовой стрелке.Когда ротор находится в состоянии покоя, крутящие моменты T 1 и T 2 равны и противоположны, а результирующий крутящий момент будет равен нулю. Следовательно, однофазный асинхронный двигатель не запускается автоматически. Этот факт проиллюстрирован на рисунке ниже.
Типы однофазных асинхронных двигателей
Существует множество методов запуска однофазного асинхронного двигателя. Исходя из этого, существует 5 различных типов.
Асинхронный двигатель с разделенной фазой
Также известен как двигатель с резистивным пуском.Основная и вспомогательная обмотки смещены на 90 градусов. Здесь используется центробежный переключатель. Некоторые из его характеристик включают: номинальную мощность от 60 Вт до 250 Вт, постоянную скорость и высокий пусковой ток. Благодаря невысокой стоимости мотора он очень популярен на рынке. Этот двигатель эффективно используется в быту. Из-за низкого пускового момента он не может развивать мощность более 1 кВт.
Конденсаторный пусковой двигатель
Здесь у вспомогательной обмотки больше витков.Электролитический конденсатор размещен последовательно со вспомогательной обмоткой. Также подключен центробежный переключатель, и две обмотки расположены под углом 90 градусов. Некоторые из его характеристик — высокая стоимость, номинальная мощность от 120 Вт до 7 кВт и т. Д. Конденсаторный пусковой двигатель обычно используется в тех приложениях, где требуется высокий пусковой момент.
Конденсаторный пуск и конденсаторный двигатель
Клетчатый ротор и обмотки статора — две основные части двигателя.Обмотки статора расположены под углом 90 градусов. При этом используются два конденсатора , подключенных параллельно. Здесь также используется центробежный переключатель. Запуск больших нагрузок, простота в эксплуатации, лучшая эффективность — вот некоторые из его характеристик. Этот двигатель эффективно используется в быту и в промышленности.
Двигатель с постоянным разделенным конденсатором (PSC)
Клетка ротора и обмотка статора — две части двигателя. У этого есть только один конденсатор, включенный последовательно со вспомогательной обмоткой.Здесь конденсатор работает в рабочем и пусковом режимах. Здесь не используется центробежный переключатель. Некоторые характеристики этого двигателя — хороший КПД, низкий пусковой ток, отсутствие центробежного переключателя, большой крутящий момент, использование простых конденсаторов и т. Д. Вентиляторы, нагнетатели и т. Д. Широко используют этот двигатель.
Электродвигатель с экранированными полюсами
Ротор и статор с сепаратором являются основными частями этого двигателя. Здесь статор состоит из выступающих полюсов с возбуждающей катушкой. Каждый полюс обернут затеняющей катушкой.Полюса называются заштрихованными. Простая конструкция, отсутствие центробежного переключателя, номинальная мощность около 30 Вт — вот лишь некоторые из его характеристик. Этот двигатель широко используется в приложениях с низким энергопотреблением.
Типы, конструкция и принципы работы однофазных асинхронных двигателей
Однофазный асинхронный двигатель — один из самых известных представителей огромного семейства двигателей переменного тока. Этот тип двигателя предназначен для преобразования электрической энергии в механическую для выполнения некоторых физических задач.Для правильного выполнения своей работы этому асинхронному двигателю требуется только одна фаза питания. Они часто используются в приложениях с низким энергопотреблением, например, в быту и легкой промышленности. Легкая и простая конструкция, дешевая стоимость обслуживания, высокая надежность и низкая стоимость ремонта — вот некоторые из его значительных преимуществ.
Linquip собрал всю информацию, необходимую для знакомства с этим типом двигателя. В следующих разделах мы подробно остановимся на конструкции, принципе работы и типах однофазных асинхронных двигателей.Оставайтесь с нами.
Конструкция однофазного асинхронного двигателя
Двумя основными компонентами однофазного асинхронного двигателя являются статор и ротор. Как вы, возможно, знаете и понимаете по названию, статор — это неподвижная часть этого двигателя. С другой стороны, ротор — это вращающийся компонент двигателя. однофазное переменное питание достигает обмотки статора. Ротор с помощью вала подключается к механической нагрузке. Ротор имеет многослойный железный сердечник со множеством перекошенных пазов.Эти пазы ротора бывают закрытого или полузакрытого типа. Обмотки ротора симметричны.
Между ротором и статором имеется воздушный зазор. Чаще всего этот двигатель используется в холодильниках, часах, дрелях, насосах, стиральных машинах и т. Д. Обмотка статора в асинхронных двигателях разделена на две части: основную обмотку и вспомогательную обмотку. положение этих двух типов обмоток таково, что вспомогательная обмотка перпендикулярна основной обмотке.В асинхронных двигателях основная обмотка — это обмотка с большим количеством витков, а другая называется вспомогательной обмоткой.
