Пропан - это экологическое топливо. Его физические и химические свойства. Пропан свойства физические
Пропан свойства - Справочник химика 21
Природные газы из чисто газовых месторождений обычно характеризуются крайне низким содержанием тяжелых углеводородов и относятся к сухим газам. Газы из газоконденсатных месторождений состоят из смеси сухого газа с пропаи-бутановыми фракциями, ароматическими компонентами, газовым бензином и дизельным топливом. Нефтяные газы более богаты тяжелыми углеводородами, чем природные газы из чисто газовых месторождений, и представляют собой смесь сухого газа с пропаном, бутаном и газовым бензином. Физико-химические свойства основных компонентов, входящих в состав природных газов, приведены в табл. 3. [c.110] В результате специфических свойств сжиженных газов, их нельзя сливать из железнодорожных цистерн в стационарные газохранилища обычными способами. Это обусловлено, например, тем, что при температуре —15°С в емкости со сжиженным пропаном создается давление насыщенных паров 190 кПа (1,9 кгс/см2), а при 1 °С — 350 кПа (3,5 кгс/см ). Следовательно, пропан, привезенный зимой в железнодорожной цистерне при температуре наружного воздуха —15°С нельзя самотеком переливать в подземное стационарное газохранилище, расположенное ниже глубины промерзания грунта, даже при расположении цистерны на 8—10 м выше газохранилища. Поэтому для слива сжиженных газов приходится создавать в цистерне избыточное давление по отношению к давлению в газохранилище. Цистерну соединяют с газохранилищем жидкостным трубопроводом, а в паровое пространство цистерны подают газ под давлением, превышающим давление насыщенных паров не менее чем на 120—200 кПа (1,2—2 кгс/см ), Избыточное давление можно создавать инертным газом или парами перекачиваемого продукта. На рис. 28.1 показана схема слива жидкого аммиака из железнодорожной цистерны с применением в качестве транспортирующего агента газообразного аммиака, подаваемого по трубопроводу 6. Имеются и другие способы слива сжиженных газов. При [c.360] Критериями выбора растворителей для промышленного применения являются их стоимость, характеристика растворимости, физические свойства, а также термическая и химическая стабильность. Пригодность растворителей для рентабельного промышленного применения определяется избирательностью и температурным интервалом экстракции, которыми характеризуются эти растворители. Температуры кипения этих растворителей допускают проведение экстракции при оптимальной температуре в условиях атмосферного давления (исключение представляет пропан), а регенерация растворителя может производиться путем перегонки, включая п перегонку с водяным паром. [c.193]Жидкая пропан-бутановая смесь обладает всеми свойствами идеального раствора, п интегральная теплота смешения ее компонентов равна нулю. Поэтому энтальпии растворов определяются на основе правила аддитивности расчет приведен в табл. III.4. [c.185]
Пропан-бутановая фракция. Согласно спецификации, испытание пропан-бутано-вых жидкостей заключается в определении коррозионных свойств, цвета, фракционного состава и докторской пробы. [c.77]
Пропан применяется как в качестве самостоятельного растворителя, так и в комбинации с другими жидкостями [52—56]. При температуре окружающей среды пропан растворяет исходное масло, а при повышении температуры до 40—60 °С из раствора выделяются смолистые и асфальтовые соединения. При критической температуре пропана 96,8 °С его растворяющая способность падает до минимума и выделяются последующие масляные фракции. Разделение масла происходит по плотности фракций и имеет сходство с эффектом дистилляции, но из-за относительно низких температур проходит в более постоянных условиях. Пропан не отделяет ароматических и нафтеновых углеводородов от парафиновых, и экстракция с его участием нисколько не улучшает свойств масел. Ранее же описанные растворители повышают качество масел. В связи с этим обработка масел пропаном служит только для удаления асфальтовых соединений. [c.394]
Кристаллическая структура остаточных продуктов, так же как и дистиллятных, зависит от степени их очистки, но эта зависимость для первых выражена значительно более резко. Последнее обусловливается тем, что при очистке в значительно большей мере изменяется состав остаточных продуктов, чем дистиллятных. На фракционном составе и свойствах остаточных продуктов значительно сказывается деасфальтизация пропаном, поскольку при деасфальтизации компоненты разделяются не только по химической природе, но в значительной мере и по молекулярному весу. При этом наиболее высокомолекулярные компоненты переходят в остаток от деасфальтизации, т. е. в асфальт, вследствие чего деасфальтируемый продукт может освободиться от некоторой [c.33]
Н2С(00Я )—НС(ООН")—Н2С(ООК"0- в этой формуле символами R Я" и К " обозначаются углеродные цепи из 8—22 атомов насыщенного или ненасыщенного характера. В сырых продуктах находятся еще и другие соединения, но в небольших количествах, как-то свободные жирные кислоты, фосфатиды, стиролы, протеины, витамины, токоферол и др. В зависимости от назначения жиры и масла подвергаются соответствующей обработке, цель которой—разделение сырой смеси на разные группы соединений (насыщенных и ненасыщенных глицеридов), отвечающие по своим свойствам требованиям потребителей особенно ценной является фракция витаминов. Экстракция является одним из методов разделения, обеспечивающих наибольший выход и высшее качество продуктов по сравнению с другими методами, например химическими, что объясняет ее широкое применение. Растворителями служат преимущественно жидкости полярного строения нитропарафины, ЗОз, сульфоналы, фурфурол [139, 151, 153, 157], метанол с этанолом [144], пропан [148], ацетон [156], изопропанол с этанолом [141] идр. [154]. В промышленных установках применяются пропан и фур- [c.406]
Найдено, что одним из характерных свойств подобных сопряженных систем является их способность легко гидрироваться с размыканием цикла в условиях, в которых трехчленный цикл несопряженных алкилцикло-пропанов не изменяется специфическим катализатором такого гидрирования является Рс1-чернь. В присутствии этого катализатора винил- и изопропенилциклопропаны гладко гидрируются с присоединением 2 моль водорода, причем, как было показано опытами частичного гидрирования, водород присоединяется в первую очередь не по двойной связи, а по С— С-связи цикла, соседней с заместителем [c.109]
Типичная установка состоит из девяти смеситель-отстойников, образующих семь ступеней для экстракции растворителем селекто и две ступени для промывки остаточных продуктов пропаном. Процесс осуществляется при температуре от 25 до 75 и при даилении до 35 кГ/см . Смесь селекто, используемая для очистки остаточных продуктов, обычно содержит от 35 до 70% фенола. Типичные весовые соотношения Между обрабатываемым сырьем, селекто и пропаном составляют 1 2 3 и 1 3 4, хотя эти отношения могут в значительной степени меняться. В табл. 6 приведены данные, показывающие влияние увеличения каждой из переменных при постоянстве остальных переменных на свойства рафината. [c.197]Правильный отбор экспериментальных данных может значительно упростить процесс нахождения подходящего уравнения. Могут оказаться полезными вспомогательные опыты по определению адсорбционных свойств. Так, например, на палладиевом катализаторе водород вовсе не адсорбируется, пропан адсорбируется слабо, а пропилен—сильно знание этих данных позволяет значительно сузить выбор возможного механизма каталитического дегидрирования пропана. [c.226]
