Контур заземления: нормы и правила заземления. Пуэ системы заземления
ПУЭ заземления: меры защиты оборудования, нормы
Использование электрических приборов это неотъемлемая часть жизни каждого человека. Во время их эксплуатации возникает риск поражения электрическим током. Поэтому была создана защитная система заземления. Чтобы данная система эффективно работала и выполняла свои защитные функции, были сформулированы требования, предъявляемые к защитному устройству. Такие предписания содержатся в правилах устройства электроустановок (ПУЭ).
Раздел ПУЭ заземления включат в себя основные рекомендации: как правильно выполнить контур заземления; как установить защитные конструкции электросети; нормы заземления; сопротивление заземления и другие. Данные правила позволяют создать условия для эффективной защиты помещений различных модификаций от негативного воздействия.
Нормы ПУЭ заземления
Нормы ПУЭ заземления являются совокупностью нормативно-правовых актов. Настоящие правила включают рекомендации, как выполнить электропроводку грамотно, описание различных электроустановок и принцип их действия, а также требования, предъявляемые к электрическим системам и их компонентам.
Работы по установке заземления необходимо производить в соответствии с нормами правил устройства электроустановок. Критерии, определенные в ПУЭ, позволят выполнить все присоединения и подключение безошибочно, выдерживая все стандарты. Это гарантирует надежную работу защитной системы в доме, позволит избежать негативных последствий природного и техногенного воздействия.
Если беспрекословно соблюдать все правила, описанные в ПУЭ, это приведет к большим финансовым затратам, поэтому электрики и инженеры в своей деятельности соблюдают только очень важные рекомендации.
В соответствии с нормами ПУЭ, повторный защитный контур непременно должен быть расположен на участках выхода из помещения. На данном месте рекомендуется монтировать естественные заземлители. К ним относятся железобетонные устройства, большие металлические детали, которые большей своей частью непосредственно соединены с грунтом.
Также в ПУЭ указываются предметы, которые не могут использоваться в роли заземлителей: металлические предметы, находящиеся под напряжением, канализационные и отопительные трубы, а также трубопроводы с легковоспламеняющимися веществами.
При монтаже заземления необходимо тщательно произвести расчеты, учитывая все факторы, влияющие на качество создаваемого устройства, при этом необходимо следовать ПУЭ.
Сопротивление заземления ПУЭ
Согласно нормам ПУЭ все электроприборы производятся в соответствии с нормированными значениями:
- для телекоммуникационного оборудования защитное устройство должно иметь сопротивление не более 2 Ома или 4 Ома;
- для надежной работы подстанции с напряжением 110кВ данный показатель должен быть не более 0,5 Ом;
- при напряжении электролинии 220В источника однофазного тока и 380В трехфазного тока сопротивление трансформаторной подстанции должно соответствовать величине не более 4 Ом;
- защитные конструкции воздушных линий связи подключаются к заземлению с сопротивлением не более 2 Ом;
- при подключении молниеприемников защитное устройство должно соответствовать сопротивлению не более 10 Ом;
- для жилого фонда частного сектора при эксплуатации системы TN-C-S рекомендовано локальное заземляющее устройство с сопротивлением не более 30 Ом;
- для подключения частных домов к электрической цепи 220В/380В при эксплуатации системы TT, с использованием устройства защитного отключения требуется защитное заземляющее устройство с сопротивлением не более 500 Ом.
Заземление оборудования
Правила устройства электроустановок требуют большую часть электрооборудования на 380В и 220В непосредственно подсоединять к заземляющему устройству.
В электроустановках с напряжением до 1кВ и свыше 1кВ, применяется заземление с целью снизить ток, который может убить человека.
Защитное заземление электрооборудования требуется проводить при переменном напряжении свыше 42 Вольта и постоянном напряжении от 110 Вольт, а также в условиях переменного напряжения 380В и постоянного напряжения 440В в электроустановках различного типа.
Заземлению подлежат корпуса электрооборудования, металлические каркасы распределительных электрощитов и шкафов, оболочки проводов и кабелей, приводы аппаратов, обмотки трансформаторов, стальные тросы, трубы электропроводки и электрооборудования, металлические корпуса переносных и передвижных электроприемников, вторичные обмотки трансформаторов.
Согласно ПУЭ не подходят для заземления:
- арматура опорных и подвесных изоляторов;
- электрооборудование, зафиксированное на металлических заземленных конструкциях, при условии надежного контакта между ними;
- при установке на деревянные конструкции не заземляются кронштейны и осветительная арматура; обшивка электроизмерительных приборов;
- поверхность электроприемников с двойной изоляцией;
- рельсы, проходящие за территорией электроподстанций.
