22.01.2025

Схема лампы энергосберегающей: Схема энергосберегающей лампы – СамЭлектрик.ру

Содержание

Схема энергосберегающей лампы (220 В): устройство, состав

Бытовые энергосберегающие лампы (ЭСЛ) сегодня востребованы, несмотря на популярность светодиодных светильников. Это связано с их удобством, надежностью и эффективностью. Встречаются лампы разной мощности, от 20 Вт до 105 Вт. Чтобы эксплуатация была комфортной, рекомендуем изучить их устройство, которое имеет свою специфику.

СодержаниеПоказать

Состав и принцип работы

Любая газоразрядная энергосберегающая лампа состоит из стеклянной колбы с инертным газом или парами ртути внутри. Внутрь колбы выведены два электрода, на которые от сети подается напряжение.

Устройство ЭСЛ

Принцип работы следующий: ток вызывает нагрев электродов. Между ними возникает дуговой разряд. Процессами управляет пускорегулирующая аппаратура (ЭПРА), электронная схема с транзисторами и конденсаторами.

Дуговой разряд между электродами воздействует на находящиеся внутри колбы пары ртути и вызывает появление ультрафиолетового излучения. Оно невидимо для глаз, поэтому внутренние стенки колбы покрывают люминофором. Проходя через люминофор, ультрафиолетовое излучение превращается в белый свет видимого спектра. Конкретный оттенок и температура свечения зависят от состава люминофора. Выбор покрытия влияет на стоимость.

Энергосберегающие лампы дают более высокую светоотдачу по сравнению с традиционными приборами накаливания.

Главный недостаток энергосберегающих ламп — невозможность подключения к сети 220 В напрямую. Пары ртути имеют высокое сопротивление, и для формирования нужного разряда требуется высоковольтный импульс.

Принцип работы энергосберегающей лампы

В момент разряда сопротивление внутри колбы становится отрицательным. Если не предусмотреть в схеме защитных элементов, неизбежно проявление короткого замыкания. Защитную функцию в трубчатых установках выполняет электромагнитный балласт старого образца, который монтируется прямо в светильник.

В компактных современных ЭСЛ электромагнитный балласт заменен небольшой электронной схемой ЭПРА. От качества пускорегулирующего аппарата зависит долговечность и эффективность всей конструкции.

Схема энергосберегающей лампы

Схема включает:

  • пусковой конденсатор, подающий импульс;
  • комплект фильтров для сглаживания пульсаций и устранения помех;
  • дроссель для защиты схемы от перепадов тока;
  • транзисторы;
  • драйвер для ограничения тока;
  • предохранитель, исключающий воспламенение схемы при скачках напряжения в сети.

Схема ЭСЛ

В задающем модуле формируется импульс тока, поступает на транзистор и открывает его. Конденсатор заряжается. Скорость зарядки зависит от компонентов схемы.

С транзисторного ключа импульсы передаются на понижающий трансформатор, затем импульсное напряжение через резонансный контур поступает на электроды.

В трубке формируется свечение, параметры которого зависят от конденсатора. Запускающий импульс напряжением около 600 В требует наличия защитной системы.

После пробоя электродов шунтирующий конденсатор резко снижает резонанс и переводит прибор в рабочий режим с равномерным стабильным свечением.

Нужно ли менять схему

Схема энергосберегающих ламп не нуждается в улучшении или доработке. Изменения касаются ремонта неисправностей.

Если устройство не включается, можно попробовать самостоятельно восстановить его. Цоколь лампы разбирается и извлекается схема. Вначале устраняются видимые неполадки, потом следует проверка тестером.

Визуальный осмотр платы управления

Частая причина поломки — выгорание предохранителя. Ее видно невооруженным глазом. На схеме будет присутствовать потемневший элемент с признаками прожога. Производят выпаивание компонента и замену.

Отдельно рассматриваются нити накала колбы. Для проверки нужно выпаять по одному выводу с каждого края и замерить сопротивление тестером. Показатели должны быть одинаковыми. Если нить перегорела, нужно на параллельную спираль припаять резистор с подходящим сопротивлением. После этого лампа должна работать.

Транзисторы, конденсаторы, диоды и другие элементы на схеме проверяются мультиметром. Серьезные перегрузки системы могут привести к короткому замыканию в некоторых узлах. Нужно выявить такой узел и перепаять деталь.

Проверка светодиода или прозвонка мультиметром. Информация на дисплее – О – диод исправен, ток идет; OL – диод исправен, ток не идет.

Рекомендации по использованию

Энергосберегающие лампы удобны и практически без ограничений используются в светотехническом оборудовании. Однако эксплуатация должна осуществляться по правилам, чтобы избежать расходов и убытков.

Обязательно нужно учитывать температурный диапазон конкретного прибора. Он указан в спецификации. Нельзя подвергать лампу перепадам, выходящим за пределы указанного диапазона.

Видео посвящено детальному разбору схемы и простому способу ремонта

В электрических цепях с энергосберегающими лампами не стоит использовать стабилизаторы и устройства плавного старта, предназначенные для простых ламп накаливания. Эти компоненты не отвечают возможностям газоразрядных приборов.

В процессе эксплуатации важно соблюдать правило прогрева, предусматривающее выключение прибора только после 5-10 минут работы. Резкие скачки напряжения негативно сказываются на элементах системы.

Нелишним будет соблюдать технику безопасности при работе с приборами. Энергосберегающие лампы излучают ультрафиолет, который отрицательно воздействует на человека. Слишком высокая доза облучения приводит к преждевременному старению кожи, возникновению аллергии, иногда провоцирует приступы мигрени или эпилепсии.

По этой причине газоразрядные энергосберегающие лампы лучше устанавливать в отдалении от места постоянного пребывания человека. Установка устройства в настольный светильник точно не будет хорошей идеей.

Схема энергосберегающей лампы на 220В разной мощности: устройство и особенности

Содержание статьи:

Любая схема энергосберегающей лампы на 220 В представляет собой совокупность электронных компонентов, каждый из которых выполняет свою, вполне конкретную функцию. Небольшие отклонения от базовой конструкции не оказывают принципиального влияния на ее общие характеристики. В основном эти различия проявляются в разнообразии типов цоколей, а также в потребляемой изделием мощности.

Виды энергосберегающих ламп

Различные формы колб и цоколей энергосберегающих ламп

Известные образцы энергосберегающих лампочек, к которым традиционно относят светодиодные, галогенные и люминесцентные модели, классифицируются по следующим признакам:

  • вид цоколя;
  • характерная для каждой модели температура свечения;
  • потребляемая мощность;
  • форма колбы.

По виду цоколя, используемого для фиксации лампочек в осветительном приборе, большинство из них делятся на резьбовые и штырьковые изделия.

Назначение цоколей ламп

Наиболее часто в быту встречаются резьбовые цоколи, которые вкручиваются в стандартные патроны различного диаметра (как для ламп накаливания).

При описании изделия этот элемент обозначается буквой «E» со следующим за ней числом, соответствующим диаметру в миллиметрах. Стандартный размер большинства выпускаемых ламп – E27, а изделия с диаметром E14 устанавливаются в светильники или бра.

Резьбовые цоколи чаще всего используются в лампах, предназначенных для уличного освещения (в ДРЛ и натриевых). Изделия штырькового типа подходят только для светильников особой конструкции и повышенной мощности. Они имеют разные модификации, отличающиеся количеством штырей (два или четыре), а их разъемы маркируются буквой «G» с соответствующим численным значком.

Типы освещенности в зависимости от цветовой температуры света

В зависимости от температуры свечения, измеряемой по Кельвину, каждый образец энергосберегающей лампы излучает свет «своего» оттенка.

  • Теплый свет с показателем 2700 К, внешне напоминающий желтый оттенок. Он очень похож на свечение обычных ламп накаливания.
  • Естественный белый с температурой 4200 К. Это так называемые «лампы дневного света», имеющие нейтральный колер.
  • «Холодное» свечение, как оттенок белого с температурным значением 6400 К.

Холодный свет близок к синему спектру и напоминает слегка голубоватый цвет. Лампочки с таким свечением чаще всего применяются в производственных помещениях и рассчитываются на мощность от 65 Ватт и более.

Энергосберегающие изделия различаются по форме колбы: спиралевидные, дугообразные и трубчатые.

Принципы работы

Принцип работы энергосберегающих излучателей рассмотрим на примере КЛЛ – компактного люминесцентного осветителя, пользующегося большим спросом у населения. Этот тип осветительных приборов состоит из полой стеклянной колбы, внутреннее пространство которой заполнено ртутными парами. При подаче высокого напряжения на контакты между его электродами формируется дуговой разряд, приводящий к образованию ультрафиолетового излучения, невидимого для человеческого глаза. Для его превращения в видимый свет внутренние стенки колбы покрываются люминофором, позволяющим получать яркое свечение.

При его сравнении с тем же показателем для ламп накаливания схожей мощности световая отдача в этом случае заметно выше. Недостаток таких изделий – невозможность прямого включения в цепь питания 220 Вольт. Как следствие – обязательность применения специального преобразующего устройства, называемого электронным балластом.

Устройство ЛЛ

Устройство лампы

Под внешними конструктивными элементами располагается электронная схема лампы – она обозначается как ЭПРА или пускорегулирующий аппарат. Этот узел в полном составе имеется далеко не в каждой модели «экономки». Там же где пусковой регулятор установлен в классической комплектации, схема эконом лампы состоит из следующих основных модулей и деталей:

  • пусковой конденсатор, обеспечивающий получение мощного импульса, необходимого для запуска схемы;
  • сетевой фильтр, позволяющий снизить уровень радиочастотных помех до приемлемого уровня – избавиться от эффекта мерцания;
  • емкостный фильтр, сглаживающий пульсации токовой составляющей;
  • ограничивающий ток дроссель, необходимый для защиты от перегрузок;
  • биполярные транзисторы и драйвер.