Принцип работы однофазного асинхронного двигателя
В предыдущем разделе вы получили некоторую информацию о конструкции и конструкции однофазных асинхронных двигателей. Теперь, когда вы знаете некоторые части этого типа асинхронного двигателя, давайте посмотрим, какой принцип работы определяет работу этой конструкции.
Как упоминалось ранее, на обмотку статора подается однофазный переменный ток.После того, как обмотка статора получает питание, создается магнитное поле, которое действует синусоидальным образом. Через некоторое время полярность магнитного поля меняется, и переменный поток не может обеспечить необходимую силу вращения для двигателя. Как вы знаете, для работы любого электродвигателя нам нужны два потока.
Взаимодействие этих двух потоков создает требуемый крутящий момент. При подаче однофазного переменного тока на обмотку статора переменный ток начинает течь через статор.Этот переменный ток создает переменный поток, который называется основным потоком. основной поток также связан с проводниками ротора.
Согласно закону электромагнитной индукции Фарадея, ЭДС индуцируется в роторе. Поскольку цепь ротора замыкается, ток начинает течь в роторе. Этот ток, называемый током ротора, создает свой поток, называемый потоком ротора. Поскольку этот поток создается по принципу индукции, двигатель, работающий по этому принципу, получил название асинхронного двигателя.
Типы однофазных асинхронных двигателей
В предыдущем разделе вы прочитали об условиях и принципах работы однофазного асинхронного двигателя в зависимости от них. Пришло время узнать больше о различных типах однофазных асинхронных двигателей. Основываясь на различных методах запуска однофазного IM, существует четыре основных различных типа, которые мы собираемся предоставить полезную информацию о каждом из них в следующих разделах.
Асинхронный двигатель с разделенной фазой
Этот тип однофазного электродвигателя IM также известен как электродвигатель с резистивным пуском.В этом типе основная обмотка и вспомогательная обмотка смещены на 90 градусов. Вспомогательная обмотка и центробежный выключатель включены последовательно. Работа этого переключателя заключается в отключении вспомогательной обмотки от главной цепи, когда скорость двигателя достигает 75-80 процентов от синхронной скорости.
Некоторые характеристики асинхронного двигателя с расщепленной фазой включают номинальную мощность от 60 до 250 Вт, постоянную скорость и высокий пусковой ток. Из-за невысокой стоимости обслуживания и ремонта двигателей он очень популярен на рынке.Некоторые бытовые применения эффективно используют этот двигатель. Помните, что из-за низкого пускового момента он не может развивать мощность более 1 кВт.
Конденсаторный пусковой двигатель
В этом однофазном ИД вспомогательная обмотка имеет больше витков. а электролитический конденсатор включен последовательно со вспомогательной обмоткой. Как и в предыдущем типе, также подключен центробежный выключатель, и две обмотки расположены под углом 90 градусов. Некоторые характеристики конденсаторного пускового двигателя заключаются в том, что стоимость обслуживания и ремонта высока, а номинальная мощность составляет от 120 до 7 кВт.Двигатели с конденсаторным пуском обычно используются в приложениях, где требуется высокий пусковой момент.
Конденсаторный пусковой двигатель и конденсаторный двигатель
Принцип работы и конструкция конденсаторного пускового устройства и конденсаторного пускового двигателя и конденсаторного пускового двигателя почти одинаковы. Двумя основными компонентами этого двигателя являются ротор с сепаратором и обмотки статора. Обмотки статора расположены под углом 90 градусов. В этом типе асинхронного двигателя используются два конденсатора, включенных параллельно. Здесь вы также можете найти центробежный выключатель.Запуск больших нагрузок, простота эксплуатации и конструкции, а также высокий КПД — вот некоторые из характеристик конденсаторного запуска и конденсаторного запуска двигателя. Этот двигатель выгоден как для домашнего, так и для промышленного применения.
Электродвигатель с экранированными полюсами
Двигатель с экранированными полюсами состоит из ротора с сепаратором и статора. Сам статор состоит из выступающих полюсов с возбуждающей катушкой. Каждый полюс обернут затеняющей катушкой. Вот почему полюса называются экранированными полюсами, а двигатель — электродвигателем с экранированными полюсами.Простая конструкция и конструкция, отсутствие центробежного переключателя и номинальная мощность 30 Вт — вот некоторые характеристики этого типа асинхронного двигателя. Из-за его низкой мощности этот двигатель обычно используется в приложениях с низким энергопотреблением.
Заключение
В этой статье мы попытались предоставить полезную информацию об однофазных асинхронных двигателях. Прежде всего, мы поговорили об общей конструкции и конструкции этого типа электродвигателя переменного тока. Затем мы перешли к принципу работы и, наконец, дошли до различных типов однофазных ИД.Мы будем очень рады, если у вас есть какие-либо мнения или опыт использования этого типа асинхронных двигателей, и вы захотите поделиться им с нами в комментариях. Более того, если у вас есть какие-либо вопросы, зарегистрируйтесь на нашем веб-сайте и позвольте нашим экспертам Linquip помочь вам. Надеюсь, вам понравилась эта статья.
.