В общественных и жилых помещениях необходимо заземлять электрические приборы с мощностью более 1300 Вт.
Защитные меры электробезопасности
Если соблюдать в точности все правила при эксплуатации, использование электрических приборов не представляет никакой опасности. Защищенность от поражения электрическим током достигается следующими способами:
- часть электрической цепи, через которую проходит ток, не должна быть доступна для случайного прикосновения;
- токоведущие части, находящие в открытом состоянии, не должны содержать опасное для человеческой жизни, напряжение, даже если изоляция нарушена;
- такая недоступность достигается путем защитного отключения, использование малого напряжения, двойной изоляцией, уравниванием и выравниванием потенциалов, выполнение барьеров, расположение электрооборудования вне зоны доступности.
Применение мер в совокупности по защите от поражения током не должны снижать эффективности каждой.Если электрооборудование расположено в области уравнивания потенциалов, а самое большое рабочее напряжение при этом составляет не выше 25В переменного тока и не более 60В постоянного, то нет необходимости в защите от прямого прикосновения.
Также защитные функции электрооборудования должны быть предусмотрены при изготовлении последнего, либо при производстве монтажа.
uzotoka.ru
Система заземления «TN-S»
Самая совершенная, на сегодня, система заземления «TN-S» (тип электрической сети) настоятельно рекомендуемая к использованию ПУЭ (Правилами Устройства Электроустановок).В России до настоящего времени применяется система подобная TN-C (Система TN-C запрещена в новом строительстве, в цепях однофазного и постоянного тока. Это требование не распространяется на ответвления от ВЛ напряжением до 1 кВ к однофазным потребителям электроэнергии - ПУЭ 1.7.132).
Система заземления «TN-S» - от питающей подстанции до потребителя идут два разных нулевых провода: N - рабочий ноль и PE - защитный ноль, тем самым, обеспечивается наибольшая электробезопасность, как для человека, так и для электропотребителей.
При пробое на корпус, ток утечки идет по зануляющему (заземляющему) проводнику на защитный ноль - PE, чем вызывает срабатывание УЗО (токи через дифференциальный трансформатор к нагрузке и обратно не равны). А при большом токе утечки срабатывает автоматический выключатель
Вообще система заземления «TN-S», была впервые разработана в 1930-х годах и внедрена на территории Европейских стран, в которых последние лет 50 является основной схемой защиты потребителей электроэнергии. Скорее всего, такая же задача стоит и перед Российскими предприятиями электрических сетей, так как при проектировании новых линий развития электроснабжения, рекомендуется использовать пятижильный электромонтаж для трехфазных вводов и трехжильный – для однофазного подключения, начиная от источника питания и заканчивая розеткой конкретного абонента. Как известно – рекомендации очень часто переходят в нормы и положения стандартов, а пока одним из этапов такого перехода, является обязательный электромонтаж по системе заземления «TN-С-S», так как прямой переход из «TN-С» в «TN-S» сопряжен с большими капиталовложениями и сопоставим со строительством новой ГЭС.
Рис1. Система TN-C
Рис2. Система TN-S
Рис3. Система TN-C-S
Что же в нем такого замечательного, если требуется, пусть постепенный, но обязательный переход? Чтобы выяснить это, прежде всего, рассмотрим его электрическую схему. Она полностью идентична с традиционной системой электроснабжения, где помимо токоведущих линий включен нулевой проводник, с той немаловажной разницей, что в схему добавляется еще один нулевой проводник, не требующий повторного заземления ни на линии «N», ни на линии «РЕ», которая осуществляется только на начальном источнике питания. Тем самым, позволяя разделить их рабочие и защитные функции по отдельным шинам питания. То есть рабочий проводник «N» выполняет только функции ЭДС (электродвижущая сила — физическая величина, характеризующая работу сторонних (непотенциальных) сил в источниках постоянного или переменного тока. В замкнутом проводящем контуре ЭДС равна работе этих сил по перемещению единичного положительного заряда вдоль контура), а проводник «РЕ» – только функции защиты, при этом, добиваясь полной изоляции друг от друга. Такая схема электромонтажа, особенно актуальна, в срезе проблем, когда совершенно не осуществляется контроль над состоянием защитных заземленных контуров, как видно, надобность в этом полностью отпадает.