Схема лампочки содержит в своем составе предохранитель, защищающий ее от выхода из строя при резких скачках напряжения, и ряд дополнительных элементов.

Составляющие схемы балласта и особенности его работы

Электронный балласт энергосберегающей лампы фирмы DELUX

В состав электронного балласта входят формирователь, транзисторный ключ, а также выходной трансформатор с элементами резонансного запуска. Порядок работы этого блока:

  1. Формируемый в задающем модуле импульс тока поступает на базу транзистора и приводит к его открытию.
  2. Сразу же вслед за этим происходит заряд конденсатора, скорость которого определяется дополнительными элементами схемы.
  3. С выхода транзисторного ключа импульсы поступают на малогабаритный трансформатор.
  4. С его вторичной обмотки через резонансный контур с конденсатором пониженное импульсное напряжение подается на контакты лампы.

Принципиальная схема электронного балласта для ЛЛ

Формируемое в трубке свечение характеризуется присущей только ей резонансной частотой, зависящей от емкости подключаемого в параллель конденсатора. В начальный момент при зажигании величина импульсов достигает до 600 Вольт, что вынуждает применять специальные меры защиты от перенапряжений. Сделать это удается за счет применения в схеме шунтирующего конденсатора, позволяющего сразу же после пробоя «срывать» резонанс и переводить лампу в рабочее состояние с постоянным свечением. Его прерывание возможно только после срабатывания выключателя, установленного в самом осветительном приборе.

Порядок восстановления и необходимость в ремонте

Паз между верхней и нижней частью корпуса

При возникновении неисправностей в энергосберегающей лампочке следует разобрать ее на составные части. Для этого придется проделать следующие операции:

  1. Отсоединить две сборные половинки, а затем снять колбу.
  2. Посредством омметра, заряженного свежей батарейкой, «прозвонить» обе спирали накала на предмет отсутствия в них обрыва.

    Штыри, к которым прикручены провода

  3. При его обнаружении можно попытаться использовать хотя бы одну из них.
  4. Для этого необходимо перемкнуть сгоревшую ветвь посредством резистора номиналом 22 Ома и мощностью порядка 1-2 Ватта.

При проведении этой операции потребуется демонтировать шунтирующий спираль диод, если он есть в схеме.

Все эти действия справедливы для схем энергосберегающих ламп на 20 Вт, не более.

При перегорании спиралей в осветительных изделиях мощностью свыше 30 Ватт с большой вероятностью выйдет из строя ключевой транзистор. Для восстановления работоспособности схемы следует заменить их новыми деталями. В единичном случае ремонт изделия, стоящего копейки, не имеет смысла – гораздо проще купить новый балласт.

Опасность ЛЛ и рекомендации по использованию

Наличие ультрафиолетового компонента в излучении энергосберегающей лампы опасно для здоровья человека. Это отрицательно сказывается на состоянии большинства жизненно важных органов:

  • воздействие УФ излучения вредно для кожи и приводит к ее раннему старению;
  • возможны такие нарушения, как аллергия, экзема и псориаз;
  • нередко ультрафиолет вызывает приступы эпилепсии, мигрени, а также ухудшает общее состояние организма.

Сила опасного излучения зависит от места установки ЛЛ и расстояния до облучаемого объекта. В связи с этим их не рекомендуется использовать в светильниках, устанавливаемых на стол или навешиваемых на стены. Это тем более важно, если принимать во внимание опасность воздействия излучения на зрение человека.

Образцом практически безопасного излучателя является лампа ЛБО О8М 36 Н с электрической схемой которой можно ознакомиться в любом справочнике. При своевременном принятии защитных мер организационного характера эксплуатация энергосберегающих излучателей, как правило, не вызывает особых затруднений.

СХЕМА ЭНЕРГОСБЕРЕГАЮЩЕЙ ЛАМПЫ

СХЕМА ЭНЕРГОСБЕРЕГАЮЩЕЙ ЛАМПЫ

     Энергосберегающие лампы с цоколем, аналогичным обычной лампе накаливания, успели стать довольно популярными. Но несмотря на рекламные характеристики долговечности, выходы из строя этих ламп происходят часто. Разборка корпуса КЛЛ проводится с помощью плоской отвертки, которой проводят постепенно отжимая защелки по периметру. В цоколе лампы установлена плата электронного блока, которая соединена проводами с баллоном лампы с одной стороны и двумя проводами с цоколем с дрогой стороны. 

ПЛАТА ЭНЕРГОСБЕРЕГАЮЩЕЙ ЛАМПЫ
     Прежде всего при ремонте необходимо проверить целостность нитей лампы, сопротивление нитей должно быть 10-15 Ом. Ещё одной типичиной неисправностью является выход из строя транзисторов генератора ИП. Если наблюдается мерцание лампы, скорее всего имеется пробой высоковольтного конденсатора, включенного между нитями накала лампы.

СХЕМА КЛЛ

СХЕМА ЛЮМИНИСЦЕНТНОЙ ЛАМПЫ

     Здесь приводится сборник схем энергосберегающих ламп различных моделей и производителей. В принципе все эти схемы не сильно отличаются друг от друга и подходят к абсолютному большинству энергосберегающих ламп. 

СХЕМА ЛАМПЫ PHILIPS

     В архиве представлен сборник схем энергосберегающих ламп таких моделей:

  • — Схема энергосберегающей лампы LUXAR;
  • — Схема энергосберегающей лампы Bigluz;
  • — Схема энергосберегающей лампы Luxtek;
  • — Схема энергосберегающей лампы BrownieX;
  • — Схема энергосберегающей лампы Isotronic;
  • — Схема энергосберегающей лампы Polaris;
  • — Схема энергосберегающей лампы Maway;
  • — Схема энергосберегающей лампы Philips.

     Если причиной выхода из строя лампы является перегорание нитей подогрева стеклянной колбы, такую люминецентную лампу можно питать постоянным током, а рабочий преобразователь стоит использовать для питания обычных длинных ламп дневного света. Если причиной отказа энергосберегающей лампы является именно плата – с помощью данных схем починить её будет не проблема. Ну а когда от лампы остался только корпус с патроном — остаётся лишь переделать её в светодиодную.

     ФОРУМ по энергосберегающим люминесцентным лампам.

   Бытовая техника

Изготовление светодиодной лампы из негодной энергосберегающей

РадиоКот >Лаборатория >Радиолюбительские технологии >

Изготовление светодиодной лампы из негодной энергосберегающей

           Бум люминесцентных энергосберегающих ламп постепенно подходит к своему завершению. На смену им уже пришли светодиодные лампы, обладающие неоспоримыми преимуществами: лучшая экономичность, моментальный выход в рабочий режим, большой срок службы, они не содержат паров ртути и не излучают ультрафиолет после выгорания люминофора внутри колбы. Единственная заминка – это пока ещё высокая стоимость светодиодных ламп. Но если имеется вышедшая из строя люминесцентная энергосберегающая лампа, то её можно легко переделать в светодиодную, используя приведенные ниже способы.

            Сначала небольшое предисловие.

            Приобретённые несколько лет назад энергосберегающие лампы фирмы ECOLIGHT довольно таки быстро стали выходить из строя. Сначала перегорела нить накала в колбе одной лампы, но эта неисправность была оперативно устранена путём установки перемычки на печатной плате параллельно оборванной нити накала. Лампа замечательно зажигалась и от оставшейся целой нити накала. Затем та же участь постигла вторую лампу. После ремонта, поработав ещё где-то с полгода, перегорели и оставшиеся нити накала сначала в одной лампе, а через месяц и в другой. Связываться с люминесцентными лампами больше не захотелось, и возникла мысль о переделке вышедших из строя ламп в светодиодные.

            Первая лампа имела мощность 18 Вт и довольно широкий корпус диаметром 55 мм, что натолкнуло на мысль установить в нём несколько десятков ультраярких белых светодиодов с рабочим током 20 мА, включив их в сеть последовательно через диодный мост, а в качестве гасящего балласта использовать конденсатор. В результате получилась схема, показанная на рисунке ниже:

 

            Всего было использовано 40 светодиодов HL-654h345WC ø4.8 мм с яркостью 1,5 Cd и углом 140°. Схема собрана на двух печатных платах из одностороннего фольгированного стеклотекстолита:

 

            Между собой платы скреплены при помощи одной стойки по центру. Вот что получилось в итоге:

 

            Субъективно яркость свечения этой лампы оказалась примерно такая же, как и у 30-ваттной лампы накаливания, а потребляемая мощность – всего 1,1 Вт:

 

            Оттенок лампы по сравнению с лампой накаливания получился намного холоднее.

           Что интересно, однотипные и одинаковые по яркости светодиоды тёплого и холодного оттенка, имеющиеся в продаже, отличаются по цене в 4 раза, но даже применённые светодиоды тёплого свечения (более дорогие) по сравнению с лампой накаливания имеют синеватый оттенок. Что касается получившейся стоимости изготовленной светодиодной лампы, то она оказалась на уровне готовой покупной с аналогичным количеством светодиодов. Правда неизвестно, есть ли в этих готовых лампах на 220 В выпрямитель со сглаживающим конденсатором. Скорее всего, нет, ведь проще и дешевле соединить последовательно пары встречно включённых светодиодов и добавить балластный конденсатор. И пусть себе мигает лампа с удвоенной частотой сети, ведь китайскому производителю нет никакого дела до зрения потребителя.

 

            Учитывая довольно высокую стоимость сорока светодиодов (0.125$ * 40 = 5$), для переделки второй лампы мощностью 9 Вт в корпусе диаметром 38,5 мм

 

           было решено использовать один мощный трёхваттный светодиод. Выбор пал на EDEX-3LA1-E1 стоимостью 1.875$, имеющий следующие характеристики:

           цветовая температура………………………….3200 К;

           световой поток (при токе 700 мА)…………..130 лм;

           угол свечения…………………………………….135°;

           рабочий ток………………………………………700 мА;

           напряжение……………………………………….4 В.