Деасфальтизация бензином (начало кипения 22—24 °С, конец кипения 62—65 °С) принципиально не отличается от деасфальтизации пропаном. Процесс включает те же стадии экстракционного разделения сырья и регенерации растворителя (рис. 21). Отличия в режиме обусловлены различиями свойств [c.42]
Пропан является предельным углеводородом нормального строения и имеет следующие-основные свойства. [c.212]
Растворы высокомолекулярных углеводородов в жидком пропане можно отнести к классу атермальных, поэтому перераспределение компонентов в системе до равновесного состояния связано с затратой свободной энергии. Таким образом энтропийная составляющая свободной энергии определяет свойства атермальных растворов, так как теплота смешения у атермальных растворов отсутствует. [c.220]
Существенное влияние на показатели процесса деасфальтизации гудронов с целью производства смазочных масел оказывает наличие в техническом пропане низко- и высокомолекулярных гомологов ряда метана (этана, бутана, пентана) и олефиновых углеводородов (пропилена, бутиленов). Обычно при деасфальтизации нефтяных остатков применяют пропан чистотой не менее 96%. При использовании пропана с повышенным содержанием этана, обладающего меньшими дисперсионными свойствами, роль дисперсионных сил пропана снижается. Это приводит к относительному увеличению межмолекулярного взаимодействия смол и углеводородов, в результате чего выход деасфальтизата снижается. Кроме того, присутствие этана в количествах, превышающих уста- [c.81]
При большей кратности пропан проявляет свойства, присущие растворителю селективной очистки. Его селективность и растворяющая способность антибатны. [c.204]
С ростом температуры экстракции пропан также во все большей степени проявляет свойства селективного растворителя, в результате при 90 °С и выше зависимость качества деасфальтизата от кратности пропан сырье приобретает монотонный характер, [c.204]
Только один индивидуальный жидкий углеводород — 9-к-бутилантрацен — яе полностью растворим в пропане при температуре, близкой к комнатной [17]. Выло исследовано шесть индивидуальных углеводородов со сложным циклическим строением. Они бы.ли получены по Проекту 42 Американского нефтяного института (синтез и свойства тяжелых углеводородов). За предоставление этих образцов в количестве 1 г каждого выражается благодарность проф. Р. В. Шисслеру из Пенсильванского государственного колледжа. [c.198]
Начиная с 1963 г. появился ряд сообщений о синтезе и свойствах ненасыщенных полиарилатов, содержащих при ароматических ядрах аллильные группы Такие полиарилаты были получены поликонденсацией дихлорангидридов дикарбоновых кислот с диал-лильным производным дифенилолпропана — 2,2-бис-(4 -окси-3 -ал-лилфенил)-пропаном — или со смесью этого диаллильного производного с фенолфталеином, дифенилолпропаном и другими двухатомными фенолами. Строение этих полиарилатов можно представить формулой [c.48]
Асфальто-смолпстые вещества очень плохо растворяются в пропане, а асфальтены практически не растворяются. При температурах обработки выше 40° С они начинают незначительно растворяться в пропане. Это свойство п позволяет применять пропан в качестве деасфальтирующего и обессмоливающего растворителя для очистки масляных фракций желательные углеводороды перехпттяд. в раствор, а нежелательные выделяются. Процесс деасфальтизации гудрона или полугудрона основан на различной растворяющей способности жидкого пропана по отношению к жидким углеводородам и асфальто-смолистым веществам. [c.212]
В работе [114] изучены свойства асфальтов, полученных деасфальтизацией пропаном гудронов из типичных отечественных нефтей (табл. 11). Как видно, при деасфальтизации в асфальте в целом концентрируются смолисто-асфальтеновые вещества, а масляная часть асфальта обогащается углеводородами ароматической структуры. Так, если соотношение ароматических и па-рафино-нафтеновых углеводородов в гудроне составляет менее 2,5 то в асфальте оно увеличивается до 5—8. В работе [104 сделаны такие же наблюдения, причем показано, что при утя. [c.83]
Арланская нефть интересна не как массовая товарная йефть, а как представитель группы высокосернистых высоко-емолпстых нефтей. Для битумов, полученных из 52—55%-го Гудрона этой нефти путем вакуумной перегонки, окисления воздухом и деасфальтизации пропаном, а также компаундирования гудрона с асфальтом, полученным деасфальтизацией гудрона бензином, на рис. 46 показан групповой состав, на рнс. 47— свойства [47, 119]. [c.86]
Описанные изменения состава и свойств битумов, полученных по разной технологии, иллюстрируются также данными табл. 19, из которых видно, что вакуумная перегонка, деасфальтизация пропаном и компаундирование переокисленного асфальта с остаточным экстрактом приводит к получению битумов, в масляной части которых содержание парафино-нафтеновых углеводородов меньше, чем у окисленных битумов. [c.107]
Фракции тяжелых нефтяных остатков, растворяющиеся в пропане, обогащены парафино-нафтеновыми и обеднены поли-циклическими ароматическими УВ по сравнению с исходными продуктами. Они содержат меньшее количество смол и сернистых соединений. Асфальтены в них отсутствуют 1или определяются в виде следов. Таким образом, пропан проявляет селективные свойства, которые могут быть использованы для разде- [c.41]
Селективные свойства надкритических углеводородных га зов были использованы для разделения тяжелых йефтяных остатков на углеводородную и асфальтово-смолистую части. Наиболее удобными газовыми растворителями с точки рения их технического использования являются пропан, пропилен и их смеси. Критические температуры этих газов невелики (96,8 й 91,7°С соответственно), а растворяющая способность по отно-щению к нефтяным остаткам значительна уже при 100— 120 кгс/см . Критические температуры бутанов и бутиленов значительно выще (152—147°С). [c.105]
Для экстракции нефти из нефтеносных пород использовалась также техническая пропан-пропиленовая фракция [Жузе Т. П., Сафронова Т. П., Раскина Р. С., 1961]. Объектами исследования являлись нефтесодержащие пески (керны из скважин шахтного поля) разных месторождений с содержанием нефти в них от 1 до 7%- Опыты проводились при температуре 100°С и Давлении 100—120 кгс/см2, а также при ряде ступенчато повышающихся давлений (от 50 до 120 кгс/см ) с целью проследить за выходом и свойствами фракций нефти, извлекаемых из пород при различных давлениях. (К более высокому давлению переходили тогда, когда количество нефти, извлекаемой на предыдущей ступени давления, резко сокращалось. Про- [c.106]
Если имеется необходимость, строят расчетную кривую КТР. По аддитивности свойств определяют качественную характеристику рафината и экстракта, а по материальному балансу последнего ряда очистки вычисляют нагрузку по жидкости на каждую секцию колонны с последующим расчетом диаметра К0.20нны либо объемной скорости. Как и в случае деасфальти-зации пропаном для расчета требуется несколько физико-хими- [c.250]