Теперь, после того как выяснили электрическую схему, становится очевидным, что такая система заземления «TN-S» максимально обеспечивает защиту электрического оборудования и самого человека. Мало того, она исключает высокочастотные наводки и другие помехи на потребительские линии исходящие от некоторых приборов. Подобную ситуацию, наверняка наблюдал каждый из нас, когда в соседнем подъезде кем-то использовалась электробритва, иногда дрель или сварочный аппарат, то на экране телевизора появлялись дребезжащие искажения. Такая система, если не полностью, то большую часть помех, колебательных и электромагнитных возбуждений, временами возникающих в электрических сетях, непременно исключает. Поэтому, система заземления «TN-S», очень полюбилась сотрудникам, которые работают с информационным, телекоммуникационным, радарным или локационным оборудованием, так как осуществляется максимальная изоляция от кожухов и корпусов других электрических устройств, а также наводок через «землю», иначе говоря, от источников помех.
Условные обозначения систем заземления :
Первая буква - состояние нейтрали источника относительно земли .
Т - заземлённая нейтраль . I - изолированная нейтраль .
Вторая буква - состояние открытых проводящих частей относительно земли .
Т - открытые проводящие части заземлены независимо от отношения к земле нейтрали источника питания или какой-либо точки питающей сети . N - открытые проводящие части присоединены к глухозаземлённой нейтрали источника питания .
Буквы после N - совмещение в одном проводнике или разделение функций нулевого рабочего и нулевого защитного проводников .
S - нулевой рабочий (N) и нулевой защитный (PE) проводники разделены . С - функции нулевого защитного и нулевого рабочего проводников совмещены в одном проводнике (РЕN-проводник) .
Система заземления «IT»
Система заземления «ТТ»
Система заземления «TN-С»
malahit-irk.ru
Главные документы с требованиями к заземлению
Организация защитного заземления на стороне потребителя относится к обязательным процедурам, регламентируемым действующими нормативными актами и государственными стандартами (ГОСТ). Основные документы, определяющие порядок производимых при этом работ и содержащие основные требования к заземлению – это Правила устройства электроустановок (ПУЭ) и ПТЭЭП. Соответствующими положениями этих правил также оговариваются условия организации и проведения ТО заземляющих систем (включая их электрические испытания).
Требования к заземляющим устройствам (ЗУ)
Согласно требованиям нормативов любые действующие электроустановки должны защищаться специальным заземляющим контуром (ЗК), в состав которого входит такая обязательная составляющая, как заземлитель. Последний представляет собой сборную конструкцию из металлических элементов, обеспечивающих надёжный контакт с землёй и способствующих растеканию тока в неё.
Это сооружение (часть заземления), как правило, изготавливается из отдельных токопроводящих элементов (металлических прутьев, трубных заготовок или стандартных профилей), погружаемых в грунт на определённую глубину. Правилами обустройства таких конструкций предполагается, что для их изготовления могут применяться только сталь или медь, но никак не алюминий или другие металлы.
Этими же правилами оговариваются и возможные варианты конструкций заземлителя, а также устанавливается соответствие их показателям, нормируемым по ПУЭ.
Сопротивление
Одним из основных показателей эффективности работы заземления является электрическое сопротивление всей системы в целом, которое согласно пункту 7.1.101 ПУЭ (издание седьмое от 2016 года) не должно превышать следующих значений:
- для трансформаторных подстанций 6-35 киловольт и питающих генераторов – не более чем 4 Ома;
- для жилых объектов с питающими напряжениями 220 или 380 Вольт – не более 30-ти Ом.
Сопротивление заземления может регулироваться специальными методами, предполагающими выполнение следующих операций:
- увеличение эффективной площади соприкосновения металлоконструкции с почвой за счёт включения в её состав требуемого количества дополнительных элементов;
- повышение удельной проводимости в зоне размещения контура заземления путём добавления в грунт растворённых в воде соляных составов;
- сокращение длины участков трасс, по которым заземляющие проводники прокладываются от защищаемого оборудования и распределительного шкафа с ГЗШ в сторону ЗУ.
Помимо этого защитные свойства системы заземления зависят и от характеристик грунта в месте обустройства заземлителя.
Свойства грунта
Ещё одним показателем эффективности работы заземления является величина тока стекания в грунт, которая также закладывается в нормативные ограничения, оговариваемые соответствующими пунктами ПУЭ. Значения этого параметра определяются составом почвы в месте расположения заземлителя, а также зависят от её влажности и температуры.
Практически установлено, что оптимальные условия, обеспечивающие эффективное распределение токов стекания и позволяющие упростить размещаемую в земле конструкцию заземления, создаются в особых грунтах. Это почвы, содержащие глину, суглинок или торфяные составляющие. При наличии указанных компонентов и высокой влажности почвы условия для растекания тока в месте обустройства заземлителя считаются идеальными.