           К этим светодиодам в продаже имеются готовые радиаторы “STAR” стоимостью 0.156$:

 

 

           Чтобы получить ток величиной до 700мА для запитки такого мощного светодиода было решено использовать уже имеющийся преобразователь в перегоревшей люминесцентной лампе. Замкнув все выводы колбы лампы и намотав на имеющийся на плате дроссель дополнительную обмотку, такой преобразователь можно превратить  источник питания с минимальными затратами. По сути, из лампы получается готовый электронный трансформатор, необходимо только обеспечить стабилизированный ток для питания светодиода.

           Вот схема энергосберегающей лампы, срисованная прямо с платы:

 

           Для переделки её в электронный трансформатор достаточно выпаять колбу, замкнуть между собой точки 2 и 4 платы и намотать дополнительную обмотку на дроссель L2. К дополнительной обмотке подключается выпрямитель с фильтром.

           Для стабилизации тока через светодиод первоначально был опробован способ, предложенный в [1]. Суть его заключается в намотке дополнительной обмотки на управляющий трансформатор T1 и шунтировании её открывающимися полевыми транзисторами для срыва колебаний преобразователя при превышении выходного напряжения (тока). Однако ничего путного из этого не вышло. Как показал анализ работы приведенной выше схемы, для восстановления колебаний преобразователя необходимо время около 3 мс для заряда конденсатора C3 до напряжения пробоя динистора DB3 (30 В). Даже при очень кратковременном шунтировании дополнительной обмотки на Т1 время повторного запуска преобразователя составляло около 3 мс. В результате регулировочная характеристика преобразователя получается неполной. При попытке лишь “слегка” уменьшить выходное напряжение, к примеру до 90…95 %, на выходе фильтра выпрямителя (с дополнительной силовой обмотки дросселя) вместо постоянного напряжения сразу появлялись короткие положительные импульсы с относительно длительными провалами 3 мс. Т.е. пределы регулирования были возможны лишь на начальном небольшом участке работы преобразователя.

           Поэтому было применено другое схемное решение, показанное на рисунке ниже:

 

           Дополнительная схема представляет собой импульсный стабилизатор тока, собранный без применения специализированных микросхем на широко распространённой дешевой элементной базе. На дроссель лампы наматывается дополнительная обмотка, напряжение с которой подаётся на диодный мост VD1…VD4 с конденсаторами фильтра C1, C3. Использование мостовой схемы вызвано сложностью намотки на дроссель L2 вдвое большого числа витков с отводом от середины ввиду ограниченного места.

           На микросхеме DA1 выполнен стабилизатор напряжения +2,5 В для питания компаратора DA2 и резистивного формирователя опорного напряжения R5, R6. Резистор R7 сопротивлением 0,1 Ом выполняет функцию датчика тока. На транзисторах VT1, VT2 собран силовой ключ. В исходном состоянии при подаче питания, пока ток через светодиод HL1 ещё не протекает, на выходе компаратора DA2 высокий уровень, VT1 закрыт а VT2 открыт через R4. Через дроссель L1 в нагрузку протекает нарастающий ток. При превышении на инвертирующем входе компаратора DA2 опорного напряжения последний переключается в состояние с низким уровнем на выходе. VT1 резко открывается и шунтирует переход з-и VT2, закрывая последний и вызывая ток самоиндукции в цепи VD5, L1, C4, C5, HL1, R7. После уменьшения напряжения на инвертирующем входе компаратора DA2 по мере разряда C4, C5, последний опять переходит в состояние с высоким уровнем на выходе. VT1 закрывается, VT2 открывается и весь процесс повторяется заново. Частота колебаний при входном напряжении 7 В составляет 50…70 кГц. Измеренный КПД импульсного стабилизатора тока составил 86%.

           Величина тока через светодиод выбрана равной 0,6 А для более щадящего режима работы и меньшего его нагрева.

 

               Процедура переделки энергосберегающей лампы

           Вскрывается корпус лампы при помощи плоской отвёртки (крепление на защёлках). Верхняя часть с колбой осторожно утилизируется (Внимание! В колбе пары ртути! При повреждении колбы необходимо провести обработку окружающих контактировавших предметов раствором марганцовки). Из платы конденсатор C5 можно выпаять, т.к. в работе он не участвует. Закорачиваются точки 2 и 4 на плате. Выпаивается дроссель L2 и проводом МГТФ-0,1 наматывается дополнительная обмотка из 14 витков (практически до полного заполнения зазора). Лучше использовать именно МГТФ для хорошей гальванической развязки.

 

           Дроссель впаивается на место. Не помешает проверить ESR-метром электролит C3. При возможности его лучше заменить на новый ёмкостью 4,7…10 мкФ х 400 В (105°С). Это уменьшит пульсации частотой 100 Гц на выходе преобразователя.

           После этого изготавливается плата из одностороннего фольгированного стеклотекстолита:

 

 

           Для изготовления дросселя L1 использован готовый ДП2-0,1 на 100 мкГн. С него ножом снята штатная обмотка и намотана новая проводом ПЭВ2 ø0,3 мм в равномерно по всей длине сердечника в 3 слоя. Индуктивность дросселя 51 мкГн. Можно использовать и покупной дроссель подходящих габаритов с индуктивностью 47 мкГн и рассчитанный на ток не менее 1,5…2 А.

           Транзистор VT2 IRLML6401 можно попробовать заменить на IRLML6402.

           Диоды VD1…VD4 SS14 можно заменить на любые подходящие SMD-диоды Шоттки, рассчитанные на ток не менее 1А и обратное напряжение 30…40В, например SM5818, SM5819.

           Диод VD5 SS24 (2А, 40В) заменим на SS22, 10BQ015 или аналогичные.

           Как было сказано выше, светодиод распаивается на готовый радиатор “STAR”, который в свою очередь устанавливается на более массивный радиатор. В данном случае использован радиатор со старой материнской платы. С отрезанными “ушками” крепления его габариты 37,5 х 37,5 х 6 мм. Радиатор крепится к дополнительной плате на 3-х стойках М3х15. Сама плата крепится к верхней части корпуса лампы несколькими витками изоленты. Между штатной и дополнительной платами необходимо проложить изоляционную прокладку, вырезанную, например, из нефольгированного стеклотекстолита.

 

            Первое включение доработанной лампы желательно производить с нагрузкой в виде 5-ваттного резистора сопротивлением 5…6 Ом с последовательно включённым амперметром. К сети 220 В лампу безопаснее включать через обычную лампочку накаливания на 40…60 Вт. В нормальном режиме работы её спираль светиться не должна. На катоде VD5 должны присутствовать прямоугольные импульсы частотой 50…70 кГц. Напряжение на C3 должно быть 5…8 В, ток через нагрузку 0,6 А. Более точно величину тока можно выставить подбором сопротивления резистора R5. После этого можно подключать светодиод.

            Субъективно яркость свечения доработанной таким образом лампы соответствует лампе накаливания мощностью 30 Вт. Оттенок тёплый, но по сравнению с лампой накаливания немного холоднее. Измеренная потребляемая мощность составила 3,3 Вт:

 

            Себестоимость второго варианта светодиодной лампы составила около 3.2$.

 

            Литература:

1) Как стабилизировать электронный трансформатор. А.Е.Шуфотинский. Радиоаматор №1/2010.


Файлы:
Datasheet на светодиод
Плата 1 в Layout
Плата 2 в Layout



Все вопросы в
Форум.


Как вам эта статья?

Заработало ли это устройство у вас?

Ремонт энергосберегающих ламп своими руками: инструкция и советы

На сегодняшний день ассортимент энергосберегающих светильников очень большой. Но лишь лампа дневного света отличается своей удивительной практичностью и экономностью в потреблении электроэнергии. Ремонт энергосберегающих ламп своими руками возможен, если разобраться в принципе её работы.

Работа осветительного устройства

Люминесцентный светильник (ЛС) – это газоразрядный источник света, в котором, благодаря взаимодействию нитей накаливания и ртути образуется электрический разряд, создающий ультрафиолетовое свечение, которое с помощью люминофора преобразуется в видимый свет. Стоит отметить, что ток, который проходит по нитям, равномерно распределяется по контурам лампы, способствуя шунтированию, уменьшая накал, поэтому данные устройства не нагреваются, что является одним из преимуществ.
Существуют следующие виды люминесцентных осветительных устройств:
1. ЛС с дросселями и стартерами.
Люминесцентные светильники по массовости использования пребывают на пике своей популярности. Они способны экономит до 50% электроэнергии, в отличие от обычных светильников. Для максимального увеличения срока эксплуатационного периода и бесперебойной работы устройства, необходимо использовать такие элементы как стартер и дроссель.

Стартер, аналогично тому, который используют для автомобилей, играет роль пускового механизма. Он нужен, чтобы лампа начала работать. Зачастую, напряжение в момент зажигания значительно выше, чем в сети, поэтому необходим стабилизатор. Также, стартером замыкается и размыкается электронная цепь сети лампы.

Дроссель играет роль трансформатора и способен стабилизировать работу светильника. Он предохраняет люминесцентною лампу от перепадов напряжения и перегревов.
Данный вид характерен и неудобен тем, что при запуске они начинают мигать (данный эффект даёт стартер, он пропускает ток и постепенно разжаривает нити накаливания) первые 2-3 секунды бьют по глазам резкими вспышками света, а потом разжигаются и горят нормально.
2. Люминесцентные лампы без стартера с баланстником.
В отличии от предыдущего вида, в таких устройствах отсутствует стартер. Это позволяет избежать мерцания светильника в первые 2-3 секунды, а запустить его сразу же после включения. Рассматривая схему, можно заметить, что вместо стартера здесь стоит баланстник. Данный элемент относится к пускорегулирующим устройствам, которые ограничивают ток. Но если сравнивать баланстник и стартер, то последний лучше.