В качестве растворителей пользуются жидкостями, обладающими свойством избирательного растворения смол и асфальтов. Для выделения этих примесей применяются пропан или смеси других легких парафиновых углеводородов, например раствор бутана и метана. Эти жидкости вытесняют из сырого масла обе группы неже- [c.380]
Экстракция применяется при рафинировании древесной смолы [309], которая содержит 80—90% абиетиновой кислоты и ее изомеров с общей формулой С19Н29СООН, некоторое количество высших ароматических углеводородов и окисленных смол. Рафинирование смол производится фурфуролом, причем сырая смола растворяется в газолине до концентрации 15%. В качестве экстракционного аппарата пользуются колонной с перфорированными тарелками. (Например, размеры одной из работающих колонн следующие диаметр 1000 мм, высота 13 м, расстояние между тарелками 200 мм). Рафинат освобождается от газолина перегонкой с водяным паром. Рафинированные смолы светлого цвета, их свойства зависят от степени экстракции. Экстракт после удаления фурфурола применяется при производстве искусственных материалов в качестве эмульгатора. Запатентовано также рафинирование пропаном 1326]. [c.421]
Повышение температуры в области, близкой к критической температуре пропана, приводит к повышению содержания в де-асфальтизате парафино-нафтеновых и моноциклических ароматических углеводородов, улучшающих качество деасфальтизата (рис. 17). Но при этом снижается отбор от потенциала этих групп компонентов. Следовательно, для получения оптимального зыхода деасфальтизата с заданными свойствами необходимо создавать определеиную разность температур между верхом и низом колонны (температурный градиент деасфальтизации). Более высокая температура в верхней часта колонны определяет качество деасфальтизата, так как при этом пропан обладает наименьшей растворяющей способностью по отношению к подлежащим удалению смолисто-асфальтеновым веществам. Постепенное равномерное снижение температуры по высоте колонны позволяет наиболее полно отделить не только плохо растворимые в пропане высокомолекулярные смолы, но и смолы молекулярной массы 700—800 от ценных высокомолекулярных углеводородов, которые при пониженных температурах лучше растворяются в пропане, чем смолисто-асфальтеновые вещества, т. е. создание температурного Г1радиента повышает селективность процесса. Температура низа колонны обеспечивает требуемый отбор деасфальтизата. [c.75]
При небольшой кратности пропана концентрация углеводородов в нем высока в силу того, что низкомолекуляриые компоненты, растворяясь в пропане, повышают дисперсионные свойства последнего и тем самым способствуют растварению в пропане более высокомолекулярных компонентов и части смол, которые не растворяются в чистом пропане при данной температуре. При увеличении расхода пропана концентрация раство ренных компонентов уменьшается и ослабевают силы взаимного притяжения молекул углеводородов, что приводит к выделению из раствора наиболее высокомолекулярной части сырья. Выход деаофальтиза- [c.78]
Общеизвестно (например, [983]), что выход, состав и свойства смол и асфальтенов в большой степени зависят от способа их выделения, природы растворителей, использованных при осаждении асфальтенов или адсорбционном отделении смол от углеводородов, и других экспериментальных факторов. Несмотря на это, методы выделения, фракционирования и количественного анализа ВМС, реализованные в различных работах, не только не унифицированы, но неоправданно разнообразны. Так, для выделения асфальтенов, наряду с наиболее употребительными осадителями из числа н. алканов С5—0 2 [1,984—987], применялись легкий бензин [988—990], пропан [991—994], пропан-ироииленовая фракция [995], ацетон [996], метилэтилкетон [73] и другие органические растворители. В ряде работ [94, 997] асфальтены осаждались в форме их комплексов с солями различных металлов. [c.182]
Труба размером 25 X 2 мм. Среда — пропан на линии насыщения. Массовая скорость потока аир = 262,5 кг/(м с).. Чассовая доля газа в потоке х составляет 0,05 0,25 0,50 и 0,75. Физические свойства газа и жидкости при [c.95]
Фирмами Керр-Макги , Луммус , ФИН-БАСФ, ЮОП разработан ряд процессов деасфальтизации, в которых в качестве растворителя наряду с. пропаном используют бутаны, пентаны и их смеси. В зависимости от природы сырья и растворителя, кратности растворителя и других условий выход и свойства деасфальтпзатов могут меняться в широких пределах (табл. V. 17). Поскольку процесс проводят в жидкой фазе, максимальный выход деасфальтизата практически ограничивается возможностью существования асфальтита в жидком состоянии при температуре процесса, причем температура его размягчения возрастает с увеличением выхода деасфальтизата. [c.128]
Основные требования, предъявляемые к хладагентам установок опреснения с аппаратами прямого контакта, следуюи1ие минимальная взаимная растворимость хладагента и воды хорошее расслаивание жидкого хладагента и воды инертность и химическая стабильность при температуре контакта доступность и низкая стоимость. Указанными свойствами обладают хладагенты-углево-дороды бутаны и пропан. [c.10]
Природный газ отличается от других видов топлива простотой и эффективностью сжатия, чистотой продуктов сгорания. При работе двигателя на сжатом природном газе (СПГ) межремонтный пробег в два раза выше, чем на бензине, и существенно меньше расход масла. Недостатком СПГ является необходимость использования специальных толстостенных баллонов. Сжиженные нефтяные газы (СНГ), содержащие преимущественно пропан и бутан, в качестве автомобильных топлив имеют ряд преимуществ перед сжатыми газами и поэтому в настоящее время находят более широкое применение, СНГ - качественное углеводородное топливо, с высокими антидетонационными свойствами [04 (И.М.) около ПО], широкими пределами воспламенения, хорошо перемешивается с воздухом и практически полностью сгорает в цилиндрах. В результате автомобийь на СНГ имеет в 4-5 раз меньшую токсичность в сравнении с бензиновым. При работе на СНГ полностью исключается конденсация паров топлива в цилиндрах двигателя, в результате не происходит сжижения картерной смазки. Образование нагара крайне незначительно. К недостаткам СНГ следует отнести высокую их летучесть и большую взрывоопасность. [c.214]
В табл. 25 приведены также свойства обогащенного газа, полученного в результате смешения газа, выходящего из реактора КОГ , с пропаном (см. п. 3). В этом случае теплота сгорания повышается до требуемого уровня, но полной вааимозаменяе- [c.105]
chem21.info
Физические свойства газов
Важнейшими физическими свойствами газов являются молярная масса, плотность, вязкость и влажность. От свойств простых горючих и балластных газов, входящих в состав газового топлива, зависят его теплофизические свойства.
Молярная масса М, кг/кмоль — это отношение массы вещества к его количеству. Молярная масса некоторых простых газов дана в табл. 5
Плотность р, кг/м3 — это масса газа, приходящаяся на 1 м3 занимаемого им объема.