Заземляющие системы (ЗС)
Согласно основным положениям ПУЭ, заземление электроустановок и рабочего оборудования может быть организовано несколькими способами, зависящими от схемы включения нейтрали на трансформаторной подстанции. По этому признаку различают несколько видов систем заземления, обозначаемых в соответствии с общепринятыми правилами. В основу их классификации заложено сочетание латинских значков «T» и «N», что означает заземлённую на подстанции нейтраль трансформатора.
Добавляемые к этому обозначению буквы «S» и «C» являются сокращениями от английских слов «common» – общая прокладка и «select» – раздельная. Они указывают на способ организации заземляющего проводника на всём протяжении питающей линии от подстанции до потребителя (в первом случае – совмещённый PEN, а во втором – раздельные PE и N). Объединённое через дефис «C-S» означает, что на некоторой части трассы заземляющий проводник совмещён с рабочим «нулём», а на оставшемся её участке они прокладываются раздельно.
Для мобильного оборудования
Существуют и другие системы организации защитного заземления оборудования (TT и IT, например), использующие нейтральный проводник в качестве «нулевого» и предполагающие обустройство повторного ЗУ на стороне потребителя. В первом случае нейтраль на подстанции глухо заземлена, а во втором – вообще никуда не подсоединяется. Эти варианты включения нейтрали используются редко и лишь в тех случаях, когда требуется сделать повторное заземление мобильных электроустановок (при условии что на стороне генератора сделать это очень сложно).
Согласно ГОСТ 16556-81 для передвижного электрооборудования используется рассмотренная выше система IT, при реализации которой на стороне потребителя организуется повторное заземление. Этим стандартом оговариваются технические характеристики и параметры ЗУ, которое временно устраивается в зоне предстоящих работ.
Знаковая и цветовая маркировка элементов ЗС
В соответствии с требованиями ГОСТа Р 50462 проводники и шины электросетей с заземленной нейтралью должны обозначаться маркировкой «РЕ» с добавлением штриховой линии из перемежающихся жёлтых и зелёных полосок на концевых участках трассы. Одновременно с этим шины рабочего «нуля» обозначаются голубым цветом и маркируются как «N».
В тех схемах, где нулевые рабочие проводники используются в качестве элемента защитного заземления с подключением на заземляющее устройство, при их обозначении используется голубой цвет. Одновременно с этим им присваивается маркировка «PEN» и добавляются чередующиеся желтые и зеленые штрихи на конечных участках схемных обозначений.
Необходимо отметить, что строгое соблюдение всех положений и требований ГОСТа и ПУЭ позволит потребителю организовать безопасную эксплуатацию имеющегося в его распоряжении оборудования.
evosnab.ru
ПУЭ 1.7 Заземление Общие требования * Удобный дом
Глава 1.7. ЗАЗЕМЛЕНИЕ И ЗАЩИТНЫЕ МЕРЫ ЭЛЕКТРОБЕЗОПАСНОСТИ (Часть 2)
ПУЭ 1.7.49. Токоведущие части электроустановки не должны быть доступны для случайного прикосновения, а доступные прикосновению открытые и сторонние проводящие части не должны находиться под напряжением, представляющим опасность поражения электрическим током как в нормальном режиме работы электроустановки, так и при повреждении изоляции.
1.7.50. Для защиты от поражения электрическим током в нормальном режиме должны быть применены по отдельности или в сочетании следующие меры защиты от прямого прикосновения:
основная изоляция токоведущих частей;
ограждения и оболочки;
установка барьеров;
размещение вне зоны досягаемости;
применение сверхнизкого ( малого ) напряжения.
Для дополнительной защиты от прямого прикосновения в электроустановках напряжением до 1 кВ, при наличии требований других глав ПУЭ, следует применять устройства защитного отключения ( УЗО ) с номинальным отключающим дифференциальным током не более 30 мА.
1.7.51. Для защиты от поражения электрическим током в случае повреждения изоляции должны быть применены по отдельности или в сочетании следующие меры защиты при косвенном прикосновении:
защитное заземление;
автоматическое отключение питания;
уравнивание потенциалов;
выравнивание потенциалов;
двойная или усиленная изоляция;
сверхнизкое ( малое ) напряжение;
защитное электрическое разделение цепей;
изолирующие ( непроводящие ) помещения, зоны, площадки.
1.7.52. Меры защиты от поражения электрическим током должны быть предусмотрены в электроустановке или ее части либо применены к отдельным электроприемникам и могут быть реализованы при изготовлении электрооборудования, либо в процессе монтажа электроустановки, либо в обоих случаях.