3. Энергосберегающие лампы.
Не редко обычные ЛС путают с энергосберегающими, а это не совсем так. Конечно, если сравнивать с лампами накаливания, то любая люминесцентная в разы превосходит их по сроку службы. Но если выбирать между разновидностями ЛС, то среди них есть лидеры продаж – энергосберегающие модели.

Отличительной особенностью этих светильников является их форма, диаметр трубки и пониженное содержание ртути. Благодаря тому, что колба светильника изогнута (за частую она имеет форму спирали), а диаметр – уменьшен, это позволяет экономить электроэнергию на розжиг нитей накаливания, но при этом освещать достаточно большую площадь.
Во всех видах ламп современного типа используют новые технологии, которые обеспечивают надежную обратную связь инвертора, что даёт возможность контролировать силу тока. Инверторы используются в ЭПРА (электронный пускорегулирующий аппарат), что гарантирует их большую долговечность, экономичность и практичность.

Схема энергосберегающих ламп

В зависимости от того, какая именно ЛС, существуют разные виды схем. Рассмотрим распространённую из них для энергосберегающих ламп, чтобы разобраться с её внутренними составляющими.

Рассмотрев рисунок, видно что цепи питания включают: L2 (помехозащищающий дроссель), F1 (предохранитель), четырёх диодных мостов 1N4007 и C4 (фильтрующий конденсатор). В свою очередь схема запуска включает следующие элементы: динистора, R6, D1 и C2, в этой же схеме D2, D3, R1 и R3 являются защитой сети. В некоторых лампах эти диоды не установлены.
Как только светильник включают, динистор, R6 и C2 пускают импульс, который подаётся на транзистор Q2, что позволяет его открыть. После этого, диод D1 блокирует эту часть. Далее транзисторы возбуждают TR1 (трансформатор), и таким образом на нити поступает напряжение. Трубка на резонансной частоте загорается и в этот момент напряжение на С3 (конденсаторе) достигает порядка 700 В. После того, как газ ионизируется, С3 (конденсатор) практически шунтируется.
Рассмотрев данную схему, можно разобраться с принципом работы ЛС и его составляющими.

Типичные поломки

Существуют два варианта, при которых лампа ломается:

Ремонт энергосберегающих ламп своими руками возможен, однако многие не рискуют проводить его, предпочитая попросту заменить сломавшееся оборудование. В то же время ремонтировать подобные светильники достаточно легко, главное – определиться с источником проблемы. Рассмотрим наиболее частые поломки.

Тип поломкиПричинаСпособ устранения
Постоянное морганиеПо тому, как мигает лампа, определяется  характер поломи или степень ее износа.

Первой причиной поломки может быть разгерметизация корпуса, что позволяет выходить из основной колбы химический газ, который и дает осветительный эффект.

Второй причиной такой поломки может быть перегоранием электродов, которые находятся внутри ламп.

Третий вариант, если после включения лампочка загорается, но при этом продолжает мерцать, чаще неисправность заключается неисправности таких составляющих компонентов как дроссель или стартер.

Четвёртым вариантом, по которому энергосберегающая лампа мигает после включения может быть даже простые перепады напряжения в сети. Несмотря на то, что практически каждая настольная или обычная лампа имеет защиту, бывают случаи, когда ее недостаточно.

Пятым вариантом может быть случай, когда греется проводка.

 

В большинстве случаев оптимальным вариантом является полная замена лампы.

Но на настольной лампе мощностью в 11 ватт устранить неполадки легко, когда она сразу же видна, тогда нужно заменить внутреннюю деталь и всё вернётся в норму.

Если же лампа горит одна за одной, обратите  внимание на дросселя, на которых мог произойти обрыв проводки. Стоит лишь восстановить проводку или заменить необходимый компонент, после чего проблема будет решена. Однако для этого следует обратить внимание, на такой фактор, как схема энергосберегающей лампы, которая рассматривалась выше.

Если допустить ошибку, то возникают  серьезные проблемы, решение которых потребует много времени и сил. Лучше проверять проводку на каждом этапе работ тестером. В таком случае настольную лампу 11 ватт легко проверить и ремонтировать.

НагарОсновным признаком износа или поломки может служить нагар, который вызван выгоранием спиралейПри наличии данного признака, восстановлению скорее всего лампа не будет подлежать. В таком случае в светильнике следует заменить лампу и он по-прежнему будет нормально функционировать.

 

Перегорание нитей накаливанияОсновные причины неполадок осветительных приборов:

—                   проблемы в пускорегулирующем аппарате;

—                   старение лампы;

—                   износ основных пускорегулирующих соединений.

 

Нити сложно спаять самому в домашних условиях, легче заменить данный компонент лампы.

 

При первом запуске светильника может произойти проблема разрыва цепи в стартерЭто связано с тем, что когда происходит прохождение тока в светильнике, оно является недостаточным для нормального всплеска в ионизации молекул газа. Эта проблема возникает при малом напряжении в сети.В этом случае стоит направить свои усилия по нормализации напряжения в системе распределения электроэнергии.

 

После включения лампы, автомат полностью выбивает всю проводку.Причина, кроется в том, что пробит конденсатор,  который подключен  параллельно сети.Такой конденсатор нужно тут же заменить, заодно проверив остальные компоненты с помощью омметра.
Лампа не включаетсяПричиной того, что лампа не включается может быть обрыв дросселя или собственно поломка самой лампы.

 

Для начала — проверить непосредственно дроссель омметром. В случае, когда обрыв не был обнаружен — заменить стартер, и попробовать включить лампу. Если предыдущий вариант не помог, следует проверить саму лампу дневного света. Внимание стоит уделить на нити накаливания. В случае перегорания нити —  закоротить ее. Однако не стоит повторять этот процесс сразу с двумя нитями, ведь в таком случае перегорит дроссель.

Также данная проблема может свидетельствовать об неисправности в светильнике при ее старении. Это неисправности в проводке светильника, в патронах подключения ламп и стартера. В этом случае надо рассмотреть вопрос о целесообразности ремонта светильника.

Советы перед началом ремонта

Совет 1. Перед тем как приступить к осмотру светильника на наличие дефектов и поломок следует подготовить для себя рабочее место и взять инструменты: набор отвёрток, изолента, кусачки, мультиметр (тестер), он измеряет напряжение, тока и сопротивление, а некоторые виды проверяют и конденсаторы, диоды и транзисторы. Данный прибор позволяет проверить дроссель, стартер и непосредственно саму колбу лампы. В большинстве случаев причина кроется в этих элементах, однако возможен вариант с перегоранием вольфрамовой нити накалывания, но это бывает реже. Если таких инструментов нет, то их легко можно купить в любом строительном магазине.

Совет 2. Следует изучить модель лампы и разобраться в её структуре, так как из-за неосведомлённости в этом вопросе можно не вскрыть светильник, а попросту сломать его. На цоколе каждого ЛС указан производитель и модель, поэтому можно легко узнать эту информацию.

Совет 3. Обязательно придерживаться техники безопасности, так как ЛС имеет незначительное количество ртути. Поэтому всё следует делать предельно осторожно.

Отремонтировать балансника своими руками

Отремонтировать лампу своими руками

Ремонт ЛС в домашних условиях предполагает наличие минимальных знаний в электроприборах. Схема энергосберегающей лампы главное условие, при устранении поломок осветительного прибора самостоятельно.
Выше было перечислено основные причины имеющихся неисправностей в лампах дневного света. После того как причина была определена нужно приступать к ее исправлению.
1. Первое и самое главное – обесточьте светильник. Вскрываем лампу. Разбираем корпус и смотрим на внешние дефекты и неисправности, которые заметны невооружённым взглядом. Открывается лампа отверткой, после чего выясняется основная причина неисправности.

2. После вскрытия необходимо разглядеть компоненты лампы.

3. Осматриваем плату и замечаем на ней видимые повреждения, они и могут является причиной поломки.

Как видно на рисунке, стрелочками показаны места пригорания платы. Это означает, что где-то происходит замыкание схемы при включении лампы.
Если же плата в порядке продолжаем осмотр других деталей.
4. Следующим проверяем предохранитель. Найти его не составит труда, одним концом он припаян к плате, а вторым к цоколю. Если он повреждён или контакты не припайные, то причина поломки в предохранителе.
5. Следующий на очереди проверки – резистор. Для определения неисправности в этой части лампы, необходимо воспользоваться мультиметром и провести им замер. В случае нормальной работоспособности резистора, мультиметр покажет сопротивление 10 Ом, в не работающем случае – покажет единицу.

6. Следующим на очереди осмотра – нити накаливания.

Если нити отсоединены от платы или же на них налёт (следы горения), то вся проблема не работоспособности лампы кроется именно здесь.
После того, как поломка была определена, следует её устранить. Самостоятельно разбирать каждую запчасть и пробовать её паять или что-то делать – не вариант, так как на это пойдёт много усилий, а результата может не быть вовсе. К примеру, если проблема кроется в нитях накаливания, то следует заменить данную часть светильника, так как спаивать самостоятельно или ремонтировать их – дело не из лёгких и даже опытный специалист не всегда может справиться с данной задачей. Поэтому не стоит тратить на это время.
Все составляющие ЛС можно приобрести в любом специализированном строительном магазине. Если поломка была определена, а точной модели той детали, которая вышла из строя узнать не удалось из-за нагара или других причин, то квалифицированные сотрудники магазина помогут подобрать именно то, что нужно.

Вывод один – после того как причина была выявлена, стоит заменить неисправную часть, и лампа будет снова радовать вас своим ярким светом.