Вязкость — это способность газа оказывать сопротивление взаимному перемещению частиц.
В технических расчетах чаще применяют производную величину — коэффициент кинематической вязкости, м2/с:
υ = μ/ρ
Вязкость может быть определена лишь в условиях ламинарного течения газа. В условиях турбулентного движения вязкость перестает быть физической константой. В этом случае вместо вязкого сопротивления оперируют понятиями о турбулентном сопротивлении, турбулентной вязкости.
Таблица5.3
Значение коэффициентов вязкости некоторых газов при температуре 00С и давлении 101,3 кПа
Газ | Коэффициент динамической вязкости μ, Па•с•10-6 | Коэффициент кинематической вязкости υ, (м2/с)•10-6 | Коэффициент С в формуле Сутсрленда |
Водород | 8,35 | 93,8 | 83 |
Оксид углерода | 16,93 | 13,55 | 102 |
Метан | 10,55 | 14,71 | 198 |
Этан | 8,77 | 6,45 | 287 |
Пропан | 7,65 | 3,82 | 324 |
Бутан | 6,97 | 2,55 | 349 |
Пропилен | 7,82 | 4,11 | 322 |
Бутилен | 7,78 | 3,12 | 329 |
Диоксид углерода | 14,09 | 7,10 | 255 |
Кислород | 19,58 | 13,73 | 138 |
Азот | 16,93 | 13,55 | 107 |
Атмосферный воздух | 17,53 | 13,56 | 122 |
Сероводород | 11,82 | 7,68 | 331 |
Водяной пар при температуре 1000С | 8,7 | 14,80 | 673 |
Влажностью называется содержание в газе водяного пара.
Насыщение водяными парами газа может быть только до определенного предела, который зависит от температуры и давления. Температура, при которой газ, находящийся под определенным давлением, насыщен до предела водяными парами, называется точкой росы. Охлаждение от этой точки приводит к конденсации водяных паров.
Различают абсолютную, удельную и относительную влажность газа.
Абсолютной влажностью (влагосодержанием) газа называется количество или масса водяных паров, содержащихся в единице объема газа. Единица измерения абсолютной влажности — г/м3.
Удельной влажностью газа называется количество или масса водяного пара, приходящаяся на единицу массы влажного газа. Единица измерения удельной влажности — г/кг.
Относительной влажностью газа (степенью насыщения газа водяными парами) называется отношение абсолютной влажности газа к максимально возможной при заданных температуре и давлении. Относительную влажность газа φ выражают в процентах и определяют как отношение парциального давления содержащегося в газе водяного пара р к давлению насыщенного водяного пара Р при той же температуре:
φ = р/Р
Насыщенные пары углеводородных газов при данных температуре и давлении находятся в точке росы. При постоянном давлении и уменьшении температуры часть паров конденсируется. Изменение давления при постоянной температуре приводит к смещению равновесия точки росы, но состояние насыщенности паров сохраняется.
Точка росы имеет важное значение в двухфазных системах (пример таких систем — сжиженные газы, представляющие собой пропан-бутановые смеси). Для предотвращения конденсатообразования при естественном испарении в различных климатических зонах и в различные периоды года необходимо применять сжиженные газы с различным соотношением пропана и бутана.
Точки росы для пропан-бутановой смеси при давлении 3 кПа приведены в табл. 5.4.
Точка росы для углеводородных газов, представляющих собой смеси простых газов, зависит от их состава и давления. В точке росы должно выполняться соотношение:
l/P = Σ Xi / Pi
где Р — общее давление смеси; и Рi — соответственно мольная доля и парциальное давление i-го компонента газовой смеси.
Таблица 5.4
Точки росы для смесей пропана и н-бутана при давлении 3 кПа
Пропан, % | 100 | 90 | 80 | 70 | 60 | 50 | 40 | 30 | 20 | 10 | 0 |
н-бутан, % | 0 | 10 | 20 | 30 | 40 | 50 | 60 | 70 | 80 | 90 | 100 |
Точка росы, °С | -42 | -32 | -26 | -2 | -17 | -13 | -10 | -8 | -5 | -2 | 0 |
Точку росы из-за сложности ее расчета обычно определяют по специальным номограммам. Номограммы имеют вид треугольника, на каждой стороне которого отложено содержание того или иного газа. В качестве примера на рис. 1 приведена номограмма для определения точки росы смеси пропана, изобутана и н-бутана при атмосферном давлении. Для смеси, состоящей из 25 % пропана, 60 % н-бутана и 15 % изобутана находят точку пересечения:
Рис.5.1 Номограмма для определения точки росы смеси пропана, изобутана и н-бутана при атмосферном давлении.
Из этой точки опускают перпендикуляр на шкалу температур и находят точку росы данной смеси (-7,6 °С).
Для определения точки росы можно использовать также специально разработанные графики зависимости точки росы различных смесей от давления и объемной доли компонентов, которые приводятся в справочной литературе.
При относительной влажности φ > 0,6 углеводороды с водой образуют кристаллогидраты, представляющие собой белые кристаллические тела, похожие на снег или лед. Они приводят к закупорке газопроводов, клапанов регуляторов давления, запорной арматуры. Метан с водой образует гидрат СН4•8Н2О, этан СН4•Н2О.
Гидраты появляются при температуре, значительно превышающей температуру образования льда. Максимальная температура, выше которой ни при каком повышении давления нельзя вызвать гидратообразование газов, называется критической температурой гидрообразования. Для метана она составляет 21,5 °С, этана — 14,5 °С, пропана — 5,5 °С.
Таблица 5.5
Условия образования гидратов
Этан | Пропан | ||
Температура, °С | Давление, МПа | Температура, °С | Давление, МПа |
-9,5 | 0,32 | -11,9 | 0,1 |
-6,7 | 0,36 | -9 | 0,12 |
-3,9 | 0,41 | -6,3 | 0,13 |
-1,1 | 0,46 | -5,6 | 0,14 |
0,6 | 0,51 | -3,3 | 0,16 |
1,7 | 0,58 | -1,0 | 0,17 |
10,8 | 1,7 | 1,7 | 0,24 |
13 | 2,7 | 2,3 | 0,27 |
14,5 | 3,4 | 3,3 | 0,34 |
— | — | 4,4 | 0,41 |
— | — | 5,5 | 0,48 |
Чем тяжелее углеводородный газ, тем скорее он образует гидрат при наличии влаги.
Для предотвращения образования кристаллогидратов необходимо снижать влажность газов до φ < 0,6 при самой низкой расчетной температуре в газопроводе.
Образовавшиеся гидраты можно разложить подогревом газа, снижением его давления и вводом веществ, уменьшающих упругость водяных паров и понижающих точку росы газа. Одним из таких веществ является метанол (метиловый спирт), который надо вводить в количестве 0,26 кг на 1000 кг газа.
studfiles.net
это экологическое топливо. Его физические и химические свойства
С точки зрения химии, пропан - это предельный углеводород, обладающий типичными свойствами алканов. Однако в некоторых областях производства под пропаном понимают смесь двух веществ - пропана и бутана. Далее мы постараемся разобраться, что такое пропан, и зачем его смешивают с бутаном.