Применение двух и более мер защиты в электроустановке не должно оказывать взаимного влияния, снижающего эффективность каждой из них.
1.7.53. Защиту при косвенном прикосновении следует выполнять во всех случаях, если напряжение в электроустановке превышает 50 В переменного и 120 В постоянного тока.
В помещениях с повышенной опасностью, особо опасных и в наружных установках выполнение защиты при косвенном прикосновении может потребоваться при более низких напряжениях , например , 25 В переменного и 60 В постоянного тока или 12 В переменного и 30 В постоянного тока при наличии требований соответствующих глав ПУЭ.
Защита от прямого прикосновения не требуется, если электрооборудование находится в зоне системы уравнивания потенциалов, а наибольшее рабочее напряжение не превышает 25 В переменного или 60 В постоянного тока в помещениях без повышенной опасности и 6 В переменного или 15 В постоянного тока – во всех случаях.
Примечание. Здесь и далее в главе напряжение переменного тока означает среднеквадратичное значение напряжения переменного тока; напряжение постоянного тока – напряжение постоянного или выпрямленного тока с содержанием пульсаций не более 10 % от среднеквадратичного значения.
1.7.54. Для заземления электроустановок могут быть использованы искусственные и естественные заземлители. Если при использовании естественных заземлителей сопротивление заземляющих устройств или напряжение прикосновения имеет допустимое значение, а также обеспечиваются нормированные значения напряжения на заземляющем устройстве и допустимые плотности токов в естественных заземлителях, выполнение искусственных заземлителей в электроустановках до 1 кВ не обязательно. Использование естественных заземлителей в качестве элементов заземляющих устройств не должно приводить к их повреждению при протекании по ним токов короткого замыкания или к нарушению работы устройств, с которыми они связаны.
1.7.55. Для заземления в электроустановках разных назначений и напряжений, территориально сближенных, следует, как правило, применять одно общее заземляющее устройство.
Заземляющее устройство, используемое для заземления электроустановок одного или разных назначений и напряжений, должно удовлетворять всем требованиям, предъявляемым к заземлению этих электроустановок: защиты людей от поражения электрическим током при повреждении изоляции, условиям режимов работы сетей, защиты электрооборудования от перенапряжения и т. д. в течение всего периода эксплуатации.
В первую очередь должны быть соблюдены требования, предъявляемые к защитному заземлению.
Заземляющие устройства защитного заземления электроустановок зданий и сооружений и молниезащиты 2- й и 3- й категорий этих зданий и сооружений, как правило, должны быть общими.
При выполнении отдельного (независимого) заземлителя для рабочего заземления по условиям работы информационного или другого чувствительного к воздействию помех оборудования должны быть приняты специальные меры защиты от поражения электрическим током, исключающие одновременное прикосновение к частям, которые могут оказаться под опасной разностью потенциалов при повреждении изоляции.
Для объединения заземляющих устройств разных электроустановок в одно общее заземляющее устройство могут быть использованы естественные и искусственные заземляющие проводники. Их число должно быть не менее двух.
1.7.56. Требуемые значения напряжений прикосновения и сопротивления заземляющих устройств при стекании с них токов замыкания на землю и токов утечки должны быть обеспечены при наиболее неблагоприятных условиях в любое время года.
При определении сопротивления заземляющих устройств должны быть учтены искусственные и естественные заземлители.
При определении удельного сопротивления земли в качестве расчетного следует принимать его сезонное значение, соответствующее наиболее неблагоприятным условиям.
Заземляющие устройства должны быть механически прочными, термически и динамически стойкими к токам замыкания на землю.
1.7.57. Электроустановки напряжением до 1 кВ жилых, общественных и промышленных зданий и наружных установок должны, как правило, получать питание от источника с глухозаземленной нейтралью с применением системы TN.
Для защиты от поражения электрическим током при косвенном прикосновении в таких электроустановках должно быть выполнено автоматическое отключение питания в соответствии с 1.7.78. – 1.7.79 .
Требования к выбору систем TN-C, TN-S, TN-C-S для конкретных электроустановок приведены в соответствующих главах Правил .
1.7.58. Питание электроустановок напряжением до 1 кВ переменного тока от источника с изолированной нейтралью с применением системы IT следует выполнять, как правило, при недопустимости перерыва питания при первом замыкании на землю или на открытые проводящие части, связанные с системой уравнивания потенциалов. В таких электроустановках для защиты при косвенном прикосновении при первом замыкании на землю должно быть выполнено защитное заземление в сочетании с контролем изоляции сети или применены УЗО с номинальным отключающим дифференциальным током не более 30 мА. При двойном замыкании на землю должно быть выполнено автоматическое отключение питания в соответствии с 1.7.81.