Схема энергосберегающей лампы и основные характеристики ламп

разборка лампы

Существует стандартная схема, энергосберегающая лампа не является исключением, поэтому для правильного выбора осветительного прибора и проведения самостоятельных работ нужно знать особенности устройства.

Об эксплуатационных характеристиках энергосберегающих ламп читайте далее в статье.

Мощность

На любой лампе в обязательном порядке указываются показатели мощности, которые потребляются осветительным прибором в процессе работы. Достаточно часто на упаковке с энергосберегающей лампой производители отображают данные об эквивалентной мощности лампы накаливания, которой обеспечивается аналогичный уровень светового потока. Мощность источника света указывается в Вт или Ваттах.

Следует помнить, что хорошо зарекомендовавшие себя производители выпускают продукцию, которая в четыре или пять раз ниже по мощности, чем традиционные лампа накаливания.

Основные параметры

лампы экономичныеВсе энергосберегающие лампы характеризуются целым рядом важных параметров, которые представлены:

  • цветностью или показателями температуры свечения;
  • мощностью или расходом электроэнергии в процессе эксплуатации;
  • световым потоком или уровнем освещенности, который обеспечивает источник света;
  • цокольной частью или способом вкручивания лампы в патрон.

Энергосберегающие осветительные приборы, предназначенные для бытового использования, выпускаются в трёх основных вариантах:

  • лампы, обеспечивающие теплое, желтоватое свечение, с маркировкой 2700 К;
  • лампы, обеспечивающие холодное, голубоватое свечение, с маркировкой 4200 К;
  • лампы, обеспечивающие белое, дневное свечение, с маркировкой 6400 К.

Стандартные показатели соотношения уровня мощности и типа светового потока указываются в маркировке. Первая цифра маркировки является обозначением цветовой передачи, а последние две цифры – цветовая температура осветительного энергосберегающего прибора:

  • лампы с тепло-белым свечением – 827=2700K, 830=3000K и 930=3000K;
  • лампы с нейтрально-белым свечением – 840=4000K и 940=4000K;
  • лампы с белым дневным светом – 860=6000K, 950=5000K и 965=6500K.

Как показывает практика, при равных показателях мощности, средний срок эксплуатации энергосберегающих осветительных приборов примерно в восемь раз превышает срок службы традиционной лампы накаливания.

Основные эксплуатационные характеристики

При выборе осветительного прибора обязательно нужно обращать внимание не только на показатели мощности, но и другие немаловажные характеристики, представленные:

лампа перегорела

  • Видом цокольной части. Современные энергосберегающие лампочки выпускаются практически с любыми видами цоколя, но наиболее востребованы «Е14», «Е27», «GU10», «G9», «GU5.3», «G4» и «GU4».
  • Сроком эксплуатации энергосберегающей лампы, который измеряется в часах. Данный показатель является довольно приблизительным. Он отображает, сколько часов осветительный прибор может теоретически сохранять свое рабочее состояние в условиях стабильного напряжения электрической сети. Однако, значительные перепады напряжения, а также частые включения и выключения способны крайне негативно сказаться на сроке службы энергосберегающей лампы.
  • Количеством циклов включения и выключения осветительного прибора. В момент включения, а особенно выключения, лампа испытывает на себе так называемый «бросок» электрического тока, что оказывает сильное влияние на средний срок эксплуатации источника света. Как правило, производители указывают средний срок службы лампы такого типа в 30 тысяч циклов.
  • Возможностью осуществляться регулирование уровня яркости. Наиболее современные или «продвинутые» модели энергосберегающих светильников снабжены специальной и очень удобной функцией, позволяющей легко регулировать показатели яркости посредством стандартных диммеров.
  • Показателями содержания ртутных паров внутри колбы энергосберегающей лампы. Практически любая люминесцентная лампочка характеризуется содержанием ртутных паров в разном количестве, поэтому такие осветительные приборы нуждаются в грамотном процессе утилизации после выхода из строя.

Не менее важным является такой критерий, как габаритные размеры осветительного прибора, что позволяет правильно самостоятельно подобрать энергосберегающий источник света для светильника любого типа.

Схема сберегающей лампочки

Современные энергосберегающие лампочки включают в себя основные узлы, которые представлены:

  • встроенным электронным балластом;
  • колбой, наполненной газообразным веществом;
  • цокольной частью.

Питающими цепями приводятся в действие элементы, представленные дросселем, фильтрующим конденсатором, предохранителем и диодным мостом.

лампа энергосберегающая - схема

Схема энергосберегающей лампы на 20 Вт

Запуск обеспечивается динистором. На сегодняшний день производителями выпускаются осветительные приборы, отличающиеся формой, размерами, мощностью и цокольной частью.

Энергосберегающие лампы LUXAR

Особой популярностью пользуются светодиодные энергосберегающие панели LUXAR, которые обладают ультратонким современным дизайном и стильным внешним видом. В условиях низкого потребления электрической энергии, осветительный прибор формирует достаточно мощный световой поток. Производитель гарантирует абсолютно равномерное и комфортное свечение, исключающее появление какой-либо точечности.

как выбрать энергосберегающую лампочкуЭнергосберегающая лампа – современный источник электроэнергии. Как выбрать энергосберегающую лампочку – все о плюсах и минусах прибора читайте на нашем сайте.

О том, как правильно выбрать счетчик электроэнергии, читайте далее.

Казалось бы, что может быть проще, чем собрать люстру? Однако современные люстры бывает не так-то просто собрать. Порядок сборки и подключение описаны в этой теме.

Bigluz

В компактных люминесцентных лампочках Bigluz 20W используется классическая проводка с незначительными изменениями.

лампа Bigluz

Bigluz 20W

Luxtek

Очень востребованы энергосберегающие лампочки Luхtеk Sрirаl с показателями мощность в 22W и 30W и цокольной частью Е27. Температура свечения составляет 6400К.

BrownieX

Энергосберегающая лампа, характеризующаяся упрощенным типом проводки и большой схематичной схожестью с лампой Isotronic

Isotronic

Особенно востребованы энергосберегающие лампы трубчатые, «шар», «свеча» и рефлектор с цокольной частью Е27 и Е14, а также с разными показателями мощности.

лампы Isotronic

Схема энергосберегающей лампы Isotronic 11W

Polaris

Доступный по стоимости и очень надежный вариант, который выпускается с различными показателями мощности и разной цокольной частью.

Maway

Доступный по стоимости и достаточно надежный вариант, который выпускается с различными показателями мощности и разной цокольной частью.

Maway 11W

Схема энергосберегающей лампы Maway 11W

Philips

Под данной маркой выпускаются компактные люминесцентные лампы, энергосберегающая лампа с инновационной трубкой, люминесцентная энергосберегающая лампа кольцевая, а также другие современные и качественные варианты.

лампы дневного светаЭкономичные лампы все больше заменяют лампы накаливания. Лампы дневного освещения экономичны в использовании и дают правильный свет, который не вредит зрению. В статье представлена подробная информация о технических характеристиках таких лампочек.

Типы поломок люстр с пультом дистанционного управления описаны в этом обзоре.

Питание энергосберегающих ламп

Электронные блоки стандартных современных энергосберегающих лампочек включают в себя несколько основных элементов, представленных:

  • высоковольтным электролитическим конденсатором;
  • транзисторами со средними показателями мощности;
  • диодами;
  • дросселями;
  • конденсаторами высоковольтного типа;
  • высокочастотным трансформатором.

При выходе осветительного прибора из строя, все вышеперечисленные электронные элементы проверяются специальным прибором мультиметром, после чего осуществляется их замена.

Видео на тему

схема, почему моргает, разбилась, утилизация

Переход на энергосберегающие лампочки позволяет экономить электроэнергию на невиданном доселе уровне. Реклама утверждает и убеждает, что современная лампа энергосберегающая потребляет в 5, 7 и даже 10 раз меньше энергии, чем традиционная лампочка с нитью накаливания при равном световом потоке. Получается, что при правильном планировании системы освещения экономки окупаются в считанные месяцы работы. Но не все так гладко и просто, как говорится в рекламных проспектах.

Энергосберегающие лампочки

Энергосберегающие лампочки

Какие они, энергосберегающие лампы

Основная борьба развернулась между лампами накаливания и энергосберегающими светильниками люминесцентного типа. Галогенки и светодиодные лампочки из-за запредельно яркого света и высокой температуры излучения применяются лишь в условиях, когда прямой световой поток прямо не направлен на глаза человека. Чаще всего это неосновное освещение в доме:

  • Подсветка территории в вечернее и ночное время, при хороших энергосберегающих характеристиках плотность светового потока очень высокая, но она «размазана» по огромной территории, поэтому опасности для органов зрения практически нет;
  • Точечные светильники потолочного и вмонтированного типа, большая часть светового потока попадает в глаза в отраженном потоке.

Все, кто сталкивался с работой за мониторами компьютеров, могут подтвердить, что старые экраны, в которых матрица подсвечивалась люминесцентной лампой, выглядели более тусклыми, чем более современные, со светодиодной подсветкой. Тем не менее, за новым OLED экраном человек воспринимает изображение четче и ярче, но глаза устают намного быстрее из-за высокой температуры и насыщенности изображения.

Энергосберегающие лампочки

Энергосберегающие лампочки

Поэтому на сегодняшний день нишу новых энергосберегающих лампочек занимают преимущественно люминесцентные источники света. На свечение лампочки — экономки можно смотреть неограниченное время, тогда как разглядывание светодиода или галогеновой лампы необратимо ведет к появлению «зайчиков» в глазах.

Выгодно или невыгодно использование энергосберегающих ламп

Для организации наружного освещения, больших территорий и пространств, боксов и ангаров светодиодные или галогеновые лампочки еще долго останутся вне конкуренции. Мало того, что галогенки вдвое, а светодиоды в десять раз более экономичны в потреблении энергии, в сравнении с самыми современными энергосберегающими лампами накаливания.