Строение молекулы
Каждая молекула пропана состоит из трех атомов углерода, связанных друг с другом простыми одинарными связями, и восьми атомов водорода. Он имеет молекулярную формулу С3Н8. Связи С-С в пропане являются ковалентными неполярными, а вот в паре С-Н углерод немного более электроотрицателен и слегка оттягивает на себя общую электронную пару, а значит, связь ковалентная полярная. Молекула имеет зигзагообразное строение из-за того, что атомы углерода находятся в состоянии sp3-гибридизации. Но, как правило, говорят, что молекула линейная.
В составе молекулы бутана четыре атома углерода С4Н10, и он имеет два изомера: н-бутан (имеет линейное строение) и изобутан (имеет разветвленное строение). Зачастую, они не разделяются после получения, а существуют в виде смеси.
Физические свойства
Пропан - это газ без цвета и какого-либо запаха. В воде растворяется очень плохо, зато хорошо в хлороформе и простом диэтиловом эфире. Плавится при температуре tпл = -188 °С, а закипает при tкип = -42 °С. Взрывоопасным становится при достижении его концентрации в воздухе выше 2%.
Физические свойства пропана и бутана очень близки. Оба бутана также имеют газообразное состояние при нормальных условиях и не имеют запаха. Практически не растворяются в воде, но хорошо взаимодействуют с органическими растворителями.
В промышленности также имеют важное значение следующие характеристики этих углеводородов:
- Плотность (отношение массы к объему тела). Плотность жидких пропан-бутановых смесей во многом определяется составом углеводородов и температурой. С ростом температуры происходит объемное расширение, и плотность жидкости уменьшается. С ростом давления объем жидкости пропана и бутана сжимается.
- Вязкость (способность веществ в газообразном или жидком состоянии сопротивляться сдвигающим усилиям). Определяется силами сцепления молекул в веществах. Вязкость жидкой смеси пропана с бутаном зависит от температуры (с ее ростом вязкость уменьшается), а вот изменение давления на эту характеристику влияет незначительно. Газы же с ростом температуры увеличивают свою вязкость.
Нахождение в природе и методы получения
Основные природные источники пропана - это нефтяные и газовые месторождения. Он содержится в природном газе (от 0,1 до 11,0%) и в попутных нефтяных газах. Довольно много бутана получают в процессе ректификации нефти - разделении ее на фракции, основываясь на температурах кипения ее компонентов. Из химических способов переработки нефти наибольшее значение имеет каталитический крекинг, в процессе которого происходит разрыв цепи высокомолекулярных алканов. При этом пропана образуется порядка 16-20% от всех газообразных продуктов этого процесса:
СΗ3-СΗ2-СΗ2-СΗ2-СΗ2-СΗ2-СΗ2-СΗ3 ―> СΗ3-СΗ2-СΗ3 + СΗ2=СΗ-СΗ2-СΗ2-СΗ3
Большие количества пропана образуются при гидрогенизации разных видов угля и каменноугольной смолы, они достигают 80% от объема всех образующихся газов.
Также широко распространено получение пропана по методу Фишера-Тропша, который основан на взаимодействии СО и Н2 в присутствии различных катализаторов при повышенных температуре и давлении:
nCO + (2n + 1)Η2 ―> CnΗ2n+2 + nΗ2O
3CO + 7Η2 ―> C3Η8 + 3Η2O
Промышленные объемы бутана также выделяют при нефтегазовой переработке физическими и химическими методами.
Химические свойства
От особенностей строения молекул зависят физические и химические свойства пропана и бутана. Поскольку они являются насыщенными соединениями, для них не характерны реакции присоединения.
1. Реакции замещения. Под действием ультрафиолета легко происходит замещение водорода на атомы хлора:
СН3-СН2-СН3 + Cl2 ―> СН3-СН (Cl)-СН3 + HCl
При нагревании с раствором азотной кислоты, происходит замена атома Н на группу NO2:
СΗ3-СΗ2-СΗ3 + ΗNO3 ―> СΗ3-СΗ (NO2)-СΗ3 + h3О
2. Реакции отщепления. При нагревании в присутствии никеля или палладия происходит отщепление двух атомов водорода с образованием в молекуле кратной связи:
СΗ3-СΗ2-СΗ3 ―> СΗ3-СΗ=СΗ2 + Η2
3. Реакции разложения. При нагревании вещества до температуры порядка 1000 °С происходит процесс пиролиза, который сопровождается разрывом всех имеющихся в молекуле химических связей:
С3Н8 ―> 3С + 4h3
4. Реакции горения. Эти углеводороды горят не коптящим пламенем с выделением большого количества теплоты. Что такое пропан знают многие хозяйки, которые пользуются газовыми плитами. В ходе реакции образуются углекислый газ и парообразная вода:
С3Н8 + 5O2―> 3СО2 + 4h3О
Сгорание пропана в условиях недостатка кислорода приводит к появлению сажи и образованию молекул угарного газа:
2С3Н8 + 7O2―> 6СО + 8h3О
С3Н8 + 2O2―> 3С + 4h3О
Применение
Пропан активно применяется как топливо, поскольку при его горении выделяется 2202 кДж/моль теплоты, это очень высокий показатель. В процессе окисления из пропана получают многие вещества, необходимые для химического синтеза, например, спирты, ацетон, карбоновые кислоты. Он необходим для получения нитропропанов, используемых, как растворители.
В качестве пропеллента применяется в пищевой сфере, имеет код E944. В смеси с изобутаном используется в качестве современного хладагента, не наносящего вред окружающей среде.
Пропан-бутановая смесь
Она имеет много преимуществ перед другими видами топлива, в том числе природным газом:
- высокий КПД;
- легкий возврат к газообразному состоянию;
- хорошие испарение и сжигание при окружающей температуре.
Пропан в полной мере отвечает этим качествам, а вот бутаны несколько хуже испаряются при понижении температуры до -40°С. Исправить этот недостаток помогают добавки, лучшая из которых - это пропан.
Пропан-бутановую смесь применяют для отопления и приготовления пищи, при газовой сварке металлов и их резке, как топливо для транспортных средств и для химического синтеза.
загрузка...
twofb.ru
это экологическое топливо. Его физические и химические свойства
С точки зрения химии, пропан - это предельный углеводород, обладающий типичными свойствами алканов. Однако в некоторых областях производства под пропаном понимают смесь двух веществ - пропана и бутана. Далее мы постараемся разобраться, что такое пропан, и зачем его смешивают с бутаном.
Строение молекулы
Каждая молекула пропана состоит из трех атомов углерода, связанных друг с другом простыми одинарными связями, и восьми атомов водорода. Он имеет молекулярную формулу С3Н8. Связи С-С в пропане являются ковалентными неполярными, а вот в паре С-Н углерод немного более электроотрицателен и слегка оттягивает на себя общую электронную пару, а значит, связь ковалентная полярная. Молекула имеет зигзагообразное строение из-за того, что атомы углерода находятся в состоянии sp3-гибридизации. Но, как правило, говорят, что молекула линейная.