1.7.59. Питание электроустановок напряжением до 1 кВ от источника с глухозаземленной нейтралью и с заземлением открытых проводящих частей при помощи заземлителя, не присоединенного к нейтрали (система TT), допускается только в тех случаях, когда условия электробезопасности в системе TN не могут быть обеспечены. Для защиты при косвенном прикосновении в таких электроустановках должно быть выполнено автоматическое отключение питания с обязательным применением УЗО. При этом должно быть соблюдено условие:
Rа Iа <50 В,
где Iа – ток срабатывания защитного устройства;
Rа – суммарное сопротивление заземлителя и заземляющего проводника, при применении УЗО для защиты нескольких электроприемников – заземляющего проводника наиболее удаленного электроприемника.
1.7.60. При применении защитного автоматического отключения питания должна быть выполнена основная система уравнивания потенциалов в соответствии с 1.7.82, а при необходимости также дополнительная система уравнивания потенциалов в соответствии с 1.7.83.
1.7.61. При применении системы TN рекомендуется выполнять повторное заземление РЕ – и PEN – проводников на вводе в электроустановки зданий, а также в других доступных местах. Для повторного заземления в первую очередь следует использовать естественные заземлители. Сопротивление заземлителя повторного заземления не нормируется.
Внутри больших и многоэтажных зданий аналогичную функцию выполняет уравнивание потенциалов посредством присоединения нулевого защитного проводника к главной заземляющей шине.
Повторное заземление электроустановок напряжением до 1 кВ, получающих питание по воздушным линиям, должно выполняться в соответствии с 1.7.102. – 1.7.103 .
1.7.62. Если время автоматического отключения питания не удовлетворяет условиям 1.7.78. – 1.7.79. для системы TN и 1.7.81. для системы IT, то защита при косвенном прикосновении для отдельных частей электроустановки или отдельных электроприемников может быть выполнена применением двойной или усиленной изоляции ( электрооборудование класса II), сверхнизкого напряжения (электрооборудование класса III), электрического разделения цепей изолирующих ( непроводящих ) помещений, зон, площадок.
1.7.63. Система IT напряжением до 1 кВ, связанная через трансформатор с сетью напряжением выше 1 кВ, должна быть защищена пробивным предохранителем от опасности, возникающей при повреждении изоляции между обмотками высшего и низшего напряжений трансформатора. Пробивной предохранитель должен быть установлен в нейтрали или фазе на стороне низкого напряжения каждого трансформатора.
1.7.64. В электроустановках напряжением выше 1 кВ с изолированной нейтралью для защиты от поражения электрическим током должно быть выполнено защитное заземление открытых проводящих частей.
В таких электроустановках должна быть предусмотрена возможность быстрого обнаружения замыканий на землю. Защита от замыканий на землю должна устанавливаться с действием на отключение по всей электрически связанной сети в тех случаях, в которых это необходимо по условиям безопасности ( для линий, питающих передвижные подстанции и механизмы, торфяные разработки и т. п.).
1.7.65. В электроустановках напряжением выше 1 кВ с эффективно заземленной нейтралью для защиты от поражения электрическим током должно быть выполнено защитное заземление открытых проводящих частей.
1.7.66. Защитное зануление в системе TN и защитное заземление в системе IT электрооборудования, установленного на опорах ВЛ (силовые и измерительные трансформаторы, разъединители, предохранители, конденсаторы и другие аппараты), должно быть выполнено с соблюдением требований, приведенных в соответствующих главах ПУЭ, а также в настоящей главе.
Сопротивление заземляющего устройства опоры ВЛ, на которой установлено электрооборудование , должно соответствовать требованиям гл . 2.4 и 2.5.
< Предыдущая страница
Следующая страница >
Глава 1.7. Заземление и защитные меры электробезопасности
Ваш Удобный дом
www.natrix-el.kz
Контур заземления: нормы и правила заземления (ПУЭ) | ENARGYS.RU
В современном мире практически невозможно представить жизнь без техники, работающие с помощью электричества. Можно сказать, что она довольно прочно вошла в жизнь многих и без нее трудно представить «нормальную» жизнь. Но бывает такое что любимое и такое нужно оборудование может внезапно превратиться в источник опасности для жизни. Именно, чтобы избежать таких ситуаций и нужно использовать контур заземления.(рис.1)
Рис. 1. Пример устройства контур заземления
Почти все современные дома оснащены всевозможной электротехникой, которая является частью нашей повседневной жизни. Но в случае нарушения изоляции она может превратиться из незаменимого помощника в оборудование, представляющее реальную угрозу для жизни. Чтобы она не возникала, в домах устраивают контур заземления.