Энергосберегающие лампочкиЭнергосберегающие лампочки

Ресурс энергосберегающей лампочки огромен, практически не выделяющий тепла светодиод работает 10-15 тыс. часов, галогеновая лампочка с диммером в состоянии отработать 6-7 тыс. часов. Но их свет не очень подходит для зрения человека, слишком утомляет и режет глаза, поэтому большая часть бытовых энергосберегающих ламп все же изготавливается в люминесцентном формате.

Энергосберегающие лампочки

Энергосберегающие лампочки

Казалось бы, экономическая выгода в приобретении и установке лампочек — экономок налицо, и можно ожидать, что в ближайшем будущем колбы с нитями накаливания просто исчезнут из обихода, не выдержав конкуренции со стороны более выгодных энергосберегающих источников света.

Энергосберегающие лампочкиЭнергосберегающие лампочки

Если просто сравнить ценовые, потребительские, технические характеристики энергосберегающих ламп и обычных лампочек, замысел рекламы становится более-менее понятным:

  • Потребление электроэнергии экономкой указывается на коробке, обычно это величина от 5 до 15 Вт, лампа с ниткой накаливания потребляет 60-100 Вт;
  • Производитель обязательно указывает цветовую температуру свечения. У люминесцентной лампочки это 3500оК для обычных моделей и 2900-3100оК для желтых адаптированных энергосберегающих вариантов;
  • Цена на классическую и энергосберегающую лампу отличается примерно в 5-7 раз, при равной яркости и цветовом фоне свечения.

Более важная характеристика – величина светового потока находится в пределах 660-1200 (Лм), хоть и указывается на коробке, но на практике она мало чем поможет в выборе.

При включении зрительно возникает ощущение, что энергосберегающая лампа выдает меньше света, чем модель с нитью накаливания. Подобный эффект проявляется в течение первых 10-15 минут непрерывной работы. После разогрева стекла, лампочки и газа экономка в яркости практически не уступает обычной лампе.

Энергосберегающие лампочкиЭнергосберегающие лампочки

Схема энергосберегающей лампы

Устройство экономки или энергосберегающей лампы не намного сложнее галогенки. Сделать люминесцентную лампочку в домашних условиях, конечно, не получится, но ее изготовление не требует специального высокотехнологического оборудования, чем эконом вариант разительно отличается от галогенок и светодиодных ламп. Поэтому стоимость изготовления всегда будет ниже, чем у светодиодных и галогеновых лампочек, хотя технологичность изделия способствует массовой подделке оригинальной или брендовой продукции.

Конструкция энергосберегающей лампочки состоит из нескольких базовых деталей:

  • Стеклянная трубка или колба, с нанесенным на внутреннюю поверхность специальным веществом – люминофором. Внутри лампочки закачан инертный газ и небольшое количество ртути, в пределах 5-10 мг. Один миллиграмм — это примерно 1/3000 часть от количества жидкого металла, запаянного в медицинском градуснике;
  • Электроды и стартерный блок. Даже в простейших моделях энергосберегающих ламп с грушевидной колбой установлено электронное стартерное устройство, обеспечивающее разогрев и запуск источника света;
  • Цокольная часть или контактные разъемы. Чаще всего для бытовых энергосберегающих лампочек используется винтовой патрон Е27 или двухштырьковый разъем.

Энергосберегающие лампочки

Энергосберегающие лампочки

Принцип работы люминесцентной лампочки хорошо известен из курса школьной физики. При включении экономки стартер выдает высокое напряжение на электроды, обеспечивающее разогрев и пробой межэлектродного промежутка. Переизлучение паров ртути заставляет светиться люминофор на стенках корпуса.

Энергосберегающие лампочкиЭнергосберегающие лампочки

К сведению! Энергосберегающая лампа выдает достаточно большое количество ультрафиолета, но плотность потока намного меньше, чем у солнечного света.

Светильник одновременно обеззараживает воздух в помещении, поэтому газоразрядные экономки могут быть использованы для подсветки комнатных и тепличных растений. Схема достаточно надежная, но стабильность работы энергосберегающей лампы в значительной степени зависит от качества изготовления корпуса, контактной и стартерной группы.

Корпуса и цоколи энергосберегающих ламп

Современные лампочки — экономки выпускаются в нескольких вариантах корпусов. Чаще всего это хорошо известные трубчатые люминесцентные светильники, используемые в потолочных конструкциях, лампы со спиралевидными и дугообразными формами стеклянной трубки.

Энергосберегающие лампочки

Энергосберегающие лампочки

Подавляющее большинство экономок выпускается с винтовым цоколем стандартного или уменьшенного размера. Не самый удобный вариант для лампочки газоразрядной схемы, но производителям энергосберегающих приборов еще приходится использовать патрон Е27, чтобы ускорить замену классических моделей с нитью накаливания новыми лампами.

Для настольных светильников выпускают малогабаритные низковольтные версии экономок в виде небольших трубок, «подков» и «спиралек», рассчитанных на напряжение 12-36 В. В таких моделях лампочек электрические контакты расположены рядом и разделены диэлектрической шайбой, для запуска используются специальные блоки питания.

Лампочки энергосберегающие, как выбрать

Из практики пользования энергосберегающими лампами известно, что наибольший срок службы остается за известными брендами или светильниками, сделанными по лицензии.

Энергосберегающие лампочки

Энергосберегающие лампочки

Галогенка выдает очень мощный поток света, поэтому простая замена лампы накаливания на галоген обернется обгоранием отражателей, патрона, иногда выходит из строя и плавится тонкая проводка. Преимуществом галогеновой лампочки является относительно простой способ регулировки яркости с помощью электронной платы.

Люминесцентные лампы, за редким исключением, не оборудуются приборами плавной регулировки яркости, но самые современные модели могут подключаться к диммерам и менять интенсивность ступенчато. Оптимальный уровень мощности экономки – 15 Вт, более мощные приборы часто выходят из строя, да яркости 5-10 Вт зачастую хватает только для освещения ванной комнаты или санузла.

Несмотря не некоторую архаичность, цоколь Е27 остается одним из наиболее востребованных. В случае если пропадает контакт, лампу всегда можно аккуратно довернуть в патроне, в ситуации, когда начинает барахлить лампочка на штырьковых контактах, устранить проблему сложнее и хлопотнее.

При желании можно выбрать энергосберегающую лампу с теплым, едва заметным желтым цветом потока. Стоит такая лампочка на 30-40% дороже обычной белой экономки, но она заметно комфортнее в восприятии человеческим глазом. Иногда проблему борьбы с белизной решают установкой кремовых плафонов и фильтров рассеянного света.

Почему моргает энергосберегающая лампочка

Многие, кто пользуется люминесцентными светильниками, обращали внимание, что энергосберегающая лампа моргает после выключения. Вещь неприятная, особенно если учесть, что количество запусков, а моргание и есть попытка стартера запустить люминесцентную лампочку, ограничено для экономки несколькими тысячами стартов. Срок эксплуатации в мигающем режиме сокращается на порядок.

Может так случиться, что экономка выйдет из строя раньше, чем несведущему человеку удастся разобраться, почему моргает энергосберегающая лампочка при выключенном выключателе.

Причин для появления эффекта может быть две:

  • Неисправный патрон или обрыв контакта на схеме внутри цоколя экономки;
  • При разомкнутом выключателе в цепи протекают слабые микротоки на уровне миллиампер.

Первый случай наиболее наглядный. Наличие непостоянного контакта в патроне приводит к тому, что лампа с треском загорается на несколько секунд и после разогрева гаснет, после чего цикл возобновляется. Чтобы исправить неисправность, нужно будет подогнуть язычок контакта в патроне или вскрыть цоколь энергосберегающей лампы и припаять отошедший провод.

Энергосберегающие лампочки

Энергосберегающие лампочки

Чтобы снять цокольную пробку с эконом-лампы, достаточно аккуратно отогнуть усики и стянуть металлический колпачок. Если следов вышедшего из строя балластного резистора нет, и цел дроссель, то можно смело паять контакты и ставить цоколь на место. По статистике, 85% выхода лампочек из строя связано с перегревом цоколя в патроне и расплавлением запаянного торца.

Стандартная ситуация с экономкой

Гораздо чаще эконом-лампа моргает из-за наличия в проводке микротоков, например, если в цепи установлен выключатель с подсветкой в виде неонки или светодиода. Схема такого выключателя скомпонована так, что в выключенном положении все равно микроток течет через энергосберегающую лампу и элемент подсветки. Величина тока очень небольшая, но ее достаточно, чтобы на долю секунды зарядить пусковой конденсатор стартерной схемы эконом-лампочки и зажечь ее на мгновение.

Энергосберегающие лампочкиЭнергосберегающие лампочки

Бороться с эффектом микротоков можно тремя способами:

  • Установить в люстру или подключить к светильнику дополнительную лампочку накаливания, которая будет разряжать емкость на стартерной плате люминесцентной «свечки»;
  • Впаять в патрон энергосберегающей лампочки параллельно контактам балластное сопротивление на 50 кОм и напряжение 450 В;
  • Вместо резистора установить конденсатор на 0,22-0,5 мкф и напряжением 600 В;
  • Удалить из выключателя светодиод или неонку.

Энергосберегающие лампочкиЭнергосберегающие лампочки

Разумеется, перечисленные способы устранения мигания лампочки работают только при условии исправной проводки и правильного подключения светильника.

Нестандартные случаи

Третий случай, почему моргает энергосберегающая лампочка при выключенном свете, касается непосредственно места, где расположен светильник. Причиной паразитных микротоков может быть неправильное подключение проводов. Например, если на выключатель заведена «нулевая» жила, а не «фаза». Для того чтобы в цепи появился микроток, достаточно отсыревания контактов светильника или излома изоляции. Лампочка загорается в ¼ накала, свечение можно увидеть только в темноте. В этом случае потребуется вмешательство и помощь квалифицированного электрика.