В составе молекулы бутана четыре атома углерода С4Н10, и он имеет два изомера: н-бутан (имеет линейное строение) и изобутан (имеет разветвленное строение). Зачастую, они не разделяются после получения, а существуют в виде смеси.
Физические свойства
Пропан - это газ без цвета и какого-либо запаха. В воде растворяется очень плохо, зато хорошо в хлороформе и простом диэтиловом эфире. Плавится при температуре tпл = -188 °С, а закипает при tкип = -42 °С. Взрывоопасным становится при достижении его концентрации в воздухе выше 2%.
Физические свойства пропана и бутана очень близки. Оба бутана также имеют газообразное состояние при нормальных условиях и не имеют запаха. Практически не растворяются в воде, но хорошо взаимодействуют с органическими растворителями.
В промышленности также имеют важное значение следующие характеристики этих углеводородов:
- Плотность (отношение массы к объему тела). Плотность жидких пропан-бутановых смесей во многом определяется составом углеводородов и температурой. С ростом температуры происходит объемное расширение, и плотность жидкости уменьшается. С ростом давления объем жидкости пропана и бутана сжимается.
- Вязкость (способность веществ в газообразном или жидком состоянии сопротивляться сдвигающим усилиям). Определяется силами сцепления молекул в веществах. Вязкость жидкой смеси пропана с бутаном зависит от температуры (с ее ростом вязкость уменьшается), а вот изменение давления на эту характеристику влияет незначительно. Газы же с ростом температуры увеличивают свою вязкость.
Нахождение в природе и методы получения
Основные природные источники пропана - это нефтяные и газовые месторождения. Он содержится в природном газе (от 0,1 до 11,0%) и в попутных нефтяных газах. Довольно много бутана получают в процессе ректификации нефти - разделении ее на фракции, основываясь на температурах кипения ее компонентов. Из химических способов переработки нефти наибольшее значение имеет каталитический крекинг, в процессе которого происходит разрыв цепи высокомолекулярных алканов. При этом пропана образуется порядка 16-20% от всех газообразных продуктов этого процесса:
СΗ3-СΗ2-СΗ2-СΗ2-СΗ2-СΗ2-СΗ2-СΗ3 ―> СΗ3-СΗ2-СΗ3 + СΗ2=СΗ-СΗ2-СΗ2-СΗ3
Большие количества пропана образуются при гидрогенизации разных видов угля и каменноугольной смолы, они достигают 80% от объема всех образующихся газов.
Также широко распространено получение пропана по методу Фишера-Тропша, который основан на взаимодействии СО и Н2 в присутствии различных катализаторов при повышенных температуре и давлении:
nCO + (2n + 1)Η2 ―> CnΗ2n+2 + nΗ2O
3CO + 7Η2 ―> C3Η8 + 3Η2O
Промышленные объемы бутана также выделяют при нефтегазовой переработке физическими и химическими методами.
Химические свойства
От особенностей строения молекул зависят физические и химические свойства пропана и бутана. Поскольку они являются насыщенными соединениями, для них не характерны реакции присоединения.
1. Реакции замещения. Под действием ультрафиолета легко происходит замещение водорода на атомы хлора:
СН3-СН2-СН3 + Cl2 ―> СН3-СН (Cl)-СН3 + HCl
При нагревании с раствором азотной кислоты, происходит замена атома Н на группу NO2:
СΗ3-СΗ2-СΗ3 + ΗNO3 ―> СΗ3-СΗ (NO2)-СΗ3 + h3О
2. Реакции отщепления. При нагревании в присутствии никеля или палладия происходит отщепление двух атомов водорода с образованием в молекуле кратной связи:
СΗ3-СΗ2-СΗ3 ―> СΗ3-СΗ=СΗ2 + Η2
3. Реакции разложения. При нагревании вещества до температуры порядка 1000 °С происходит процесс пиролиза, который сопровождается разрывом всех имеющихся в молекуле химических связей:
С3Н8 ―> 3С + 4h3
4. Реакции горения. Эти углеводороды горят не коптящим пламенем с выделением большого количества теплоты. Что такое пропан знают многие хозяйки, которые пользуются газовыми плитами. В ходе реакции образуются углекислый газ и парообразная вода:
С3Н8 + 5O2―> 3СО2 + 4h3О
Сгорание пропана в условиях недостатка кислорода приводит к появлению сажи и образованию молекул угарного газа:
2С3Н8 + 7O2―> 6СО + 8h3О
С3Н8 + 2O2―> 3С + 4h3О
Применение
Пропан активно применяется как топливо, поскольку при его горении выделяется 2202 кДж/моль теплоты, это очень высокий показатель. В процессе окисления из пропана получают многие вещества, необходимые для химического синтеза, например, спирты, ацетон, карбоновые кислоты. Он необходим для получения нитропропанов, используемых, как растворители.
В качестве пропеллента применяется в пищевой сфере, имеет код E944. В смеси с изобутаном используется в качестве современного хладагента, не наносящего вред окружающей среде.
Пропан-бутановая смесь
Она имеет много преимуществ перед другими видами топлива, в том числе природным газом:
- высокий КПД;
- легкий возврат к газообразному состоянию;
- хорошие испарение и сжигание при окружающей температуре.
Пропан в полной мере отвечает этим качествам, а вот бутаны несколько хуже испаряются при понижении температуры до -40°С. Исправить этот недостаток помогают добавки, лучшая из которых - это пропан.
Пропан-бутановую смесь применяют для отопления и приготовления пищи, при газовой сварке металлов и их резке, как топливо для транспортных средств и для химического синтеза.
загрузка...
skv-tv.ru
это экологическое топливо. Его физические и химические свойства
С точки зрения химии, пропан - это предельный углеводород, обладающий типичными свойствами алканов. Однако в некоторых областях производства под пропаном понимают смесь двух веществ - пропана и бутана. Далее мы постараемся разобраться, что такое пропан, и зачем его смешивают с бутаном.
Строение молекулы
Каждая молекула пропана состоит из трех атомов углерода, связанных друг с другом простыми одинарными связями, и восьми атомов водорода. Он имеет молекулярную формулу С3Н8. Связи С-С в пропане являются ковалентными неполярными, а вот в паре С-Н углерод немного более электроотрицателен и слегка оттягивает на себя общую электронную пару, а значит, связь ковалентная полярная. Молекула имеет зигзагообразное строение из-за того, что атомы углерода находятся в состоянии sp3-гибридизации. Но, как правило, говорят, что молекула линейная.
В составе молекулы бутана четыре атома углерода С4Н10, и он имеет два изомера: н-бутан (имеет линейное строение) и изобутан (имеет разветвленное строение). Зачастую, они не разделяются после получения, а существуют в виде смеси.
Физические свойства
Пропан - это газ без цвета и какого-либо запаха. В воде растворяется очень плохо, зато хорошо в хлороформе и простом диэтиловом эфире. Плавится при температуре tпл = -188 °С, а закипает при tкип = -42 °С. Взрывоопасным становится при достижении его концентрации в воздухе выше 2%.
Физические свойства пропана и бутана очень близки. Оба бутана также имеют газообразное состояние при нормальных условиях и не имеют запаха. Практически не растворяются в воде, но хорошо взаимодействуют с органическими растворителями.
В промышленности также имеют важное значение следующие характеристики этих углеводородов:
- Плотность (отношение массы к объему тела). Плотность жидких пропан-бутановых смесей во многом определяется составом углеводородов и температурой. С ростом температуры происходит объемное расширение, и плотность жидкости уменьшается. С ростом давления объем жидкости пропана и бутана сжимается.
- Вязкость (способность веществ в газообразном или жидком состоянии сопротивляться сдвигающим усилиям). Определяется силами сцепления молекул в веществах. Вязкость жидкой смеси пропана с бутаном зависит от температуры (с ее ростом вязкость уменьшается), а вот изменение давления на эту характеристику влияет незначительно. Газы же с ростом температуры увеличивают свою вязкость.
Нахождение в природе и методы получения
Основные природные источники пропана - это нефтяные и газовые месторождения. Он содержится в природном газе (от 0,1 до 11,0%) и в попутных нефтяных газах. Довольно много бутана получают в процессе ректификации нефти - разделении ее на фракции, основываясь на температурах кипения ее компонентов. Из химических способов переработки нефти наибольшее значение имеет каталитический крекинг, в процессе которого происходит разрыв цепи высокомолекулярных алканов. При этом пропана образуется порядка 16-20% от всех газообразных продуктов этого процесса:
СΗ3-СΗ2-СΗ2-СΗ2-СΗ2-СΗ2-СΗ2-СΗ3 ―> СΗ3-СΗ2-СΗ3 + СΗ2=СΗ-СΗ2-СΗ2-СΗ3
Большие количества пропана образуются при гидрогенизации разных видов угля и каменноугольной смолы, они достигают 80% от объема всех образующихся газов.
Также широко распространено получение пропана по методу Фишера-Тропша, который основан на взаимодействии СО и Н2 в присутствии различных катализаторов при повышенных температуре и давлении:
nCO + (2n + 1)Η2 ―> CnΗ2n+2 + nΗ2O
3CO + 7Η2 ―> C3Η8 + 3Η2O
Промышленные объемы бутана также выделяют при нефтегазовой переработке физическими и химическими методами.
Химические свойства
От особенностей строения молекул зависят физические и химические свойства пропана и бутана. Поскольку они являются насыщенными соединениями, для них не характерны реакции присоединения.
1. Реакции замещения. Под действием ультрафиолета легко происходит замещение водорода на атомы хлора:
СН3-СН2-СН3 + Cl2 ―> СН3-СН (Cl)-СН3 + HCl
При нагревании с раствором азотной кислоты, происходит замена атома Н на группу NO2:
СΗ3-СΗ2-СΗ3 + ΗNO3 ―> СΗ3-СΗ (NO2)-СΗ3 + h3О
2. Реакции отщепления. При нагревании в присутствии никеля или палладия происходит отщепление двух атомов водорода с образованием в молекуле кратной связи:
СΗ3-СΗ2-СΗ3 ―> СΗ3-СΗ=СΗ2 + Η2
3. Реакции разложения. При нагревании вещества до температуры порядка 1000 °С происходит процесс пиролиза, который сопровождается разрывом всех имеющихся в молекуле химических связей:
С3Н8 ―> 3С + 4h3
4. Реакции горения. Эти углеводороды горят не коптящим пламенем с выделением большого количества теплоты. Что такое пропан знают многие хозяйки, которые пользуются газовыми плитами. В ходе реакции образуются углекислый газ и парообразная вода:
С3Н8 + 5O2―> 3СО2 + 4h3О
Сгорание пропана в условиях недостатка кислорода приводит к появлению сажи и образованию молекул угарного газа:
2С3Н8 + 7O2―> 6СО + 8h3О
С3Н8 + 2O2―> 3С + 4h3О
Применение
Пропан активно применяется как топливо, поскольку при его горении выделяется 2202 кДж/моль теплоты, это очень высокий показатель. В процессе окисления из пропана получают многие вещества, необходимые для химического синтеза, например, спирты, ацетон, карбоновые кислоты. Он необходим для получения нитропропанов, используемых, как растворители.
В качестве пропеллента применяется в пищевой сфере, имеет код E944. В смеси с изобутаном используется в качестве современного хладагента, не наносящего вред окружающей среде.
Пропан-бутановая смесь
Она имеет много преимуществ перед другими видами топлива, в том числе природным газом:
- высокий КПД;
- легкий возврат к газообразному состоянию;
- хорошие испарение и сжигание при окружающей температуре.
Пропан в полной мере отвечает этим качествам, а вот бутаны несколько хуже испаряются при понижении температуры до -40°С. Исправить этот недостаток помогают добавки, лучшая из которых - это пропан.
Пропан-бутановую смесь применяют для отопления и приготовления пищи, при газовой сварке металлов и их резке, как топливо для транспортных средств и для химического синтеза.
загрузка...
utyugok.ru
это экологическое топливо. Его физические и химические свойства
С точки зрения химии, пропан - это предельный углеводород, обладающий типичными свойствами алканов. Однако в некоторых областях производства под пропаном понимают смесь двух веществ - пропана и бутана. Далее мы постараемся разобраться, что такое пропан, и зачем его смешивают с бутаном.
Строение молекулы
Каждая молекула пропана состоит из трех атомов углерода, связанных друг с другом простыми одинарными связями, и восьми атомов водорода. Он имеет молекулярную формулу С3Н8. Связи С-С в пропане являются ковалентными неполярными, а вот в паре С-Н углерод немного более электроотрицателен и слегка оттягивает на себя общую электронную пару, а значит, связь ковалентная полярная. Молекула имеет зигзагообразное строение из-за того, что атомы углерода находятся в состоянии sp3-гибридизации. Но, как правило, говорят, что молекула линейная.
В составе молекулы бутана четыре атома углерода С4Н10, и он имеет два изомера: н-бутан (имеет линейное строение) и изобутан (имеет разветвленное строение). Зачастую, они не разделяются после получения, а существуют в виде смеси.
Физические свойства
Пропан - это газ без цвета и какого-либо запаха. В воде растворяется очень плохо, зато хорошо в хлороформе и простом диэтиловом эфире. Плавится при температуре tпл = -188 °С, а закипает при tкип = -42 °С. Взрывоопасным становится при достижении его концентрации в воздухе выше 2%.
Физические свойства пропана и бутана очень близки. Оба бутана также имеют газообразное состояние при нормальных условиях и не имеют запаха. Практически не растворяются в воде, но хорошо взаимодействуют с органическими растворителями.
В промышленности также имеют важное значение следующие характеристики этих углеводородов:
- Плотность (отношение массы к объему тела). Плотность жидких пропан-бутановых смесей во многом определяется составом углеводородов и температурой. С ростом температуры происходит объемное расширение, и плотность жидкости уменьшается. С ростом давления объем жидкости пропана и бутана сжимается.
- Вязкость (способность веществ в газообразном или жидком состоянии сопротивляться сдвигающим усилиям). Определяется силами сцепления молекул в веществах. Вязкость жидкой смеси пропана с бутаном зависит от температуры (с ее ростом вязкость уменьшается), а вот изменение давления на эту характеристику влияет незначительно. Газы же с ростом температуры увеличивают свою вязкость.
Нахождение в природе и методы получения
Основные природные источники пропана - это нефтяные и газовые месторождения. Он содержится в природном газе (от 0,1 до 11,0%) и в попутных нефтяных газах. Довольно много бутана получают в процессе ректификации нефти - разделении ее на фракции, основываясь на температурах кипения ее компонентов. Из химических способов переработки нефти наибольшее значение имеет каталитический крекинг, в процессе которого происходит разрыв цепи высокомолекулярных алканов. При этом пропана образуется порядка 16-20% от всех газообразных продуктов этого процесса:
СΗ3-СΗ2-СΗ2-СΗ2-СΗ2-СΗ2-СΗ2-СΗ3 ―> СΗ3-СΗ2-СΗ3 + СΗ2=СΗ-СΗ2-СΗ2-СΗ3
Большие количества пропана образуются при гидрогенизации разных видов угля и каменноугольной смолы, они достигают 80% от объема всех образующихся газов.
Также широко распространено получение пропана по методу Фишера-Тропша, который основан на взаимодействии СО и Н2 в присутствии различных катализаторов при повышенных температуре и давлении:
nCO + (2n + 1)Η2 ―> CnΗ2n+2 + nΗ2O
3CO + 7Η2 ―> C3Η8 + 3Η2O
Промышленные объемы бутана также выделяют при нефтегазовой переработке физическими и химическими методами.
Химические свойства
От особенностей строения молекул зависят физические и химические свойства пропана и бутана. Поскольку они являются насыщенными соединениями, для них не характерны реакции присоединения.
1. Реакции замещения. Под действием ультрафиолета легко происходит замещение водорода на атомы хлора:
СН3-СН2-СН3 + Cl2 ―> СН3-СН (Cl)-СН3 + HCl
При нагревании с раствором азотной кислоты, происходит замена атома Н на группу NO2:
СΗ3-СΗ2-СΗ3 + ΗNO3 ―> СΗ3-СΗ (NO2)-СΗ3 + h3О
2. Реакции отщепления. При нагревании в присутствии никеля или палладия происходит отщепление двух атомов водорода с образованием в молекуле кратной связи:
СΗ3-СΗ2-СΗ3 ―> СΗ3-СΗ=СΗ2 + Η2
3. Реакции разложения. При нагревании вещества до температуры порядка 1000 °С происходит процесс пиролиза, который сопровождается разрывом всех имеющихся в молекуле химических связей:
С3Н8 ―> 3С + 4h3
4. Реакции горения. Эти углеводороды горят не коптящим пламенем с выделением большого количества теплоты. Что такое пропан знают многие хозяйки, которые пользуются газовыми плитами. В ходе реакции образуются углекислый газ и парообразная вода:
С3Н8 + 5O2―> 3СО2 + 4h3О
Сгорание пропана в условиях недостатка кислорода приводит к появлению сажи и образованию молекул угарного газа:
2С3Н8 + 7O2―> 6СО + 8h3О
С3Н8 + 2O2―> 3С + 4h3О
Применение
Пропан активно применяется как топливо, поскольку при его горении выделяется 2202 кДж/моль теплоты, это очень высокий показатель. В процессе окисления из пропана получают многие вещества, необходимые для химического синтеза, например, спирты, ацетон, карбоновые кислоты. Он необходим для получения нитропропанов, используемых, как растворители.
В качестве пропеллента применяется в пищевой сфере, имеет код E944. В смеси с изобутаном используется в качестве современного хладагента, не наносящего вред окружающей среде.
Пропан-бутановая смесь
Она имеет много преимуществ перед другими видами топлива, в том числе природным газом:
- высокий КПД;
- легкий возврат к газообразному состоянию;
- хорошие испарение и сжигание при окружающей температуре.
Пропан в полной мере отвечает этим качествам, а вот бутаны несколько хуже испаряются при понижении температуры до -40°С. Исправить этот недостаток помогают добавки, лучшая из которых - это пропан.
Пропан-бутановую смесь применяют для отопления и приготовления пищи, при газовой сварке металлов и их резке, как топливо для транспортных средств и для химического синтеза.
загрузка...
buk-journal.ru
Пропан - Википедия
Материал из Википедии — свободной энциклопедии
Текущая версия страницы пока не проверялась опытными участниками и может значительно отличаться от версии, проверенной 28 февраля 2016; проверки требуют 28 правок. Текущая версия страницы пока не проверялась опытными участниками и может значительно отличаться от версии, проверенной 28 февраля 2016; проверки требуют 28 правок.Пропан | |
C3H8 | |
Ch4Ch3Ch4 | |
44,1 г/моль | |
газ: 1,8641 кг/м³ в стандартных условиях по ГОСТ 2939—63; жидк. при +20°C 0,5005 г/см3 (4 атм.) | |
11,07±0,01 эВ[1] | |
−187,6 °C | |
−42,09 °C | |
500 °C | |
2,1±0,1 об.%[1] | |
8,4±0,1 атм[1] | |
74-98-6 | |
6334 | |
200-827-9 | |
E944 | |
TX2275000 | |
32879 и 45884 | |
encyclopaedia.bid
Видеоматериалы
Опыт пилотных регионов, где соцнормы на электроэнергию уже введены, показывает: граждане платить стали меньше
Подробнее...С начала года из ветхого и аварийного жилья в республике были переселены десятки семей
Подробнее...Более 10-ти миллионов рублей направлено на капитальный ремонт многоквартирных домов в Лескенском районе
Подробнее...Актуальные темы
ОТЧЕТ о деятельности министерства энергетики, ЖКХ и тарифной политики Кабардино-Балкарской Республики в сфере государственного регулирования и контроля цен и тарифов в 2012 году и об основных задачах на 2013 год
Подробнее...Предложения организаций, осуществляющих регулируемую деятельность о размере подлежащих государственному регулированию цен (тарифов) на 2013 год
Подробнее...
КОНТАКТЫ
360051, КБР, г. Нальчик
ул. Горького, 4
тел: 8 (8662) 40-93-82
факс: 8 (8662) 47-31-81
e-mail:
Этот адрес электронной почты защищен от спам-ботов. У вас должен быть включен JavaScript для просмотра.