Для чего нужен контур заземления?
Заземление – это устройство специальной конструкции, которое будет соединяться с землей (грунтом). В таком случае в такое соединение включают электрические приборы, которые в нормальном своем состоянии не находятся под напряжением. А вот при нарушении условий эксплуатации или иных причин приведших к повреждению изоляции – оно может возникнуть. Поэтому так важно соблюдать нормы заземления контура заземления.
Все дело заключается в следующем – ток всегда стремиться туда, где находиться наименьшее сопротивление. Так при нарушении в оборудование происходит выход тока на корпус изделия. Техника начинает работать с перебоями и постепенно приходить в негодность. Но намного страшнее другое – при прикосновении к такой поверхности, человек получает такой разряд, что просто погибает.
Но при использовании – контура заземления будет происходить следующие. Напряжение будет распределяться между существующим контуром и человеком. Вот только контур заземления в данном случае будет обладать меньшим сопротивлением. И это значит, что человек хоть и почувствует неудобство, но все же весь основной ток уйдет через контур в грунт.
Важно! При устройстве контура заземления важным будет помнить, и соблюдать все необходимое для устройства его с минимальным сопротивлением.
Контур заземления – виды и его устройство
В основном для заземления используются металлические стрежни, которые играют роль электродов. Они соединяются между собой и углубляются на достаточное расстояние в землю. Такая конструкция соединяется с щитом, установленным в доме. Для этого используется полоса из металла нужной толщины. (рис.2)
Рис 2. Контур заземления
Само расстояние, на которое погружают электрод, напрямую зависит от высоты расположения грунтовых вод. Чем их залегание выше, тем и выше система заземления. Но при всем этом удаление ее от нужного объекта составляет от одного метра до десяти метров. Это расстояние является важным условием и должно строго соблюдаться.
Расположение электродов зачастую носить форму геометрической фигуры. Зачастую – это треугольник, линия или квадрат. На форму влияет площадь, которую следует обязательно обхватить и удобство монтажа.
Важно! Система заземления в обязательном порядке располагается ниже уровня промерзания грунта, которое существует в конкретном месте.
Основные типы контуров заземления
Так существуют два основных типа технологических решений. Это контуры заземления – глубинный и традиционный.
Так при традиционном способе расположение электродов следующие – одни располагается горизонтально, а остальные вертикально. Первым электродом является стальная полоса, а вторыми являются соответственно стрежни из металла. Все они должны иметь допустимые значения по своему размеру.
Необходимо учитывать, что место для устройства конура необходимо подбирать из того, что он должно быть мало людным. Наилучшим для этого будет подходить теневая сторона с постоянной влажностью почвы.
Но у данного контура заземления существуют и свои минусы:
- довольно трудное и физически тяжелое его устройство;
- металлические изделия, из которой состоит контур подвержено коррозии, что не только его разрушает, но им ожжет служить причиной ухудшения проводимости;
- так как он расположен в верхней части земли, то очень сильно зависит от параметров окружающей среды, которые могут изменить его проводимые характеристики.
Глубинный способ намного эффективнее традиционного. Его изготавливают специализированные производства. И он обладает рядом достоинств:
- соответствует всем установленным нормам;
- срок службы значительно продолжительный;
- не зависит от окружающей среды, благодаря глубине залегания;
- монтаж довольно прост.
Необходимо учитывать, что после устройства любого из типов контура заземления, необходимо проверить его соответствие на все требования и надежность. Для этого необходимо пригласить специализированных экспертов. У них должна быть лицензия на проведения такой деятельности. После проверки выдается соответствующие заключение. На контур заземления необходимо завести паспорт к нему приложить протокол об проводимых испытаниях и разрешение на использование.(рис. 3)
Рис. 3. Проверка контура заземления
Важно! Нельзя экономить на материалах при устройстве контура заземления (рис. 4). Иначе его работа будет полностью сведена к нулю.
Рис. 4. Устройство контура заземления
Контур наружного заземления
Эта система служит для подстанции трансформатора и является замкнутой. Состоит из небольшого количества электродов. Они располагаются по вертикали. Заземлитель по горизонтали, он изготавливается, и полос стали 4*40 мм.
Контур заземления должен обладать сопротивление в 40 м, не как не больше, а земля максимально – 1000 м/м. В настоящее время согласно правилам можно увеличить значения, но не более чем в десять раз для грунта. Из этого можно сделать вывод, что для достижения значения в 40 м нужно произвести вертикальную установку восьми электродов по пять метровых. Они должны быть изготовлены из круга при его диаметре 16 мм. Или можно использовать десять трех метровых, при использовании уголка из стали 50*50 мм.
Наружный контур отводиться от края здания больше чем на метр. Элементы располагающиеся горизонтально закапываются в траншею на расстояние 700 мм от уровня поверхности почвы. Полоску располагают ребром.
Таким образом понятно, что следует четко руководствоваться существующими нормами. Так контур заземления ПУЭ отражен в главе 1.7. Н так же необходимо следить за всеми изменениями в требованиях, которые могут случаться довольно часто.
enargys.ru
Система заземления TN-S | Заметки электрика
Здравствуйте, дорогие гости сайта заметки электрика.
Уже изучив, системы заземления TN-C и TN-C-S, сегодня Вашему вниманию я представляю систему заземления TN-S.
Когда же появилась система заземления TN-S?
Давайте немного вернемся в прошлое. История возникновения системы заземления TN-S лежит в далеко 1940-ых годах прошлого столетия. Такую систему впервые стали применять в странах Европы и продолжают применять по сей день.
Как я уже говорил, аналогичная задача стоит и у России.
При проектировании и электромонтаже новых объектов необходимо использовать для однофазных сетей потребителей — трехжильные кабельные линии (фаза, N, PE), а для трехфазных сетей — пятижильные кабельные линии (А,В,С, N, PE) с самого источника электроэнергии, и заканчивая, электрической точкой (розетка) непосредственно у потребителя.
Эти требования взяты не из головы — необходимые рекомендации по переходу из системы TN-C в систему TN-S или TN-C-S обуславливается таким нормативным документом, как ПУЭ (пункт 1.7.132).
Почему же сразу нельзя перейти на систему заземления TN-S?
Да потому, что это процесс очень затратный и дорогостоящий.
Принцип исполнения системы TN-S
Чем же система TN-S отличается от других систем заземления?
Принцип системы заземления TN-S основан на том, что нулевой рабочий проводник N и защитный проводник PE приходят к потребителю отдельными жилами с питающей трансформаторной подстанции (ТП), в отличии от системы TN-C-S, где эти проводники разделялись в определенном месте, например в ВРУ на вводе в жилой дом.
Наглядное представление системы заземления TN-S
В данной системе повторного заземления не требуется, т.к. на трансформаторной подстанции имеется основной заземлитель.
Достоинства системы TN-S
Система TN-S — самая надежная и безопасная система заземления, которая максимально осуществляет защиту электрооборудования, и самое главное, человека от поражения электрическим током с помощью применения в схемах УЗО и диффавтоматов, а также системы уравнивания потенциалов (СУП).
Еще один плюс этой системы — это отсутствие высокочастотных наводок (от электроприборов таких как, электрическая бритва, пылесос, перфоратор) и других помех на силовые линии потребителей.
Система TN-S не требует контроля за состоянием контура заземления, потому как нет в этом необходимости.
Недостатки системы заземления TN-S
Я считаю, что единственным недостатком этой системы является дорогостоящий монтаж электропроводки по причине наличия силовых кабелей (проводов) с большим числом жил.
В следующей статье читайте про систему заземления TT.
P.S. В завершении статьи о системе заземления TN-S посмотрите видео-ролик о настоящем адреналине.
Если статья была Вам полезна, то поделитесь ей со своими друзьями:
zametkielectrika.ru
Видеоматериалы
Опыт пилотных регионов, где соцнормы на электроэнергию уже введены, показывает: граждане платить стали меньше
Подробнее...С начала года из ветхого и аварийного жилья в республике были переселены десятки семей
Подробнее...Более 10-ти миллионов рублей направлено на капитальный ремонт многоквартирных домов в Лескенском районе
Подробнее...Актуальные темы
ОТЧЕТ о деятельности министерства энергетики, ЖКХ и тарифной политики Кабардино-Балкарской Республики в сфере государственного регулирования и контроля цен и тарифов в 2012 году и об основных задачах на 2013 год
Подробнее...Предложения организаций, осуществляющих регулируемую деятельность о размере подлежащих государственному регулированию цен (тарифов) на 2013 год
Подробнее...
КОНТАКТЫ
360051, КБР, г. Нальчик
ул. Горького, 4
тел: 8 (8662) 40-93-82
факс: 8 (8662) 47-31-81
e-mail:
Этот адрес электронной почты защищен от спам-ботов. У вас должен быть включен JavaScript для просмотра.