Энергосберегающие лампочкиЭнергосберегающие лампочки

Дефект мигания заложен в самой конструкции энергосберегающей лампы. На электронной плате лампочки присутствуют катушка-дроссель, конденсатор и выпрямляющий диодный мост.

Если такой набор попадает в сильное магнитное поле, то катушка, как антенна, поймает достаточно энергии, чтобы преобразовать ее с помощью конденсатора и диодов в электрический заряд, достаточный для запуска экономки. Подобным магнитным полем может быть излучение от мобильного телефона, мощного блока питания и даже от проводки работающего бойлера.

Что делать, если разбилась энергосберегающая лампочка

При всех своих достоинствах энергосберегающая люминесцентная лампа обладает двумя серьезными недостатками:

  • Использование ртути;
  • Слабый корпус.

Стеклянный корпус можно легко расколоть рукой даже при осторожном закручивании лампочки в патрон. В ситуации, когда разбилась энергосберегающая лампочка, часть ртути всегда попадает в помещение комнаты. Опасна даже не сама ртуть, как вещество, а ее разогретые пары, точнее, окись ртути, обладающая высокой токсичностью.

Энергосберегающие лампочки

Энергосберегающие лампочки

Первое, что нужно делать, если разбилась энергосберегающая лампочка, — это убрать всех посторонних из комнаты, детей в первую очередь. Если лампочка разбилась в работающем состоянии, то нужно открыть окна, включить вентиляцию и переждать, пока большая часть токсичных паров будет удалена или осядет.

Следующим этапом необходимо нейтрализовать содержимое лампы, можно использовать водный раствор моющего средства, кальцинированной соды или мыла. Осколки убираются в пакет и утилизируются.

Утилизация лампочек энергосберегающих

Несмотря на относительно небольшое содержание ртути, энергосберегающие лампы подлежат утилизации по специальной схеме, как и все ртутьсодержащие приборы и предметы. Избавиться от лампочки можно сдачей отработанных светильников на специальные пункты приема. Любые другие формы утилизации, выбросить или закопать в грунт, означают создание потенциальной угрозы здоровья для всех, кто вступит в контакт с осколками и следами ртути.

Энергосберегающие лампочки

Энергосберегающие лампочки

Заключение

Энергосберегающие лампочки остаются востребованными из-за относительно невысокой цены и серьезной экономии электроэнергии, особенно, если речь идет о необходимости освещения территории в несколько сот квадратных метров. Для домашних потребностей все чаще выбирают безопасные лампочки нового поколения на основе светодиодов и редуцирующего вторичного излучения.

10 автоматических цепей аварийного освещения

В статье описаны 10 простых автоматических цепей аварийного освещения с использованием ярких светодиодов. Эта схема может использоваться во время сбоев питания и на открытом воздухе, где любой другой источник питания может быть недоступен.

Что такое аварийная лампа

Аварийная лампа — это цепь, которая автоматически включает лампу, работающую от батареи, как только пропадает входная сеть переменного тока или при отключении и отключении сетевого питания.

Это предотвращает попадание пользователя в неудобную ситуацию из-за внезапной темноты и помогает пользователю получить доступ к мгновенному переключению аварийного освещения.

В описанных схемах вместо лампы накаливания используются светодиоды, что делает устройство очень энергоэффективным и более ярким с его светоотдачей.

Кроме того, в схеме используется очень инновационная концепция, специально разработанная мной, которая еще больше увеличивает экономичность устройства.

Давайте изучим концепцию и схему более подробно:

ПРЕДУПРЕЖДЕНИЕ — МНОГИЕ ЦЕПИ, ПРЕДСТАВЛЕННЫЕ НИЖЕ, НЕ ИЗОЛИРОВАНЫ ОТ СЕТИ ПЕРЕМЕННОГО ТОКА, И ПОЭТОМУ ОЧЕНЬ ОПАСНЫ В ПИТАНИИ, НЕКРЫТОМ ПОЛОЖЕНИИ.

Теория автоматического аварийного освещения

Как следует из названия, это система, которая автоматически включает лампу при пропадании обычного источника переменного тока и выключает ее при восстановлении сетевого питания.

Аварийный свет может иметь решающее значение в областях, где часто случаются перебои в подаче электроэнергии, поскольку он может предотвратить возникновение неудобной ситуации при внезапном отключении электросети. Это позволяет пользователю продолжить текущую задачу или получить доступ к лучшей альтернативе, такой как включение генератора или инвертора, до восстановления электроснабжения..

1) Использование одного транзистора PNP

Концепция: мы знаем, что светодиоды требуют определенного фиксированного прямого падения напряжения, чтобы загореться, и именно на этом уровне, когда светодиод находится в лучшем состоянии, то есть напряжения, которые находятся примерно в прямом направлении падение напряжения позволяет устройству работать наиболее эффективно.

По мере увеличения этого напряжения светодиод начинает потреблять больше тока, а рассеивая дополнительный ток, нагреваясь сам, а также через резистор, который также нагревается в процессе ограничения дополнительного тока.

Если бы мы могли поддерживать напряжение вокруг светодиода, близкое к его номинальному прямому напряжению, мы могли бы использовать его более эффективно.

Это именно то, что я пытался исправить в схеме. Поскольку здесь используется батарея на 6 В, это означает, что этот источник немного выше, чем прямое напряжение используемых здесь светодиодов, которое составляет 3,5 В.

Повышение напряжения на 2,5 В может вызвать значительное рассеяние и потерю мощности из-за тепловыделения.

Поэтому я подключил несколько диодов последовательно к источнику питания и убедился, что сначала, когда аккумулятор полностью заряжен; три диода эффективно переключаются, чтобы сбросить лишнее 2.5 вольт на белых светодиодах (потому что каждый диод теряет 0,6 вольт на себе).

Теперь, когда напряжение батареи падает, серия диодов сокращается до двух, а затем до одного, гарантируя, что только желаемое значение напряжения достигает банка светодиодов.

Таким образом, предлагаемая схема простой аварийной лампы становится высокоэффективной с точки зрения потребления тока и обеспечивает резервное копирование в течение гораздо более длительного периода времени, чем при обычных подключениях.

Однако вы можете удалить эти диоды, если вы не хотите их включать.

Принципиальная схема

Как работает эта белая светодиодная цепь аварийного освещения

Обращаясь к принципиальной схеме, мы видим, что схема на самом деле очень проста для понимания, давайте оценим ее по следующим пунктам:

Трансформатор, мост и конденсатор образуют стандартный источник питания для схемы. Схема в основном состоит из одного транзистора PNP, который используется здесь как переключатель.

Мы знаем, что устройства PNP относятся к положительным потенциалам и действуют для них как земля.Таким образом, подключение положительного источника питания к базе устройства PNP будет означать заземление его базы.

Здесь, пока сетевое питание включено, положительный вывод от источника питания достигает базы транзистора, удерживая его выключенным.

Следовательно, напряжение от батареи не может достигать группы светодиодов, поэтому она остается выключенной. Тем временем аккумулятор заряжается от напряжения источника питания и заряжается через систему непрерывной зарядки.

Однако, как только питание от сети пропадает, положительный полюс на базе транзистора исчезает, и он смещается вперед через резистор 10 кОм.

Транзистор включается, мгновенно загорая светодиоды. Первоначально все диоды включены в цепь напряжения и постепенно отключаются один за другим по мере того, как светодиод становится более тусклым.

ЕСТЬ СОМНЕНИЯ? НЕ стесняйтесь комментировать и взаимодействовать.

Список деталей

  • R1 = 10K,
  • R2 = 470 Ом
  • C1 = 100 мкФ / 25 В,
  • мостиковые диоды и D1, D2 = 1N4007,
  • D3 — D5 = 1N5408,
  • T1 = BD140
  • Tr1 = 0-6 В, 500 мА,
  • Светодиоды = белые, высокоэффективные, 5 мм,
  • S1 = переключатель с тремя переключающими контактами.Использование бестрансформаторного источника питания

Представленная выше конструкция может быть также выполнена с использованием бестрансформаторного источника питания, как показано ниже:

Здесь мы обсудим, как можно построить аварийную лампу без трансформатора, используя несколько светодиодов и несколько обычных компонентов.

Основные характеристики предлагаемой автоматической бестрансформаторной схемы аварийного освещения, хотя и очень идентичны более ранним конструкциям, отсутствие трансформатора делает конструкцию довольно удобной.
Потому что теперь схема становится очень компактной, недорогой и простой в сборке.

Однако цепь, которая полностью и напрямую связана с сетью переменного тока, очень опасна для прикосновения в открытом положении, поэтому очевидно, что конструктор применяет все необходимые меры безопасности при ее изготовлении.

Описание схемы

Возвращаясь к идее схемы, транзистор T1, являющийся PNP-транзистором, имеет тенденцию оставаться в выключенном состоянии, пока сеть переменного тока присутствует через его базовый эмиттер.

Фактически здесь трансформатор заменяется конфигурацией, состоящей из C1, R1, Z1, D1 и C2.
Вышеупомянутые части представляют собой симпатичный небольшой компактный бестрансформаторный источник питания, способный держать транзистор выключенным во время присутствия сети, а также подзаряжать соответствующий аккумулятор.

Транзистор возвращается в состояние смещения с помощью R2 в момент отключения питания переменного тока.

Теперь аккумуляторная батарея проходит через T1 и загораются подключенные светодиоды.

На схеме показана батарея на 9 вольт, однако может быть встроена батарея на 6 вольт, но тогда D3 и D4 необходимо будет полностью снять с их позиций и заменить их проводной связью, чтобы энергия батареи могла течь напрямую через транзистор и светодиоды.

Схема цепи автоматического аварийного освещения

Видеоклип:

Список деталей
  • R1 = 1M,
  • R2 = 10K,
  • R3 = 50 Ом 1/2 Вт,
  • C1 = 1 мкФ / 400 В PPC,
  • C2 = 470 мкФ / 25 В,
  • D1, D2 = 1N4007,
  • D3, D4 = 1N5402,
  • Z1 = 12 В / 1 Вт,
  • T1 = BD140,
  • светодиоды, Белый, высокоэффективный, 5 мм

Макет печатной платы для указанной выше схемы (вид сбоку дорожки, фактический размер)

Список контактов

  • R1 = 1M
  • R2 = 10 Ом 1 Вт
  • R3 = 1K
  • R4 = 33 Ом 1 Вт
  • D1 — D5 = 1N4007
  • T1 = 8550
  • C1 = 474/400 В PPC
  • C2 = 10 мкФ / 25 В
  • Z1 = 4.7 В
  • Светодиоды = 20 мА / 5 мм
  • MOV = любой стандарт для 220 В

2) Автоматическая аварийная лампа с защитой от перенапряжения

В следующей схеме аварийной лампы с защитой от перенапряжения используется 7 последовательных диодов, соединенных в прямом смещении через линию питания после входной конденсатор. Эти 7 диодов падают около 4,9 В и, таким образом, создают идеально стабилизированный и защищенный от перенапряжения выход для зарядки подключенного аккумулятора.

Аварийная лампа с автоматической активацией LDR «день — ночь»

В ответ на предложение одного из наших заядлых читателей, приведенная выше схема автоматического светодиодного аварийного освещения была изменена и улучшена с добавлением второго транзисторного каскада, включающего систему запуска LDR.

Этап делает работу аварийного освещения неэффективной в дневное время, когда доступно достаточное окружающее освещение, тем самым экономя драгоценную энергию батареи, избегая ненужного переключения устройства.

Модификации схемы для работы со 150 светодиодами, по запросу SATY:

Список деталей для цепи аварийного освещения на 150 светодиодов

R1 = 220 Ом, 1/2 Вт
R2 = 100 Ом, 2 Вт,
RL = Все 22 Ом, 1/4 Вт,
C1 = 100 мкФ / 25 В,
D1,2,3,4,6,7,8 = 1N5408,
D5 = 1N4007
T1 = AD149, TIP127, TIP2955, TIP32 или аналогичный,
Трансформатор = 0 -6 В, 500 мА

3) Цепь автоматической аварийной лампы с отключением при низком заряде батареи

Следующая схема показывает, как в приведенную выше схему можно включить цепь отключения по низкому напряжению для предотвращения чрезмерного разряда батареи.

.Цепь энергосберегающей лампы

— Купить схему энергосбережения, схему энергосбережения, схему УФ лампы на Alibaba.com

Схема энергосберегающей лампы

MOKO Изготовление печатных плат и услуги по сборке печатных плат:
o Файл печатной платы со списком деталей, предоставленный клиентами
o Печатная плата изготовлена, детали печатной платы приобретены нами
o Печатная плата с собранными деталями
o Электронная испытательная плата или PCBA
o Быстрая доставка, антистатический корпус
o Соответствует директиве RoHS, не содержит свинца
o Универсальное обслуживание для проектирования печатных плат, компоновки печатных плат, производства печатных плат, закупки компонентов,

Сборка печатных плат испытания, упаковка и доставка печатной платы

Технические характеристики для печатной платы

Количество слоев 1,2,4 или 6, до 18 слоев
Количество для заказа От 1 до 50 000
Форма платы Прямоугольная, круглая, с пазами, вырезами, сложная, неправильная
Доска Тип 90 035

Жесткая, гибкая, жестко-гибкая
Материал платы Стекло-эпоксидная смола FR-4, высокая Tg FR-4, соответствие Rohs, алюминий, Rogers и т. Д.
Раскрой доски Сдвиг, V-образный надрез, с выступами
Толщина платы 0,2-4,0 мм, изгиб 0,01-0,25 мм
Вес меди 1,0, 1,5, 2,0 унции
Паяльная маска Двухсторонний зеленый LPI, также поддерживает красный, белый, желтый, синий, черный
Шелкография Двусторонняя или односторонняя белая, желтая, черная или негативная
Шелкография Мин. Ширина линии 0.006 » или 0,15 мм
Макс.размеры платы 20 дюймов * 20 дюймов или 500 мм * 500 мм
Мин. След / зазор 0,10 мм или 4 мил
Мин. Диаметр сверления 0,01 ‘ ‘, 0,25 мм или 10 мил
Поверхность HASL, никель, иммерсионное золото, иммерсионное олово, иммерсионное серебро, OSP и т. Д.
Допуск толщины платы ± 10%
Допуск веса меди ± 0.25 унций
Минимальная ширина прорези 0,12 дюйма, 3,0 мм или 120 мил
Глубина V-Score 20-25% толщины платы
Формат файла проекта Gerber RS-274,274 D, Eagle и AutoCAD’s DXF, DWG

Возможности сборки печатной платы

Количество Прототип и сборка печатной платы небольшого объема, от 1 платы до 250, являются специальными или до 1000
Тип сборки SMT, сквозное отверстие
Тип припоя Водорастворимая паяльная паста, без свинца и без свинца
Компоненты

Пассивный до размера 0201

BGA и VFBGA

Бессвинцовые держатели чипов / CSP

Узел двустороннего SMT

Мелкий шаг до 0.8 мил

Ремонт и замена BGA

Удаление и замена деталей

Размер пустой платы

Наименьший: 0,25 * 0,25 дюйма

Максимальный: 20 * 20 дюймов

Формат файла

Bill of Материалы

Файлы Gerber

Файл Pick-N-Place

Типы услуг Под ключ, частичный под ключ или партия товара
Упаковка компонентов Отрезанная лента, трубки, катушки, незакрепленные детали
Время оборота Обслуживание в тот же день до 15 дней обслуживания
Испытания Испытание летающим зондом, рентгеновский контроль Тест AOI
Процесс сборки печатной платы

Сверление —— Воздействие- —- Покрытие —— Травление и снятие изоляции —— Пробивка —— Электрические испытания —— SMT —— Волновая пайка —— Сборка —— ICT —— Функциональное тестирование —— Тестирование температуры и влажности 9 0005

Подробные условия сборки печатных плат

Технические требования к сборке печатных плат и печатных плат:
—- Профессиональная технология поверхностного монтажа и сквозной пайки
—- Различные размеры, такие как 1206,0805,0603 компонентов Технология SMT
—- Технология ICT (In Circuit Test), FCT (Functional Circuit Test).
—- Сборка печатной платы с сертификатом UL, CE, FCC, Rohs
—- Технология пайки оплавлением азотом для поверхностного монтажа.
—- Высококачественная сборочная линия для поверхностного монтажа и пайки
—- Технология размещения соединенных плат высокой плотности.

Требование к расценкам на сборку печатной платы и печатной платы:
—- Файл Gerber и список спецификаций
—- Четкие фотографии образца pcba или pcba для нас
—- Метод тестирования для печатной платы

energy saving lamp circuit

energy saving lamp circuit

Вид нашей мастерской

energy saving lamp circuit energy saving lamp circuit

.

энергосберегающих ламп производства в Китае. Схема

энергосберегающих ламп.

спецификация

1. Энергосберегающие лампы 2. Мощность: 5 Вт ~ 300 Вт 3. Серия: серия U, серия спираль, лотос, цветок и другие 4. Сертификат: CE SONCAP SASO ISO9001 COC
5.Заводская дешевая цена с хорошим качеством

Детали энергосберегающих ламп следующим образом:

318

Мощность

5 Вт ~ 300 Вт, 55 Вт ~ 300 Вт

9000

110-130В / 220-240В
Срок службы

3000h, 6000h, 8000h

Пластиковые детали

PP, PP , PBT

Цвета

Различный цвет

Основание

B27,, B22, GU10, E27000

Приложения

Домашнее освещение, офисное освещение, освещение дисплеев, газонов и т. Д. о.

Сертификация

CE ROHS SUNCAP ISO 9001

Упаковка

250 г, 300 г, 350 9000

09

Rocky Энергосберегающие лампы development

Energy saving bulbs manufactures in china energy saving lamps circuit

Energy saving bulbs manufactures in china energy saving lamps circuit Energy saving bulbs manufactures in china energy saving lamps circuit Energy saving bulbs manufactures in china energy saving lamps circuit Energy saving bulbs manufactures in china energy saving lamps circuit Energy saving bulbs manufactures in china energy saving lamps circuit Energy saving bulbs manufactures in china energy saving lamps circuit Energy saving bulbs manufactures in china energy saving lamps circuit Energy saving bulbs manufactures in china energy saving lamps circuit Energy saving bulbs manufactures in china energy saving lamps circuit

Energy saving bulbs manufactures in china energy saving lamps circuit

Energy saving bulbs manufactures in china energy saving lamps circuit Energy saving bulbs manufactures in china energy saving lamps circuit Energy saving bulbs manufactures in china energy saving lamps circuit Energy saving bulbs manufactures in china energy saving lamps circuit Energy saving bulbs manufactures in china energy saving lamps circuit

отгрузка Energy saving bulbs manufactures in china energy saving lamps circuit Energy saving bulbs manufactures in china energy saving lamps circuit Energy saving bulbs manufactures in china energy saving lamps circuit Energy saving bulbs manufactures in china energy saving lamps circuit

Energy saving bulbs manufactures in china energy saving lamps circuit

Energy saving bulbs manufactures in china energy saving lamps circuit Energy saving bulbs manufactures in china energy saving lamps circuit Energy saving bulbs manufactures in china energy saving lamps circuit Energy saving bulbs manufactures in china energy saving lamps circuit Energy saving bulbs manufactures in china energy saving lamps circuit

Energy saving bulbs manufactures in china energy saving lamps circuit

Energy saving bulbs manufactures in china energy saving lamps circuit

.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *